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Abstract

Background: Old age, the most important risk factor for Alzheimer’s disease (AD), is associated with
thermoregulatory deficits. Brown adipose tissue (BAT) is the main thermogenic driver in mammals and its
stimulation, through β3 adrenergic receptor (β3AR) agonists or cold acclimation, counteracts metabolic deficits in
rodents and humans. Studies in animal models show that AD neuropathology leads to thermoregulatory deficits,
and cold-induced tau hyperphosphorylation is prevented by BAT stimulation through cold acclimation. Since
metabolic disorders and AD share strong pathogenic links, we hypothesized that BAT stimulation through a β3AR
agonist could exert benefits in AD as well.

Methods: CL-316,243, a specific β3AR agonist, was administered to the triple transgenic mouse model of AD (3xTg-
AD) and non-transgenic controls from 15 to 16 months of age at a dose of 1 mg/kg/day i.p.

Results: Here, we show that β3AR agonist administration decreased body weight and improved peripheral glucose
metabolism and BAT thermogenesis in both non-transgenic and 3xTg-AD mice. One-month treatment with a β3AR
agonist increased recognition index by 19% in 16-month-old 3xTg-AD mice compared to pre-treatment (14-month-
old). Locomotion, anxiety, and tau pathology were not modified. Finally, insoluble Aβ42/Aβ40 ratio was decreased
by 27% in the hippocampus of CL-316,243-injected 3xTg-AD mice.

Conclusions: Overall, our results indicate that β3AR stimulation reverses memory deficits and shifts downward the
insoluble Aβ42/Aβ40 ratio in 16-month-old 3xTg-AD mice. As β3AR agonists are being clinically developed for
metabolic disorders, repurposing them in AD could be a valuable therapeutic strategy.

Keywords: Alzheimer’s disease, β3 adrenergic receptors, Drug repurposing, Thermogenesis, 3xTg-AD mice, Brown
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Background
Old age is the main risk factor of Alzheimer’s disease
(AD), a neurodegenerative disorder clinically expressed
by memory deficits and cognitive dysfunction [1, 2]. The
prevalence of AD is growing fast along with the aging
population [3]. Yet, the exact pathogenic causes of the
sporadic form of the disease are unknown. Despite de-
cades of intense research and clinical trials, there is still
no curative treatment for AD. Since AD is a complex
and multifactorial disease, with frequent age-related co-
morbidities, multi-target agents might be advantageous
over a single-bullet approach. The undeniable impact of
old age on AD incidence indicates that aging triggers
etiopathological factors of AD; identifying these key fac-
tors could provide invaluable clues to the development
of novel therapeutic treatments.
Deficits in thermoregulation are among the docu-

mented consequences of old age. Although few studies
investigated thermoregulation in AD individuals, it is
well known that thermoregulatory defects appear in the
elderly, the population primarily affected by AD [4–7].
Mounting evidence now supports the hypothesis that
thermoregulation deficits contribute to the development
of AD pathology. Spontaneous thermoregulation deficits
occur in mouse models of AD neuropathology, including
the triple transgenic (3xTg-AD) mice [8–11]. Studies in
mouse and hibernators repeatedly showed that de-
creased body temperature leads to increased tau
phosphorylation [12–14]. Supporting the link with age,
cold-induced tau phosphorylation is potentiated in old
mice compared to young mice [15]. Accordingly, acute
manipulation of body temperature leads to strong
modulation of AD neuropathology in mice: hypothermia
induced by cold exposure increases both tau phosphoryl-
ation and amyloid-β (Aβ) pathology and decreases syn-
aptic proteins, while restoring normothermia by
exposure to higher room temperature reverses memory
and anxiety-like behavior and reduced Aβ42 peptide
levels in 3xTg-AD mice [9]. More recently, our group
provided evidence that sustained enhancement of
thermogenesis through cold acclimation improves meta-
bolic disorders and protects old 3xTg-AD mice from
cold-induced tau phosphorylation [16]. Altogether, these
observations suggest that thermoregulatory mechanisms
could be a potential therapeutic target in AD.
Beside thermoregulation, metabolic diseases share

strong pathogenic links with AD. Indeed, induction of a
diabetic phenotype such as glucose intolerance has been
repeatedly shown to increase AD neuropathology in a
mouse model of AD [17–20]. Central insulin signaling
defects and lower brain glucose metabolism are observed
in AD [21, 22]. It is estimated that one out of ten cases
of AD is attributable to type 2 diabetes (T2D) [23].
These observations logically led to the idea of

repurposing T2D drugs in AD [24]. Insulin, thiazolidine-
diones and glucagon-like peptide-1 analog are still the
subject of clinical trials in dementia, albeit with miti-
gated results [25–27]. Thus, common metabolic targets
between both diseases such as thermoregulatory defects
are of interest to develop new therapeutic tools in AD.
Brown adipose tissue (BAT) is an essential thermo-

genic driver in mammals [28]. The discovery of
functional BAT in adults in 2009 has revived research
on this tissue [29, 30]. The ability of BAT thermogenesis
to improve main metabolic disorders is now well-
established in young [31–33] and old mice [16]. Pharma-
cological tools have been developed in this direction. In
particular, β3 adrenergic receptor (β3AR) agonists are
being extensively used to stimulate β3AR located on
brown adipocytes, thereby leading to lipolysis and un-
coupling protein 1 (UCP1) expression, the main marker
of non-shivering thermogenesis [34, 35]. CL-316,243 is a
highly specific β3AR agonist frequently used in meta-
bolic studies in rodents. It has been shown to improve
blood glucose metabolism, insulin sensitivity, and energy
expenditure and to regulate lipids metabolism [36–40].
Since β3AR agonists can correct metabolic disorders by
enhancing BAT activity, they could tackle both T2D and
AD at the same time. Importantly, β3AR agonists have
been shown to stimulate BAT activity in humans [41,
42], and one of these molecules, mirabegron (Myrbe-
triq®), is now approved for the treatment of overactive
bladder [43]. Therefore, β3AR agonists could rapidly be
tested in humans for dementia.
We hypothesized that pharmacological stimulation

of BAT thermogenesis through β3AR agonist treat-
ment could curtail AD neuropathology and improve
memory as well as correcting thermoregulatory and
metabolic deficits. To verify this hypothesis, 15-
month-old non-transgenic (NonTg) and 3xTg-AD
mice received daily CL-316,243 (1 mg/kg) or saline in-
jections for a month.

Methods
Animals
The triple transgenic mouse model of AD (homozygous
3xTg-AD; APPswe, PS1M146V, tauP301L) developing both
amyloid and tau pathologies in the brain with age was
used here [44], and compared to a NonTg control
mouse on the same genetic background (C57BL6/
129Svj). We selected 15-month-old 3xTg-AD and
NonTg controls, at an age when 3xTg-AD mice have ex-
tended plaques and tangles in the brain, as well as cogni-
tive deficits [45–48]. Animals were produced at our
animal facility and all maintained in the same genetic
background (C57BL6/129SvJ) by backcrossing every 8–
10 generations. Forty-two (42) mice were used for all ex-
periments (n = 9–12 mice per group) and 9 mice were
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added for behavioral and glucose tolerance tests for a
total of 51 mice (n = 9–16 mice per group).
Mice were housed one to five per cage at a housing

temperature of 23.029 ± 0.098 °C, with a 12:12-h light-
dark cycle (light phase from 7 a.m. to 7 p.m). Animals
had ad libitum access to water and chow (Teklad 2018,
Harlan Laboratories, Canada). Only males were used
here to avoid temperature variation induced by the es-
trous cycle of female mice [49]. Food consumption was
evaluated by weighing the diet of each cage and averaged
for each mouse per day per cage every 4 days during the
1-month treatment, and 3 weeks before the beginning of
the experiment. At the end of the experiment, all mice
were put under deep anesthesia with ketamine/xylazine
intraperitoneal (i.p.) injection (100 mg/kg ketamine, 10
mg/kg xylazine) and immediately placed under a heating
pad to maintain body temperature until complete loss of
posterior paw reflex. Then, mice were rapidly sacrificed
by intracardiac perfusion with 0.1M phosphate buffer
saline (PBS) solution containing phosphatase (sodium
pyrophosphate, 1 mM and sodium fluoride, 50 mM) and
protease (Sigmafast protease inhibitor tablets, Sigma-
Aldrich, St-Louis, USA) inhibitors. All experiments were
performed in accordance with the Canadian Council on
Animal Care and were approved by the Institutional
Committee of the Centre Hospitalier de l’Université La-
val (CHUL).

CL-316,243 treatment
CL-316,243 was selected to stimulate BAT thermogen-
esis because it is one of the most selective β3AR agonists
in rodents (β1: β2: β3 = 0:1:100,000) and its safety and
efficacy has been confirmed in multiple studies [50–54].
Two to 3 weeks of daily injection at a dose of 1 mg/kg
per day are necessary to improve metabolic disorders
[36–40]. Thus, mice were injected i.p. every day for a
month (25 consecutive injections) with a weight-
adjusted dose of CL-316,243 (1 mg/kg) or an equivalent
volume of saline (the vehicle) at the same hour of the
day (4 p.m.) from 15 to 16 months of age (Fig. 1a). Mice
were weighed every day before each i.p. injection. Mice
were sacrificed the morning after the last injection
(exactly on the 26th day after the first injection).

Body temperature measurement and analysis
Telemetric probes (Anipill, Caen, France) were used to
record body temperature of the animals every hour dur-
ing the 1-month experiment without manipulation.
Probes were implanted in the intraperitoneal cavity
under isoflurane anesthesia a week before the beginning
of the treatment to allow recovery from the surgery (Fig.
1a). Heat pads were used throughout the procedure to
avoid hypothermia. The time under anesthesia was simi-
lar between mice and lasted approximately 10 min.

Then, the animals were kept under heat pads during the
waking period. Body temperature was analyzed during
the two first weeks of treatment, before animals under-
went glucose tolerance and behavioral tests, to avoid
resulting interference in circadian rhythms.
In order to assess potential phase advances or delays

and to visualize endogenous rhythmicity and regularity
of the mice circadian clock, Clocklab software (Acti-
metrics Inc., Evanston, Illinois, USA) provided the fur-
ther information: individual mean daily offsets in hours
(determined as the time of the first six successive bins
when temperature was lower than the mean diurnal
temperature), offset standard deviation in hours and
mean duration of a total temperature cycle in hours. We
performed our analyses based on daily offsets (the end
of the active period of the mice) because daily injections
of the drug were performed only 3 h before the lights
turned off, thus influencing the onsets (the beginning of
the active period). Other following parameters were cal-
culated for each individual: mean body temperature in
degrees Celsius during the dark (from 7 p.m. to 7 a.m.)
and light phase (from 7 a.m. to 7 p.m.) and mean ampli-
tude of temperature (T°max − T°min) in degrees Celsius
during the dark and light phase.

Glucose tolerance test, fasting blood glucose, leptin,
insulin, and triglyceride measurement
Glucose tolerance test (GTT) was performed at the end
of the third week of treatment (Fig. 1a) [47]. Mice were
fasted for 6 h (from 8 a.m. to 2 p.m.). Then, glucose was
injected i.p. at 1 g/kg and blood glucose was measured
regularly during 2 h with a glucometer (OneTouch
UltraMini; LifeScan, Milpitas, CA) in a blood drop sam-
pled from the saphenous vein. Leptin and insulin were
assessed by ELISAs (Leptin Mouse ELISA kit, ab100718,
Abcam; mouse insulin ELISA, #10-1247-01, Mercodia,
Sweden) following the manufacturer’s instructions in
plasma sampled in the saphenous vein after the 6-h
fasting during the GTT test. Triglycerides were mea-
sured in blood sampled at the end of the experiment,
just before sacrifice, by an enzymatic assay (Infinity
Triglycerides Liquid Stable Reagent, Thermo Fisher
Scientific, Waltham, MA).

Behavioral tests
Behavioral tests were performed during the fourth week
of treatment with a recovery time of at least 24 h be-
tween tests (Fig. 1a). The novel object recognition
(NOR) test was also performed 3 weeks before the be-
ginning of the treatment to obtain a baseline index ratio
for each animal (see below). Mice were acclimated over-
night to the testing room located next to the housing
room.

Tournissac et al. Alzheimer's Research & Therapy          (2021) 13:103 Page 3 of 17



Locomotor activity was assessed with the open field
test [55]. Mice were placed in a 40 cm × 40 cm × 40 cm
translucent Plexiglas box for an hour. Movements were
tracked with photobeam breaks (San Diego Instru-
ments). The total distance traveled (voluntary horizontal
movement) and the average speed were compared be-
tween groups.
Anxiety behavior was evaluated with the dark-light

emergence test [9]. Mice were put in the center of the
dark compartment with an opening to the light compart-
ment. The time spent in the light compartment and the
latency to do the first exploration (nose latency) of the
light compartment were measured during a 5-min trial.
Memory deficits were evaluated with the NOR test.

That test detects behavioral deficits from 12months in
3xTg-AD mice and is one of the less stressful behavioral

test [9, 46, 56, 57]. It evaluates recognition memory and
corresponds to episodic memory that is early affected in
AD [58–60]. Mice were first placed in a 29.2 cm × 19 cm
× 12.7 cm cage with two identical objects for 5 min dur-
ing the acquisition phase. After an hour in their housing
cage, mice returned in the testing cage containing a fa-
miliar and a novel object for the test phase. Recognition
index (RI) corresponds to the time spent exploring the
novel object divided by the total time of exploration dur-
ing the test phase multiplied by 100. A 50% RI corre-
sponds to an equal exploration between the novel and
the familiar object. Mice exploring less than 6 s each ob-
ject during the acquisition phase or less than 4 s during
the test phase were excluded from the RI analysis. Mice
were assigned to the treated or the control group at 15
months of age with caution to homogenize memory

Fig. 1 β3AR stimulation improves peripheral glucose metabolism in NonTg and 3xTg-AD mice. a Schematic description of the experimentation. b
Body weight of the mice measured before and during the 1-month experiment (before each i.p. injection) and c at the end of the experiment. d
Food consumed per day per mice 3 weeks before and over the 1-month treatment and e area under curve of food consumption over the 1-
month treatment measured by weighting the diet every 4 days. f Leptin measured in plasma of fasted mice by ELISA. g GTT consists in
measuring the blood glucose in fasted mice for 6-h after a bolus injection of glucose (1 g/kg i.p.). GTT was performed after 3 weeks of experiment
and h area under curve of the GTT. i Fasting blood glucose and j plasmatic insulin measured during the GTT with a glucometer or by ELISA,
respectively. i Triglycerides measured in the plasma sampled at the end of the experiment. Data are represented as mean ± SEM (n/group
indicated in graphs). Statistics: Two-way ANOVA, effect of treatment: **p < 0.01; ****p < 0.0001; effect of genotype: &p < 0.05; &&p < 0.01; &&&&p <
0.0001 (c, f, h, i, j). Kruskal-Wallis, Dunn’s post hoc test: @p < 0.05; @@p < 0.01 (e). Abbreviations: 3xTg-AD: triple transgenic mice; CL: CL-316,243-
injected group; DL: dark-light emergence test; GTT: glucose tolerance test; NonTg: non-transgenic mice; NOR: novel object recognition test; OF:
open field; S: saline-injected group
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performance (baseline RI) between groups at the begin-
ning of the experiment.

Tissue preparation for postmortem analysis
Intracardiac blood sampled just before intracardiac per-
fusion in a heparinized tub was centrifuged at 3000 rpm
for 5 min, and resulting plasma kept frozen at − 80 °C
until analysis. The first hemisphere and interscapular
BAT were rapidly dissected and frozen at − 80 °C until
processing. The second hemisphere was either fixed in
4% paraformaldehyde for 48 h and transferred in a 20%
sucrose solution until sectioning (3–4 mice per group)
or frozen and kept at − 80 °C.

Protein extractions
For the hippocampus, frozen samples were homogenized
in 8 volumes of a lysis buffer (150 mM NaCl, 10 mM
NaH2PO4, 0.5% sodium deoxycholate, 0.5% sodium do-
decyl sulfate, 1% Triton X-100) containing a cocktail of
protease and phosphatase inhibitors (Bimake, Houston,
TX), sonicated (3 × 45 s in a Sonic Dismembrator appar-
atus, Thermo Fisher Scientific, Waltham, MA) and
centrifuged (100,000g, 20 min, 4 °C), resulting in a
detergent-soluble fraction (cytosolic, extracellular, and
membrane-bound proteins). The remaining pellets from
ultracentrifugation were resuspended in formic acid,
resulting in a detergent-insoluble fraction (insoluble pro-
teins fraction). The resultant suspension was sonicated
and centrifuged (13,000g, 20 min, 4 °C), acid formic was
evaporated and proteins were either solubilized in
Laemmli’s buffer for Western blot or in a 5M guani-
dium solution in Tris-HCl 50 mM for Aβ peptide ELIS
As as previously described [61]. Proteins from the BAT
were extracted in the lysis buffer only. Protein concen-
trations were evaluated with a bicinchoninic acid assay
(BCA, Pierce, Rockford, IL, USA).

Western immunoblotting
In total, 15 μg and 10 μg of proteins of hippocampus and
BAT homogenates, respectively, were loaded and sepa-
rated by SDS-PAGE, as previously described [17]. The
list of antibodies used in this study is available in Add-
itional File 3. Homogenates were all run on the same gel
for each experiment. Membranes were imaged using the
myECL imager system (Thermo Fisher Scientific). Quan-
tifications were performed using the ImageLab software
(Millipore), and the results were expressed as relative
optical densities (OD). For the analysis of the protein
tau, bands from all isoforms detected around 60 kDa
were selected and quantified together.

Aβ40 and Aβ42 peptides quantification
Aβ peptides were quantified in protein extracts from the
hippocampus. Aβ40 and Aβ42 were measured in

detergent-soluble and detergent-insoluble fractions using
a human amyloid-β ELISA (Wako, Osaka, Japan) accord-
ing to the manufacturer’s instructions. Plates were read
at 450 nm using a SynergyTM HT multi-detection micro-
plate reader (Biotek, Winooski, VT).

High-performance liquid chromatography (HPLC)
HPLC was used to measure the level of norepinephrine
in BAT. An average of 10 mg of BAT was homogenized
in perchloric acid (0.1 N) and centrifuged 10 min at 4 °C
at 13,000 rpm. Five microliters of the supernatant was
injected in the HPLC with electrochemical detection
(Water 717 plus Autosampler automatic injector, Waters
1525 Binary Pump) as previously described [62].

Statistical analysis
Data are represented as means ± standard error of the
mean (SEM). Statistical analysis and the number of sam-
ples per group are specified in each figure and legend.
Bartlett’s tests were used to rule out the inequality of
variances between the groups. Two-way ANOVA (two
independent variables: genotype and treatment) was
used in case of equal variances. Repeated measures two-
way ANOVA was executed to compare recurrent mea-
surements in same animals. Tukey’s test was used for
post hoc analysis. In case of unequal variances, a
Kruskal-Wallis followed by a Dunn’s post hoc test was
performed. An unpaired Student’s t test was performed
when only two groups were compared, with a Welch
correction in case of unequal variances. Paired t test was
executed for the before-and-after on comparison on the
same animals. One sample t test was used to compare
means to a theoretical value (for the NOR test). Correla-
tions between variables were investigated using linear
regression analyses. A Grubb’s test was performed to test
for outliers. All statistical analyses were performed
with Prism 7 (GraphPad Software Inc., San Diego,
CA, USA) or JMP (version 13.2.0; SAS Institute Inc.,
Cary, IL, USA) software and statistical significance
was set at p < 0.05.

Results
β3AR stimulation improves peripheral glucose
metabolism in old mice
NonTg and 3xTg-AD mice received CL-316,243 or sa-
line i.p. at a dose of 1 mg/kg every day for a month from
15 to 16 months of age (Fig. 1a). To verify whether CL-
316,243 affects energy balance, mice were weighed every
day before each i.p. injection and food consumption was
evaluated 3 weeks before the beginning of the experi-
ment and then every 4 days during the 1-month
treatment. First, we found that CL-316,243 injections in-
duced persisting weight loss in both NonTg and 3xTg-
AD mice (Fig. 1b, c for AUC statistical comparison). At
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Fig. 2 (See legend on next page.)
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the beginning of the experiment, food consumption re-
corded in the previous 21 days was higher in 3xTg-AD
compared to NonTg mice (average of 4.7 g/day/mice for
3xTg-AD versus 3.9 g/day/mice for NonTg mice; un-
paired t-test with Welch’s correction: p = 0.0105) (Fig.
1d and e for AUC statistical comparison), consistent
with lower plasmatic leptin in fasted 3xTg-AD mice
compared to NonTg (Fig. 1f). Over the 1-month period,
β3AR stimulation increased food consumption in NonTg
mice up to levels of transgenic mice (Fig. 1d, e for AUC
statistical comparison). The GTT revealed that CL-316,
243-treated mice displayed a stronger control over glu-
cose levels compared to control, independently of the
genotype (Fig. 1g, h for AUC statistical comparison).
Fasting blood glucose and insulin were also lower fol-
lowing 3 weeks of CL-316,243 administration (Fig. 1i, j).
However, levels of plasmatic triglycerides were un-
changed (Fig. 1k). Overall, our data indicate that β3AR
stimulation led to an improved pattern of metabolic de-
terminants in the periphery in both NonTg and 3xTg-
AD mice at 15–16 months of age.

β3AR stimulation increases brown adipose tissue
thermogenesis
A telemetric probe implanted a week before the begin-
ning of the treatment revealed daily variation in body
temperature corresponding to the sleep-wake cycles of
mice (Fig. 2a, Fig. S1). The mean amplitude of body
temperature was larger by 0.4 °C in 3xTg-AD than in
NonTg mice during both 12-h light and 12-h dark
phases (Fig. 2a–c, Fig. S1D). CL-316,243 treatment fur-
ther increased the amplitude of body temperature during
the light phase (from 7 a.m. to 7 p.m.) compared to sa-
line injections (Fig. 2b), corresponding to the injection
time, but not during the dark phase (Fig. 2c). This is
consistent with higher area under curve of body
temperature measured after the first injection of CL-316,
243 (between 4 p.m. and 12 p.m.) (Fig. 2d and e for AUC
statistical comparison).
Since CL-316,243 is well known to improve thermo-

genesis capacity in mice [39, 63, 64], we then verified

whether it was also effective in old NonTg and 3xTg-AD
mice. First, interscapular BAT weight was slightly lower
in 3xTg-AD compared to NonTg mice, but was not af-
fected by the treatment (Fig. 2f). However, CL-316,243
administration increased the level of UCP1 protein in
the BAT of both genotypes (Fig. 2g) but did not affect
the norepinephrine content (Additional File 1). Further
confirming that CL-316,243 interacted with β3AR, levels
of β3AR in BAT were significantly decreased only in
NonTg-treated mice, despite a tendency also in 3xTg-
AD mice (Fig. 2h). We then measured complexes I to V
of the mitochondrial oxidative phosphorylation complex
that are involved in heat production during thermogen-
esis in BAT [65]. Complex I was increased in NonTg
and 3xTg-AD mice following CL-316,243 administration
(Fig. 2i, j). CL-316,243 increased complex IV in NonTg,
but not in 3xTg-AD mice, whereas complexes II, III, and
V remained unchanged in both models. Altogether, our
data show that the β3AR agonist administration im-
proves BAT thermogenesis and heat production in 16-
month-old mice.

β3AR stimulation reverses memory deficits in 16-month-
old 3xTg-AD mice
To determine whether CL-316,243 treatment exerted
cognitive benefits in the 3xTg-AD mouse, recognition
memory was evaluated with the NOR test 3 weeks before
the beginning of the treatment (baseline, 14-month-old)
and after the 1-month treatment (final, 16-month-old)
(Fig. 1a). The NOR test was selected because of its sensi-
tivity and reliability to detect memory deficits in the
3xTg-AD mice at 12 months and older (Fig. 3a) [9, 56,
57]. Comparing RI before (14 months) and after (16
months) the treatment revealed that 1-month treatment
with CL-316,243 increased by 19% the ability to
recognize the new object in 3xTg-AD mice (paired t-
test: p = 0.0041), while the change in RI was not signifi-
cantly different in NonTg or saline-injected 3xTg-AD
mice (Fig. 3b, c). CL-316,243 from 15 to 16months im-
proved memory recognition in 3xTg-AD mice (RI = 65%
in CL-316,243-injected mice, one sample t-test versus

(See figure on previous page.)
Fig. 2 CL-316,243 treatment increases brown adipose tissue thermogenesis. a Graphical representation of body temperature recorded hourly by
telemetric probe implanted in the intraperitoneal cavity during the first 2 weeks of experiment (before glucose tolerance and behavioral tests).
Grey rectangles indicate the dark phase and black arrows point toward each i.p. injection of CL-316,243 or saline. b Mean amplitude of body
temperature during the light (12-h, from 7 a.m.) and c the dark phase (12-h, from 7 p.m.). d Body temperature (T°) and e area under curve of the
T° after the first CL-316,243 or saline i.p. injection. f Interscapular BAT weights sampled at sacrifice. Levels of g UCP1, h β3AR, and i mitochondrial
oxidative phosphorylation system normalized on eEF2 proteins measured in BAT by Western Blot. j Examples of Western blots in BAT samples.
Homogenates were all run on the same gel, but consecutive bands were not taken for all representative photo examples. Data are represented
as mean ± SEM (n/group indicated in each column). Statistics: two-way ANOVA, effect of treatment: **p < 0.01; ***p < 0.001; ****p < 0.0001; effect
of genotype: &p < 0.05; &&p < 0.01; &&&p < 0.001; &&&&p < 0.0001 (b, c, e–g, i); Tukey’s post hoc test: +p < 0.05. Kruskal-Wallis (i), Dunn’s post hoc
test: @p < 0.05 (h). Abbreviations: AUC: area under curve; 3xTg-AD: triple transgenic mice; β3AR: β3 adrenergic receptor; BAT: brown adipose
tissue; CL: CL-316,243-injected group; CV, CIII, CIV, CII, CI: mitochondrial oxidative phosphorylation system complex V, III, IV, II, I; eEF2: eukaryotic
elongation factor 2; NonTg: non-transgenic mice; OD: optical density; S: saline-injected group; T°: temperature; UCP1: uncoupling protein 1
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Fig. 3 (See legend on next page.)
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50%: p = 0.0013), but not in NonTg mice (Fig. 3d). The
improved RI in 3xTg-AD-treated mice was confirmed by
the higher time spent on the novel (N) versus the famil-
ial (O) object (Fig. 3e). These differences were not ex-
plained by changes in exploratory behavior, as the mean
duration of exploration was similar between groups (Fig.
3f). Finally, the percent change in RI before and after the
treatment was positively correlated with UCP1 levels in
BAT in 3xTg-AD (r2 = 0.37) but not in NonTg mice,
suggesting a link between improved thermogenesis and
memory (Fig. 3g).
We then verified that locomotor activity was not af-

fected by CL-316,243 injections, as showed by compar-
able distance traveled and average speed of the mice
during the open field test (Fig. 3h–j). Nonetheless, 2-way
ANOVA revealed that 3xTg-AD mice displayed a higher
average speed during the 1-h session compared to
NonTg mice (Fig. 3j).
Anxiety is frequently observed in AD patients and has

been replicated in 3xTg-AD mice [9, 46, 66]. The time

spent in the illuminated compartment was not signifi-
cantly different between groups in the present cohorts of
animals (Fig. 3l). However, 3xTg-AD mice delayed their
first exploration in the light chamber, as measured by
the latency of the first nose entry in the light compart-
ment (nose poke latency) (Fig. 3m), corroborating an
anxiety-like behavior in this model.
Overall, 1-month administration of CL-316,243 im-

proved recognition memory assessed at 16 months in
3xTg-AD mice, without affecting locomotion nor
anxiety-like behavior.

β3AR stimulation reduces insoluble Aβ42/Aβ40 ratio in
the hippocampus of 3xTg-AD mice
The main neuropathological markers of AD, amyloid pla-
ques and tau pathology [67, 68], progressively develop in
the brain of 3xTg-AD mice [44, 45, 47]. Although total
Aβ42 and Aβ40 peptides in either soluble or insoluble frac-
tions remained unchanged by the treatment in the hippo-
campus (Fig. 4a–e), we observed a 27% decrease in

(See figure on previous page.)
Fig. 3 β3AR stimulation reverses memory deficits in 16-month-old 3xTg-AD. a Description of the novel object recognition test. Recognition
indexes (RI) assessed before (14-month-old mice) and after (16-month-old mice) the treatment with CL-316,243 or saline in b NonTg and c 3xTg-
AD mice. d Final recognition index, e time spent exploring the old (O), and the novel (N) object during the 5-min acquisition phase and f total
observations measured at the end of the experiment (final, 16-month-old mice). g Correlation between the % change in recognition index (the
change in RI before versus after the treatment) and UCP1 levels measured in BAT. h Representation of the open field apparatus. i Total distance
traveled and j average speed during the 1-h test. k Representation of the dark-light emergence test. l Time spent in the light compartment and
m latency before the first exploration in the light compartment. Recognition index = (time exploring the novel object / total exploration time) ×
100. Data are represented as mean ± SEM (n/group indicated in graphics). Statistics: Paired t-test (baseline versus final recognition index (b, c); old
(O) versus novel (N) object (e)): $p < 0.05; $$p < 0.01 (b, c, e); ns: non-significant compared to recognition index at baseline (b, c). Dotted red line:
50% RI corresponds to an equal (random) exploration between the novel and the familiar object. One sample t-test versus 50% (random chance):
##p < 0.01 (d). Pearson r correlation: *p < 0.05 (g). Two-way ANOVA, effect of genotype: &&p < 0.01 (j, m). Two-way ANOVA, effect of genotype or
treatment: ns (d). Abbreviations: 3xTg-AD: triple transgenic mice; CL: CL-316,243-injected group; eEF2: eukaryotic elongation factor 2; NonTg: non-
transgenic mice; O.D.: optical density; S: saline-injected group; UCP1: uncoupling protein 1

Fig. 4 β3AR stimulation reduces insoluble Aβ42/Aβ40 ratio in the hippocampus of 3xTg-AD mice. Human Aβ40 and Aβ42 peptides measured by
ELISA in the a, b detergent-soluble and in the d, e detergent-insoluble fractions of hippocampus homogenates of 3xTg-AD mice, respectively. c
Ratio of detergent-soluble and f detergent-insoluble Aβ42 on Aβ40 peptides in the hippocampus. Data are represented as mean ± SEM (n/group
indicated in bars). Statistics: Unpaired Student’s t test: #p < 0.05 (a–e). Abbreviations: 3xTg-AD: triple transgenic mice; Aβ: amyloid-β; CL: CL-
316,243-injected group; NonTg: non-transgenic mice; S: saline-injected group
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insoluble Aβ42/Aβ40 ratio in CL-316,243-treated mice
compared to saline-injected 3xTg-AD mice (Fig. 4f). We
subsequently assessed the effect of the β3AR agonist on
proteins implicated in the production (beta-secretase 1
(BACE-1), amyloid precursor protein (APP), APP C-
terminal, sAPPα) and clearance or degradation (low density
lipoprotein receptor related protein 1 (LRP1), receptor of
advanced glycation end products (RAGE), insulin-
degrading enzyme (IDE), X11α) of Aβ peptides (Additional
File 2) [67, 69, 70]. Levels of BACE-1, IDE, LRP1, and
RAGE in the hippocampus did not differ between groups,
whereas those of X11α were lower in 3xTg-AD mice com-
pared to NonTg mice (Additional File 2) as observed in the
brain of AD individuals [61].
We then assessed the level of phosphorylated and total

tau protein in the detergent-soluble (cytosolic and mem-
brane proteins) and detergent-insoluble (aggregated pro-
teins) fractions of hippocampus homogenates by
Western Blot. We did not find any significant effect of
CL-316,243 (Fig. 5) but confirmed that the 3xTg-AD
mice display higher total and hyperphosphorylated tau
proteins compared to NonTg mice. Main kinases in-
volved in tau phosphorylation (glycogen synthase kinase
3 β (GSK3β) and protein kinase B known as AKT) were
also unchanged (Additional File 2).
Synaptic deficits are one of the earliest markers of AD,

correlating with symptoms [61, 71]. The levels of synap-
tic proteins were not modified by the treatment (Add-
itional File 2). However, drebrin protein was decreased
specifically in 3xTg-AD mice (two-way ANOVA, effect
of genotype: p = 0.0045), as previously showed in the
brain of AD subjects [72, 73].
Since glucose transporters and uptake are decreased in

AD [21, 74–76], we assessed glucose transporter 1
(GLUT1) levels in the hippocampus of the mice. While
we did not detect any effect of the CL-316,243 treat-
ment, GLUT1 levels were decreased in the hippocampus
of 3xTg-AD mice compared to NonTg mice, at both the
endothelial (50 kDa) and astrocytic (45 kDa) isoforms
(Additional File 2), corroborating defects in glucose up-
take, changes in blood-brain barrier transporters, and
decreased cerebral vascular volume observed in this
mouse model of AD [77–80].

Discussion
The present study aimed at investigating whether β3AR
agonist administration enhances BAT thermogenesis
and exerts an effect on cognitive behavior and AD
neuropathology in a mouse model of the disease. The
3xTg-AD mice was selected to test the effect of β3AR
stimulation in AD because this model displays age-
dependent metabolic and thermoregulatory deficits and
was shown to respond to thermoneutrality and BAT
stimulation induced by repeated cold exposure [8, 9, 16].

This led to the hypothesis that pharmacological BAT
stimulation could exert benefits on AD-like behavior
and neuropathology.
As a proof of concept, we previously reported that

modulating ambient temperature affect AD neuropathol-
ogy and behavior in mice [9]. It could thus be tempting
to deduce that alleviating AD pathogenesis in the elderly
can be achieved simply by “turning up the heat.” How-
ever, this strategy would probably be inefficient in the
long term. Indeed, such as a muscle during exercise, the
BAT needs to be trained and prepared to maintain
thermogenic capacity continuously [28]. Exposing mam-
mals to a constant thermoneutral environment may in-
duce BAT regression due to no recruitment, letting the
organism vulnerable to any further temperature chal-
lenge and even inducing subtle hypothermia, leading to
aggravated AD neuropathology. Therefore, chronic BAT
stimulation, naturally or through a pharmacological
intervention, would have the advantage to protect
against potential hypothermic events by maintaining an
optimal thermogenic capacity.
To test the hypothesis in an animal model of AD, we

thus treated 15-month-old NonTg and 3xTg-AD mice
with the selective β3AR agonist CL-316,243 or saline for
a month. We found that chronic administration of the
agonist stimulated BAT thermogenesis and improved
glucose homeostasis. Enhanced thermogenesis was asso-
ciated with improved recognition memory in 16months
3xTg-AD mice and reduced insoluble Aβ42/Aβ40 ratio
in the hippocampus, while tau pathology remained
unaffected.

β3AR agonist: a two in one strategy to target both
metabolic and thermoregulatory defects
The most well-known characteristic of CL-316,243 is to
improve metabolic disorders through enhanced BAT ac-
tivity [36–40]. Whether this effect is maintained with
age remains unknown. UCP1 and NADH dehydrogenase
1 beta subcomplex subunit 8 (NDUFB8 or Complex I)
are both recognized markers of BAT activation (Nam
and Cooper, 2015). Higher levels of UCP1 and Complex
I in the BAT detected here indicate a sustained effect of
CL-316,243 on BAT thermogenesis after a 1-month
chronic treatment in old mice. This is consistent with
strong previous evidence that β3AR stimulation leads to
increased thermogenic activity of BAT in young mice
(Labbé et al., 2016; Poher et al., 2015; Xiao et al., 2015)
and humans as well [41, 81]. It also shows that chronic
β3AR administration does not induce significant recep-
tor desensitization, despite decreased levels of BAT
β3AR following treatment, in agreement with previous
works [82]. Overall, our data now confirms that β3AR-
induced thermogenesis is still effective in a 15-month-
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old mouse, following a 1-month treatment with CL-316,
243, regardless of the presence of AD neuropathology.
White adipose tissue “beiging” (i.e., white adipocyte

expressing UCP1) is another marker of enhanced
thermogenesis in rodents [83] which could be investi-
gated after CL-316,243 treatment. However, compared
to BAT activity, “beige” cell contribution to thermogen-
esis is negligible [39]. Nevertheless, in the present study,

β3AR agonist induced weight loss in both NonTg and
3xTg-AD mice, suggesting increased lipolysis. Food con-
sumption was higher in 3xTg-AD compared to NonTg
mice, an observation previously reported in this model
[84, 85], and CL-316,243 increased food intake in
NonTg mice. These data are consistent with increased
energetic expenditure compensated with higher calorie
intake following β3AR stimulation [64, 86].

Fig. 5 β3AR stimulation has no effect on tau phosphorylation in the hippocampus of 3xTg-AD mice. Phosphorylated and total tau protein
measured in a–f detergent-soluble and h–k detergent-insoluble fractions of hippocampus homogenates of non-transgenic and 3xTg-AD mice. g
Examples of Western blots. Homogenates were all run on the same gel, but consecutive bands were not taken for all representative photo
examples and were cut-pasted to match the histogram order. Data are represented as mean ± SEM (n/group indicated in bars). Statistics: two-
way ANOVA, effect of genotype: &&&&p < 0.0001 (a–k). Abbreviations: 3xTg-AD: triple transgenic mice; CL: CL-316,243-injected group; ins: insoluble;
NonTg: non-transgenic mice; OD: optical density; S: saline-injected group; sol: soluble
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We previously showed that female 3xTg-AD mice dis-
play age-dependent glucose intolerance starting from 12
months [47]. While the difference in glucose tolerance
between NonTg and 3xTg-AD mice was not frank in the
present work, probably due to the fact that only males
were used, fasting blood glucose in 3xTg-AD was higher
than in NonTg mice. It is noteworthy that the CL-316,
243 improved peripheral glucose metabolism and fasted
insulin in 16-month-old mice of both genotypes, sug-
gesting an effect independent of AD neuropathology. Of
note, the improvement was observed in mice fed with a
diet not expected to induce metabolic defects, suggesting
benefits even in non-diabetic animals. This is in line
with a previous study showing improved glucose metab-
olism with CL-316,243 administration even in mice
displaying a normal response to glucose [64]. Thus,
a β3AR agonist treatment could also benefit elderly indi-
viduals without diabetes.
Using hourly telemetric recordings of body

temperature, we noted that 3xTg-AD mice displayed
wider amplitudes of body temperature throughout the
day compared to NonTg mice. On the other hand, β3AR
agonist treatment increased amplitude of body
temperature during the light phase, corresponding to the
period of drug administration, but not during the dark
phase. The wider amplitude in body temperature is con-
sistent with a higher body temperature after CL-316,243
injection, as shown by the temperature recorded few
hours after the first i.p. injection and a previous work
[87]. However, we did not observed chronic hyperther-
mia, which would have been a major side effect of β3AR
agonists, perhaps compromising potential translation to
clinical use.

β3AR stimulation reverses memory deficits in old 3xTg-
AD mice
An important result of our study is the reversal of recog-
nition memory deficit induced by β3AR stimulation in
16-month-old 3xTg-AD mice. Indeed, we observed a
19% increase of RI between baseline (14 months) and
post-treatment evaluation (16 months). These results
were not explained by changes in exploratory behavior
or locomotor activity. The RI of NonTg mice following
treatment did not reach statistical significance perhaps
due to lower statistical power (n = 5), but was signifi-
cantly different from 50% in saline-injected mice.
Although a downward trend was noted, the RI of the
NonTg group treated with CL-316,243 was not signifi-
cantly different after versus before the treatment.
However, the high interindividual variability and the low
number of mice in the group prevent us to draw a con-
clusion concerning potential positive or negative effects
in NonTg mice. Reassuringly, a recent study shows no
negative effect on the memory performance after a 3-

month treatment with mirabegron in patients with over-
active bladder aged ≥ 65 years [88]. Nevertheless, the
data also suggest that β3AR-induced improvement in
memory was specific to 3xTg-AD mice, possibly through
an effect related to AD neuropathology. As only 3xTg-
AD mice develop Aβ plaques or neurofibrillary tangles,
if CL-316,243 exerted an AD-relevant effect on Aβ and
tau pathologies, it would be detected only in 3xTg-AD
mice. This may explain the present difference in
response between NonTg and 3xTg-AD mice. Indeed,
regarding the effects of CL-316,243 administration on
classical AD neuropathology, we observed a reduction in
the Aβ42:Aβ40 ratio within insoluble deposits, which is
only quantifiable in transgenic mice. Importantly, the
randomized-start design ensured that all groups of ani-
mals were similar before undergoing saline or CL-316,
243 treatment. One study also found memory improve-
ment following CL-316,243 administration in Aβ-
injected chicks [89], but no previous report in mice was
found in the literature. Thus, our results are consistent
with a disease-modifying effect of β3AR stimulation in
the 3xTg-AD mice.
Since metabolic disorders also alter cognitive function

and lead to memory defects [90–94], improved periph-
eral metabolism could be involved in better recognition
memory in 3xTg-AD mice. However, it is not excluded
that CL-316,243 has a direct effect in the CNS. Indeed,
β3AR are present in various regions of the brain, al-
though to a much lower extent compared to the BAT
[95, 96], but their physiological roles in the central
nervous system (CNS) are not known. While it has been
shown that CL-316,243 increases sleep duration in mice
[87] and reduces Aβ-induced long-term memory deficits
in chicks [89], the behavioral effects of β3AR agonists
has not been the subject of intense investigation.
Nonetheless, another β3AR agonist, SR856611A (Amibe-
gron®), has been shown to improve anxiety and
depressive-like symptoms in rodents, as evaluated by the
forced swim test and the elevated plus maze [97–99].
This promising molecule reached phase III clinical trial
for depression (NCT00252330) but did not achieve final
approval to move into the clinic. In the present work, we
did not detect changes in anxiety-like behavior with the
dark-light emergence test following CL-316,243 adminis-
tration. Recently, a group reported no change in MoCA
score in a group of elderly receiving mirabegron (Myrbe-
triq®) as a treatment for overactive bladder for 3 months
[88]. However, only 115 volunteers with impaired cogni-
tive performance received the treatment, and 3months
might be too short to detect any potential cognitive ben-
efits [100]. While the effects of β3AR agonists on the
brain are not yet clearly understood, what stand up from
our data is that enhanced UCP1 levels in BAT were
correlated with higher improvement in RI in 3xTg-AD
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mice, supporting the idea that higher BAT thermogen-
esis induced by β3AR stimulation is involved in im-
proved memory performance.

β3AR stimulation decreases insoluble Aβ42/Aβ40 ratio
but has no effect on tau phosphorylation in the
hippocampus of 3xTg-AD mice
The 3xTg-AD model allowed us to probe whether the
effect of CL-316,243 are related to changes in AD neuro-
pathology. Despite no change in total tau or Aβ burden,
a 27% decrease in insoluble Aβ42/Aβ40 ratio was ob-
served in the hippocampus of old 3xTg-AD mice follow-
ing CL-316,243 injections. We did not observe
concomitant changes in Aβ40, Aβ42, BACE1, APP, IDE,
or LRP1. Although no clear mechanism can be identified
from our study, genetic data strongly suggest that a
treatment reducing the Aβ42/Aβ40 ratio in the hippo-
campus is consistent with a beneficial impact on Aβ pro-
duction and aggregation [101, 102]. Aβ42/Aβ40 ratio in
the brain has been consistently associated with higher
risk of developing AD, at least in genetic cases. Indeed,
the Aβ42/Aβ40 ratio is increased in familial forms of
AD and is inversely correlated with the age of onset of
the disease [103, 104]. Decreased Aβ42/Aβ40 ratio sug-
gests a shift in APP cleavage from Aβ42 to Aβ40, which
is less prone to aggregation than Aβ42. Importantly, in-
creased Aβ42/Aβ40 ratio precedes amyloid plaques for-
mation in the Tg2576 mouse model of AD [105]. More
recent work using induced pluripotent stem cells (iPSC)
corroborates this view, indicating that APP or presenilin
1 (PSEN1) mutations, the more likely to cause familial
AD, also leads to higher Aβ42/Aβ40 ratio [106]. Consist-
ent with biochemical data in cellular models, recent clin-
ical studies suggest that CSF and plasma Aβ ratios are
biomarkers of Aβ processing and can be useful in the
diagnosis of AD [101, 107].
The absence of changes on the phosphorylation status

of tau following CL-316,243 administration could be
interpreted as surprising. Since tau phosphorylation has
been repeatedly shown to follow body temperature
modulation [12–14], we could have expected a protect-
ive effect of β3AR stimulation. We observed a transitory
increase in temperature following CL-316,243 injection,
but this effect was only temporary and thus did not im-
pact tau phosphorylation measured at the end of the ex-
periment. As mentioned above, CL-316,243 did not
induce chronic hyperthermia, which would actually be
an adverse effect. In contrast, we recently showed that
improved BAT thermogenesis through repeated cold ex-
posure protects old 3xTg-AD mice from cold-induced
tau phosphorylation [16]. However, the present study
design did not fully explore the hypothesis that β3AR
stimulation impacts tau phosphorylation, because the
animals were kept at room temperature and not exposed

to any frank thermoregulatory challenge (i.e., acute 24-h
exposure to cold). Thus, because it has not been directly
tested in the present study, it remains possible that
pharmacological β3AR stimulation also confers protec-
tion against cold-induced tau phosphorylation.

Limitations
Limitations of the current work include the absence of
confirmation that CL-316,243 crosses the blood-brain
barrier and had a direct effect in the CNS of mice. How-
ever, as stated above, reaching the brain is not absolutely
required to exert benefits, as the prime target of β3AR
agonists is the BAT. Another limitation is the low num-
ber of mice in the NonTg group that met the inclusion
criteria of minimal exploring time to be included in the
NOR test, preventing us to draw conclusion on a poten-
tial effect of β3AR agonist on old control (NonTg) mice.
However, our several previous studies showed that this
memory test is appropriate and adapted for old 3xTg-
AD mice, because it is less affected by other variables
failing with age in these types of models, such as
thermoregulation, sensorimotor performance, and anx-
iety. Furthermore, the effect of a β3AR agonist was eval-
uated in only one mouse model of AD, the 3xTg-AD
mouse model of AD. It is important to note that there is
no true mouse model of sporadic AD available. Al-
though the triple transgenic mice is a model generated
by the overexpression of three human mutations found
in familial forms of AD, it is the only one that recapitu-
lates both progressive tau and Aβ pathologies as well as
thermoregulatory and metabolic impairments [9, 44].
However, it would be interesting to investigate the effect
of a β3AR agonist in other recently developed murine
models of tau or Aβ pathologies [108]. Finally, we used
only males to avoid temperature variations induced by
the estrous cycle of female mice, but since female 3xTg-
AD mice develop aggravated metabolic deficits as well as
higher Aβ pathology compared to males, the benefit of
the treatment observed could have been more promin-
ent in females.

Conclusions
The present work aimed to determine whether β3AR ag-
onists exert positive effects on AD-relevant endpoints in
an animal model of tau and Aβ neuropathology, thereby
providing arguments for drug repurposing in AD. This
class of drugs is actively being tested in clinical studies
for metabolic diseases [109, 110] and CL-316,243 has
been previously investigated in humans as well [111]. As
an example, mirabegron (Myrbetriq®) has been approved
by the Food and Drug Administration for the treatment
of overactive bladder [41, 112], and large randomized
controlled trials have confirmed its safety and tolerability
profiles [113], even in the elderly population [114]. Thus,
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the potential translation to clinical use of this class of
drugs in AD is high. Nonetheless, it has to be noted that
in humans, potential side effects of β3AR agonists
include cardiovascular dysfunction induced by non-
specific activation of β1 and β2 adrenergic receptors. In-
deed, a single administration of mirabegron at a dose of
200 mg (fourth times the clinical dose) enhances BAT
activity in adults, but also induced cardiac arrhythmia in
a few cases [41]. While the clinical dose of 50 mg does
not seem to be efficient to acutely stimulate BAT [42], a
recent study showed that 100 mg of mirabegron en-
hances thermogenesis without any cardiovascular side
effects in adults [81]. Yet, long-term studies investigating
chronic effect of β3AR agonists in BAT thermogenesis
in old volunteers are needed.
Altogether, our results in a mouse model of AD dem-

onstrate for the first time that β3AR agonists are potent
tools to reverse memory deficits and insoluble Aβ42/
Aβ40 ratio in the hippocampus. It is the first study to
our knowledge to investigate the potential of this class
of drugs on AD neuropathology and behavior.
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