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Genetic architecture and genomic selection
of fatty acid composition predicted by
Raman spectroscopy in rainbow trout
Carole Blay1, Pierrick Haffray2, Jonathan D’Ambrosio1,2, Enora Prado3, Nicolas Dechamp1, Virginie Nazabal3,
Jérôme Bugeon4, Florian Enez2, David Causeur5, Christophe Eklouh-Molinier2, Vincent Petit6, Florence Phocas1,
Geneviève Corraze7 and Mathilde Dupont-Nivet1*

Abstract

Background: In response to major challenges regarding the supply and sustainability of marine ingredients in
aquafeeds, the aquaculture industry has made a large-scale shift toward plant-based substitutions for fish oil and
fish meal. But, this also led to lower levels of healthful n−3 long-chain polyunsaturated fatty acids (PUFAs)—
especially eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids—in flesh. One potential solution is to select
fish with better abilities to retain or synthesise PUFAs, to increase the efficiency of aquaculture and promote the
production of healthier fish products. To this end, we aimed i) to estimate the genetic variability in fatty acid (FA)
composition in visceral fat quantified by Raman spectroscopy, with respect to both individual FAs and groups
under a feeding regime with limited n-3 PUFAs; ii) to study the genetic and phenotypic correlations between FAs
and processing yields- and fat-related traits; iii) to detect QTLs associated with FA composition and identify
candidate genes; and iv) to assess the efficiency of genomic selection compared to pedigree-based BLUP selection.

Results: Proportions of the various FAs in fish were indirectly estimated using Raman scattering spectroscopy. Fish
were genotyped using the 57 K SNP Axiom™ Trout Genotyping Array. Following quality control, the final analysis
contained 29,652 SNPs from 1382 fish. Heritability estimates for traits ranged from 0.03 ± 0.03 (n-3 PUFAs) to 0.24 ±
0.05 (n-6 PUFAs), confirming the potential for genomic selection. n-3 PUFAs are positively correlated to a decrease
in fat deposition in the fillet and in the viscera but negatively correlated to body weight. This highlights the
potential interest to combine selection on FA and against fat deposition to improve nutritional merit of aquaculture
products. Several QTLs were identified for FA composition, containing multiple candidate genes with indirect links
to FA metabolism. In particular, one region on Omy1 was associated with n-6 PUFAs, monounsaturated FAs, linoleic
acid, and EPA, while a region on Omy7 had effects on n-6 PUFAs, EPA, and linoleic acid. When we compared the
effectiveness of breeding programmes based on genomic selection (using a reference population of 1000
individuals related to selection candidates) or on pedigree-based selection, we found that the former yielded
increases in selection accuracy of 12 to 120% depending on the FA trait.

Conclusion: This study reveals the polygenic genetic architecture for FA composition in rainbow trout and
confirms that genomic selection has potential to improve EPA and DHA proportions in aquaculture species.
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Background
Over the last several decades, aquatic food production
has evolved away from capture fisheries toward the cul-
ture of increasing numbers of farmed fish species [1].
However, aquaculture operations face major challenges
regarding the sustainability of the feed used, particularly
with regard to marine ingredients. To address these con-
cerns, fish oil and fish meal—the traditional sources of
proteins and lipids in aquafeeds—have been largely
substituted (60–80%) with plant-based ingredients. How-
ever, compared to fish oils, vegetable oils differ in their
fatty acid composition: they are rich in oleic acid (OA;
C18:1 n-9), linoleic acid (LA; C18:2 n-6), and alpha-
linolenic acid (ALA; C18:3 n-3) and contain very low
proportion or no n-3 long-chain polyunsaturated fatty
acids (n-3 LC PUFAs). In farmed trout, one result of this
dietary shift has been reductions in the levels of n-3 LC
PUFAs, especially eicosapentaenoic (EPA; C20:5 n-3)
and docosahexaenoic (DHA; C22:6 n-3) acids, in flesh
[2]. n-3 LC PUFAs are known to have beneficial effects
on human health, including the prevention of a range of
cardiovascular and inflammatory diseases and neuro-
logical disorders [3, 4]. Freshwater fish are theoretically
capable of biosynthesising DHA and EPA via desatur-
ation and elongation of the ALA found in some vege-
table oils [5]. In practice, however, such bioconversion is
insufficient to compensate for the lack of dietary n-3 LC
PUFAs, resulting in a significant reduction in levels of
these healthful fatty acids (FAs) in fish tissues [5, 6]. Es-
pecially, in rainbow trout, two fads2 genes encoding pro-
teins with delta 5 and delta 6 desaturase activities and
two elongase enzymes Elovl5 and Elovl 2 have been iso-
lated and functionally characterised [7, 8]. Rainbow trout
is dependent on Elovl2 for 22:5 n-3 to 24:5 n-3 synthesis
and ultimately DHA synthesis [8]. When diets are high
in alpha-linolenic acid (ALA, 18: 3 n-3) with no added
EPA or DHA, fads2, Elovl5 and Elovl2 are most highly
expressed in rainbow trout liver [9]. PUFAs are also im-
portant in the fish life cycle, most notably for their roles
in reproduction, egg quality, and offspring development
[5], and have effects on nutritional quality of fish flesh
for human consumption [6, 10]. The relative amounts of
EPA and DHA formed are determined by the activities
of desaturase and elongase enzymes, which are them-
selves influenced by several factors, such as nutrition,
the environment, physiology, and genetics [11]. To date,
numerous studies have examined the characteristics of
FA metabolism and the effect of dietary oil sources on
the FA composition of farmed fish in attempts to find
solutions for this problem [12–18].
To meet consumer demand, producers are constantly

making improvements in husbandry techniques, nutri-
tion, and genetic management. One potential strategy
for meeting the demand for farmed fish without

compromising nutritional value could be to combine
genetic selection with changes in commercial feed for-
mulations. Recent investigations of the genetic variability
underlying lipid deposition and metabolism in fish have
identified a highly heritable genetic component that gov-
erns the capacity to synthesise and/or deposit LC-
PUFAs [19–22]. In trout, studies have revealed the effi-
ciency of divergent selection for total fat content [17,
23–25] and potential interactions between dietary lipid
level and genetic selection for body fat [26, 27]. Thus, to
counteract the diet-based decline in PUFA content in
flesh, one solution may be breeding programmes that se-
lect fish with better abilities to retain and/or synthesise
PUFAs. To date, studies have illustrated the potential of
selective breeding to increase n-3 LC PUFA levels in sal-
mon [20, 28–30], yellow croaker [22], tilapia [31], Asian
sea bass [32] and common carp [33]. Similar work has
also been conducted in trout [30], but as yet, we lack
knowledge on the genetic architecture that shapes the
relative proportions of individual FAs in this species. A
common strategy for this purpose is the genome-wide
association study (GWAS), which has been used to iden-
tify the genetic regions and loci significantly associated
with FA composition in species such as cattle (in meat
[34–36] and milk [37]) and pigs [38–41], common carp
[42], Asian seabass [32, 43], tilapia [44] and Atlantic sal-
mon [28]. In rainbow trout, though, the genetic parame-
ters of FA composition remain unknown, and no GWAS
has been performed to increase our knowledge of the
genetics of n-3 LC PUFA composition. Furthermore, the
relationships between FA composition and traits related
to lipid deposition, weight, yield, or quality have not yet
been characterised. Phenotype-based research has shown
that total fat content (as measured with a Fatmeter) in
the muscle increases with the growth and development
of fish [45, 46], but the genetic correlations between pro-
duction traits and FA composition—which would play a
crucial role in optimising the efficiency of breeding pro-
grammes—remain unknown.
In the literature, the technology most commonly used

for FA characterisation is chemical extraction and gas
chromatography. However, such analyses are expensive,
invasive, and time-consuming, and are thus not easily
applicable to a breeding programme. In this context,
what is needed are alternative methods that are afford-
able and potentially non-invasive, which could be used
to estimate the proportions of different FAs (group or
individual FA) in a population of fish that is large
enough to enable effective analyses of the genetic archi-
tecture of traits. One potential approach could be the
use of Raman scattering spectroscopy, a rapid, non-
destructive method for molecular characterisation based
on vibrational spectrometry. Specifically, this method en-
ables the qualitative and quantitative characterisation of
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molecules through analyses of spectral bands with re-
spect to the fundamental vibrational modes of their
chemical bonds. This technology has already been used
to determine total lipid concentration in minced salmon
flesh [47] and FA composition in pork adipose tissue
[48], as well as in fish oils [49, 50] and in Atlantic sal-
mon flesh [51].
As a step toward the long-term objective of increasing

the nutritional value of farmed rainbow trout and ensur-
ing high levels of n-3 PUFAs in the flesh, the main goal
of the present study was to investigate the genetics of n-
3 LC PUFA composition. Specifically, we used a com-
mercially selected population of rainbow trout to (1) es-
timate the genetic variability of the FA composition of
visceral adipose tissue, as indirectly estimated by Raman
spectroscopy; (2) analyse genetic and phenotypic correla-
tions among different FA traits and between FAs and
production traits linked to yields and fat deposition, (3)
detect QTLs associated with FA proportions and identify
candidate genes present within those regions, and (4) es-
timate the efficiency of genomic selection (GS) com-
pared to pedigree-based BLUP selection using
phenotypes predicted by Raman spectroscopy. In this
study, we targeted quantification of FA proportions in
adipocytes from visceral fat. A reason was that Raman
spectroscopy performed on adipocytes is less tedious
and expensive than the successive mincing and lyophil-
isation of flesh reported in previous studies. A second
one, was that the procedure proposed could also be

usable as highthroughput phenotyping technology by bi-
opsy in a non-destructive manner on live candidates as
Raman spectroscopy required a limited size of sample
(< 1 g). The methodology of the study encompassing gaz
chromatography, Raman spectroscopy, MRI, microwaves
and genotyping for calibration step and commercially se-
lected fish was illustrated in Fig. 1.

Results
Basic characteristics of fatty acid composition
Descriptive statistics of the fish fatty acids (FAs) propor-
tions predicted by Raman spectroscopy in this study are
presented in Table 1 and Fig. 2.
In this study, the most abundant individual fatty acid

was oleic acid (C18:1, 43.76%), which represented about
90% of all monounsaturated fatty acids (MUFAs) present
in visceral fat. Saturated fatty acids (SFAs) made up
22.69% of total FA content, while polyunsaturated fatty
acids (PUFAs) represented 27.05%. This latter group was
composed of approximately 33% n-3 PUFAs (sum of
omega-3 fatty acids) and 64% n-6 PUFAs (sum of
omega-6 fatty acids). Of the individual n-6 PUFAs, the
most abundant was linoleic acid (LA, 16.08%), which
represented ca. 60% of all PUFAs and about 93% of n-6
PUFAs. Of the individual n-3 PUFAs, alpha-linolenic
acid (ALA) had the highest concentration, accounting
for 50% of n-3 PUFAs and about 17% of total PUFA
content. DHA was the second most abundant n-3 PUFA,
representing ca. 22% of n-3 PUFAs and 7% of total

Fig. 1 Description of the methodology of the study encompassing gaz chromatography, Raman spectroscopy, phenotyping and genotyping for
calibration and commercial selected fish
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PUFAs. Taken together, the sum of EPA +DHA corre-
sponded to 35% of n-3 PUFAs and 11% of PUFAs as a
whole. Overall, the FA composition of fish was similar to
that of the feed (Additional file 1).
Among individuals, we observed relatively little vari-

ability in the estimated proportions of different types of

FAs (coefficient of variation (CV) ranging from 2 to 5%
for SFAs, MUFAs, and PUFAs). Instead, much more
variation was detected among individuals in the esti-
mated proportions of individual FAs (CV ranging from 3
to 31%), with the largest CV found for DHA. In general,
proportions of n-3 PUFAs were more variable among

Table 1 Summary statistics for fatty acid traits in rainbow trout

Name Trait N Mean SD Min Max CV (%) R2

[50]

SFA Saturated fatty acids 1382 22.69 1.06 19.2 27.14 4.67 0.42

MUFA Monounsaturated fatty acids 1382 49.68 0.9 44.33 53.46 1.8 0.75

PUFA Polyunsaturated fatty acids 1382 27.05 1.37 22 31.29 5.05 0.79

n-3 PUFA Omega-3 fatty acids 1382 8.87 1.18 4.65 12.39 13.3 0.66

n-6 PUFA Omega-6 fatty acids 1382 17.19 0.59 14.97 20.06 3.44 0.83

OA Oleic acid (C18:1) 1382 43.76 1.51 32.99 49.63 3.45 0.85

LA Linoleic acid (C18:2 n-6) 1382 16.08 0.68 13.05 20.24 4.25 0.84

ALA Alpha-linolenic acid (C18:3 n-3) 1382 4.62 1.08 0.75 10 23.45 0.82

ARA Arachidonic acid (C20:4 n-6) 1382 0.21 0.03 0.04 0.31 14.66 0.61

EPA Eicosapentaenoic acid (C20:5 n-3) 1382 1.11 0.16 0.57 1.86 14.37 0.76

DHA Docosahexaenoic acid (C22:6 n-3) 1382 0.75 0.12 0.47 1.2 15.63 0.81

EPA + DHA Sum EPA + DHA 1382 1.97 0.61 0.03 5.04 31.06 0.82

(N number of individuals, SD Standard deviation, Min Minimum value, max maximum value, CV Coefficient of variation (SD/mean*100), value of R2 from the ridge
regression methods for calibration from Prado et al. 2021 [50])

Fig. 2 Bar plot showing fatty acid prediction in percentage for SFA, MUFA (OA and others), PUFA (n-3 PUFA (ALA; EPA; DHA); n-6 PUFA (LA; ARA)
and others) in rainbow trout
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fish than those of n-6 PUFAs (CVs of 13% and ca. 3%,
respectively).

Heritability estimates and correlations among FAs
Figure 3 depicts heritability (h2) estimates based on pedi-
gree information for individual FAs and FA groups, as
well as phenotypic correlations (rp) among the 12 traits.
In general, heritability estimates were low and varied

from 0.02 ± 0.03 to 0.24 ± 0.05. With respect to FA
groups, higher heritability was estimated for PUFAs
(h2 = 0.16 ± 0.05) compared to SFAs (h2 = 0.08 ± 0.04)
and MUFAs (h2 = 0.12 ± 0.04). Of the two types of
PUFAs, n-6 PUFAs had the higher heritability (h2 =
0.24 ± 0.05). For individual fatty acids, the highest herita-
bilities were estimated for arachidonic acid (ARA), LA,
and EPA (0.21 ± 0.05, 0.18 ± 0.05, and 0.16 ± 0.05,
respectively).
Our analysis of phenotypic correlations among traits

revealed that, as a group, values for PUFAs as a whole
were more strongly correlated to those of n-3 PUFAs
than of n-6 PUFAs. Concentrations of ARA, an individ-
ual n-6 PUFA, were highly correlated to those of the lar-
ger PUFA group, n-3 PUFAs, and the individual FAs
EPA, DHA, and sum EPA + DHA. The two types of n-3
LC PUFAs, EPA and DHA, were highly correlated with
each other. EPA and sum EPA +DHA were more
strongly correlated to n-6 PUFAs, LA, and ARA (rp >
0.5) than to n-3 PUFAs and ALA (rp < 0.5).
When we examined the genetic correlations (rg)

among FAs, the results were similar to the phenotypic
correlations. From a group perspective, SFAs were highly
positively genetically correlated to MUFAs (rg = 1 ± 0)
and highly negatively genetically correlated to PUFAs (−
0.99 ± 0.22). EPA was highly genetically correlated to LA
(0.89 ± 0.08). DHA and the sum of EPA +DHA were
positively correlated to LA (rg = 1 ± 0.13, 0.80 ± 0.66, re-
spectively), while the sum of EPA +DHA was also highly
correlated to ARA (rg = 1 ± 0.53). However, for the ma-
jority of FAs the standard errors of the genetic correla-
tions were high (up to ±2.86 for ALA) and some

parameters did not converge, thus some results would
need confirmation.

Correlations between fatty acid proportions and other
traits
Genetic correlations between production traits and fatty
acids are presented in Fig. 4 and phenotypic correlations
can be found in Additional file 2.
The growth parameters BW and K and fat content pa-

rameters Fat, MRI_F%, MRI_F_sc%, and MRI_F_F%
were moderately and positively genetically correlated
with SFAs and MUFAs (0.2 ± 0.32 to 0.64 ± 0.36). In-
stead, generally speaking those same production traits
tended to be negatively correlated with all PUFA groups
and individual PUFAs (− 0.11 ± 0.6 to − 0.93 ± 1.25). BW
was highly positively correlated with SFAs and MUFAs
(0.64 ± 0.36 and 0.49 ± 0.22, respectively) and highly
negatively correlated with PUFAs, n-3 PUFAs, and n-6
PUFAs (− 0.6 ± 0.15, − 0.78 ± 0.73, and − 0.48 ± 0.14, re-
spectively). Fat percentage correlated positively with
SFAs and MUFAs (0.55 ± 0.25 and 0.25 ± 0.21), and
negatively with PUFAs as a group (− 0.44 ± 0.16) as well
as all individual PUFAs (− 0.11 ± 0.6 to − 0.74 ± 0.91).
PUFAs, n-3 PUFAs, and n-6 PUFAs were positively

genetically correlated with yield traits (HGCarc% and
Carc%), with the highest positive correlation found be-
tween Carc% and n-6 PUFAs (0.47 ± 0.13). These yield
traits tended to be negatively correlated with SFAs and
MUFAs, with the highest negative correlation found be-
tween Carc% and SFAs (− 0.44 ± 0.36).
DHA and the sum of EPA +DHA showed a moderate,

positive correlation with HGCarc% and Carc% (0.17 ±
0.48 to 0.25 ± 0.57).
We must reiterate here that the standard errors of the

genetic correlations were generally quite high; estimates
of genetic correlations were thus relatively imprecise.

QTL detection and identification of candidate genes
GWAS analyses were performed for the 12 individual
FAs or FA groups using approximately 30,000 SNPs. We
identified 10 QTLs with evidence effects on the fatty

Fig. 3 Genetic parameters of fatty acid traits in rainbow trout. Heritabilities (± standard error) in bold red on the diagonal, genetic correlations (±
standard error) in the upper triangle, phenotypic correlations in the lower triangle

Blay et al. BMC Genomics          (2021) 22:788 Page 5 of 19



acids proportions as well as 13 putative QTLs with only
putative evidence (Fig. 5 and Table 2). Table 2 presents
all regions detected for each FA trait and the percentage
of total additive genetic variation explained by each. We
will first describe the regions for which we detected
strong evidence of an effect, then the regions associated
with more than one FA, and finally the regions that ex-
plained more than 1% of the total additive variance of a
trait. Regions associated with only one FA and that
accounted for less than 1% of genetic variance are in-
cluded in Table 2 but will not be described here. The
candidate genes identified within the different QTL re-
gions are detailed in Additional file 3.
Within a single region on Omy7, we identified with

evidence effect a QTL for n-6 PUFAs and putative QTLs
for LA and EPA. This region explained the highest per-
centage of genetic variance for any of the traits

investigated—1.67, 0.86, and 1.02%, respectively—and
also had the largest credibility interval, between 2653 kb
and 3705 kb wide. The peak SNPs for n-6 PUFAs, LA,
and EPA were located, respectively, at 8.34Mb (coiled
coil domain-containing protein 122-like), 8.76Mb (inter-
genic region between tnika (traf2 and NCK-interacting
protein kinase-like) and slc7a14b (probable cationic
amino acid transporter) genes), and 9.88Mb (intergenic
region between ino1a (inositol-3-phosphate synthase 1-
A-like) and gnao1a (guanine nucleotide-binding protein
subunit alpha-11-like) genes) respectively.
Between 63.06Mb and 64.29Mb on Omy 1, we de-

tected QTLs for n-6 PUFAs and LA, and putative QTLs
for MUFAs and EPA. Depending on the trait, this region
explained between 0.59 and 1.08% of the genetic vari-
ance and had a credibility interval that was between 688
kb and 1232 kb wide. The peak SNP for n-6 PUFAs and

Fig. 4 Estimates of genetic correlations between proportions of fatty acids and production or quality traits

Fig. 5 Manhattan plot of QTLs detected using a Bayesian GWAS for fatty acid traits. SNPs are plotted on the x-axis according to their position on
each chromosome. The y-axis represents twice the natural logarithm of the Bayes factor associated with each trait. Red and blue dashed
horizontal lines correspond to the threshold value of logBF ≥6.0 for definitive evidence of a QTL and the threshold value of logBF ≥5.0 for a
putative QTL, respectively
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LA, at 64.29Mb, was located in the intergenic region be-
tween tlx1 (T-cell leukaemia homeobox protein 1 iso-
form X1) and lbx1 (transcription factor LBX1-like). The
peak SNP for MUFAs and EPA, at 63.63Mb, was located

in the PH and SEC7 domain-containing protein 1-like
isoform region.
A region on Omy3 (located between 75.82Mb and

75.96Mb) contained QTLs for PUFAs and ARA, but

Table 2 Summary statistics for GWAS for fatty acid traits in rainbow trout using BayesCπ method

Trait Chr. Peak SNP SNP peak position
(Mb)

2*ln
(BF)

MAF QTLstart position
(Mb)

QTLend position
(Mb)

% of variance explained by
QTL

MUFA 1 AX-
89965885

63.63 5.11 0.35 63.60 64.29 0.59

PUFA 3 AX-
89945218

75.82 6.45 0.33 75.82 75.82 0.36

PUFA 27 AX-
89938879

13.38 4.97 0.16 13.38 14.14 0.64

n-6
PUFA

1 AX-
89927799

64.29 6.12 0.33 63.06 64.29 0.97

n-6
PUFA

7 AX-
89960795

8.34 6.23 0.29 6.49 10.19 1.67

n-6
PUFA

7 AX-
89924956

63.78 5.57 0.37 63.78 65.02 1.29

n-6
PUFA

14 AX-
89920031

2.73 6.14 0.31 2.68 2.73 0.42

n-6
PUFA

17 AX-
89959128

7.55 7.69 0.37 7.55 7.55 0.61

n-6
PUFA

22 AX-
89961755

6.74 5.50 0.45 4.94 8.31 1.6

n-6
PUFA

26 AX-
89955255

24.05 5.27 0.43 24.05 25.30 0.56

LA 1 AX-
89926288

37.80 5.02 0.29 37.72 37.80 0.62

LA 1 AX-
89927799

64.29 6.33 0.33 63.06 64.29 1.08

LA 7 AX-
89939304

8.76 5.01 0.25 7.53 10.19 0.86

LA 14 AX-
89920031

2.73 5.72 0.31 2.57 2.73 0.45

LA 17 AX-
89959128

7.55 7.57 0.37 7.55 7.55 0.64

LA 26 AX-
89955255

24.05 5.2 0.43 24.05 24.51 0.19

ARA 3 AX-
89945218

75.82 6.06 0.33 75.82 75.96 0.41

ARA 8 AX-
89929403

75.66 6.24 0.47 75.66 75.66 0.36

ARA 10 AX-
89926441

32.18 5.42 0.28 31.28 32.30 0.94

EPA 1 AX-
89965885

63.63 5.23 0.35 63.06 64.29 0.86

EPA 4 AX-
89922253

7.94 8.00 0.35 7.94 7.94 0.85

EPA 7 AX-
89971360

9.88 5.98 0.37 7.54 10.19 1.02

EPA 14 AX-
89920031

2.73 5.64 0.31 2.68 2.73 0.59

Chr Chromosome, 2*ln (BF) Twice the natural logarithm of the Bayes Factor, MAF Minor allele frequency. The percentage of genetic variance explained by a QTL
was calculated as the sum of the variance explained by all SNPs included in the credibility interval of the QTL
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these explained less than 0.5% of the genetic variance in
each trait. The peak SNP for these QTLs was located in
the intergenic region between tmtops2a (vertebrate an-
cient opsin-like) and jam2b (junctional adhesion mol-
ecule B-like isoform X1).
A region on Omy14 (located between 2.57 and 2.73

Mb) contained a QTL for n-6 PUFAs and putative QTLs
for LA and EPA. This region explained a low percentage
of the genetic variance in these traits—0.42, 0.45, and
0.59%, respectively—and had credibility intervals that
spanned from 50 to 165 kb. The peak SNP for this re-
gion was located at 2.73Mb, in the intergenic region be-
tween rims2b (regulating synaptic membrane exocytosis
protein 2-like) and rims2a (regulating synaptic mem-
brane exocytosis protein 2-like isoform X1).
On Omy26, one region was identified as a putative

QTL for both n-6 PUFAs and LA. This region explained
0.56 and 0.19% of genetic variance, respectively, and was
located between 24.05Mb and 25.30Mb. The peak SNP
for this QTL was located at 24.05Mb, in the intergenic
region between rbtn1 (rhombotin-1) and rergl (ras-re-
lated and estrogen-regulated growth inhibitor-like
protein).
Two other putative QTLs were detected that each ex-

plained more than 1% of the genetic variance associated
with PUFAs as a group. The first was located on Omy7,
had a credibility interval of 1239 kb, and explained 1.29%
of the genetic variance for this trait. The peak SNP for
this QTL was located at 63.78Mb, in the znf1007 (zinc
finger protein 595-like) gene. The second putative QTL
was located on Omy22 between 4.94 and 8.31Mb, and
explained 1.6% of genetic variance. The peak SNP for
this QTL was located in the lmo7 (LIM domain only
protein 7) gene at 6.74Mb.
No significant QTL was found for SFAs, n-3 PUFAs,

OA, ALA, DHA, DPA, and EPA +DHA, which suggests
that the underlying genetic architecture for these traits
is very polygenic and affected by multiple loci with small
effects in this population of rainbow trout.

Genomic selection
The accuracies of estimated breeding values (EBVs) and
genomic estimated breeding values (GEBVs) are shown
in Table 3 for all FAs; data on the efficiency of genomic
selection, along with the inflation coefficients, can be
found in Table 3.
Regardless of the trait in question, all inflation coeffi-

cients were statistically indistinguishable from 1 (see
Table 3) and nearly identical between pedigree-based
(BLUP) and genomic (GBLUP) approaches.
GEBVs were more accurate than EBVs for all of the

predicted traits. The accuracy of genomic selection was
approximately 45% higher than that of pedigree-based
selection for all FAs. The mean accuracy of GEBVs

varied from 0.34 for ALA to 0.70 for n-6 PUFAs,
whereas the corresponding accuracies of EBVs were 0.30
and 0.51, respectively. The highest increase in accuracy
for a GEBV with respect to the corresponding EBV was
obtained for DHA (+ 119.8%), while the lowest was ob-
tained for ARA (+ 11.8%).

Discussion
In this study, we estimated the genetic parameters of FA
composition predicted by Raman spectroscopy and the
correlations between FA traits of visceral adipocytes and
those associated with production and quality traits (body
weight, carcass and filet yields, and lipid deposition) in a
commercial population of rainbow trout. We identified
quantitative trait loci and evaluated the potential for
genomic selection aimed at increasing the abundance of
long-chain omega-3 polyunsaturated fatty acids in these
fish.

Raman phenotyping and sampling of visceral adipose
tissue
In the majority of previous studies on aquatic species,
genetic variability in FA composition has been evaluated
using chemical analyses and gas chromatography [19, 20,
31, 33, 52, 53]. Due to the high cost of these analyses,
such studies have typically relied on relatively small
datasets, which limits the usefulness of this approach for
rigorous genetic evaluation and selection. The inclusion
of FA traits in breeding programmes would thus depend
greatly on the availability of alternative methods for FA
analysis. The development of breeding programs could
also benefit from alternative non-destructive technolo-
gies to predict FA on live candidates. For this reason,
the present study investigated the use of Raman

Table 3 Mean and standard deviation (in brackets) over 40
replicates of the selection accuracy (Acc) and inflation
coefficient (b) of EBVs and GEBVs for fatty acid traits

BLUP GBLUP

Acc b Acc b

SFA 0.37 (0.13) 1.07 (0.45) 0.45 (0.14) 1.03 (0.39)

MUFA 0.38 (0.11) 0.99 (0.34) 0.58 (0.11) 1.11 (0.28)

PUFA 0.43 (0.12) 1 (0.37) 0.56 (0.11) 1.01 (0.27)

n-3 PUFA 0.31 (0.24) 1.27 (1.03) 0.36 (0.23) 1.1 (0.72)

n-6 PUFA 0.51 (0.08) 1.03 (0.2) 0.7 (0.07) 1.08 (0.16)

OA 0.26 (0.18) 0.95 (0.67) 0.5 (0.19) 1.32 (0.58)

LA 0.46 (0.09) 1.02 (0.25) 0.67 (0.09) 1.12 (0.18)

ALA 0.3 (0.3) 1.8 (1.85) 0.34 (0.25) 1.42 (1.06)

ARA 0.46 (0.1) 1 (0.28) 0.51 (0.09) 0.91 (0.21)

EPA 0.43 (0.1) 0.99 (0.27) 0.53 (0.09) 0.98 (0.22)

DHA 0.21 (0.23) 1 (1.09) 0.47 (0.23) 1.53 (0.83)

EPA + DHA 0.27 (0.17) 0.96 (0.64) 0.46 (0.17) 1.21 (0.49)
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spectroscopy, which is less expensive than GC-based
analyses and would therefore enable the construction of
the larger datasets (thousands of individuals) necessary
for study of genetic architecture. As reported previously,
this technology requires also a small size of tissue (few
μm3) that could be frozen. Thus it could be a non-lethal
biopsy applied on live candidates, making it affordable in
breeding programs.
The accuracy of this technique is determined by calibra-

tion equations that are constructed using GC-based FA
quantification [Prado E, Eklouh-Molinier C, Enez F, Cau-
seur D, Blay C., Dupont-Nivet M, Labbé L, Petit V, Moreac
A, Taupier G, Haffray P, Bugeon J, Corraze G, Nazabal, V.
Prediction of fatty acids composition in the rainbow trout
Oncorhynchus mykiss by using Raman micro-
spectroscopy. Submitted]. For the majority of FAs (MUFAs,
PUFAs, n-6 PUFAs, OA, LA, ALA, EPA, DHA, and EPA +
DHA), the quality of prediction was high (correlation coef-
ficient (R2) ≥ 0.75, as estimated using ridge regression
methods). Only three of the FA traits tested (SFAs, ARA,
and n-3 PUFAs) demonstrated weaker predictive power,
with R2 < 0.75 [50]. One potential disadvantage of this tech-
nique, however, could be its limit of detection, which is
around 1%; some of the values for individual FAs in the
current study were close to this percentage. Curiously,
though, the predictive power for the SFA group was quite
limited (R2 = 0.42), even though the proportions calculated
for this group were well above the detection threshold
(around 22%). Further investigations are currently under-
way to study these results more thoroughly.
Another potential point of contention could be the use

of adipocytes from visceral fat instead of minced fillet or
adipocyte cells from myosepta. Major reasons of this
choice were detailed in the introduction. Adipocytes are
located in various adipose tissues (mostly visceral, sub-
cutaneous, liver, red and white muscles, brain, pancreas,
mandible, cranium, and tail fin); they play an important
role in the long-term storage of FAs as triglycerides
(lipogenesis) and their subsequent release (lipolysis) in
the blood for use in cell growth, endocrine regulation,
reproduction, or as energy sources after β-oxidation [54,
55]. The processes of adipocyte multiplication (hyperpla-
sia) or growth in size (hypertrophy), as well as lipolysis,
are regulated by a variety of enzymes, transcription fac-
tors, and hormones that also interact with the enzymes
fatty acyl elongase (Elovl) and desaturase (Fad) to yield
the final edible FA composition of the muscle. Genetic
variability in the FA composition of the fillet results then
from all the previous physiological process acting in
interaction with important environmental factors such
as swimming activity, water temperature, feed compos-
ition, or feeding practices. At this time, there is no pub-
lished information about potential differences in FA
composition between adipocytes in different locations in

the fillet. In targeting visceral adipocyte composition, we
aimed to evaluate genetic differences in lipogenesis- and
lipolysis-associated processes while minimising, as much
as possible, local interaction with other cell types or tis-
sues. This may limit the applicability of our results to
this type of tissue. The proportion of polar lipids is
higher in muscle (around 25%) than in adipose tissue
(5–10%). The n-3 long-chain PUFAs are mostly associ-
ated with sn-2 positions of phospholipids, so we can rea-
sonably hypothesise that the relative proportion of n-3
LC-PUFA (in % of total FA) would be higher in muscle
than in adipose tissue and then can be better predicted
by Raman spectroscopy due to their higher abundance
(in proportion). Our study provides a starting point—
and a new technical methodology—for the characterisa-
tion of potential genetic variation of FA composition
and will need further investigation to compare muscle
and visceral FA composition.

Heritabilities for fatty acid composition and correlations
To our knowledge, this study is the first to report pedi-
gree heritability estimates for all FA groups and individ-
ual FAs in rainbow trout. An earlier study in the same
species estimated heritability for EPA (0.61 ± 0.17) and
DHA (0.77 ± 0.11), but with a limited study population
(220 fish from 44 families) [52]. Another study on Atlan-
tic salmon reported a similarly high estimate for the n-3
PUFA group (0.77 ± 0.14) [19]. These estimates are very
different than those we obtained for EPA (0.17 ± 0.05)
and DHA (0.03 ± 0.03), probably due to differences in
population structure, phenotyping method, and/or in the
age and diet of the studied fish. In our case, the contrast
between the limited proportions of PUFAs (15% of total
FAs), EPA (1–2.3% of total FAs), and DHA (around 1%
of total FAs) and the much-larger proportions of
MUFAs (47–56% of total FAs) and SFAs (14–27% of
total fat) may have hindered our ability to accurately es-
timate the underlying genetic variation. However, in
general, our results are consistent with those docu-
mented from many other aquatic species. For example,
in a study of Atlantic salmon whose diet contained fish
meal and fish oil, and thus higher PUFA concentrations
than in the present study, Horn et al. reported heritabil-
ities that were similar to ours, in the range of 0.09 ± 0.06
to 0.26 ± 0.08 for individual n-3 PUFAs [20]. Although
there were large differences between the two studies in
the FA composition of the feed (EPA +DHA made up
3% of total dietary fat in the trout feed used here, com-
pared with 17% in their salmon feed; trout feed was 25–
30% fat versus 36% for salmon), this does not seem to
have influenced the heritability estimates. For the shrimp
Litopenaeus vannemei, published heritability estimates
were even lower, ranging from 0 to 0.19 ± 0.07 for all
fatty acids, 0.07 ± 0.05 for EPA, and 0.12 ± 0.06 for DHA
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[53]. In tilapia, heritability estimates ranged from 0 to
0.39 ± 0.11, with 0.10 ± 0.08 for EPA and 0.004 ± 0.07 for
DHA [31]; in common carp, estimated heritabilities
ranged from 0.03 ± 0.10 to 0.37 ± 0.22, with only three es-
timates different from zero: PUFAs (0.29 ± 0.17), n-3
PUFAs (0.37 ± 0.22), and EPA (0.34 ± 0.20) [33]. Thus, our
estimates for the heritability of FA groups or individual
FAs are in the same range as previous results obtained
from other aquaculture species. Although these estimates
were globally low, they do point to a genetic component
in rainbow trout for FA composition and abundance, par-
ticularly for n-6 PUFAs, which could be exploited through
genetic selection. The higher heritabilities we observed for
n-6 PUFAs, both as a group and for individual FAs, were
most likely due to the improved prediction accuracy for
these FAs compared to SFAs, MUFAs, or n-3 PUFAs
(both as a group or as individuals). It could be that SFAs
or MUFAs have low heritabilities because they are mainly
modulated by the diet, which in this study contained very
high proportions of these FAs. Additional information
from multiple species may help us to better understand
the genetic determinism in the FA transformation cascade
and the respective influences of the elongase and desatur-
ase enzymes in different contexts.
Strong genetic correlations, whether positive or nega-

tive, between different fatty acids is favourable to select
the trait with the highest heritability. The genetic corre-
lations estimated in the present study among FAs and
traits associated with body weight, yield, and quality en-
able us to make predictions about changes that may
occur as a result of selection on a given trait. Generally,
our results indicated that improvement in one FA group
is likely to cause unfavourable changes in other groups.
In our study, the negative genetic correlations between
PUFAs and SFAs/MUFAs demonstrate the trade-offs be-
tween groups. Generally, the genetic associations were
synergic within FA groups but antagonistic between
groups, which arises as a result of constraints inherent
in the underlying biosynthesis pathways of these FAs.
Additionally, even though our dataset of 1382 fish was
larger than those used in previous studies, only some of
the bivariate models for individual fatty acids converged
(due to very high correlations between those pairs of
traits) and all genetic correlations had large standard er-
rors. Thus, we based our interpretation of the results on
group traits rather than on individual estimates.
Another important contribution of this study is our

characterisation of the genetic correlations between FAs
and traits related to body weight, yield, and quality. In
rainbow trout, and in fish in general, the main selection
objectives are faster growth, increased yields, and disease
resistance. Given the genetic correlations estimated here,
genetic selection for increased BW or fat content would
be expected to increase the proportions of SFAs and

MUFAs and decrease the proportion of PUFAs; such a
reduction in the abundance of healthful n-3 PUFAs
could diminish the nutritional quality of flesh. Similar
results have been observed in studies of common carp
[33], Atlantic salmon [19], and tilapia [31], in which un-
favourable genetic correlations were reported between
performance traits and EPA or n-3 PUFAs. The fact that
the same tendency we observed in visceral adipocytes
has been reported in other studies based on fillets indi-
cates that adipocytes probably exhibit similar relative
variations in FA composition regardless of their origin.
One explanation of why faster growth or yield im-

provement could drive differential lipid composition
may also be linked with nutrition. It is well known that
the FA composition of diets strongly affects the compos-
ition of lipids in fish [16, 56–58]. In a 2018 study, trout
that were selected for faster growth tended to have a
higher feed intake; the fish then stored unutilised energy
as MUFAs, which shifted the balance of FAs in flesh
away from PUFAs [33]. Here, we identified a moderate
positive genetic correlation between fillet yield (pre-
dicted by HGCarc%) or carcass yield (Carc%) and certain
FA traits (DHA and sum EPA + DHA). This could be
linked to the fact that, compared to oleic acid (18:1 n-9),
EPA and DHA lower the accumulation of triglycerides
in adipocytes, thus limiting the development of adipose
tissue in fish [54, 59]. Carcass yield is inversely corre-
lated to visceral yield (with increased visceral tissue,
carcass yield declines), so it is likely that as the amount
of visceral tissue increases, we would see a correspond-
ing decline in EPA and DHA content. Our results give
support to this hypothesis on the link between EPA and
DHA and oleic acid storage and the interest to limit fat
deposition in the muscle and/or the visceral fat tissue in
selecting leaner fish with higher fillet yield. Thus select-
ing for increasing carcass yield should be a good strategy
which should preserve or increase EPA and DHA con-
tent, therefore maintaining a favourable balance of FAs
and the accompanying nutritional benefits for humans
[55]. Such an approach might be preferable to one based
only on growth, which is negatively correlated to n-3 LC
PUFA content. However, selecting for both carcass yield
and EPA/DHA content would reinforce the impacts on
FA composition.

New QTLs and candidate genes for fatty acid composition
All previous studies on the genetic basis of FA compos-
ition in aquaculture species have described a polygenic
architecture, with a few QTLs responsible for moderate
levels of genetic variation in FAs [28, 32, 33, 44, 60].
Our study identified QTLs on Omy7 that were associ-

ated with n-6 PUFAs, LA, and EPA; contained within
this region was the gene onmy-cd8a (T-cell surface
glycoprotein CD8 alpha precursor), which is indirectly
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related to FA activity. In Atlantic salmon, a gene in the
same family (LOC106581970, T-cell surface glycoprotein
CD3 zeta chain-like, on chromosome 21) was also iden-
tified as a potential candidate gene with links to EPA
and DHA [28]. It has been hypothesised that EPA and
DHA are able to modulate T-cell activation to exert
anti-inflammatory influences [61–63]. Within this same
region on Omy7, we also identified mrps9 (28S riboso-
mal protein S9, mitochondrial isoform) near the peak
SNP. Members of the MRPS family are involved in the
synthesis of protein inside mitochondria [64], with one
of their roles being the induction of apoptosis by SFAs
in several cell types [65, 66]. Another member of this
family, MRPS30 (mitochondrial ribosomal protein S30),
was highlighted by a GWAS analysis on FA composition
in sheep [64]; this gene was associated with myristic acid
(C14:0) content and the ratio of n-6 to n-3 PUFAs.
On Omy1, we detected QTLs associated with n-6

PUFAs, MUFAs, LA, and EPA; close to the peak SNP in
this region, we identified three interesting genes with in-
direct links to FAs: apmap, accs1, and abhd12. Apmap
(adipocyte plasma membrane associated protein) has
arylesterase and strictosidine synthase activity and may
play a role in adipocyte differentiation [67], while acss1
(acetyle coenzyme A synthetase 2-like) catalyses the syn-
thesis of acetyl-CoA from short-chain FAs [66]. Abhd12
(Lysophospholipase ABHD12) is known to be involved
in immune and neurological processes and plays a role
in the regulation of lysophospatidylserine pathways and
related with very-long chain lipids [68–70].
In the ARA-associated QTL on Omy10, the gene acsl3a

(long-chain fatty acid CoA ligase 3-like) was present close
to the peak SNP [71]. This gene belongs to the same fam-
ily as Acyl-coenzyme A (CoA) synthetase 1 (acsl1), a well-
studied obesogenic gene involved in FA metabolism that
is associated with high caloric food intake in mice and
humans [72]. In general, members of this family appear to
play similar roles: acsl5 has been implicated in lipid bio-
synthesis and FA degradation [73], and acsl1 and acsl5
were linked with ARA and ARA/ALA, respectively, in a
study of common carp [42]. Another gene of interest
present in this region was mogat3b (monoacylglycerol O-
acyltransferase 3b), which is predicted to have diacylglyc-
erol O-transferase activity; it also plays a role in triglycer-
ide biosynthesis and may be involved in the absorption of
dietary fat [74–76]. An important paralog of this gene is
dgat2 (diacylglycerol o-transferase 2), which has been im-
plicated in the catalysis of the final stage of triacylglycerol
biosynthesis [77] and linked to adipogenesis [78]. This
gene was also highlighted in a study on sheep, in a QTL
associated with SFAs, C18:0, C16:1, and MUFAs [79].
In a QTL associated with PUFAs on Omy12, we found

the gene LOC110538527, which encodes the butyrophi-
lin subfamily 1 member A1 protein. Butyrophilin is the

main protein associated with milk fat droplets and milk
quality in cattle [80], and several members of this family
were highlighted in a GWAS analysis of FA composition
in beef cattle [34].
The candidate gene TBC1D4 was found close to the

peak SNP in a QTL on Omy22 associated with n-6
PUFAs. Members of the TBC1 domain family have been
associated with insulin and FA composition in previous
studies of humans and mice, and warrant further investi-
gation [81–83]. In pigs, this gene family, and more spe-
cifically, TBC1D1, was also reported to have putative
effects on three FA ratios (C16:1 n-7/C16:0, C18:1 n-9/
C16:1 n-7, PUFA/MUFA), on PUFAs as a whole, as well
as on n-3 and n-6 PUFAs [84].
Some previous studies of the genetic basis of FA con-

tent have identified candidate genes linked to FA metab-
olism, such as the elovl or fad genes in pigs [85] or
elovl2 (involved in the conversion of DPA to DHA) in
Atlantic salmon [28]. In our study, we did not detect any
strong candidate genes that were directly involved in the
bioconversion of PUFAs, n-3 PUFAs, EPA, or DHA in
rainbow trout. However, we did note several candidate
genes with links to EPA-, DHA-, or PUFA-related traits.
Other candidate genes highlighted by our analysis in-
cluded sdhaf4 (succinate dehydrogenase assembly factor
4, mitochondrial-like), free fatty acid receptor 2-like,
atp11a (phospholipid-transporting ATPase IH iso-
form1), plpp2a (phospholipid phosphatase 2-like), isoci-
trate dehydrogenase, pemt (phosphatidylethanolamine
N-methyltransferase), inpp4ab (Inositol polyphosphate-
4-phosphatase type I Ab), mtmr2 (Myotubularin-related
protein 2), ebpl (EBP-like), dhdds (alkyl transferase), and
sstr5 (Somatostatin receptor 5). Several factors could ex-
plain the lack of association with n-3 PUFA or n-6
PUFA bioconversion pathway genes. One explanation
could be that the SNPs on the array are not located in
gene regions that influence lipid metabolism, or that any
such genes located near the SNPs remain uncharac-
terised. It could also be that the diversity of EPA- and
DHA-pathway genes is low, which would reduce our
ability to detect QTLs. Finally, GWAS efficiency is influ-
enced by the accuracy of phenotypic recording. It is pos-
sible that our decision to predict FA composition using
Raman spectroscopy, which is less accurate than gas
chromatography, might have influenced the result.

Genomic selection for fatty acids
Unlike pedigree-based BLUP selection, in which candi-
dates from the same family have the same EBV, genomic
selection (GS) is able to differentiate among candidates
within a family and may thus yield improved estimates
of breeding values and better selection efficiency. In par-
ticular, GS is more efficient than pedigree-based selec-
tion for traits which cannot be measured directly on
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selection candidates and for traits with limited heritabil-
ity, such as FA proportions. Furthermore, GS has the
additional advantage of requiring fewer phenotypes,
since only the reference population must be phenotyped.
This is especially beneficial for traits that are complex
and expensive to measure, such as FA composition. In
our study, GS for FA traits using a reference population
of 1100 individuals was estimated to improve accuracy
by 12 to 120% compared to BLUP selection. In the lit-
erature to date, only one study has compared the accur-
acy of selection for FA content in fish (in this case,
Atlantic salmon) between pedigree- and genomic-based
methods [86]. Those authors reported low to moderate
GS accuracies (0.27 to 0.61), which are similar to the es-
timates we found here (0.34 to 0.70). For DHA, the pedi-
gree and genomic accuracies were 0.33 and 0.41,
respectively (a 26% gain in accuracy with GS, compared
with 120% in our study), while for EPA, these values
were 0.37 and 0.32, respectively (a higher accuracy for
pedigree prediction; − 14% change in accuracy for GS
compared to the 23% gain estimated in our study). In
studies of cattle, the accuracy of GS was less than 0.40
for the majority of FAs [34, 36] and the reliability of gen-
omic prediction for milk FA composition from three
Holstein populations was also less than 0.40 [87]; despite
this, though, genomic prediction was always superior to
pedigree prediction. In our study, the two lowest values
of genomic accuracy were obtained for n-3 PUFAs and
ALA, which were also the two FAs with the lowest heri-
tabilities. Compared to traditional pedigree-based selec-
tion, GS seems to demonstrate particular potential for
the healthy, desirable FAs EPA, DHA, and EPA +DHA
(gains of + 23%, + 120%, and + 70%, respectively).
Genotyping and data collection are costly, and the

relative advantage of using SNP data in selection ultim-
ately depends on how these costs are offset by the value
of the improvement in traits of interest. The higher gen-
etic gains enabled by GS with respect to pedigree selec-
tion may partially cover the extra costs of genotyping
[88]. Because of this, it may be feasible to incorporate
GS for FA traits in breeding programmes in order to se-
lect fish with a superior genetic basis for FA compos-
ition. The major advantage of GS is the ability to
differentiate among candidates within a family, which
here resulted in a gain in accuracy between 12% and
120%; this advantage is particularly pronounced for traits
that cannot be measured directly on a selection candi-
date. Furthermore, the cost of implementation of GS
could be reduced by optimising the density of the SNP
panel in use. Several studies have evaluated the accuracy
of predictions made using more cost-effective lower-
density SNP chips, and, for the traits examined, the use
of 500-SNP panels still provided predictive accuracy that
was higher than that of BLUP [89, 90].

Conclusions
In summary, this work provides new insights into the
genetics of fatty acid traits in rainbow trout. Our results
reveal that fatty acid proportions are very polygenic
traits, but, under the conditions investigated here, most
appear to be moderately heritable, with the highest herit-
ability observed for n-6 PUFAs (0.24). We detected sev-
eral genomic regions that explained up to 2% of the
genetic variance in proportions of MUFAs, PUFAs, n-6
PUFAs, LA, ARA, and EPA. When we investigated these
regions, we identified several genes (mrps9, mogat3b,
TBC1D4, acsl3, onmy-cd8a, butyrophiulin family,
apmap, acss1, and abhd12) that can be indirectly impli-
cated in fatty acid metabolism. These genes represent
good candidates for further functional validation to de-
cipher the biological mechanisms underlying variation in
fatty acid traits in rainbow trout. The work also provides
new information allowing to propose that selection on
carcass or fillet yields should improve n-3 LC PUFA
composition of the fillet, but a combined approach based
on both yield and FA composition in the fillet should
further increase the efficiency of selection. Finally, our
analyses indicate that, with a reference population of
about 1100 individuals, the implementation of genomic
selection in a breeding programme for fatty acid traits
would enable a gain in accuracy of 12–120% compared
to standard pedigree-based selection. These results sug-
gest that genomic evaluation is a feasible strategy for
selecting trout with superior genetic merit for traits re-
lated to production, quality, and fatty acid composition.

Methods
Fish production and trait recording
The fish used in this study were derived from a commer-
cially selected line from the Sources de l’Avance breed-
ing company, a subsidiary of Aqualande Group (Pissos,
France). The line has been previously selected for 9 gen-
erations with a multi-trait selection combining mass se-
lection on growth and carcass yield assisted by
ultrasound and morphometry and sib selection on
carcass yield and fillet yield [91].
Through 10 factorial crosses, 84 dams were crossed

with 99 neomales (sex-reversed females used as sires) on
the same day to create 831 families of rainbow trout. A
piece of fin was sampled from each parent for DNA ex-
traction and subsequent genomic analysis. Trout were
reared under commercial conditions in the “Viviers de la
Houtine” growing farm (Belin-Beliet, France); further de-
tails on rearing can be found in [46]. Fish were fed to sa-
tiation using extruded commercial feed: Neo start (17%
lipids) and Neo CDC (23% lipids) (Le Gouessant, Lam-
balle, France) during the first stage, then Extra CDC
AQL G25 (25% lipids) (Le Gouessant, Lamballe, France)
and Viva Pro 7F NAT29 (30% lipids) (Aqualia, Arue,

Blay et al. BMC Genomics          (2021) 22:788 Page 12 of 19



France) until the end of the experiment. The compos-
ition of the feed mimicked that used in commercial opera-
tions: the majority of fish meal and fish oil had been
substituted with plant-based ingredients, so that PUFA
levels were minimal (detailed in Additional file 1). Fish
were reared following standard practices, and measure-
ments were performed only on slaughtered fish; there was
thus no need to consult an ethics committee. At 469 days
post-fertilisation (dpf), fish were individually tagged with
RFID transponders and fin samples were collected and
preserved in 95% ethanol for DNA extraction and gen-
omic analysis. At the end of the growing period (between
503 and 506 dpf), data were collected from 1410 fish ran-
domly sampled. Fish were humanely killed by a blow to
the head and bled by cutting the gills in an ice water bath,
in accordance with good animal slaughtering practices.
Post-mortem data collection and processing were accom-
plished as quickly as possible to ensure data accuracy. All
measured traits were defined according to the ATOL
(Animal Trait Ontology for Livestock) database, available
online (https://www.atol-ontology.com/en/). From each
fish, the following traits were measured: body weight (BW,
ATOL_0000351), body length (BL, ATOL_0001658), head
weight (HeadW, ATOL_0001545), headless gutted carcass
weight (HGCarcW, ATOL_0002260), and viscera weight
(ViscW, ATOL_0002258). These traits were combined to
calculate three synthetic traits or processing yields: Fulton
coefficient condition, calculated as K = BW(g)∗100/BL3

(cm) (ATOL_0001653); headless gutted carcass yield
(HGCarc%, ATOL_0002261), an indirect predictor of fillet
yield (rg = 0.97 [92];); and gutted carcass yield (Carc%,
ATOL_0000548). Total fat content in muscle (Fat,
ATOL_0001663) was estimated indirectly using a Fish
Torry Fat-meter® positioned on the skin as described in
[93]. For each fish, one steak was cut in front of the dorsal
fin and photographed using a digital camera (Canon EOS
1000 D 10M Pixels, adapted with a shooting tent (Lite-
room Photoflex©) to avoid specular reflection and a copy
stand to fix the camera. The steaks were then packed in
individual plastic bags and frozen at − 20 °C until magnetic
resonance imaging (MRI) analysis. The digital pictures
were analysed using a modification of the method de-
scribed by Marty-Mahe et al. (2003) [94]. First, the image
was L*a*b* transformed, then colour image segmentation
was performed with Visilog 7.3 for Windows© to quantify
areas of the steak (ATOL_0005553). Flesh colour (ATOL_
0001017) (including myosepta) was expressed in the L*,
a*, b* system—representing luminosity, redness and
yellowness, respectively—as recommended by the CIE
(CIE 1976) [95].
The process of magnetic resonance image formation is

based on a combination of permanent and radio-
frequency (RF) magnetic fields [96]. An automatic image
analysis scheme can then be used to distinguish flesh

from subcutaneous fat tissue. The method for mapping
the distribution of fat is detailed in [97]. For each steak,
MRI measurements were used to determine total fat
content (MRI_F%), subcutaneous fat proportion (MRI_
F_SC%), and fat content in flesh (IRM_F_F%). The gen-
etic architecture of all of these traits has already been
analysed, and further details on trait measurement can
be found in additional Table 4 and Blay et al. (2021)
[46]. Data from that study are used here to estimate the
phenotypic and genetic correlations of production traits
with fatty acids.

Prediction of fatty acid composition
The FA composition of adipocytes from visceral fat
(ATOL_0000074) was predicted by Raman spectroscopy
(LabRAM HR800, Horiba Scientific) following the calibra-
tion method developed by [Prado E, Eklouh-Molinier C,
Enez F, Causeur D, Blay C., Dupont-Nivet M, Labbé L,
Petit V, Moreac A, Taupier G, Haffray P, Bugeon J, Cor-
raze G, Nazabal, V. Prediction of fatty acids composition
in the rainbow trout Oncorhynchus mykiss by using Ra-
man micro-spectroscopy. Analytical Chimica Acta, sub-
mitted], with gas chromatography (Eurofins Analytics,
Nantes) as a reference method [98]. The detection limit
for gas chromatography was estimated to be 0.05% of total
FAs. This is detailed in [Prado E, Eklouh-Molinier C, Enez
F, Causeur D, Blay C., Dupont-Nivet M, Labbé L, Petit V,
Moreac A, Taupier G, Haffray P, Bugeon J, Corraze G,
Nazabal, V. Prediction of fatty acids composition in the
rainbow trout Oncorhynchus mykiss by using Raman
micro-spectroscopy, submitted] but briefly (see also Fig.
1), the calibration was made from 1) 259 individuals di-
vided into two groups fed with two different diets, one
enriched in marine fish oil and fish meal and one
substituted with plant ingredients 2) nine additional indi-
viduals from the 1410 individuals of this study. Visceral
adipose tissues were analysed by gas chromatography and
also by Raman spectroscopy for 268 samplesand only with
Raman for the rest of the samples (1401).
Visceral fat (2 g), mostly composed of adipocytes, was

collected from the “front” lobe of visceral adipose tissue
from 1410 commercial trout and preserved in liquid ni-
trogen. Raman measurements were acquired on 1410
sibs (including the 9 used for the calibration) using a
10x objective and an excitation wavelength of 785 nm.
Two spectral ranges were recorded: 550 to 1800 cm− 1

and 2610 to 3100 cm− 1. The calibration by means of a
ridge regression model was used to predict FA compos-
ition in the 1410 rainbow trout. Specifically, the propor-
tions of saturated fatty acids (SFAs), mono-unsaturated
fatty acids (MUFAs), poly-unsaturated fatty acids
(PUFAs), omega-3 (n-3 PUFAs) and omega-6 (n-6
PUFAs) fatty acids, and several individual fatty acids
were calculated as a percentage of total FA content. The
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acquisition parameters, pre-processing treatment, and
statistical analyses are described in detail by Prado et al.
(2021) [Prado E, Eklouh-Molinier C, Enez F, Causeur D,
Blay C., Dupont-Nivet M, Labbé L, Petit V, Moreac A,
Taupier G, Haffray P, Bugeon J, Corraze G, Nazabal, V.
Prediction of fatty acids composition in the rainbow
trout Oncorhynchus mykiss by using Raman micro-
spectroscopy, submitted.].

Genotyping
Fish were genotyped using the 57 K SNP Axiom® Trout
Genotyping array from Thermofisher [99] at the INRAE
genotyping platform Gentyane (Clermont-Ferrand,
France).
SNPs were subjected to several steps of quality-control

filtering, as described in D’Ambrosio et al. (2019) [100],
in particular to remove SNPs with probe polymorphism
and multiple locations on the genome. From the initial
set of 57 K SNPs, we retained those with a call rate
higher than 0.97, no significant deviation from Hardy-
Weinberg equilibrium (p-value > 0.0001), and a minor
allele frequency (MAF) higher than 0.05 for further ana-
lysis. In addition, samples in which less than 90% of
SNPs were genotyped were removed from the analysis.
Finally, all missing SNP genotypes of the remaining indi-
viduals were imputed using FImpute software 2.0 [101].
A total of 29,652 SNPs passed quality-control filtering.
Following DNA quality control, our final dataset con-
tained genotypes for 1382 of the 1410 fish that had been
phenotyped for FA traits.

Estimation of genetic parameters
Heritability (h2) and phenotypic and genetic correlations
(rp, and rg, respectively) were estimated using the re-
stricted maximum likelihood method (AIREML) and
BLUPF90 software [102]. Univariate analyses were per-
formed to estimate the heritability of all traits. Bivariate
analyses were performed to estimate genetic correlations
between traits, using the following animal model:

Y i ¼ μþ ai þ ei

where Yi is the performance of the ith animal, μ is the
overall mean of the population, ai is the additive effect of
the ith animal, and ei is the residual random error term.
The pedigree under consideration contained 17,235 ani-
mals over 9 generations. The maternal variance was not
significantly different from zero and thus maternal effects
were not included in the final models for all traits. All fish
were female and reared in the same raceway, so there was
no need for a fixed effect to be included in the model.
Heritability estimates were calculated as the ratio of

additive genetic variance (Va) divided by the total
phenotypic variance (Vp). For the genetic correlation

among FAs, data were transformed using a logarithmic
function to improve the convergence of estimates.

GWAS and QTL detection
GWAS was performed using BayesCπ [103], a Bayesian
Stochastic Search Variable Selection approach, imple-
mented in BESSiE software (version 1.0) [104].
In the BayesCπ model, only a certain proportion of

SNPs (π) are assumed to have a non-zero effect on the
phenotype. The marker effects are estimated through an
MCMC algorithm that considers a mixture of markers,
of which proportion π have effects that follow a normal
distribution N (0, σ2a) and proportion 1 – π have zero
effect. The general model used is:

Y i ¼ μþ
Xn

j¼1

δjka jgij þ εik

with Y the phenotype observed for the ith individual, μ
the overall mean in the population, n the total number
of SNPs in the analysis, aj the additive effect of the refer-
ence allele for the jth SNP, gij the genotype for individual
i (coded as 0, 1, or 2), and εik the residual effect for the
ith individual in the kth iteration. The vector of residual
effects is normally and independently distributed, ε � N
ð0; Iσ2

eÞ; with σ2e the residual variance.
A total of 200,000 cycles were used, with a burn-in

period of 5000 cycles. Results were saved every 20 cycles.
In order to check convergence, the MCMC algorithm
was initiated three times with three different chains for
the random number generator. Convergence was
assessed by visual inspection of plots of the posterior
density of genetic and residual variances and by high
correlations (r > 0.99) between the genomic estimated
breeding values (GEBVs) estimated from the different
chains of the MCMC algorithm.
At each cycle k, the decision to include the jth SNP in

the model depended on the indicator variable δjk: if δjk
was equal to 1, the effect of the jth SNP was estimated as
aj, while if δjk was equal to 0, no effect was estimated.
This indicator variable was sampled from a binomial dis-
tribution with a probability π that δjk was equal to 1 (i.e.
the SNP has a non-zero effect) and a probability 1-π that
δjk was equal to 0. The proportion 1-π was sampled
from a beta distribution, B(α, β), with α = 300 and β =
29,652; the value of π was kept almost constant at 1%,
corresponding to approximately 300 SNPs selected at
each cycle from the 29,652 markers. This value of π was
considered to be a good compromise in our variable se-
lection algorithm between the high degree of poly-
morphism of the traits under study and the limited
number of individuals (n = 1382) in our dataset.
The degree of association between each SNP and a

given phenotype was assessed using the Bayes Factor
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(BF): BF ¼
Pi
�
ð1−PiÞ

π=ð1−πÞ
, where Pi is the probability that the

ith SNP has a non-zero effect.
Following Kass and Raftery (1995) [105], QTLs were

evaluated based on calculations of 2*ln (BF) (twice the
natural logarithm of the BF); the threshold 2*ln (BF) ≥ 6
was considered evidence for a QTL. As proposed by
Michenet et al. (2016) [106], a credibility interval was
constructed around the peak SNP that encompassed,
within a sliding window of 1Mb on either side, all
neighbouring SNPs for which 2*ln (BF) ≥ 3. If 5 ≤ 2*ln
(BF) < 6 for a peak, the QTL was considered putative,
and was included in further analyses only if it explained
at least 0.5% of the genetic variance for a trait or if it
was linked with more than one trait.
All candidate genes that were located within the confi-

dence or credibility intervals established using the
BayesCπ approach are listed in Additional file 3, with
annotation from the NCBI Oncorhynchus mykiss genome
assembly release 100 (GCF_002163495.1), and gene sym-
bols from Lallias et al. (2020) [107].

Selection efficiency
To assess the relative efficiencies of a pedigree-based se-
lection approach (best linear unbiased predictor; BLUP)
and a genomic selection approach (GBLUP), estimated
breeding values (EBV and GEBV, respectively) were de-
rived via consideration of either the pedigree relation-
ship matrix (A) or the genomic matrix (G) using the
software package BLUPf90 [102].
For pedigree-based evaluation, the following BLUP

model was applied for the estimation of breeding values:

Y i ¼ μþ Ziai þ ei

where Yi is the performance of the ith animal, μ is the
overall mean of the population, and ai and ei are the vec-
tors of additive genetic effects and residual effects that
explain the performance of all phenotyped animals, re-
spectively. Z is the incidence matrix for ai. In our model,
vector ai corresponded to the breeding values of 17,235
individuals related through the pedigree relationship
matrix A of the 1382 phenotyped fish.
For genomic selection, the genomic relationship

matrix G was used in place of the pedigree matrix A
[108]. The following GBLUP model was applied for the
estimation of genomic breeding values (GEBV):

Y i ¼ μþ Zigi þ ei

with the vector gi corresponding to the breeding values
of 1382 phenotyped and genotyped individuals related
through the genomic relationship matrix G.

To assess the accuracy of (G) EBVs, 40 replicates of
Monte Carlo ‘leave-one-group-out’ cross validation tests
[109] were performed. For each replicate, 314 fish from
the 1382 phenotyped and genotyped individuals were
randomly chosen for the validation set and 1068 fish
were chosen for the training set. The phenotypes re-
corded in the validation population were then masked
and breeding values were estimated using (G) BLUP
model.
For each replicate, the selection accuracy (Acc) was

computed as:

Acc ¼ r Gð ÞEBV v; yð Þ=√h2
where r represents the correlation between (G) EBVv

and y, (G) EBVv represents the (genomic) breeding
values of individuals belonging to the validation dataset,
y is their phenotype, and h2 is the heritability estimated
using pedigree information. In addition to evaluating se-
lection accuracy, we also assessed the quality of BLUP
and GBLUP evaluation by deriving the inflation coeffi-
cient of EBVs as a measure of selection bias. The infla-
tion coefficient is the slope of the regression of the
phenotypes on the (G)EBVs. In the absence of selection
bias, this coefficient is expected to be equal to 1; in case
of EBV over-dispersion (inflation), the coefficient is
below 1 and in the case of EBV under-dispersion the
value is above 1.
The values obtained for selection accuracy and the in-

flation coefficient were averaged over the 40 replicates.
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