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Here we derive the fine structure (=0.00729735256) to be given by the relationship

1 𝛼 = 𝛽 96 (-𝑀)𝑛
where n is an integer, while and M are dimensionless constants that describe the underlying quantised spatial structure of a (tachyonic) mass field. In particular M is the Madelung constant (always negative) of the array describing the distribution of spatial quanta, and  is the coefficient of the moment of inertia, I=mR 2 , of each spatial quantum. This relationship is satisfied by the zinc blende lattice (M= -1.638055056 [START_REF] Tavernier | Clifford boundary conditions: a simple direct-sum evaluation of Madelung constants[END_REF]), =0.400012519 and integer n=36. The value of  corresponds to the value of a uniform solid sphere (=2/5) multiplied by ½(1+, as described by the relativistic treatment of the rigid rotor [START_REF] Grave De Peralta | Natural Extension of the Schrödinger Equation to Quasi-Relativistic Speeds[END_REF] with Lorentz factor =1.000062595.

The Higgs tachyon field plays a central role in the standard model, and yet the physical origin for the electroweak symmetry breaking (EWSB) for the Higg's mechanism has not been firmly established. The fine structure constant plays a central role in physics and a relationship between this constant and a tachyon system will be valuable. The approach undertaken in this letter is to assume a simple mass field where each element of three-dimensional space has the same value of this tachyon mass-energy (m = mr + imi). A tachyon possesses a non-zero imaginary part of the mass-energy and such quantum states may have a virtual or transient existance [START_REF] Garmon | Bound states, scattering states and resonant states in PT-symmetric open quantum systems[END_REF].

The model is borrowed from the binary salt crystal, such as NaCl, where each ion has the same value of lattice energy. Space is assumed to be quantised with half the spatial quanta possessing positive charges q+ and the other half negatively charged q-, where q=ne for integer n and charge unit e. The lattice energy due to lattice interaction between these charges, the mass-energy, the rotational energy and gravitational interaction are the same for each site and assumed to sum to zero. The interactions within the tachyon state are limited to a finite range, as dictated by mi. The lattice energy per site is given by

𝐸 = 1 2 𝐾 𝑞 𝑞 𝒓 -𝒓 exp (- 𝑚 𝑐 𝒓 -𝒓 ℎ )
and is the same for all lattice points i. The interaction is modified by the transient lifetime and range (ro= h/cmi), with c being the velocity of light and h is Planck's constant. At this stage no assumption is made on the nature of q or K. The dimensionless Madelung constant M is given by

𝑀 = 𝑟 𝑞 𝑞 𝑞 𝒓 -𝒓 exp (- 𝑚 𝑐 𝒓 -𝒓 ℎ )
giving

𝐸 = ½ 𝐾 𝑟 𝑞 𝑀
where rac is the nearest neighbour distance between two opposite charges, and M is always negative. The small size of the correction of the Madelung coefficient for finite crystals as compared to the ideal infinite sum (Minf =0) has been examined [START_REF] Tavernier | Clifford boundary conditions: a simple direct-sum evaluation of Madelung constants[END_REF] and can assume Minf will be a very good estimate when 𝑟 ≫ 𝑟 . The spatial quanta are assumed to be a sphere of radius r = rac/2, which describes a system of touching spheres, with two non-zero values for angular momentum (±Lħ). The rotational energy for the quantum rotor is given by 𝐸 = ( ) ħ where I is the moment of intertia I=mr 2 , and  is a constant such as (1+)/5 (or (1+)/3) for a solid (or hollow) sphere, and  is the Lorentz factor [START_REF] Grave De Peralta | Natural Extension of the Schrödinger Equation to Quasi-Relativistic Speeds[END_REF]. The mass-energy density  is derived from the particle mass energy, is given by the expression 𝜌 = 8𝐷𝑚𝑟 where D is the packing density of the touching spheres into a lattice, which for example, a closed pack structure D=/18 1/2 ≈0.7404, and less for a more open structure. The gravitational energy for the transient state having a massenergy of m is

𝐸 (𝑚) = - 1 2 𝐺𝐷𝜌 exp (- 𝑠 𝑟 )𝑢(𝑠)4𝜋𝑠 𝑑𝑠
which, for Newtonian gravity, 𝑢(𝑠) = , giving 𝐸 (𝑚) = -16𝑚 𝐺𝜋𝐷𝑟 and Newtonian gravity is initially assumed as the rigid lattice is uniform and all particles are stationary.

The total energy is assumed to be zero, and is a combination of the lattice energy E0, the mass-energy m, the rotational energy, and the gravitational interaction EG. The resulting equation is simply

𝑚𝑐 + 𝐿(𝐿 + 1)ħ 2𝛽𝑚𝑟 + 𝐾𝑞 4𝑟 𝑀 + 𝐸 (𝑚) = 0
which can be expanded to give The value for  corresponds to a value of a uniform sphere (2/5) and value of  yields velocity v=0.0079115c.The fermion solution (L=½) is not consistent with the rigid rotor requirement of integer L, while L=3 is both an integer and consistent with the l=3 symmetry (xyx/r 3 ) of the local tetrahedral environment of the zinc blende lattice. In this case, the tachyon has (xyx/r 3 ) symmetry, with no dependence on radial distance within the sphere of radius ½rac, like a solid octopole rather than a solid sphere (l=0 symmetry). As long as the object is contained within the sphere and has no radial dependence on mass, the value of  is unchanged.

(
The value of mrr is given by the quadratic

(𝑚 𝑟) + 𝐾 2 𝑀 1 + 𝑚 𝑚 𝑐 𝑞 (𝑚 𝑟) + 𝐿(𝐿 + 1)ħ 𝛿 2𝛽 1 + 𝑚 𝑚 𝑐 = 0
Where there are two solutions

𝑚 𝑟 = 𝐾(-𝑀)𝑞 16𝑐 1 ± 1 -𝛿 96ħ 𝑐 𝛽(𝐾𝑀𝑞 )
As M < 0 then the additive case gives

𝑚 𝑐𝑟 = (-𝑀) 8𝑐 𝐾𝑞 = ħ 3 32𝛽
which is quite close to 𝑚 𝑐𝑟 = √ , while the substraction case gives 𝑚 𝑐𝑟 = ħ𝛿 3 32𝛽 which, as <10 -35 , may yield very small values for r <<< ro. At this scale the Madelung constant will be very close to that of the unattenuated value. The subtraction case provides a system where the equation for the fine structure constant is valid. The additive case may potentially play a role with interactions at the range of the weak force.

The simple expression for the fine structure constant derived for a simple tachyon field successfully accounts for the numerical value of . However the result appears to reveal another mystery on why the electronic charge on each tachyon is 36 times that for a charged pion. While a full explanation is unable to be offered here, this property may guide future work towards understanding flavour and the possible relationships with the strong force and the electro-weak force.

  Multiplying these two equations by r 3 produces cubic polynomials in r for both real and imaginary parts, from which the following two quadratic equations are obtained Comparing the coefficients of the two constant terms and the two terms of order r gives

											𝑚 𝑚		≈ 3
	to obtain											
				𝛿	3𝐿(𝐿 + 1)𝐾(-𝑀) 8192𝜋 3 𝛽𝐷	𝑞 = 𝐺 𝑚 + 𝑚
	while assuming Kq 2 is the Coulomb interaction with electronic charge ne, then from the defination of ,
									ħ𝑐 =	1 4𝜋𝜀	𝑒 𝛼
	the expression											
							1 𝛼	= -	𝛽 8𝐿(𝐿 + 1)	𝑀𝑛
	is obtained which is satisfied by =0.400012519, and M= -1.638055056, with either L=½, n=18, and L=3, n=36.
	𝑚 + 𝑖𝑚 )𝑐 +	𝐿(𝐿 + 1)ħ 2𝛽𝑟	𝑚 𝑚 + 𝑚	-𝑖	𝑚 𝑚 + 𝑚		+	𝐾𝑞 𝑟	𝑀 -16𝐺𝜋𝐷𝑟	ℎ 𝑐	𝑚 𝑚	-1 + 2𝑖	𝑚 𝑚
	= 0										
		𝑟 +	𝐾𝑀𝑞 2𝑚 𝑟 1 + 𝑚 𝑚		𝑐		𝑟 + 𝐿(𝐿 + 1)ħ	𝑚 𝑚 2𝛽 1 + 3 -	1 𝑚 + 𝑚 𝑐 𝑚 𝑚	= 0
			𝑟 +	4𝐿(𝐿 + 1)ħ 𝑚 𝐾𝛽𝑀 𝑚 + 𝑚 𝑞		𝑟 +	64𝐺𝜋𝐷	ℎ 𝑐 𝐾𝑀𝑞	𝑚 𝑚	+ 1	= 0
							ħ 𝑐 =	𝛽 8𝐿(𝐿 + 1)	(𝐾𝑀) 𝑞
	which indicates the interaction Kq 2 is strong, and			
			𝐺𝐷(𝑚 + 𝑚 ) =	𝐿(𝐿 + 1)𝐾𝑀 512𝜋 3 𝛽	𝑞	1 +	3 -𝑚 𝑚	𝑚 𝑚 1 +	𝑚 𝑚
	which due to the much weaker relative weaker strength of gravity, requires
									3 -	𝑚 𝑚	= -𝛿
	to be very small (0<<10 -35 ). The negative sign is needed as M<0. We use