
HAL Id: hal-03432049
https://hal.science/hal-03432049

Submitted on 17 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probability-Based Fast Intra Prediction Algorithm for
Spatial SHVC

Dayong Wang, Yu Sun, Jinhua Liu, Frédéric Dufaux, Xin Lu, Bo Hang

To cite this version:
Dayong Wang, Yu Sun, Jinhua Liu, Frédéric Dufaux, Xin Lu, et al.. Probability-Based Fast Intra
Prediction Algorithm for Spatial SHVC. IEEE Transactions on Broadcasting, 2022, 68 (1), pp.83 - 96.
�10.1109/TBC.2021.3126277�. �hal-03432049�

https://hal.science/hal-03432049
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON BROADCASTING 1

Probability-Based Fast Intra Prediction Algorithm
for Spatial SHVC

Dayong Wang, Yu Sun, Jinhua Liu, Frederic Dufaux, Fellow, IEEE, Xin Lu, and Bo Hang

Abstract—Due to multi-layer encoding and Inter-layer pre-
diction, Scalable High Efficiency Video Coding (SHVC) has
extremely high coding complexity. It is very crucial to improve
its coding speed so as to promote widespread and cost-effective
SHVC applications. In this paper, we propose a new probability-
based fast Intra prediction algorithm for spatial SHVC. More
specifically, first, we integrate depth probabilities with textural
based all-zero blocks and all-nonzero blocks through Lagrange
Interpolation Polynomial (LIP) to derive thresholds to early skip
unlikely depths and early terminate depth selection. Second, to
early skip Intra mode prediction, we combine mode probabilities
with Jarque-Bera test through LIP to test the residual coef-
ficients of Inter-layer reference (ILR) mode. Third, we adopt
the difference of Hadamard Costs (HCs) of horizontal, vertical
and diagonal directional modes to predict candidate directional
modes (DMs), and then exploit both the percentages of gradient
amplitudes and HCs for DM early termination. Experimental
results demonstrate that the proposed algorithm can achieve
a speed up gain of more than 61% with 0.03% decrease in
Bjøntegaard Delta Bit Rate on average.

Index Terms—SHVC, depth decision, ILR mode, directional
mode, early termination.

I. INTRODUCTION

V IDEO applications, such as digital TV broadcasting,
video conferencing and smartphone communications, are

so prevalent in our life right now, especially during the
COVID-19 Pandemic Period. On one hand, diverse devices
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lead to various screen resolutions, processing capabilities, and
network bandwidth requirements. On the other hand, different
networks, such as Broadband networks, WIFI networks, and
4G/5G wireless networks, may have time-varying bandwidths.
Consequently, video streaming must have a very strong adap-
tation ability. Scalable High Efficiency Video Coding (SHVC)
is an efficient solution to address this requirement. SHVC
supports temporal scalability, spatial scalability, quality scal-
ability, bit-depth scalability and color gamut scalability. It
consists of a base layer (BL) and one or more Enhancement
layers (ELs). Through selecting an appropriate EL, SHVC can
adapt to various devices and network conditions.

SHVC is a scalable extension of High Efficiency Video
Coding (HEVC). Although HEVC has very high coding ef-
ficiency, it also has very high encoding complexity. Compared
to H.264/AVC, the encoding complexity of HEVC is increased
by about two to four times [1]. SHVC needs to encode a
BL and one or more ELs. In addition to encoding Inter-layer
prediction, each EL also needs to be further encoded using the
same encoding process as HEVC. Thus, SHVC is much more
complex than HEVC. Due to the high encoding complexity,
the wide applications of SHVC have been limited, especially
for wireless and real-time applications. Therefore, it is very
important to improve coding speed.

For this purpose, in this paper, we propose a new
probability-based fast Intra prediction algorithm for spatial
SHVC. First, we obtain temporal and spatial correlation de-
grees between two successive frames, and use a Bayesian
formulation to obtain depth probabilities, which are integrated
with textural based all-zero blocks and all-nonzero blocks
(AZBANBs) through Lagrange Interpolation Polynomial (LIP)
to early skip unlikely depths and early terminate depth se-
lection. Second, using the similar method of obtaining depth
probabilities, we derive mode probabilities, and combine them
with Jarque-Bera test through LIP to early skip Intra mode
prediction. Third, in the rough mode decision (RMD) proce-
dure, we adopt the difference of Hadamard Costs (HCs) of
horizontal, vertical and diagonal directional modes to predict
candidate directional modes (DMs), and then simultaneously
exploit the percentages of gradient amplitudes and HCs for
early termination.

The major novelties and contributions of the proposed
algorithm are summarized below:

(1) For different scalability ratios, 1.5x and 2x, in spatial
SHVC, we develop a new method to obtain temporal
and spatial correlation degrees between two successive
frames.

(2) By combining textural complexity with quantization
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parameters (QPs), we develop an approach to derive a
textural based AZBANBs for depth selection.

(3) We propose to adopt LIP to derive thresholds in predic-
tion on early skip and termination for depths, Inter-layer
reference (ILR) mode and DMs.

(4) We adopt the differences of HCs of horizontal, vertical
and diagonal DMs to predict candidate DMs, and de-
velop an early termination method for DMs based on
the percentages of gradient amplitudes and HCs.

The rest of this paper is organized as follows. Section II
discusses related work. Section III provides the overview of
the proposed approach. Section IV presents three fast strategies
to speed up encoding. Section V discusses and analyses the
experimental results. Finally, Section VI draws the conclusions
of this research and plans for future work.

II. RELATED WORK
Due to the fact that SHVC is a scalable extension of HEVC,

there should be a strong relationship between SHVC and
HEVC. Therefore, in this section, we first briefly discuss fast
coding algorithms for HEVC, and then review the algorithms
to speedup SHVC.

Some fast algorithms focused on improving the coding
speed of HEVC have been developed in [2]-[6]. Textural
features and correlations have relationships with mode and
depth selections. The work in [2] studies textural features to
predict candidate modes and depths. The work in [3] adopts
temporal and spatial correlations to predict candidate depths
and skip unlikely depths. The research in [4] splits residual
coefficients of a coding unit (CU) into top and bottom parts
as well as left and right parts, then decides whether to further
split this CU according to the difference of two parts of each
division. The work in [5] first obtains the difference between
original luminance pixels and predicted ones, and then develop
two decision models to early skip of vertical binary-tree and
horizontal and vertical ternary-tree partition for each CU. The
work in [6] first develops an RDO cost statistical model, and
use HCs to predict candidate DMs and skip unlikely DMs
based on the model.

As we know, unlike HEVC, SHVC also has Inter-layer
correlation. Therefore, fast coding algorithms for HEVC can
not be applied directly for SHVC coding speedup. In other
words, algorithms specifically designed for HEVC, and used
straightforwardly in coding speedup for SHVC, cannot reach
the optimal performance. Therefore, it is crucial to design
fast coding algorithms for SHVC based on its own coding
structure.

A number of fast coding algorithms are developed for
SHVC [7]-[22]. Tohidypour et al. [7] use relative CUs’ Rate
Distortion (RD) to predict the current CU’s RD cost in
EL for early termination. To reduce the coding complexity,
the technique proposed in [8] uses relative CUs to predict
likelihood modes and skip unlikely modes in EL. According
to the combination of depth and mode of the co-located CU
in BL, the algorithm proposed in [9] first predicts likelihood
modes and excludes unlikely modes of the current CU in EL.
Then, it further eliminates unlikely modes based on Inter-
layer and spatial correlations. In [10], according to spatial

and Inter-layer correlations, a Naïve Bayesian Classifier is
adopted to predict the quad-tree structure of coding tree units
(CTUs) for SHVC. Based on the coding information of relative
CUs, a method about online-learning-based mode prediction is
developed in [11] to predict the likelihood modes of the current
CU in EL. Lu et al. [12] use Inter-layer and spatial correlations
as well as textural complexity to predict candidate coding
depths. Lu et al. [13][14] jointly use texture complexity and
spatio-temporal correlation to predict candidate depths. Then,
they combine Inter-layer correlation with temporal correlation
to exclude unlikely DMs. Exploiting correlations in prediction
is one common attribute of the above algorithms.

However, different CUs may have different correlation de-
grees. Using correlations only, without considering correlation
degrees, can certainly influence the performance. To improve
the coding speed, Wang et al. [15, 16, 17] exploit both correla-
tions and correlation degrees to predict candidate depths. Then,
they use residual coefficients and RD costs to early terminate
mode and depth selection. Different depths and modes may
have different probabilities to be selected. However, these
works do not consider probabilities to early terminate modes or
depth selection, which limit the improvement of coding speed.
In order to address this issue, the work in [18] predicts the
probabilities of depths and modes based on correlations and
correlation degrees, and then evenly divides the probabilities
into three groups. In each group, a fixed threshold is used
to early terminate ILR mode and depth selection. The above
works are developed for quality SHVC. Since the resolutions
in BL and EL are the same, the correlation degrees in EL can
be obtained directly based on co-located correlation degrees
in BL. The works in [19, 20] obtain correlation degrees based
on pixel correlations. Based on Inter-layer, spatio-temporal
and Inter-level correlations, the research [19] develops a con-
ditional probability of a SKIP/Merge mode, motion activity
and mode complexity to predict candidate modes. The Inter-
layer and spatio-temporal correlation are adopted in [20] to
build two feedforwards neural network-based learning models
to predict depths and modes. In brief, one common feature
about the above works [15-20] is that correlation degrees are
fully utilized in prediction.

Clearly, the fact that different depths and modes usually
have different probabilities should be considered to obtain
more accurate thresholds in prediction. The work in [18]
divides probabilities into several groups and set a fixed value
for each group in prediction. However, probabilities in each
group are also different, which also requires variable thresh-
olds instead of fixed ones. Therefore, to further improve the
performance, it is highly desirable to develop probabilities-
based algorithm in prediction.

The above techniques are mainly developed for quality
SHVC, except several works [10, 12-14] that are applied to
Intra coding for spatial SHVC. One possible reason is that
the resolutions in BL and EL are the same in quality SHVC,
whereas they are different in spatial SHVC. It is relatively
easier to develop fast coding algorithms for quality SHVC
due to a stronger Inter-layer correlation. Undoubtedly, how
to develop effective and fast coding algorithms for spatial
SHVC is definitely a research challenge, due to the following
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considerations:
(1) In order to predict more accurately, we need to obtain

temporal and spatial correlation degrees, which can
be generally obtained through two ways. One way is
to obtain correlation degrees through pixel correlations
[19][20]. Obviously, depth and mode selections are not
only correlated with pixels, but are also correlated with
reference pixels and QPs. Therefore, only using pixels
in calculating correlation degrees may not always obtain
the optimal performance. The other way is to use co-
located correlation degrees in BL for quality SHVC
[15-18]. However, in spatial SHVC, these correlation
degrees cannot be obtained directly based on co-located
correlation degrees in BL, since the resolutions in BL
and EL vary between two scalability ratios (1.5x and
2x). Thus, new methods to obtain temporal and spatial
correlation degrees for spatial SHVC must be explored.

(2) Both textural complexity and QPs have strong rela-
tionships with depth selection. However, some works
only consider textural complexity, such as [12-14]. Many
works establish relation among textural complexity, QP
and depth selection based on experiments [21]. Due
to the diversity of video sequences, these empirical
relations may not be optimum for all sequences. Ap-
parently, a threshold obtained theoretically will have
strong adaptive ability for various videos. Therefore, we
propose texture based AZBANBs to derive the threshold
for depth selection.

(3) Different depths and modes may lead to different
probabilities. Many research works have not consid-
ered depth and mode probabilities in prediction [15-
17]. Thus, they certainly cannot obtain the optimum
performance. The work [18] divides probabilities on
depth and ILR into three groups. Each group has its fixed
threshold for depth and ILR mode early termination.
This method obtains better performance than the ones
without considering probabilities. However, probabilities
in the same group may be different, their corresponding
thresholds should also be different. Apparently, using the
same fixed threshold for different probabilities in the
same group cannot achieve the optimum performance.
Therefore, an approach on deriving variable thresholds
for different probabilities should be developed so as to
further improve the performance in prediction.

(4) In order to obtain candidate DMs in RMD procedure,
many works use textural features in prediction [21]. The
selection of DMs is not only related to textural features,
but also related to reference pixels. Obviously, only using
textural features cannot predict DMs very well. HCs are
used in [15, 18] to predict candidate DMs. However,
only considering HC values without considering HC dif-
ferences will definitely limit the improvement of coding
speed.

In order to address the above issues, we propose the
corresponding solutions and develop a new probability-based
fast Intra prediction algorithm for spatial SHVC. According
to the best of our knowledge, the textural based AZBANBs
and LIP have never been applied in video coding speedup.

Therefore, the main novelty of this work is to apply them for
improving coding speed of SHVC.

III. OVERVIEW OF THE PROPOSED ALGORITHM

In order to improve Intra coding speed and maintain coding
efficiency for spatial SHVC, we propose three strategies:
Probability and Textural Complexity-Based Depth Prediction
(PTC-BDP), Probability and Residual Coefficients-Based ILR
Mode Prediction (PRC-BIMP), Probability and HCs-Based
DM Prediction (PH-BDP). First, we predict depth candidates
through PTC-BDP. For depth candidates, to skip Intra predic-
tion, we determines whether the ILR mode is the best mode
though PRC-BIMP. Otherwise, we predict DMs candidates in
the RMD process and Rate Distortion Optimization (RDO)
process through PH-BDP.

As shown in Fig.1, the left side shows the three strategies
and the right side illustrates the procedure of the proposed
algorithm.

In PTC-BDP, we obtain temporal and spatial correlation
degrees between two successive frames, and combine relative
CUs’ information with correlation degrees through a Naive
Bayesian classifier to derive depth probabilities. The latter are
then integrated with texture based AZBANBs through LIP to
early skip unlikely depths and early terminate depth selection.
In PRC-BIMP, using the similar way as depth prediction,
we can obtain mode probabilities, which are combined with
Jarque-Bera test through LIP to skip Intra prediction. In PH-
BDP, we predict candidate DMs based on the differences
of HCs of horizontal, vertical and diagonal DMs. Then, we
integrate the percentages of gradient amplitudes with HCs
through LIP to early terminate RMD process. Finally, we use
the differences of HCs of neighboring DMs to early terminate
the RDO process.

IV. THE PROPOSED FAST INTRA PREDICTION
PROCESS

In order to develop the above three strategies, we have
conducted extensive experiments to investigate the features and
characteristics of Intra coding in spatial SHVC. According to
common SHM test conditions (CSTC) [23], there exist two
scalability ratios, 2x and 1.5x, in spatial SHVC, representing
the ratios of both height and width in EL to those in BL.
Out of classes A, B, C, D, and E, only test sequences in
class B can meet the requirement of two scalability ratios
and are thus selected in our experiments. More precisely, the
selected sequences are Blue_Sky, Ducks, Park_Joy, Pedestrian,
Sunflower, Town, Tractor and Tree. These sequences are
representative since they cover motion and texture from simple
to complex. Both scalability ratios also include one QP set in
BL and two QP sets in EL. The QP set in BL is (22, 26, 30,
34), and the corresponding two QP sets in EL are (22, 26, 30,
34) and (24, 28, 32, 36), respectively. Obviously, the scalability
ratio 2x has a larger difference in resolution between BL
and EL, and the QP set (24, 28, 32, 36) in EL also has a
larger difference in QPs between BL and EL. Therefore, the
combination of 2x and the QP set (24, 28, 32, 36) in EL should
have the weaker Inter-layer correlation for larger differences
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Fig. 1: Overview of the Proposed Algorithm.
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L C

Fig. 2: Relative CUs of the current CU in prediction.

in both scalability ratios and QP sets. If we could achieve
good performance in this case, we should reach even better
performances in the other configurations. Therefore, we only
use 2x and the QP set (24, 28, 32, 36) in EL when conducting
experiments. Based on these experiments, we develop three
fast Intra prediction strategies which are described below.

A. Probability and Textural Complexity-Based Depth Predic-
tion (PTC-BDP)

In this section, we first obtain depth probabilities based
on correlation. Then, we propose texture based AZBANBs
to measure textural complexities. Finally, we jointly use depth
probabilities and texture based AZBANBs through LIP to early
skip unlikely depths and early terminate depth selection.

1) Correlation-Based Depth Probability Prediction: Since
the current CU and neighboring CUs are usually very similar,
their spatial correlation is very high. Due to the continuity
of a video sequence, the temporal correlation of successive
frames is also very high. Therefore, we can use spatial and
temporal correlations to obtain depth probabilities. The spatial
and temporal correlations are exploited through the relative
CUs of the current CU, as shown in Fig. 2. The current CU

in the EL, its left CU, upper CU, upper-left CU and upper-
right CU are denoted as C, L, U, UL and UR, respectively.
Accordingly, the co-located CUs of C, L, U, UL and UR in
the previous frame are denoted as FC, FL, FU, FUL and FUR,
respectively. We refer to the depth level of C, L, U, UL, UR,
FC, FL, FU, FUL and FUR as d0, d1, d2, d3, d4, d5, d6, d7,
d8, d9, respectively.

Obviously, different neighboring CUs may have different
correlation degrees with the current CU. It is better to combine
neighboring CUs and their correlation degrees in prediction.
Thus, we need to obtain the temporal and spatial correlation
degrees first. Since neighboring CUs and the current CU are
usually very similar, we can calculate the temporal correlation
degree of the current CU through its neighboring CUs. Ob-
viously, if one of the neighboring CUs in the current frame
and its co-located CU in the previous frame are more similar,
the absolute difference of their depths should be smaller and
the temporal correlation degree of the current CU should
be stronger, and vice versa. In other words, the absolute
difference between the depth of the i-th (1≤i≤4) neighboring
CU in the current frame and that of its co-located CU in the
previous frame, |di − di+5 |, is inversely related to the temporal
correlation degree of the current CU. Since the maximum
value of the depth level is 3 and there are four neighboring
CUs, the average value of the absolute differences between
the depths of four neighboring CUs in the current frame and
those of their co-located CUs in the previous frame are used
instead of the depth absolute difference of an individual CU.
Then, the temporal correlation degree of the current CU, td,
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is calculated by:

td = 3−

4∑
i=1
|di − di+5 |

4
. (1)

As mentioned above, the current and previous frames are
usually very similar, thus we can use spatial correlation
degrees of CUs in the previous frame as those of the co-located
CUs in the current frame. Suppose sd is the spatial correlation
degree vector of four neighboring CUs’ depths of the CU FC.
It is obvious that the absolute difference between the depth of
the CU FC and that of its i-th neighboring CU in the previous
frame, |di+5 − d5 | with 1≤i≤4, is inversely related to their
corresponding spatial correlation degree. Since the maximum
value of the depth level is 3, the i-th component of the spatial
correlation degree vector, sdi , is calculated by:

sdi = 3 − |di+5 − d5 | . (2)

Through the above process, we can obtain the temporal
and spatial correlation degrees. Assume nv is the depth level
vector of four neighboring CUs of the current CU, and its
i-th component nv′i s value is di . Based on relative CUs and
correlation degrees, we use a Bayesian formulation to derive
the probability of depth level d0, fd(d0), as:

f (d0) = p (d0 | ((nv, sd) , (d5, td))) =
p(((nv,sd),(d5 ,td)),d0)

p((nv,sd),(d5 ,td))

=
p(((nv,sd),(d5 ,td)) |d0)p(d0)

p((nv,sd),(d5 ,td))
,

(3)
where the vector (nv, sd) refers to the depth levels of neigh-
boring CUs of the current CU and their corresponding spatial
correlation degrees, (d5, td) refers to the depth level of CU
FC and its temporal correlation degree, p ((nv, sd) , (d5, td))
is the probability of the vector ((nv, sd), (d5, td)),
p (((nv, sd) , (d5, td)) |d0) is the conditional probability of the
vector ((nv, sd), (d5, td))|d0. If we directly calculate Eq.
(3), the process is very complex. In order to address this
issue, we use a Naive Bayesian classifier to calculate Eq.
(3). Since a Naive Bayesian classifier make a conditional
independence assumption, we can assume that components in
a vector are independent of each other. In addition, temporal
correlation and spatial correlation can also be considered to be
independent of each other. Based on the above analysis, we
can rewrite (3) as:

fd (d0) =
p(((nv,sd),(d5 ,td)) |d0)p(d0)

p((nv,sd),(d5 ,td))
=

p((nv,sd) |d0)p((d5 ,td) |d0)p(d0)
p(nv,sd)p(d5 ,td)

=
p(d0)p((d5 ,td) |d0)

4∏
i=1

p((nvi ,sdi ) |d0)

p(d5 ,td)
4∏

i=1
p(nvi ,sdi )

,

(4)
where p(d0), p (d5, td), p ((d5, td) |d0), p (nvi, sdi) and
p ((nvi, sdi) |d0) are the depth probabilities of d0, (d5, td), (d5,
td)|d_0, the i-th (1≤i≤4) component in the vector (nv, sd)
and (nv, sd)|d0), respectively. According to the experimental
conditions mentioned above, we can obtain these five proba-
bilities, and then we can compute fd(d0).

Through the above process, the probabilities of all four
depth levels can be obtained. As described above, temporal
correlation degrees are obtained from its neighboring CUs, and

spatial correlation degrees are obtained from the co-located
CUs in the previous frame. In other words, temporal and
spatial correlation degrees are indirectly obtained, so these
correlation degrees may not always be very accurate. If we
directly use these probabilities in prediction, the correspond-
ing coding efficiencies may be obviously degraded in some
sequences. In order to address this issue, we further exploit
textural complexity and QPs in prediction.

2) Textural Based All-zero Blocks and All-nonzero Blocks:
Depth selection has strong relation with textural complexity
and QPs. Generally speaking, if texture is very complex, CUs
usually use large depths; and vice versa. In addition, if QPs
are very large, CUs usually use small depths; and vice versa.
Therefore, we can predict candidate depths based on textural
complexity and QPs.

Suppose vi, j is a pixel value at (i, j) in a CU, n and v are
the size and average pixel value of a CU respectively, and the
difference between the pixel value vi, j and the average value
v is denoted as xi, j . Obviously, if the texture is very simple,
the corresponding xi, j should be very small; and vice versa.
Therefore, we can use xi, j to represent textural complexity.
The expected value µ and the variance σ of xi, j are calculated
by:

µ=

n∑
i=0

n∑
j=0

xi , j

n2 , σ2=

n∑
i=0

n∑
j=0
(xi , j−µ)

2

n2−1 .
(5)

The DCT coefficient at the position (i, j) is denoted as
xF (i, j), its expected value and variance are denoted as µF (i, j)
and σ2

F (i, j), respectively. They can be written as [19]:

µF (i, j) = µ
√[

ARAT
]
i,i

[
ARAT

]
j , j

σ2
F (i, j) = σ2 [ARAT

]
i,i

[
ARAT

]
j , j
,

(6)

where
[
ARAT

]
i,i

is the component at (i, i) in a matrix, A is
an 8 × 8 integer DCT transform matrix in SHVC, and R is:

R =


1 ρ · · · ρ7

ρ 1 · · · ρ6

...
...

...
...

ρ7 ρ6 · · · 1


, (7)

where ρ is the correlation coefficient and its value is set to
0.6 [24].

Since the distribution of xF (i, j) is uncertain, we can not
obtain its probability based on its distribution. In order to
address this issue, we can use Chebyshev’s Inequality to esti-
mate the probability of xF (i, j). According to the Chebyshev’s
Inequality, for any value ε, the following inequality holds:

p (|xF (i, j) − µF (i, j)| < ε) ≥ 1 −
σ2
F (i, j)

ε2 . (8)

When ε is greater than or equal to 3σF , the probability in
Eq. (8) is nearly higher than 90%, so we set ε as 3σF .
In this condition, the maximum absolute value of xF (i, j) is
3σF+ |µF |. For Intra coding, in order to ensure any xF (i, j)
can be quantized to zero, the following condition must be
satisfied:

3σF+ |µF |
Qstep

+ 1
6 ≤ 1. (9)
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where Qstep refers to quantization step. From Eq. (9), we
have:

3σF+ |µF | ≤
5
6Qstep . (10)

Combining Eq. (6) and (10), we can derive:

σ ≤
(

5ki , j
6 Qstep − |µ|

)/
3, (11)

where the value of ki, j is a constant value and is equal to
1
/√[

ARAT
]
i,i

[
ARAT

]
j , j

. The corresponding value of ki, j at
the position (i, j) is listed below:



0.3249 0.4248 0.5443 0.6966 0.8424 0.9673 1.0623 1.1206
0.4248 0.5554 0.7117 0.9108 1.1014 1.2647 1.3889 1.4652
0.5443 0.7117 0.9119 1.1671 1.4114 1.6206 1.7797 1.8775
0.6966 0.9108 1.1671 1.4937 1.8063 2.0741 2.2777 2.4028
0.8424 1.1014 1.4114 1.8063 2.1844 2.5083 2.7545 2.9058
0.9673 1.2647 1.6206 2.0741 2.5083 2.8802 3.1629 3.3367
1.0623 1.3889 1.7797 2.2777 2.7545 3.1629 3.4734 3.6642
1.1206 1.4652 1.8775 2.4028 2.9058 3.3367 3.6642 3.8655


. (12)

Combining Eq. (11) and (12), we can obtain the threshold
values: if σ ≤

(
5×0.3249

6 Qstep − |µ|
)/

3, all quantized residual
coefficients are zero, which is the condition of all-zero blocks;
else if σ ≤

(
5×0.4248

6 Qstep − |µ|
)/

3, all quantized residual
coefficients are zero except the coefficient at (0, 0); and so
on. Accordingly, if σ >

(
5×3.8655

6 Qstep − |µ|
)/

3, all quantized
residual coefficients may be not zero, which is the condition
of all-nonzero blocks. Obviously, if all quantized residual
coefficients are not zero, the current CU is not well predicted
and can be early skipped. Conversely, if all quantized residual
coefficients are zero, the current CU is very well predicted and
can be early terminated. Therefore, we can use the condition
of all-zero blocks and all-nonzero blocks to early terminate
and early skip the current depth, respectively. Since depth
levels in different CUs may have different probabilities, if we
only use the textural based AZBANBs in prediction without
considering depth probabilities, we definitely cannot obtain
optimum performance. Therefore, we should combine depth
probability with textural based AZBANBs to obtain threshold
values for early skip and early termination.

3) Combining Depth Probability with Textural Based
AZBANBs in Prediction: As both depth probability and the
condition of textural based AZBANBs have obviously strong
relationships with depth selection, we can combine them to
predict candidate depth levels. As mentioned above, we can
obtain each depth level’s probability based on temporal and
spatial correlations. We equally divide depth level probability
into five categories: 0%-20%, 20%-40%, 40%-60%, 60%-80%
and 80%-100%. These five categories can indicate different
probabilities very well, e.g., 0%-20% indicates a very low
possibility and 80%-100% indicates a very high possibility.
Obviously, different categories should use different decision
conditions for early skip and early termination. We can modify
AZBANBs by multiplying the best values to obtain the best
decision conditions for different categories. We define the best
decision condition of a category as a coefficient value. Appar-
ently, a coefficient value is not optimal for all probabilities in
the corresponding category, but it can be considered as optimal
for the median value of the corresponding category. Suppose
1 is the coefficient value of category 0% and 20%, it is not
optimal for all probabilities in 0% and 20%, but it can be
considered as optimal for 10% which is the median value of

category 0% and 20%. We integrate the coefficient values and
their corresponding median values of all categories with LIP
to derive the threshold values for depth early skip and depth
early termination. Their corresponding processes are described
as follows.

(a) Depth early skip
When depth level probability is in 0%-20%, our proposed

method of selecting the coefficient value is as follow. We
first use the condition of All-Nonzero Block mentioned above
which is denoted as t1, then test with values greater than t1
and smaller than t1. For values smaller than t1, we repeat
dividing them by 2. While for values greater than t1, we
repeat by adding 0.5t1. These values and their corresponding
Bjøntegaard delta bit rates (BDBRs) [25] are listed in Table I.
Given the same PSNR in the EL, BDBR refers to the bitrate
difference compared with the SHVC reference software (SHM
11.0). A positive value and a negative value indicate coding
efficiency decrease and increase in EL, respectively.

From Table I, we can observe that if a test value is larger
than or equal to 0.5t1, the BDBRs in all sequences are 0.1%
at most. This means that the coding efficiency loss is very
small. Apparently, the smaller the value is, the more depths
meet the condition. Therefore, we select 0.5t1 as the coefficient
value (the best condition). We use the same way to obtain the
coefficient values for the other depth probability categories in
20%-40%, 40%-60%, 60%-80% and 80%-100%, which are
1.0t1, 1.5t1, 2.0t1 and 3.5t1, respectively. Obviously, 0.5t1 is
not the optimal value for all probabilities in 0%-20%, but it
can be considered as the optimal value for the median value
(10%) between 0 and 20%. In the same way, 1.0t1, 1.5t1, 2.0t1
and 3.5t1 also can be regarded as the optimal values for the
median values of the other four categories, namely 30%, 50%,
70% and 90%, respectively. Putting these median values and
their corresponding coefficient values together, we have five
sets of values: (10%, 0.5t1), (30%, 1t1), (50%, 1.5t1), (70%,
2.0t1) and (90%, 3.5t1).

For any probability x, we use the five sets of values through
LIP to calculate the corresponding predictive value dt:

dt =
4∑
i=0

si
4∏

j=0,i,j

x−x j

xi−x j
, (13)

where x0, x1, x2, x3 and x4 are 10%, 30%, 50%, 70% and
90%, respectively; s0, s1, s2, s3 and s4 are 0.5t1, 1.0t1, 1.5t1,
2.0t1 and 3.5t1, respectively. Based on Eqs. (13), we can derive
the early skip condition below:

σ >
4∑
i=0

si
4∏

j=0,i,j

x−x j

xi−x j
×

(
5×3.8655

6 Qstep − |µ|
)/

3. (14)

(b) Early termination condition
In a similar way, we denote the condition of All-Zero Block

mentioned above as t2 and obtain the coefficient values for
0%-20%, 20%-40%, 40%-60%, 60%-80% and 80%-100%,
which are 0.03125t2, 0.0625t2, 0.0625t2, 0.125t2 and 0.125t2,
respectively. Putting median values and their corresponding
coefficient values of the five categories together, we also have
five sets of values: (10%, 0.03125t2), (30%, 0.0625t2), (50%,
0.0625t2), (70%, 0.125t2) and (90%, 0.125t2). Based on the
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TABLE I: Test values and corresponding BDBRs for depth probability in 0%-20%

Sequences
Values

0.125t1 0.25t1 0.5t1 1t1 1.5t1 2t1

Blue_Sky 0.40% 0.30% 0.10% 0.00% 0.00% 0.00%
Ducks 0.20% 0.10% 0.00% 0.00% 0.00% 0.00%

Park_Joy 0.60% 0.30% 0.10% 0.00% 0.00% 0.00%
Pedestrian 0.30% 0.20% 0.00% 0.00% 0.00% 0.00%
Sunflower 0.10% 0.10% 0.00% 0.00% 0.00% 0.00%

Town 0.40% 0.20% 0.00% -0.10% -0.10% -0.10%
Tractor 0.20% 0.10% 0.00% 0.00% 0.00% 0.00%

Tree 0.50% 0.20% 0.10% 0.00% 0.00% 0.00%

five sets of values, we use LIP to calculate the corresponding
predictive value for any probability x using Eq. (13), and
derive the early termination condition below:

σ ≤
4∑
i=0

ei
4∏

j=0,i,j

x−x j

xi−x j
×

(
5×0.3249

6 Qstep − |µ|
)/

3, (15)

where x0, x1, x2, x3 and x4 are 10%, 30%, 50%, 70% and
90%, respectively; e0, e1, e2, e3 and e4 are 0.03125t2, 0.0625t2,
0.0625t2, 0.125t2 and 0.125t2, respectively.

Through the above process, we can obtain the early skip
condition and early termination condition for depth selection.
Since these conditions are developed only for 8×8 CUs, we can
derive the corresponding conditions for other CU sizes. There
are 64, 16 and 4 8×8 CUs in each 64×64, 32×32, 16×16 CU,
respectively. We can multiply 64, 16 and 4 on the right sides
of Eq. (14) and Eq. (15) to obtain the early skip condition
and the early termination condition for the corresponding CU
sizes.

B. Probability and Residual Coefficients-Based ILR Mode
prediction (PRC-BIMP)

In Intra prediction of SHVC, each CU needs to check
both Intra mode and ILR mode in EL. Since ILR mode is
very simple and cost little time, in order to maintain coding
efficiency, we always check ILR mode. As we know, if a
mode is very well predicted, the residue follows a Gaussian
distribution [15] or a Laplacian distribution [24]. We select
Gaussian distribution in our experiments due to its superior
performance [15]. Consequently, in order to improve coding
speed, we can first check if the residue of ILR mode follows a
Gaussian distribution, and then select the best condition based
on experiments. In addition, a mode probability also strongly
relates to mode selection. Based on the above analysis, we
first obtain probabilities of ILR mode, and then combine
the probabilities with residual coefficients to develop early
termination condition for ILR mode.

1) Correlation-Based Mode Prediction: Similar to depth
prediction, we combine neighboring CUs and their correlation
degrees to obtain ILR mode probability. The neighboring CUs
in EL are shown in Fig. 2. The mode of C, L, U, UL, UR, FC,
FL, FU, FUL and FUR are denoted as m0, m1, m2, m3, m4,
m5, m6, m7, m8, m9, respectively. Similar to depth prediction
in the above section, the sum of absolute differences between
neighboring CUs’ modes in the current frame and their co-
located CUs’ modes in the previous frame is inversely related

to the temporal correlation degree of the current CU. Since
the maximum value of the sum is 4, the temporal correlation
degree of the current CU, tm, is calculated by:

tm = 4−
4∑
i=1
|mi − mi+5 |, (16)

where mi is the mode of the i-th (1≤i≤4) neighboring CUs
of the current CU in the current frame, and mi+5 is the mode
of its co-located CU in the previous frame. We set ILR mode
and Intra mode as 0 and 1, respectively.

Similar to depth prediction, we also use the spatial corre-
lation degrees of CUs in the previous frame as those of the
co-located CUs in the current frame. For example, we use
the spatial correlation degrees of CU FL and CU FC as those
of CU L and CU C. Suppose sm is the spatial correlation
degree vector of four neighboring CUs’ modes of the CU FC
in the previous frame. It is obvious that the absolute difference
between the mode of the CU FC and its i-th neighboring CU
in the previous frame, |mi+5 −m5 |, is inversely related to their
corresponding spatial correlation degree. Since the maximum
value of a mode is 1, we can calculate the i-th component of
the spatial correlation degree vector, smi , by:

smi = 1 − |mi+5 − m5 | , (17)

where m5 is the mode of CU FC and mi+5 is the mode of its i-
th neighboring CU in the previous frame. Through the above
process, we can obtain the temporal and spatial correlation
degrees of the current CU’s mode. Assume nm is the mode
vector of four neighboring CUs of the current CU, and its i-
th component nmi’s value is mi . Combining modes of relative
CUs with their correlation degrees, we use the below Bayesian
formulation to derive the probability of mode m0, fm(m0), as:

fm (m0) = p (m0 | ((nm, sm) , (m5, tm))) =
p(((nm,sm),(m5 ,tm)),m0)

p((nm,sm),(m5 ,tm))

=
p(((nm,sm),(m5 ,tm)) |m0)p(m0)

p((nm,sm),(m5 ,tm))
.

(18)
Similar to depth prediction, we also use a Naive Bayesian

classifier to calculate the probability of mode m0 by:

fm (m0) =
p((m5 ,tm) |m0)p(m0)

3∏
i=0

p((nmi ,smi ) |m0)

p(m5 ,tm)
3∏

i=0
p(nmi ,smi )

. (19)

In order to calculate fm(m0), we need to obtain
p(m0), p (m5, tm), p ((m5, tm) |m0), p (nmi, smi) and
p ((nmi, smi) |m0) first through extensive experiments,
and then derive the probabilities of ILR and Intra modes.
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2) Combining Mode Probability with Residual Coefficients
in Prediction: As mentioned above, if a mode is very well
predicted, the residue should follow a Gaussian distribution.
Thus, we use Jarque-Bera test to determine whether its residue
follows a Gaussian distribution.

Suppose r0, r1, · · · , rn are residual coefficients, their skew-
ness S and kurtosis K are:

S = B3

B
3
2
2

,K = B4
B2

2
, (20)

where Bk(k = 2,3,4) is the sample central moment of order k
and is derived by:

Bk =

n∑
i=1
(ri−r)

k

n ,
(21)

where r and n are the average value and the number of residual
coefficients, respectively. Jarque-Bera Statistics, JB, is:

JB = S2

6/n +
(K−3)2
24/n . (22)

According to the knowledge of mathematical statistics, JB
follows a chi-squared distribution with the degree of freedom
of 2.

Since both a mode probability and its residual coefficients
have strong relationships with mode selection, we combine
ILR mode probability with its residual coefficients to decide
whether the ILR mode is the best mode. Similar to depth
prediction, we also evenly divide ILR mode probability into
five groups. For the ILR mode probability in 0%-20%, we use
some common significance level values in testing. According
to chi-squared distribution table, for significance level values
at 0.95, 0.90, 0.80, 0.70, 0.50, 0.30, 0.20, 0.10, 0.05, 0.025 and
0.01, the corresponding test critical values are 0.10, 0.21, 0.45,
0.71, 1.39, 2.41, 3.22, 4.60, 5.99, 7.38 and 9.21, respectively.
These test critical values and the corresponding BDBRs are
listed in Table II.

From Table II, if a test critical value is equal to or less
than 0.21, the BDBRs in all sequences are 0.1% at most. This
means that the coding efficiency loss is very small. Of course,
if we select larger test values, the corresponding BDBRs will
also be larger. Considering the tradeoff between coding speed
and coding efficiency, we select 0.21 as the coefficient value
(the best value). In the same way, we can obtain the coefficient
values for 20%-40%, 40%-60%, 60%-80% and 80%-100%,
which are 1.39, 2.41, 3.22 and 4.6, respectively. Putting the
median values and their corresponding coefficient values of the
above five groups together, we have five sets of values: (10%,
0.21), (30%, 1.39), (50%, 2.41), (70%, 3.22) and (90%, 4.6).
For any ILR mode probability x, we use the five sets of values
through LIP to derive the corresponding predictive value mt:

mt =
4∑
i=0

ri
4∏

j=0,i,j

x−x j

xi−x j
, (23)

where x0, x1, x2, x3 and x4 are 10%, 30%, 50%, 70% and 90%,
respectively; r0, r1, r2, r3 and r4 are 0.21, 1.39, 2.41, 3.22 and
4.6, respectively. Combining with Eqs. (22) and (23), we can
derive the decision condition for ILR mode as:

JB ≤
4∑
i=0

ri
4∏

j=0,i,j

x−x j

xi−x j
. (24)

Fig. 3: DMs in SHVC.

10

26

2

18
34

(a). Horizontal and Vertical DMs (b). Diagonal DMs

Fig. 4: Two sets of Typical DMs.

If Eq. (24) is satisfied, the ILR mode can be considered
as the best mode, and then we can directly skip Intra mode
prediction.

C. Probability and HC-Based DM Prediction (PH-BDP)

Similar to HEVC, Intra prediction in SHVC includes 33
DMs, Direct Current (DC) and Planar modes for Luma compo-
nents, as shown in Fig. 3. SHVC firstly uses the RMD process
to obtain the first N modes with the smallest HCs, and then
uses the RDO process to select the mode with the smallest
RD cost. For large CUs, e.g., 64 × 64, 32 × 32, 16 × 16, N is
3; while for small CUs, like 8 × 8 and 4 × 4, N is 8. In order
to improve coding speed, we develop several methods below.

1) The Difference of HC-Based DM Prediction in RMD:
In order to obtain candidate DMs, we fully use the differences
of HCs of typical DMs in prediction. In Fig. 3, DM 10
and 26 are Horizontal and Vertical DMs. DM 2, 18 and
34 are Diagonal DMs. Fig. 4 shows two sets of typical
DMs, including Horizontal and Vertical DMs (Fig. 4 (a)) and
Diagonal DMs (Fig. 4 (b)).

It is obvious that the HCs of DMs are strongly related with
DM selection. Therefore, we propose to first check the above
two typical DM sets, and then predict candidate DMs based
on the differences of their HCs. The details of the proposed
candidate DM prediction are described below. The process is
summarized in Fig. 5, in which HDM denotes HC of DM and
“«” represents "significantly smaller than".

(1) Since DM 0 and 1 are often selected as the best DMs,
we first test these two DMs, and then test DMs 10, 26,
2, 18 and 34. If the HCs of all these DMs are the same,
go to (2). Otherwise, if the HC of DM 10 is significantly
smaller than that of DM 26, go to (3); else if the HC of
DM 26 is significantly smaller than that of DM 10, go
to (4); else if the HC of DM 18 is significantly smaller
than those of DMs 2 and 34, go to (5); else if the HC
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TABLE II: Test critical values and corresponding BDBRs for ILR mode probability in 0%-20%

Sequences
Values

0.10 0.21 0.45 0.71 1.39 2.41 3.22 4.6 5.99 7.38 9.21

Blue_Sky 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.20 -0.20 -0.20
Ducks 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Park_Joy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10
Pedestrian 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Sunflower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10

Town 0.00 0.10 0.20 0.30 0.50 0.90 1.00 1.30 1.50 1.60 1.70
Tractor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10

Tree 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

of DM 18 is significantly larger than those of DMs 2
and 34, go to (6); else, go to (7).

(2) The reference pixels of the current CU should be the
same. Therefore, the HCs of all the 35 DMs should be
the same and we only select DM 0 to check.

(3) DMs 2-18 are very likely to be selected. Since DM 2
represents horizontal upper right and DM 18 represents
lower right, we further predict candidate DMs based on
their HCs: if the HC of DM 2 is significantly smaller
than that of DM 18, DMs 3-9 will be checked further;
if the HC of DM 18 is significantly smaller than that of
DM 2, DMs 11-17 will be checked further; else DMs
3-9 and DMs 11-17 will be checked further.

(4) DMs 18-34 are very likely to be selected. We use
a similar way like (3) to check the corresponding
candidate DMs.

(5) DMs 11-17 and DMs 19-25 are selected to check further.
(6) DM 2 and DM 34 have the same angle but in the

opposite directions, so they have different reference
pixels. If the HC of DM 2 is significantly smaller than
that of DMs 34, DMs 3-9 are selected to check; else
if the HC of DM 34 is significantly smaller than that
of DMs 2, DMs 27-33 are selected to check; else DMs
3-9 and DMs 27-33 are selected to further check.

(7) All other DMs are selected to check further.
Through the above process, we can obtain candidate DMs.

Here, the key is how to obtain the significantly smaller
condition.

Suppose the CU residual matrix of two DMs are R1 and R2,
their difference R is:

R = R1 − R2. (25)

Its Hadamard transform value is:

HRH = HR1H − HR2H, (26)

where H is a 4 × 4 Hadamard matrix. According to Cauchy-
Inequality, we can derive:

HRH ≤

����� 4∑
i=0

4∑
j=0

(
HHT

)2
�����

1
2

×

����� 4∑
i=0

4∑
j=0

r2 (i, j)

�����
1
2

≤ 2

����� 4∑
i=0

4∑
j=0

r2
i j

�����
1
2

≤ 2
4∑
i=0

4∑
j=0

��ri j ��. (27)

Suppose xi j is the value at the location (i, j) in HRH, we
can derive:

xi j =
4∑

k=0

4∑
p=0

hikrkphpj ≤
4∑

k=0

4∑
p=0

��hikhpj

�� ��rkp �� ≤ 4∑
k=0

4∑
p=0

��rkp ��.
(28)

For R1 and R2, if any quantized values in HRH are not
equal to 0, they are significantly different. In order to ensure
that any quantized values in HRH are not equal to 0, according
to Eq. (28), we can derive:

4∑
k=0

4∑
p=0

��rkp �� > Qstep . (29)

Combining Eq. (26), (27), (28), (29), we can derive signif-
icantly smaller condition:

|HR1H − HR2H | > 2Qstep . (30)

Eq. (30) can decide if HR2H is significantly smaller than
HR1H. In order to decide if one is significantly smaller than
the other one, we need to rewrite the above condition. In
addition, Eq. (30) is developed only for 4 × 4 CUs. For other
CU sizes, their corresponding significantly smaller condition
can be rewritten below:

HC1 − HC2 > 2mQstep, (31)

where m is the number of 4×4 CUs in the current CU, which
is 256, 64, 16, and 4 for CU size 64 × 64, 32 × 32, 16 × 16,
and 8×8, respectively. If Eq. (31) is satisfied, we can consider
that HC2 is significant smaller than HC1.

2) Gradient Based Early Termination in RMD: Gradient
has been widely used for DM prediction [26]. We can use a
Sobel operator to obtain the direction and amplitude of each
DM. Undoubtedly, DMs with larger amplitudes are more likely
to be selected as the best DM, and vice versa. We use a
classical Sobel operator to calculate the gradient of the pixel
at (i, j) as follows:

Gx
i, j = pi−1, j+1 + 2 × pi, j+1 + pi+1, j+1 − pi−1, j−1
−2 × pi, j−1 − pi+1, j−1,

(32)

Gy
i, j = pi+1, j−1 + 2 × pi+1, j + pi+1, j+1 − pi−1, j−1
−2 × pi−1, j − pi−1, j+1,

(33)

where Gx
i, j and Gy

i, j refer to the differences of vertical and hor-
izontal directions respectively. The amplitude of the gradient
is:

Amp
(
Gi, j

)
=

���Gx
i, j

��� + ���Gy
i, j

��� . (34)
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all these DMs 

are the same

only DM 0 is 

selected in testing

HDM 10 << HDM 26

HDM 26 << HDM 10

HDM 18 << HDM 2 and 34 

 HDM 2 and 34 << HDM 18 

All other DMs are selected 

to further checked

HDM 2 << HDM 18

DMs 3-9 are further 

to be checked

HDM 18 << HDM 2

DMs 11-17 are further 

to be checked

DMs 3-9 and DMs 11-17 

are further to be checked

HDM 18 << HDM 34

DMs 19-25 are further 

to be checked

HDM 34 << HDM 18

DMs 27-33 are further 

to be checked

DMs 19-25 and DMs 27-33 

are further to be checked

 DMs 11-17 and DMs 

19-25 are further to be 

checked

 HDM 2  << HDM 34 

DMs 3-9 are further 

to be checked

 HDM 34  << HDM 2 

DMs 27-33 are further 

to be checked

DMs 3-9 and DMs 27-33 

are further to be checked

DM 0, 1, 10, 26, 2, 18 and 

34 are selected in testing.

Fig. 5: Flowchart of the DM Prediction algorithm.

The direction of the gradient is calculated by:

Ang
(
Gi, j

)
= arctan

(
G

y
i , j

Gx
i , j

)
. (35)

In order to reduce computational complexity, we use
Gy

i, j

/
Gx

i, j instead of arctan. Using the above process, the
amplitude and the direction of each gradient can be obtained.
Subsequently, the amplitudes of all gradients closest to the
direction of each DM are separately summed up. Through the
above process, we can obtain the amplitudes of all DMs and
sort DMs by their amplitudes in descending order. However,
the amplitudes of DMs cannot totally reflect the probabilities
of corresponding DMs. In order to address the issue, we use
the percentage of amplitudes of DMs instead. Suppose ai is
the amplitude of the i-th DM, the percentage of the first k
DMs is:

pk =

k∑
i=0

ai

33∑
i=0

ai

. (36)

In addition, DMs with smaller HCs are also more likely to
be selected as the best DM, and vice versa. Suppose R is the
residual matrix of the current CU, if any quantized value in
HRH is 0, the corresponding DM is very likely to be the best
DM. Using the same way as above, we can derive the early
termination condition for DM selection below:

HC < 2mQstep, (37)

where m is the number of 4 × 4 CUs in the current CU.
Combining the amplitude percentage and HCs, we modify

Eq. (37) to derive the corresponding condition below:

HC < t × 2mQstep, (38)

where t is a parameter to adjust the above condition. For a
DM with a larger percentage, we can set a larger t to improve

coding speed. Conversely, we can set a smaller t to maintain
coding efficiency. Similar to the depth prediction process, we
evenly divide the percentage into five groups, namely, 0%-
20%, 20%-40%, 40%-60%, 60%-80% and 80%-100%, and
the corresponding coefficient values (the best values) are 2m,
4m, 8m, 10m and 14m, respectively. Similarly, for the median
values of the five groups above, 10%, 30%, 50%, 70% and
90%, their corresponding coefficient values are 2m, 4m, 8m,
10m and 14m, respectively. Putting these median values and
their corresponding coefficient values together, we obtain five
sets of values: (10%, 2m), (30%, 4m), (50%, 8m), (70%, 10m)
and (90%, 14m). We use these five sets of values through
LIP to calculate the corresponding predictive value for any
percentage x, and combine with Eq. (38) to derive the early
termination below:

HC < 2mQstep ×
4∑
i=0

li
4∏

j=0,i,j

x−x j

xi−x j
, (39)

where x0, x1, x2, x3 and x4 are 10%, 30%, 50%, 70% and
90%, respectively; l0, l1, l2, l3 and l4 are 1, 2, 4, 5 and 7,
correspondingly.

3) HC-Based Early Termination in RDO: Through the
above process, we can obtain the first N DMs with the smallest
HCs, and then select the DM with the smallest RD cost
in RDO process. If the HCs of two neighboring DMs are
very similar, their corresponding RD costs should also be
very similar, and thus we only need to check either one of
them. Otherwise, if the HCs of two neighboring DMs are
significantly different, their corresponding RD costs should
also be different, and it is unlikely to adopt the DM with a
larger HC. Therefore, if two neighboring DMs are very similar
or significantly different, we only need to check the DM
with a smaller HC. Here, we revise the significantly different
condition (30) and similar condition (37) through experiments,
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TABLE III: Performances of different strategies

Sequence PTC-BDP PRC-BIMP PH-BDP
BDBR TS BDBR TS BDBR TS

Traffic 0.10% 42.96% 0.0% 45.82% -0.1% 32.22%
PeopleOnStreet 0.10% 40.48% -0.2% 42.65% -0.1% 33.79%

Kimono -0.20% 45.24% -0.2% 59.21% -0.1% 31.96%
ParkScene 0.00% 42.82% -0.1% 41.81% -0.1% 32.09%

Cactus 0.30% 42.22% 0.5% 48.09% 0.3% 32.33%
BasketballDrive 0.70% 46.77% 1.7% 50.45% 0.5% 32.43%

BQTerrace 0.40% 40.93% 1.1% 46.62% 0.2% 34.09%
Average 0.20% 43.06% 0.40% 47.81% 0.09% 32.70%

and derive the similar condition below:

|HC1 − HC2 | < mQstep . (40)

The significant different condition is:

|HC1 − HC2 | > 5mQstep . (41)

If conditions in Eqs. (40) or (41) are satisfied, we only need
to check the one with a smaller HC. Otherwise, we need to
check both of them. In addition, if the HCs of two neighboring
DMs are very similar, it is very likely that these two DMs
include the best DM, so we do not need to further check other
DMs. If the HCs of two neighboring DMs are significantly
different, the DM with a larger HC is unlikely to be adopted
and subsequent DMs are even more unlikely to be adopted,
so we also do not need to further check other DMs.

V. EXPERIMENTAL RESULTS
In order to verify the performance of the proposed fast

Intra prediction algorithm for spatial SHVC, the proposed
algorithm has been implemented on the reference software
(SHM 11.0) and tested on a server with Intel (R) 2.0 GHz CPU
and 30 GB memory. In order to demonstrate the generality
of our proposed algorithm, training and testing sequences do
not overlap. Coding efficiency and coding speed are used to
evaluate the performance of the proposed algorithm. Coding
efficiency is indicated by BDBR [25]. Coding speed is denoted
by TS, which evaluates the percentage of encoding run-time
savings in EL only.

The proposed algorithm includes three strategies: “PTC-
BDP”, “PRC-BIMP” and “PH-BDP”. As mentioned above,
we also only test the performance under the scalability ratio
2x and the QP set (24, 28, 32, 36) in EL. The performances
of the three strategies are shown in Table III.

Since each depth prediction process includes both ILR
prediction and Intra prediction, “PTC-BDP” can improve the
coding speed very significantly. The proportion of ILR mode
is significantly larger than that of Intra mode, and its coding
process is very simple. “PRC-BIMP” can determine if ILR
mode is the best mode so as to skip Intra mode prediction in
many CUs, and can improve the coding speed very remarkably.
Based on the proportions of gradient amplitudes and HCs of
DMs, “PHC-BDMP” can predict candidate DMs and can early
terminate both RMD and RDO processes, and thus can also
speed up coding effectively.

In order to further demonstrate the performance of the
proposed algorithm, we compare its performance, which inte-
grates all of the three proposed strategies, with that of EETBS

TABLE IV: Performance comparison of different methods (case 1)

Sequence Proposed EETBS [12] FIICA [14]
BDBR TS BDBR TS BDBR TS

Kimono -0.42% 68.16% 0.39% 71.43% -0.21% 62.35%
ParkScene -0.22% 61.13% 0.01% 62.86% -0.12% 38.17%

Cactus -0.12% 59.73% -0.22% 46.05% -0.18% 41.89%
BasketballDrive 0.06% 63.74% 0.48% 48.48% 0.40% 47.06%

BQTerrace -0.02% 56.91% 0.30% 47.89% 0.41% 46.27%
Average -0.14% 61.93% 0.20% 55.34% 0.06% 47.15%

TABLE V: Performance comparison of different methods (case 2)

Sequence Proposed EETBS [12] FIICA [14]
BDBR TS BDBR TS BDBR TS

Kimono -0.68% 69.72% 0.60% 72.69% 0.81% 61.67%
ParkScene -0.68% 64.17% -1.10% 65.13% -1.22% 37.46%

Cactus -0.38% 62.53% 0.42% 45.83% 0.31% 40.13%
BasketballDrive -0.23% 66.17% -1.01% 49.32% -0.80% 44.36%

BQTerrace -0.12% 59.82% 0.09% 48.53% 0.00% 45.15%
Average -0.42% 64.48% -0.20% 56.30% -0.18% 45.75%

TABLE VI: Performance comparison of different methods (case 3)

Sequence Proposed EETBS [12] FIICA [14]
BDBR TS BDBR TS BDBR TS

Traffic -0.01% 56.00% 0.30% 53.12% 0.41% 36.37%
PeopleOnStreet -0.08% 54.60% 0.01% 51.91% 0.10% 39.43%

Kimono -0.19% 66.13% -0.13% 70.12% -0.13% 60.27%
ParkScene -0.10% 57.40% 0.21% 63.87% 0.22% 36.49%

Cactus 0.68% 56.20% 0.81% 45.63% 0.89% 37.92%
BasketballDrive 1.12% 60.60% 0.80% 47.59% 0.71% 41.48%

BQTerrace 0.49% 53.62% 0.40% 49.16% 0.50% 43.56%
Average 0.27% 57.79% 0.34% 54.49% 0.38% 42.22%

TABLE VII: Performance comparison of different methods (case 4)

Sequence Proposed EETBS [12] FIICA [14]
BDBR TS BDBR TS BDBR TS

Traffic -0.15% 60.28% -0.41% 53.47% -0.30% 37.89%
PeopleOnStreet -0.20% 56.74% -0.33% 52.38% -0.23% 40.15%

Kimono -0.39% 67.38% 0.31% 70.83% 0.19% 60.18%
ParkScene -0.10% 60.77% 0.10% 64.79% 0.11% 38.13%

Cactus 0.54% 59.19% 0.51% 43.17% 0.70% 39.29%
BasketballDrive 1.08% 63.34% 1.50% 46.73% 1.72% 42.74%

BQTerrace 0.47% 54.90% 0.42% 47.43% 0.61% 44.37%
Average 0.18% 60.37% 0.30% 54.11% 0.40% 43.25%

algorithm [12] and FIICA algorithm [14]. To the best of our
knowledge, these two algorithms are the best and most recent
algorithms for spatial Intra SHVC. For fair comparisons, all
algorithms are tested on the same computing platform. As
mentioned above, due to two scalability ratios and two QPs
settings, we classify their combinations into four cases in EL.
Case 1 is scalability ratio 1.5x and the QP set (22, 26, 30,
34) in EL, case 2 is scalability ratio 1.5x and the QP set (24,
28, 32, 36) in EL, case 3 is scalability ratio 2x and the QP
set (22, 26, 30, 34) in EL, and case 4 is scalability ratio 2x
and QP set (24, 28, 32, 36) in EL. The overall performance
comparisons in terms of coding efficiency and coding speed
are listed in Table IV (case 1), Table V (case 2), Table VI
(case 3) and Table VII (case 4), respectively. According to
CSTC, sequences with 1.5x only need to test 5 sequences
while sequences with 2x need to test 7 sequences. Therefore,
there are only five sequences for Tables IV and V, and seven
sequences for TABLE VI and TABLE VII.

From Table IV to Table VII, for all the above four cases, we



IEEE TRANSACTIONS ON BROADCASTING 12

TABLE VIII: Overall average performance comparison of the
different methods

Case Proposed EETBS [7] FIICA [9]
BDBR TS BDBR TS BDBR TS

Case 1 -0.14% 61.93% 0.20% 55.34% 0.06% 47.15%
Case 2 -0.42% 64.48% -0.20% 56.30% -0.18% 45.75%
Case 3 0.27% 57.79% 0.34% 54.49% 0.38% 42.22%
Case 4 0.18% 60.37% 0.30% 54.11% 0.40% 43.25%

Average -0.03% 61.14% 0.16% 55.06% 0.17% 44.60%

can find that the proposed algorithm significantly outperforms
those two reference algorithms, in terms of coding efficiency
(BDBR) as well as coding speed (TS).

In order to clearly demonstrate the performance of the
proposed algorithm, Table VIII provides the overall average
performance comparisons among these three algorithms with
all four cases. In Table VIII, the overall average BDBRs
of the proposed algorithm, EETBS, and FIICA are -0.03%,
0.16% and 0.17%, respectively. While the overall average TS
of the proposed algorithm, EETBS, and FIICA are 61.14%,
55.06% and 44.60% correspondingly. Compared with the other
two algorithms, we can observe that the average BDBR of
the proposed algorithm is smaller, meanwhile the average TS
of the proposed algorithm is significantly faster. Therefore,
we can conclude that the proposed algorithm performs much
better than both reference algorithms, not only on coding speed
but also on coding efficiency.

The main reasons why the proposed algorithm can ef-
fectively improve the coding speed are: (1) more features,
including correlations, correlation degrees, textural complexity
and QPs, are used together through LIP to obtain more
accurate depth decision condition, thus more depths can be
early skipped or early terminated; (2) more attributes, includ-
ing correlations, correlation degrees and residual coefficient
distribution, are jointly exploited through LIP to derive more
accurate decision condition for ILR mode, so more CUs can
skip Intra encoding process; (3) more features, including the
differences of HCs of typical DMs, the percentages of gradient
amplitudes, HCs and the differences of HCs of neighboring
IMs, are adopted, thus more DMs are excluded in both RMD
process and RDO process. Through the above process, many
depths, ILR modes and DMs can be excluded in prediction,
and then coding speed can be improved significantly.

Generally speaking, the improvement of coding speed will
lead to an increase in BDBR, namely a decrease in cod-
ing efficiency. However, from Table IV to Table VIII, we
can sometimes observe that coding efficiency increases, i.e.,
BDBR savings, on some sequences, when compared against
the SHM reference software. One major reason is due to the
Intra prediction process, in which CUs are predicted by their
reference pixels, shown in black dots in Fig. 6. Apparently, if
the texture of CUs and their reference pixels are more similar,
their corresponding Intra prediction will be more accurate
and RD costs will be smaller accordingly, and vice versa.
For the current CU, different methods will lead to different
neighboring CUs, which will lead to different reference pixels
for the current CU, and in turn, lead to different RD costs
for the current CU. In other words, compared to SHM, our

L

U

C

L-pixels

U-pixels

Fig. 6: Intra prediction in CTU

method may therefore occasionally achieve either a decrease
or an increase in BDBR [18]. Combined with some effective
and efficient bit allocation schemes, coding efficiency may be
improved [27-28].

VI. CONCLUSION

In this paper, we have proposed a new probability-based
Intra prediction algorithm for spatial SHVC. One unique
feature is that different kinds of probabilities are fully ex-
ploited in prediction. In order to improve coding speed, we
have developed three fast strategies corresponding to depth
prediction, ILR mode early termination and DM prediction.
Different depths, ILR modes and DMs may have different
probabilities, which have strong relationships with their in-
dividual predictions. Therefore, in this paper, we integrate
multiple types of probabilities to obtain accurate prediction
and decision conditions. Experiments demonstrate that the
proposed algorithm can achieve superior performances than
other relative algorithms. The proposed algorithm allows for
cost effective simulcast transmission of the same video with
different screen resolutions in one bit-stream. Therefore, it is
very useful for broadcasters.
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