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) are relaxed in our present setting. An example of application is given in constructing confidence intervals to estimate the criticality parameter in terms of ln(Z n+n 0 /Z n 0 ) and n.

Introduction

As an important generalization of the Galton-Watson process, the branching process in a random environment (BPRE) was first introduced by Smith and Wilkinson [START_REF] Smith | On branching processes in random environment[END_REF] to modelize the growth of a population submitted to an independent and identically distributed (iid) random environment. Basic results for a BPRE can be found in Athreya and Karlin [START_REF] Athreya | On branching processes with random environments: I: Extinction probabilities[END_REF][START_REF] Athreya | Branching processes with random environments: II: Limit theorems[END_REF] who considered the stationary and ergodic environment case.

A BPRE can be described as follows. Let ξ = (ξ 0 , ξ 1 , ...) be a sequence of independent and identically distributed (iid) random variables, where ξ n stands for the random environment at time n. Each realization of ξ n corresponds to a probability law p(ξ n ) = {p i (ξ n ) : i ∈ N} on N = {0, 1, ...} (p i (ξ n ) ≥ 0 and ∞ i=0 p i (ξ n ) = 1). A branching process {Z n , n ≥ 0} in the random environment ξ can be defined as follows:

Z 0 = 1, Z n+1 = Zn i=1
X n,i for n ≥ 0, where X n,i is the number of offspring of the i-th individual in generation n. Conditioned on the environment ξ the random variables X n,i (n ≥ 0, i ≥ 1) are independent, and each X n,i has the same law p(ξ n ). Denote by P ξ the probability when the environment ξ is given, τ the law of the environment ξ, and P(dx, dξ) = P ξ (dx)τ (dξ) the total law of the process; P ξ can be considered as the conditional law of P given the environment ξ. The conditional probability P ξ is called the quenched law, while the total probability P is called annealed law. In the sequel E ξ and E denote respectively the quenched and annealed expectations. Set for n ≥ 0,

m n = ∞ k=0 k p k (ξ n ) and Π n = n-1 i=0 m i ,
with the convention that Π 0 = 1. Then m n = E ξ X n,i for each i ≥ 1 and Π n = E ξ Z n . Let X = log m 0 , µ = EX.

The process {Z n , n ≥ 0} is called supercritical, critical or subcritical according to µ > 0, µ = 0 or µ < 0, respectively. We call µ the criticality parameter.

Limit theorems for BPRE have attracted a lot of attentions. See for example Vatutin [START_REF] Vatutin | A refinement of limit theorems for the critical branching processes in random environment[END_REF], Afanasyev et al. [START_REF] Afanasyev | Conditional limit theorems for intermediately subcritical branching processes in random environment[END_REF], Vatutin and Zheng [START_REF] Vatutin | Subcritical branching processes in random environment without Cramer condition[END_REF] and Bansaye and Vatutin [START_REF] Bansaye | On the survival probability for a class of subcritical branching processes in random environment[END_REF] on the survival probability and conditional limit theorems for subcritical BPRE. For supercritical BPRE, a number of researches have studied moderate and large deviations; see, for instance, Kozlo [START_REF] Kozlov | On large deviations of branching processes in a random environment: geometric distribution of descendants[END_REF], Bansaye and Berestycki [START_REF] Bansaye | Large deviations for branching processes in random environment, Markov Process[END_REF], Böinghoff and Kersting [START_REF] Böinghoff | Upper large deviations of branching processes in a random environment-Offspring distributions with geometrically bounded tails[END_REF], Bansaye and Böinghoff [START_REF] Bansaye | Upper large deviations for branching processes in random environment with heavy tails[END_REF], Huang and Liu [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], Nakashima [START_REF] Nakashima | Lower deviations of branching processes in random environment with geometrical offspring distributions[END_REF], Böinghoff [START_REF] Böinghoff | Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions[END_REF], and Grama, Liu and Miqueu [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF].

In this paper, we are interested in Cramér moderate deviations and Berry-Esseen bounds for a supercritical BPRE. For simplicity we assume that p 0 (ξ 0 ) = 0 P-a.s. and σ 2 = E(Xµ) 2 ∈ (0, ∞), (1.1) which imply that the process is supercritical and Z n → ∞ a.s. Under the additional conditions: E Z p 1 m 0 < ∞ for a constant p > 1 and Ee λ 0 X < ∞ for a constant λ 0 > 0, Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] have established the Cramér moderate deviation expansion, which implies in particular that for 0

≤ x = o( √ n) as n → ∞, ln P ln Zn-nµ σ √ n ≥ x 1 -Φ(x) ≤ C 1 + x 3 √ n , (1.2) 
where throughout the paper the symbol C, probably supplied with some indices, denotes a positive constant whose value may differ from line to line. Inequality (1.2) is interesting due to the fact that it implies a moderate deviation principle (MDP) and the following result about the equivalence to the normal tail:

P ln Zn-nµ σ √ n ≥ x 1 -Φ(x) = 1 + o(1), (1.3) for x ∈ [0, o(n 1/6 )), as n → ∞. Assuming E Z 1 m 0 p < ∞ for a constant p > 1 and EX 2+ρ < ∞
for a constant ρ ∈ (0, 1), Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] have also obtained the following Berry-Esseen bound for ln Z n :

sup x∈R P ln Z n -nµ σ √ n ≤ x -Φ(x) ≤ C n ρ/2 . (1.4)
The results (1.2), (1.3) and (1.4) are interesting both in theory and in applications. For example, they can be applied to obtain confidence intervals to estimate the criticality parameter µ in terms of the observation Z n and the present time n, or to estimate the population size Z n in terms of µ and n. In the real-world applications, it may happen that we know a historical data Z n 0 for some n 0 > 0, the current population size Z n 0 +n , as well as the increment n of generation numbers, but do not know the generation number n 0 + n. In such a case (1.2), (1.3) and (1.4) are no longer applicable to obtain confidence intervals to estimate µ in terms of Z n 0 , Z n 0 +n and n, while n 0 > 0. The same problem exists while we want to construct confidence intervals to preview Z n 0 +n in terms of Z n 0 , µ and n. Motivated by these problems, we will extend (1.2), (1.3) and (1.4), with ln Z n replaced by ln Z n 0 +n Zn 0 , uniformly in n 0 ∈ N (so that in applications n 0 can be taken as an function of n). This is the main objective of the present paper.

The main results are presented in Section 2. Let us introduce them briefly. Denote by x + = max{x, 0} the positive part of x. In Theorem 2.1, assuming E Z 1 m 0 ln + Z 1 < ∞ and Ee λ 0 X < ∞ for a constant λ 0 > 0, we prove that uniformly in n 0 ∈ N, for 0

≤ x = o( √ n), as n → ∞, ln P ln Z n 0 +n Zn 0 -nµ σ √ n ≥ x 1 -Φ(x) ≤ C(1 + x 3 ) 1 + 1 [0, √ ln n) (x) ln n √ n . (1.5) 
When n 0 = 0, inequality (1.5) reduces nearly to (1.2), with ln n as an additional factor. Notice that here we do not need the additional condition that E Z p 1 m 0 < ∞ for some p > 1 assumed in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] for (1.2) to hold. As a consequence, we obtain a uniform MDP for ln

Z n 0 +n Zn 0 , see Corollary 2.1.
From (1.5), we also obtain the following equivalence to the normal tail: uniformly in n 0 ∈ N, for x ∈ [0, o(n 1/6 )), as n → ∞,

P ln Z n 0 +n Zn 0 -nµ σ √ n ≥ x 1 -Φ(x) = 1 + o(1). (1.6)
When the exponential moment condition Ee λ 0 X < ∞ is relaxed to the sub-exponential moment condition that E exp{λ 0 X 4γ 1-2γ } < ∞ for some γ ∈ (0, 1 6 ], we prove that (1.6) still holds for x ∈ [0, o(n γ )); see Theorem 2.2 for a result of type Linnik [START_REF] Linnik | On the probability of large deviations for the sums of independent variables[END_REF]. Using (1.6), we can prove, under the exponential moment condition, the following uniform Berry-Esseen bound: uniformly in n 0 ∈ N,

sup x∈R P ln Z n 0 +n Zn 0 -nµ σ √ n ≤ x -Φ(x) ≤ C ln n √ n . (1.7)
Compared to the best rate C √ n of the Berry-Esseen bound for random walks, here the factor ln n is added. We believe that this factor ln n can be removed from (1.7), just as in the case n 0 = 0 considered in Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF]. In fact for n 0 = 0, the more general Berry-Esseen bound C n ρ/2 was established in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] under the moment condition EX 2+ρ < ∞ with ρ ∈ (0, 1]. In this paper, we prove that if EX 2+ρ < ∞ for some ρ ∈ (0,

√ 5- 1 
2 ), then uniformly in n 0 ∈ N,

sup x∈R P Z n 0 ,n ≤ x -Φ(x) ≤ C n ρ/2 . (1.8) 
See Theorem 2.4. Clearly, inequity (1.8) with n 0 = 0 reduces to (1.4), which was obtained in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] under the additional condition that E Z 1 m 0 p < ∞ for some p > 1.

In Section 3, some applications of the main results are demonstrated. We construct confidence intervals for estimating the criticality parameter µ in terms of Z n 0 +n Zn 0 and n; see Propositions 3.1 and 3.2. The proofs of the main results are given in Sections 4 -8, by developing a method different to that used in [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] .

Main results

It is well-known that the normalized population size

W n = Z n Π n , n ≥ 0,
is a nonnegative martingale both under the quenched law P ξ and under the annealed law P, with respect to the natural filtration

F 0 = σ{ξ}, F n = σ{ξ, X k,i , 0 ≤ k ≤ n -1, i ≥ 1}, n ≥ 1.
Then the limit W = lim n→∞ W n exists P-a.s. by Doob's convergence theorem, and satisfies EW ≤ 1 by Fatou's lemma. Throughout the paper, assume that

E Z 1 m 0 ln + Z 1 < ∞. (2.1)
Together with the condition that p 0 (ξ 0 ) = 0 a.s., condition (2.1) implies that P(W > 0) = P(Z n → ∞) = lim n→∞ P(Z n > 0) = 1, and that the martingale W n converges to W in L 1 (P) (see Athreya and Karlin [START_REF] Athreya | Branching processes with random environments: II: Limit theorems[END_REF] and also Tanny [START_REF] Tanny | A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means[END_REF]). Clearly, the following decomposition holds:

ln Z n = n i=1 X i + ln W n , (2.2) 
where X i = ln m i-1 (i ≥ 1) are iid random variables depending only on the environment ξ. The asymptotic behavior of ln Z n is crucially affected by the associated random walk

S n = n i=1 X i = ln Π n , n ≥ 0.
By our notation and hypothesis (see (1.1)), it follows that X = X 1 , µ = EX > 0 and σ 2 = E(Xµ) 2 ∈ (0, ∞); the later implies that the random walk {S n , n ≥ 0} is non-degenerate. We will need the following Cramér condition on the associated random walk.

A1. The random variable X = ln m 0 has an exponential moment, i.e. there exists a constant

λ 0 > 0 such that Ee λ 0 X = Em λ 0 0 < ∞.
Our first result concerns the uniform Cramér moderate deviations for

Z n 0 ,n := ln Z n 0 +n Zn 0 -nµ σ √ n , n 0 ∈ N. (2.3)
Theorem 2.1. Assume condition A1. Then the following results hold uniformly in n 0 ∈ N:

for n ≥ 2 and 0 ≤ x < √ ln n, ln P Z n 0 ,n ≥ x 1 -Φ(x) ≤ C(1 + x 3 ) ln n √ n ; (2.4) for n ≥ 2 and √ ln n ≤ x = o( √ n) as n → ∞, ln P Z n 0 ,n ≥ x 1 -Φ(x) ≤ C x 3 √ n . ( 2 

.5)

The results remain valid when

P(Zn 0 ,n≥x) 1-Φ(x)
is replaced by

P(-Zn 0 ,n≥x) Φ(-x)
.

The uniformity in n 0 is interesting in applications. Due to the uniformity, in (2.4) and (2.5) we can take n 0 as a function of n. Inequality (2.5) coincides with the corresponding result for the random walk (cf. [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] or inequality (1) of [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF]), while in inequality (2.4) there is the additional factor ln n for BPRE. When n 0 = 0, the inequalities (2.4) and (2.5) but without the factor ln n have been proved by Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] under the additional condition that E

Z p 1 m 0 < ∞ for some p > 1.
Theorem 2.1 implies the following uniform MDP for Z n 0 ,n .

Corollary 2.1. Assume condition A1. Let a n be any sequence of real numbers satisfying a n → ∞ and a n / √ n → 0 as n → ∞. Then, for each Borel set B,

-inf x∈B o x 2 2 ≤ lim inf n→∞ 1 a 2 n ln inf n 0 ∈N P Z n 0 ,n a n ∈ B ≤ lim sup n→∞ 1 a 2 n ln sup n 0 ∈N P Z n 0 ,n a n ∈ B ≤ -inf x∈B x 2 2 , (2.6) 
where B o and B denote the interior and the closure of B, respectively.

The MDP for Z 0,n has been established by Huang and Liu [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF] (see Theorem 1.6 therein) when the random variable X = ln m 0 satisfies A 1 ≤ m 0 and m 0 (1 + δ) ≤ A 1+δ for constants δ, A 1 and A 2 satisfying δ > 0 and 1 < A 1 < A, and by Wang and Liu [START_REF] Wang | Limit theorems for a supercritical branching process with immigration in a random environment[END_REF] under the same condition A1 but in a more general setting.

From Theorem 2.1, using the inequality |e y -1| ≤ e C |y| valid for |y| ≤ C, we obtain the following result about the uniform equivalence to the normal tail.

Corollary 2.2. Assume condition A1. Then, uniformly for n 0 ∈ N, as n → ∞,

P Z n 0 ,n ≥ x 1 -Φ(x) = 1 + o(1) (2.7 
)

for x ∈ [0, o(n 1/6
)). The result remains valid when

P(Zn 0 ,n≥x) 1-Φ(x)
is replaced by

P(-Zn 0 ,n≥x) Φ(-x)
.

Inequality (2.7) states that the relative error for normal approximation tends to zero uniformly for x ∈ [0, o(n 1/6 )). Notice that the normal range x ∈ [0, o(n 1/6 )) coincides with the random walk case, under Cramér's condition A1. In the following Cramér moderate deviation result of type Linnik [START_REF] Linnik | On the probability of large deviations for the sums of independent variables[END_REF], we give a normal range when the exponential moment condition A1 is relaxed to A2. The random variable X = ln m 0 has a sub-exponential moment, i.e. there exist two constants λ 0 > 0 and γ ∈ (0, 1 6 ] such that

E exp{λ 0 X 4γ 1-2γ } < ∞. Theorem 2.2. Assume condition A2. Then (2.7) holds uniformly in n 0 ∈ N, for x ∈ [0, o(n γ )),
as n → ∞. The result remains valid when

P(Zn 0 ,n≥x) 1-Φ(x)
is replaced by

P(-Zn 0 ,n≥x) Φ(-x)
.

Notice that when γ = 1 6 , Theorem 2.2 reduces to Corollary 2.2. We now consider the uniform Berry-Esseen bound for Z n 0 ,n and -Z n 0 ,n . The following result under the exponential moment condition A1 can be obtained as a corollary to Theorem 2.1.

Theorem 2.3. Assume condition A1. Then the following holds uniformly in n 0 ∈ N: for n ≥ 2,

sup x∈R P Z n 0 ,n ≤ x -Φ(x) ≤ C ln n √ n (2.8)
and

sup x∈R P -Z n 0 ,n ≤ x -Φ(x) ≤ C ln n √ n .
(2.9)

In (2.8) and (2.9) there are the additional factor ln n for BPRE compared to the Berry-Esseen bound for random walks, for which the best rate is C √ n . We conjecture that the factor ln n in (2.8) and (2.9) can be removed, just as in the case where n 0 = 0 considered in Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF]. Actually Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF] gave the more general Berry-Esseen bound C n ρ/2 for Z 0,n under a moment condition of order 2 + ρ on X, with ρ ∈ (0, 1]. We shall prove the same bound for Z n 0 ,n when ρ ∈ (0,

√ 5-1
2 ), namely, when the following moment condition holds:

A3. There exists a constant ρ ∈ (0,

√ 5-1 2 ) such that EX 2+ρ < ∞.
Theorem 2.4. Assume condition A3. Then uniformly in n 0 ∈ N,

sup x∈R P Z n 0 ,n ≤ x -Φ(x) ≤ C n ρ/2
(2.10)

and sup x∈R P -Z n 0 ,n ≤ x -Φ(x) ≤ C n ρ/2 . (2.11)
For n 0 = 0, the inequalities (2.10) and (2.11) have been established by Grama et al. [12, Theorem 1.1] assuming EX 2+ρ < ∞ for some ρ ∈ (0, 1] and E( Z 1 m 0 ) p < ∞ for some p > 1.

Applications to construction of confidence intervals

Cramér moderate deviations can be applied to constructing confidence intervals for the criticality parameter µ. Assume that σ is known, the following two propositions give two confidence intervals for µ. (3.1)

Let ∆ n = σ √ n Φ -1 (1 -κ n /2).
Then [A n , B n ], with

A n = 1 n ln Z n 0 +n Z n 0 -∆ n and B n = 1 n ln Z n 0 +n Z n 0 + ∆ n ,
is a 1κ n confidence interval for µ, for n large enough.

Proof. By Corollary 2.2, for 0 ≤ x = o(n 1/6 ),

P(Z n 0 ,n ≥ x) 1 -Φ (x) = 1 + o(1) and P(Z n 0 ,n ≤ -x) Φ (-x) = 1 + o(1). (3.2)
Clearly, the upper (κ n /2)th quantile of a standard normal distribution

Φ -1 (1 -κ n /2) = -Φ -1 (κ n /2) = O( | ln κ n |),
which, by (3.1), is of order o n 1/6 . Then applying the last equality to (3.2), we have

P Z n 0 ,n ≥ Φ -1 (1 -κ n /2) ∼ κ n /2 and P Z n 0 ,n ≤ -Φ -1 (1 -κ n /2) ∼ κ n /2 (3.3) as n → ∞. Clearly, Z n 0 ,n ≤ Φ -1 (1 -κ n /2) means that µ ≥ A n , while Z n 0 ,n ≥ -Φ -1 (1 -κ n /2) means µ ≤ B n .
This completes the proof of Proposition 3.1.

When the risk probability κ n goes to 0, we have the following result. 

Let ∆ n = σ √ n 2| ln(κ n /2)|. Then [A n , B n ], with A n = 1 n ln Z n 0 +n Z n 0 -∆ n and B n = 1 n ln Z n 0 +n Z n 0 + ∆ n ,
is a 1κ n confidence interval for µ, for n large enough.

Proof. By Theorem 2.1, we have

P(Z n 0 ,n ≥ x) 1 -Φ (x) = exp θ 1 C (ln n) 3 + x 3 n 1/2 and P(-Z n 0 ,n ≥ x) Φ (-x) = exp θ 2 C (ln n) 3 + x 3 n 1/2 (3.5) uniformly for 0 ≤ x = o(n 1/2 ), where θ 1 , θ 2 ∈ [-1, 1]. Notice that 1 -Φ (x n ) = Φ (-x n ) → 1 x n √ 2π e -x 2 n /2 = exp - x 2 n 2 1 + 2 x 2 n ln(x n √ 2π) , x n → ∞,
and γ ∈ (0, 1]. Since k n → 0, the upper (κ n /2)th quantile of the distribution

1 -1 -Φ (x) exp θ 1 C (ln n) 3 + x 2+ρ n ρ/2
converges to 2| ln(κ n /2)|, which by (3.4) is of order o n 1/2 as n → ∞. Then applying (3.5) to Z n 0 ,n and -Z n 0 ,n , by an argument similar to the proof of Proposition 3.1, we obtain the desired result.

Proof of Theorem 2.1

We should prove Theorem 2.1 for the case of

P(Zn 0 ,n≥x)
1-Φ(x) , x ≥ 0. Thanks to the existence a harmonic moment (see Lemma 4.2), the case of

P(-Zn 0 ,n≥x) Φ(-x)
can be proved in the similar way. To this end, we start with the proofs of Lemmas 4.1 and 4.3, and conclude with the proof of Theorem 2.1. In the sequel, we denote

η n,i = X i -µ σ √ n , i = 1, ..., n 0 + n.
Then it is easy to see that n i=1 Eη 2 n,n 0 +i = 1. Denote

W n 0 ,n = W n 0 +n W n 0 and W n 0 ,∞ = W W n 0 .
Then (W n 0 ,n ) n≥0 is also a nonnegative martingales both under the quenched law P ξ and under the annealed law P with respect to the natural filtration.

The following lemma gives the upper bound of Theorem 2.1.

Lemma 4.1. Assume condition A1. Then the following holds uniformly in n 0 ∈ N:

for n ≥ 2 and 0 ≤ x < √ ln n, ln P Z n 0 ,n ≥ x 1 -Φ(x) ≤ C(1 + x 3 ) ln n √ n ; (4.1)
and for n ≥ 2 and

√ ln n ≤ x = o( √ n), ln P Z n 0 ,n ≥ x 1 -Φ(x) ≤ C x 3 √ n . (4.2)
Proof. We first give a proof for (4.2). Clearly, by (2.2), it holds for

√ ln n ≤ x = o( √ n), P Z n 0 ,n ≥ x = P n i=1 η n,n 0 +i + ln W n 0 ,n σ √ n ≥ x ≤ P n i=1 η n,n 0 +i + (ln W n 0 ,n ) + σ √ n ≥ x ≤ I 1 + I 2 , (4.3) 
where

I 1 = P n i=1 η n,n 0 +i ≥ (x - x 2 σ √ n ) and I 2 = P (ln W n 0 ,n ) + σ √ n ≥ x 2 σ √ n .
Next, we give some estimations for I 1 and I 2 . Notice that n i=1 η n,n 0 +i is a sum of iid random variables. By upper bound of Cramér moderate deviations for sums of iid random variables (cf. inequality (1) of [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF]), we obtain for

√ ln n ≤ x = o( √ n), I 1 ≤ 1 -Φ(x - x 2 σ √ n ) exp C √ n (x - x 2 σ √ n ) 3 .
Using the following inequalities

1 √ 2π(1 + x) e -x 2 /2 ≤ 1 -Φ (x) ≤ 1 √ π(1 + x) e -x 2 /2 , x ≥ 0, (4.4) 
we deduce that for x ≥ ln 2 and ε n ≥ 0,

1 -Φ (x(1 -ε n )) 1 -Φ (x) = 1 + x x(1-εn) 1 √ 2π e -t 2 /2 dt 1 -Φ (x) ≤ 1 + 1 √ 2π e -x 2 (1-εn) 2 /2 xε n 1 √ 2π(1+x) e -x 2 /2 ≤ 1 + Cx 2 ε n e Cx 2 εn ≤ exp Cx 2 ε n . (4.5) Hence, for √ ln n ≤ x = o( √ n), I 1 ≤ 1 -Φ(x) exp C x 3 √ n . (4.6) 
By Markov's inequality and (4.4), it is easy to see that for

√ ln n ≤ x = o( √ n), I 2 = P W n 0 ,n ≥ exp x 2 ≤ exp -x 2 EW n 0 ,n = exp -x 2 ≤ C 1 + x √ n 1 -Φ(x) . (4.7) 
Combining (4.6) and (4.7) together, we obtain for

√ ln n ≤ x = o( √ n), P Z n 0 ,n ≥ x ≤ 1 -Φ(x) exp C 1 x 3 √ n + C 2 (1 + x) √ n 1 -Φ(x) ≤ 1 -Φ(x) exp C 3 x 3 √ n ,
which gives the desired inequality for

√ ln n ≤ x = o(n 1/2
). Next, we give a proof for (4.1). When 1 ≤ x < √ ln n, by an argument similar to that of (4.3), we have

P Z n 0 ,n ≥ x ≤ I 3 + I 4 , (4.8) 
where

I 3 = P n i=1 η n,n 0 +i ≥ (x - x 2 ln n σ √ n ) and I 4 = P (ln W n 0 ,n ) + σ √ n ≥ x 2 ln n σ √ n .
With arguments similar to that of (4.6) and (4.7), we get for 1 ≤ x < √ ln n,

I 3 ≤ 1 -Φ(x - x 2 ln n σ √ n ) exp C 1 √ n (x - x 2 ln n σ √ n ) 3 ≤ 1 -Φ(x) exp C 2 x 3 ln n √ n (4.9) 
and

I 4 = P W n 0 ,n ≥ exp x 2 ln n ≤ exp -x 2 ln n EW n 0 ,n = exp -x 2 ln n ≤ C 1 + x √ n 1 -Φ(x) . (4.10) 
Combining (4.8), (4.9) and (4.10) together, we obtain the desired inequality for 1 ≤ x < √ ln n. When 0 ≤ x ≤ 1, again by an argument similar to that of (4.3), we have

P Z n 0 ,n ≥ x ≤ I 5 + I 6 , (4.11) 
where

I 5 = P n i=1 η n,n 0 +i ≥ (x - ln n σ √ n ) and I 6 = P (ln W n 0 ,n ) + σ √ n ≥ ln n σ √ n .
With arguments similar to that of (4.6) and (4.7), we get for 0 ≤ x ≤ 1,

I 5 ≤ 1 -Φ(x - ln n σ √ n ) exp C √ n (x - ln n σ √ n ) 3 ≤ 1 -Φ(x) 1 + C 1 ln n σ √ n 1 + C 2 σ √ n ≤ 1 -Φ(x) 1 + C 3 ln n √ n (4.12)
and

I 6 = P W n 0 ,n ≥ exp ln n ≤ exp -ln n EW n 0 ,n = 1 n . (4.13) 
Combining (4.11), (4.12) and (4.13) together, we obtain for 0 ≤ x ≤ 1,

P Z n 0 ,n ≥ x ≤ 1 -Φ(x) 1 + C 1 ln n σ √ n + 1 n ≤ 1 -Φ(x) 1 + C 2 ln n √ n ≤ 1 -Φ(x) exp C 2 ln n √ n ,
which gives the desired inequality for 0 ≤ x ≤ 1. This completes the proof of Lemma 4.1.

To prove the lower bound of Theorem 2.1, we shall make use of the following lemma (see Theorem 3.1 of Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF]). The lemma shows that condition A1 implies the existence of harmonic moments of order a > 0. Lemma 4.2. Assume condition A1. There exists a constant a 0 > 0 such that for a ∈ (0, a 0 ), EW -a < ∞.

(4.14)

The following lemma gives the lower bound of Theorem 2.1.

Lemma 4.3. Assume condition A1. Then the following holds uniformly in n 0 ∈ N: for n ≥ 2 and 0 ≤ x < √ ln n,

ln P Z n 0 ,n ≥ x 1 -Φ(x) ≥ -C(1 + x 3 ) ln n √ n ; (4.15)
and for n ≥ 2 and

√ ln n ≤ x = o( √ n), n → ∞, ln P Z n 0 ,n ≥ x 1 -Φ(x) ≥ -C x 3 √ n . ( 4 

.16)

Proof. We first give a proof for (4.16). Clearly, it holds for

√ ln n ≤ x = o( √ n), P Z n 0 ,n ≥ x = P n i=1 η n,n 0 +i + ln W n 0 ,n σ √ n ≥ x ≥ P n i=1 η n,n 0 +i ≥ x - (ln W n 0 ,n ) - σ √ n ≥ P n i=1 η n,n 0 +i ≥ x + 4x 2 aσ √ n -P (ln W n 0 ,n ) - σ √ n ≥ 4x 2 aσ √ n =: P 1 -P 2 , (4.17)
where a is a constant satisfying a ∈ (0, min{a 0 , 1}) with a 0 given by Lemma 4.2. Next, we give estimations for terms P 1 and P 2 . By lower bound of Cramér moderate deviations for sums of iid random variables (cf. inequality (1) of [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF]), we obtain for

√ ln n ≤ x = o( √ n), P 1 ≥ 1 -Φ(x + 4x 2 aσ √ n ) exp - C √ n (x + 4x 2 aσ √ n ) 3 .
By an argument similar to that of (4.5), we deduce that for x ≥ ln 2 and 0

≤ ε n ≤ 1, 1 -Φ (x(1 + ε n )) 1 -Φ (x) ≥ exp -Cx 2 ε n . (4.18)
Hence, for

√ ln n ≤ x = o( √ n), P 1 ≥ 1 -Φ(x) exp -C x 3 √ n . (4.19)
By Markov's inequality, it is easy to see that for 

√ ln n ≤ x = o( √ n), P 2 = P ln W n 0 +n -ln W n 0 ≤ -4x 2 /a = P ln W n 0 +n ≤ -2x 2 /a + P -ln W n 0 ≤ -2x 2 /a ≤ exp -2x 2 EW -a n 0 +n + exp -2x 2 /a EW n 0 ≤ exp -2x 2 EW -a n 0 +n + exp -2x 2 /a . ( 4 
W -a n 0 +n = (E[W |F n 0 +n ]) -a ≤ E[W -a |F n 0 +n ].
Taking expectations with respect to P on both sides of the last inequality, we deduce that

EW -a n 0 +n ≤ EW -a . (4.21)
By Lemma 4.2, we have for 

√ ln n ≤ x = o( √ n), P 2 ≤ exp -2x 2 EW -a + exp -2x 2 ≤ C 1 exp -2x 2 ≤ C 2 x √ n 1 -Φ(x) exp -x 2 . ( 4 
√ ln n ≤ x = o( √ n), P Z n 0 ,n ≥ x ≥ 1 -Φ(x) exp -C 1 x 3 √ n -C 2 x √ n 1 -Φ(x) exp -x 2 ≥ 1 -Φ(x) exp -C 3 x 3 √ n ,
which gives the desired inequality for

√ ln n ≤ x = o( √ n).
For 0 ≤ x < √ ln n, the assertion of Lemma √ n when 0 ≤ x ≤ 1, and accordingly in the subsequent statements. Then we get the desired inequality for 0 ≤ x < √ ln n. This completes the proof of Lemma 4.3.

Proof of Corollary 2.1

We only give a proof for the case of Z n 0 ,n . The case of -Z n 0 ,n can be proved in a similar way. We first show that lim sup

n→∞ 1 a 2 n ln sup n 0 ∈N P Z n 0 ,n a n ∈ B ≤ -inf x∈B x 2 2 . (5.1) 
When B = ∅, the last inequality is obvious, with the conventioninf x∈∅ x 2 2 = ∞. Thus, we may assume that B = ∅. Given a Borel set B ⊂ R, let x 0 = inf x∈B |x|. Clearly, we have x 0 ≥ inf x∈B |x|. Then, by Theorem 2.1,

sup n 0 ∈N P Z n 0 ,n ∈ a n B ≤ sup n 0 ∈N P Z n 0 ,n ≥ a n x 0 ≤ 2 1 -Φ (a n x 0 ) exp C (1 + (a n x 0 ) 3 ) 1 + 1 [0, √ ln n) (a n x 0 ) ln n √ n .
Using (4.4), after some calculations, we get lim sup

n→∞ 1 a 2 n ln sup n 0 ∈N P Z n 0 ,n a n ∈ B ≤ - x 2 0 2 ≤ -inf x∈B x 2 2 ,
which gives (5.1). Next, we show that lim inf

n→∞ 1 a 2 n ln inf n 0 ∈N P Z n 0 ,n a n ∈ B ≥ -inf x∈B o x 2 2 . (5.2) 
When B o = ∅, the last inequality is obvious, with the convention inf x∈∅ x 2 2 = ∞. Therefore, we may assume that B o = ∅. For any given small ε 1 > 0, there exists an

x 0 ∈ B o , such that 0 < x 2 0 2 ≤ inf x∈B o x 2 2 + ε 1 . Since B o is an open set, for x 0 ∈ B o and all small enough ε 2 ∈ (0, |x 0 |], it holds (x 0 -ε 2 , x 0 +ε 2 ] ⊂ B o . Therefore, x 0 ≥ inf x∈B o |x|.
Without loss of generality, we may assume that x 0 > 0. Obviously, we have inf

n 0 ∈N P Z n 0 ,n ∈ a n B ≥ inf n 0 ∈N P Z n 0 ,n ∈ (a n (x 0 -ε 2 ), a n (x 0 + ε 2 )] = inf n 0 ∈N P Z n 0 ,n ≥ a n (x 0 -ε 2 ) -P Z n 0 ,n ≥ a n (x 0 + ε 2 ) .
Again by Theorem 2.1, it is easy to see that

lim n→∞ sup n 0 ∈N P Z n 0 ,n ≥ a n (x 0 + ε 2 ) inf n 0 ∈N P Z n 0 ,n ≥ a n (x 0 -ε 2 ) = 0.
Therefore, by Theorem 2.1, it holds for all n large enough, inf

n 0 ∈N P Z n 0 ,n a n ∈ B ≥ inf n 0 ∈N 1 2 P Z n 0 ,n ≥ a n (x 0 -ε 2 ) ≥ 1 2 1 -Φ (a n (x 0 -ε 2 )) × exp -C (1 + (a n (x 0 -ε 2 )) 3 ) 1 + 1 [0, √ ln n) (a n (x 0 -ε 2 )) ln n √ n .
Using (4.4), after some calculations, we get

lim inf n→∞ 1 a 2 n ln inf n 0 ∈N P Z n 0 ,n a n ∈ B ≥ - 1 2 (x 0 -ε 2 ) 2 .
Letting ε 2 → 0, we deduce that lim inf

n→∞ 1 a 2 n ln inf n 0 ∈N P Z n 0 ,n a n ∈ B ≥ - x 2 0 2 ≥ -inf x∈B o x 2 2 -ε 1 .
Since ε 1 can be arbitrarily small, we get (5.2). Combining (5.1) and (5.2) together, we complete the proof of Corollary 2.1.

Proof of Theorem 2.2

To prove Theorem 2.2, we shall make use of the following lemma.

Lemma 6.1. Assume condition A2. There exists a constant a 0 > 0 such that for a ∈ (0, a 0 ),

E exp{a | ln W | 4γ 1-2γ }1 {W ≤1} < ∞. (6.1)
Proof. Denote

φ(t) = Ee -tW ,
for t ≥ 0. From inequality (2.7) of Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF], we have for n ≥ 1 and t ≥ KA n ,

φ(t) ≤ α n + P(Π n > A n ), (6.2) 
where α ∈ (0, 1). Choose A such that ln A > µ. By condition A2 and Theorem 2.1 of [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF], there exists a constant C > 0 such that for all n ≥ 1,

P(Π n > A n ) = P S n -nµ > n(ln A -µ) ≤ exp -Cn 4γ 1-2γ .
From (6.2), we get for t ≥ KA n , φ(t) ≤ exp{-Cn 4γ 1-2γ }.

(6.3)

Now for any t ≥ K, set n 0 be the integer such that KA n 0 +1 > t ≥ KA n 0 , so that

n 0 > ln(t/K) ln A -1.
Then, for any t ≥ K, φ(t) ≤ exp{-C( ln(t/K) ln A -1)

4γ 1-2γ } ≤ exp{-C 1 (ln t) 4γ 1-2γ }. (6.4)
By the facts that P(W ≤ t -1 ) ≤ eφ(t), t > 0, and

E exp{a | ln W | 4γ 1-2γ }1 {W ≤1} = 4aγ 1 -2γ ∞ 1 1 t P(W ≤ t -1 )(ln t) 6γ-1 1-2γ exp{a (ln t) 4γ 1-2γ }dt, it follows that E exp{a | ln W | 4γ 1-2γ }1 {W ≤1} < ∞ for a ∈ [0, C 1 )
. Now we are in position to prove Theorem 2.2. We only give a proof of Theorem 2.2 for the case of P(Zn 0 ,n≥x) 1-Φ(x) . For the case of

P(-Zn 0 ,n≥x) Φ(-x)
, Theorem 2.2 can be proved in a similar way. We first consider the case of 1 ≤ x = o(n γ ). Clearly, it holds for 1 ≤ x = o(n γ ),

P Z n 0 ,n ≥ x = P n i=1 η n,n 0 +i + ln W n 0 ,n σ √ n ≥ x ≥ P n i=1 η n,n 0 +i ≥ x + 2x 2 σn 3γ -P ln W n 0 ,n σ √ n ≥ 2x 2 σn 3γ =: T 1 -T 2 . (6.5)
Next, we give estimations for terms T 1 and T 2 . By lower bound of Linnik type Cramér moderate deviations for sums of iid random variables (cf. Linnik [START_REF] Linnik | On the probability of large deviations for the sums of independent variables[END_REF]), we deduce that for 1 ≤ x = o(n γ ),

T 1 ≥ 1 -Φ(x + 2x 2 σn 3γ ) 1 -o(1) .
Hence, by (4.18), we get for 1 ≤ x = o(n γ ),

T 1 ≥ 1 -Φ(x) exp -C x 3 n 3γ 1 -o(1) = 1 -Φ(x) 1 -o(1) . (6.6) 
By Markov's inequality, it is easy to see that for 1 ≤ x = o(n γ ),

T 2 = P ln W n 0 +n -ln W n 0 ≥ 2x 2 n 1 2 -3γ ≤ P ln W n 0 +n ≥ x 2 n 1 2 -3γ + P -ln W n 0 ≥ x 2 n 1 2 -3γ ≤ exp - a 0 2 (x 2 n 1 2 -3γ ) 4γ 1-2γ E exp{ a 0 2 | ln W n 0 +n | 4γ 1-2γ }1 {W n 0 +n ≤1} + exp - a 0 2 (x 2 n 1 2 -3γ ) 4γ 1-2γ E exp{ a 0 2 | ln W n 0 | 4γ 1-2γ }1 {Wn 0 ≤1} . Recall that W n = E[W |F n ] a.s. Since f (x) = exp{ a 0 2 | ln x| 4γ 1-2γ }1 {x≤1} is convex in (0, 1]
, by Jensen's inequality, we get

f (W n ) = f (E[W |F n ]) ≤ E[f (W )|F n ].
Taking expectations with respect to P on both sides of the last inequality, we deduce that

E[exp{ a 0 2 | ln W n | 4γ 1-2γ }1 {Wn≤1} ] ≤ E[exp{ a 0 2 | ln W | 4γ 1-2γ }1 {W ≤1} ].
By Lemma 4.2, we have for 1 ≤ x = o(n γ ),

T 2 ≤ C exp - a 0 2 (x 2 n 1 2 -3γ ) 4γ 1-2γ ≤ C 1 √ n 1 -Φ(x) . (6.7) 
Combining (6.5), (6.6) and (6.7) together, we obtain for 1 ≤ x = o(n γ ),

P Z n 0 ,n ≥ x ≥ 1 -Φ(x) 1 -o(1) - C √ n 1 -Φ(x) ≥ 1 -Φ(x) 1 -o(1) . (6.8) 
Similarly, we can prove that for 1 ≤ x = o(n γ ),

P Z n 0 ,n ≥ x ≤ 1 -Φ(x) 1 + o(1) . (6.9) 
Combining (6.8) and (6.9) together, we have for 1 ≤ x = o(n γ ),

P Z n 0 ,n ≥ x = 1 -Φ(x) 1 + o(1) .
This completes the proof of Theorem 2.2. For 0 ≤ x ≤ 1, Theorem 2.2 can be proved in a similar way, but in (6.5) with 2x 2 σn 3γ replaced by 2 σn 3γ , and accordingly in the subsequent statements.

Proof of Theorem 2.3

We only give a proof of (2.8). Inequality (2.9) can be proved in a similar way. Clearly, it holds

sup x∈R P Z n 0 ,n ≤ x -Φ (x) ≤ sup x>n 1/8 P Z n 0 ,n ≤ x -Φ (x) + sup 0≤x≤n 1/8 P Z n 0 ,n ≤ x -Φ (x) + sup -n 1/8 ≤x≤0 P Z n 0 ,n ≤ x -Φ (x) + sup x<-n 1/8 P Z n 0 ,n ≤ x -Φ (x) =: H 1 + H 2 + H 3 + H 4 . (7.1) 
By Theorem 2.1 and (4.4), it is easy to see that

H 1 = sup x>n 1/8 P Z n 0 ,n > x -1 -Φ (x) ≤ sup x>n 1/8 P Z n 0 ,n > x + sup x>n 1/8 1 -Φ (x) ≤ P Z n 0 ,n > n 1/8 + 1 -Φ n 1/8 ≤ 1 -Φ n 1/8 e C + exp{- 1 2 n 1/4 } ≤ C 1 ln n √ n and H 4 ≤ sup x<-n 1/8 P Z n 0 ,n ≤ x + sup x<-n 1/8 Φ (x) ≤ P Z n 0 ,n ≤ -n 1/8 + Φ -n 1/8 ≤ Φ -n 1/8 e C + exp{- 1 2 n 1/4 } ≤ C 2 ln n √ n .
By Theorem 2.1 and the inequality |e x -1| ≤ |x|e |x| , we have

H 2 = sup 0≤x≤n 1/8 P Z n 0 ,n > x -1 -Φ (x) ≤ sup 0≤x≤n 1/8 1 -Φ(x) e C(1+x 3 )(ln n)/ √ n -1 ≤ C 3 ln n √ n and H 3 = sup -n 1/8 ≤x≤0 P Z n 0 ,n ≤ x -Φ (x) ≤ sup -n 1/8 ≤x≤0 Φ(x) e C(1+|x| 3 )(ln n)/ √ n -1 ≤ C 4 ln n √ n .
Applying the bounds of H 1 , H 2 , H 3 and H 4 to (7.1), we obtain inequality (2.8). This completes the proof of Theorem 2.3.

Proof of Theorem 2.4

We should prove Theorem 2.4 for the case of Z n 0 ,n . The cases of -Z n 0 ,n can be proved in the similar way. To prove the lower bound of Theorem 2.4, we shall make use of the following lemma, which is an improvement on Lemma 2.3 of Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF], in which p ∈ (0, 1 + ρ/2) instead of p ∈ (0, 1 + ρ). Proof. By Jensen's inequality, it is enough to prove Lemma 8.1 for p ∈ [1, 2 + ρ). From (2.7) of of Grama et al. [START_REF] Grama | Berry-Esseen's bound and Cramér's large deviations for a supercritical branching process in a random environment[END_REF], we have for all n ≥ 1 and t

≥ KA n , φ(t) ≤ α n + P(Π n > A n ), (8.2) 
where α ∈ (0, 1). Recall that µ = EX and S n = ln Π n = n i=1 X i . Then S n is a sum of iid random variables with (2 + ρ)-moments. Choose A such that ln A > µ. By Nagaev's inequality (see Corollary 1.8 of Nagaev [START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF] or Corollary 2.5 of [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF]), there exists a constant C > 0 such that for n ∈ N, This completes the proof of Lemma 8.1. Now we are in position to prove Theorem 2.4. We first prove that for x ∈ R, P Z n 0 ,n ≤ x -Φ(x) ≤ C n δ/2 . (8.5)

P(Π n > A n ) = P S n -nµ > n(ln A -µ) ≤ C n 1+ρ . From (8.
It is easy to see that

P Z n 0 ,n ≤ x ≤ P n i=1 η n,n 0 +i - (ln W n 0 ,n ) - σ √ n ≤ x ≤ R 1 + R 2 , (8.6) 
where

R 1 = P n i=1 η n,n 0 +i ≤ x + 2 σn ρ/2
and R 2 = P (ln

W n 0 ,n ) - σ √ n ≥ 2 σn ρ/2 .
Next, we give estimations for R 1 and R 2 . By the Berry-Esseen bound for a sum of iid random variables, we obtain

R 1 ≤ Φ(x + 2 σn ρ/2 ) + C 1 n ρ/2 ≤ Φ(x) + C 2 n ρ/2 . (8.7)
Notice that when ρ ∈ (0, ( √ 5 -1)/2), we have p := ρ 1-ρ < 1 + ρ. By Markov's inequality and Lemma 8.1, it is easy to see that Applying the upper bounds of R 1 and R 2 to (8.6), we obtain (8.5).

Next, we prove that for x ∈ R, P Z n 0 ,n ≤ x -Φ(x) ≥ -C n δ/2 . (8.9)

Clearly, it holds

P Z n 0 ,n ≤ x ≥ P n i=1 η n,n 0 +i + (ln W n 0 ,n ) + σ √ n ≤ x ≥ R 3 -R 4 , (8.10) 
where

R 3 = P n i=1
η n,n 0 +i ≤ x -1 σn ρ/2

and R 4 = P (ln

W n 0 ,n ) + σ √ n ≥ 1 σn ρ/2 .
Again by the Berry-Esseen bound for a sum of iid random variables, we obtain

R 3 ≥ Φ(x - 1 σn ρ/2 ) - C 1 n ρ/2 ≥ Φ(x) - C 2 n ρ/2 . (8.11)
Again by Markov's inequality, we get R 4 ≤ P W n 0 ,n ≥ exp{n (1-ρ)/2 } ≤ exp{-n (1-ρ)/2 }EW n 0 ,n ≤ exp{-n (1-ρ)/2 } ≤ C n ρ/2 . (8.12)

Applying the upper bounds of R 3 and R 4 to (8.10), we obtain (8.9). Combining (8.5) and (8.9) together, we get

P Z n 0 ,n ≤ x -Φ(x) ≤ C n δ/2 , (8.13) 
which gives the desired inequality.

Proposition 3 . 1 .

 31 Assume condition A1. Let κ n ∈ (0, 1). Assume that ln κ n = o n 1/3 .

Proposition 3 . 2 .

 32 Assume condition A1. Let κ n ∈ (0, 1) such that k n → 0. Assume that ln κ n = o n .(3.4)
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 43 follows by a similar argument, but in (4.3) with 4x 2 aσ √ n replaced by 4x 2 ln n aσ √ n when 1 ≤ x < √ ln n and 4x 2 aσ √ n replaced by 4 ln n aσ

Lemma 8 . 1 .

 81 Assume condition A3. Then for p ∈ (0, 1 + ρ), E| ln W | p < ∞ and sup n∈N E| ln W n | p < ∞. (8.1)

R 2 = 2 ≤ 2 ≤

 222 P | ln(W n 0 +n /W n 0 )| ≥ 2n (1-ρ)/P | ln W n 0 +n | + | ln W n 0 | ≥ 2n (1-ρ)/P | ln W n 0 +n | ≥ n (1-ρ)/2 + P | ln W n 0 | ≥ n (1-ρ)/2 ≤ n -p(1-ρ)/2 E| ln W n 0 +n | p + n -p(1-ρ)/2 E| ln W n 0 | p ≤ 2n -ρ/2 sup n E| ln W n | p ≤ C n ρ/2 . (8.8) 

  2), we get for all n large enough and t ≥ KA n , Now for any t ≥ K, set n 0 be the integer such that KA n 0 +1 > t ≥ KA n 0 , so that By the facts that P(W ≤ t -1 ) ≤ eφ(t), t > 0, andE| ln W | p 1 {W ≤1} = p P(W ≤ t -1 )dt, it follows that E| ln W | p 1 {W ≤1} < ∞ for p ∈ [1, 1 + ρ). Using the inequality | ln x| p ≤ Cx, x > 1, we deduce that E| ln W | p 1 {W >1} ≤ CEW ≤ CEW n = C. Thus, we have E| ln W | p = E| ln W | p 1 {W ≤1} + E| ln W | p 1 {W >1} < ∞.Notice that x → | ln x| p 1 {0<x≤0} is a non-negative and convex function for p ∈ [1, 1 + ρ). By Lemma 2.1 of Huang and Liu[START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], we have sup n E| ln W n | p 1 {Wn≤1} = E| ln W | p 1 {W ≤1} < ∞. It is also easy to see that for p ∈ [1, 1 + ρ),

	Then, for any t ≥ K,		
	φ(t) ≤ C 0 (ln t) -1-ρ .	(8.4)
	∞ (ln t) p-1 sup 1 1 t
	φ(t) ≤	C n 1+ρ .	(8.3)
	n 0 >	ln(t/K) ln A	-1.

n E| ln W n | p = sup n E| ln W n | p 1 {Wn≤1} + sup n E| ln W n | p 1 {Wn>1} ≤ E| ln W | p 1 {W ≤1} + CEW n = E| ln W | p 1 {W ≤1} + C < ∞.