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Abstract 
The Polycomb system via the methylation of the lysine 27 of histone H3 (H3K27) plays central 
roles in the silencing of many lineage-specific genes during development. Recent experimental 
evidence suggested that the recruitment of histone modifying enzymes like the Polycomb 
repressive complex 2 (PRC2) at specific sites and their spreading capacities from these sites are 
key to the establishment and maintenance of a proper epigenomic landscape around Polycomb-
target genes. Here, based on previous biochemical knowledge, we turned this hypothesis into a 
mathematical model that can predict the locus-specific distributions of H3K27 modifications.  
Within the biological context of mouse embryonic stem cells, our model showed quantitative 
agreement with experimental profiles of H3K27 acetylation and methylation around Polycomb-
target genes in wild-type and mutants. In particular, we demonstrated the key role of the reader-
writer module of PRC2 and of the competition between the binding of activating and repressing 
enzymes in shaping the H3K27 landscape around transcriptional start sites. The predicted 
dynamics of establishment and maintenance of the repressive trimethylated H3K27 state suggest 
a slow accumulation, in perfect agreement with experiments. Our approach represents a first step 
towards a quantitative description of PcG regulation in various cellular contexts and provides a 
generic framework to better characterize epigenetic regulation in normal or disease situations. 
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Introduction 
Cells sharing the same genetic information may have very different functions and phenotypes. 
The regulation of gene expression is central to control such cellular identity. In eukaryotes, a key 
layer of regulation lies in the modulation of the accessibility and recruitment of the molecules 
driving transcription to chromatin. In particular, biochemical modifications of DNA and of histone 
tails, the so-called epigenetic or epigenomic marks, are believed to be essential in controlling 
such modulation (1). Each cell type is characterized by a distinct sequence of epigenetic marks 
along the genome with specific modifications associated with active or silent regions (2). Such 
epigenetic information should be robust and maintained across DNA replication and cell divisions 
but may also need to be plastic and modified during development or to adapt to environmental 
cues (3). A key question at the heart of epigenetics is thus to characterize the generic principles 
and mechanisms regulating the establishment, maintenance and conversion of the epigenomic 
marks. 
 
Experimental studies suggested along the years that the regulation of these marks follows similar 
rules (4–6): chromatin regulators like histone modifying enzymes (HMEs) are recruited at specific 
DNA sequences leading to the nucleation of an epigenetic signal that subsequently spread to 
form more or less extended domains along the genome. In particular, the spreading process was 
found to be driven by a variety of ‘reader-writer’ enzymes that can ‘read’ a given chromatin 
modification at a given locus and ‘write’ or ‘remove’ the same or another mark at other genomic 
positions (1,7).  
 
To formalize such rules, several mathematical models investigating the generic regulation of 
histone marks have been developed (8–17). In their simplest form, these models consider that 
the local chromatin state can switch between active and repressive marks (18,19). They 
suggested that the reader-writer-eraser capacity of HMEs may generate positive feedback loops 
and cooperative effects in the system that are essential to provide stability to the local epigenetic 
state. Applications of such formalism, contextualized to specific marks at specific loci, have shown 
that it is fully consistent with many experimental observations (13,14,17,20–24). However, 
quantitative comparisons with experiments are still rare in particular on how epigenetic marks 
organize around the nucleation sites, which may bring crucial information on the spreading and 
maintenance mechanisms (15,25). In this work, we aim to provide a modeling framework to 
quantitatively describe the genomic profiles of epigenetic marks in the context of the Polycomb 
system in mouse embryonic stem cells (mESCs).  
 
The Polycomb regulatory system is found in many higher eukaryotes and has been shown to play 
a critical role during development in the silencing of lineage-specific genes (26). It involves the 
methylation of the lysine 27 of histone H3 mainly via the coordinated action of two Polycomb-
group (PcG) complexes, PRC1 and PRC2, tri-methylation of H3K27 (H3K27me3) being 
associated with gene repression.  
mESCs have been for years a model system to investigate the Polycomb system in mammals 
(27), as it is involved in the maintenance of the pluripotency of these cells (28). Recently, many 
experimental studies in mESCs have measured quantitatively the patterns of H3K27 modifications 
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along the genome (6,25,29–33). Genes targeted by PcG proteins, the so-called PcG-target 
genes, are characterized by high H3K27me3 levels around their transcriptional start sites (TSS), 
low levels of H3K27me1 and me2 and the quasi-absence of H3K27ac (Fig.1B). Active genes are 
enriched with H3K27me1 and H3K27ac marks. Bivalent genes, associated with lowly expressed 
or poised regions and characterized by the co-occurrence of active (H3K4me3) and repressive 
marks (34), exhibit intermediate levels of H3K27me2 and me3. The intergenic regions are 
dominated by H3K27me2 representing more than 50 % of all H3K27 modifications (6). 
Perturbations of this H3K27 landscape when altering PRC1/2 have allowed to shed light on the 
functions of their molecular constituents in the establishment and maintenance of the epigenetic 
signal (Fig.1A) (6,29,30,35–37). Briefly, the recruitment of a non-canonical PRC1 variant at CpG 
islands (CGIs) mediates locally the mono-ubiquitination of H2AK119 (35–40). This localized signal 
in turn recruits PRC2 through the interactions of cofactors like JARID2 (6,41–43) . Around its core 
subunit Suz12, PRC2 contains the EZH1 or EZH2 catalytic subunit, both capable of methylating 
H3K27 and of nucleating the epigenetic signal. PRC2 includes also a ‘reader’ subunit, EED, that 
allosterically boosts the activity of the ‘writer’ EZH2 in presence of H3K27me3 residues (44) and 
allows the long-range spreading of the signal around the nucleation site (6). Canonical PRC1 may 
then bind to H3K27me3-tagged regions leading to the local compaction of chromatin and 
repression of gene expression (35–37,45). The silencing action of PcG proteins is antagonized 
by Trithorax-group proteins like MLL2 that recruit demethylases like UTX/JMJD3 and 
acetyltransferases like p300/CBP (46) mediating, respectively, the removal of the methyl groups 
from methylated H3K27 residues (47) or the addition of an acetyl group to unmarked H3K27 
residues (48,49), which is crucial for transcriptional activation .  
All this suggests that the recruitment of HMEs at specific sites and their local and long-range  
spreading activities from these sites are designing the epigenetic H3K27 landscape in mESCs. 
However, while this is the same set of HMEs that act on all promoters, the radically different 
profiles observed around them cannot be explained solely by differences in transcriptional activity. 
Therefore, it is essential to understand the parameters driving the establishment and maintenance 
of H3K27 modifications. 
 
Here, we turned this hypothesis into a quantitative mechanistic model to investigate how the 
‘spreading’ tug-of-war between the repressive (H3K27me3) and active (H3K27ac) marks is tied 
by the properties and locations of HMEs. Building on previous generic mathematical models of 
epigenetic regulation (see above), we contextualized our framework to precisely account for the 
occupancy of key HMEs and for the major processes described above. We showed that the model 
predictions are in quantitative agreement with Chip-Seq H3K27 profiles measured around PcG-
target, active or bivalent genes in wild-type (WT) and perturbed conditions and with SILAC 
experiments monitoring the maintenance and spreading dynamics of H3K27 methylation. In 
particular, we demonstrated the central role of the reader-writer module of PRC2 and of the 
competition between activating and repressing mechanisms in shaping the valency of H3K27 
methylation, ie the relative levels of mono-, bi- and trimethylation around TSS. Finally, we 
concluded and discussed the perspectives and limitations of our approach.  
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Results 

A dynamical model for the regulation of H3K27 epigenetic 
modifications in mESC  
Based on previous experimental findings, we consider that the de novo establishment and 
maintenance of H3K27 modifications in mESC is mainly carried out by the stable recruitment of 
HMEs to their cognate DNA binding sites and that the patterns of epigenetic marks around genes 
result from a complex network of local and long-range spreading or erasing mechanisms 
mediated by these HMEs (6) (Fig.1A).  
 

 
Figure 1. Model for the regulation of H3K27 modifications in mESCs. (A) Scheme of the different 
histone modifying enzymes (HMEs) involved in the regulation of H3K27 modifications. PRC2 complexes 
recruited to CpG densed regions contain: one of the two ‘writers’ (the methyltransferases Ezh1 and Ezh2) 
that methylates H3K27 and a ‘reader’ (EED) that binds to H3K27me3 and may allosterically activate EZH2. 
CBP/p300 acetylates the H3K27 residue, UTX/JMJD3 and HDACS remove the methyl and acetyl groups 
from H3K27, respectively. (B) Summary of the model. (Center) Multi-state dynamics of the H3K27 
modifications: unmodified histones (u) are methylated to me1, me2 and me3  or acetylated to ac by the 
action of PRC2 (local and long-range) and p300 (local), respectively. Demethylation is conditional to the 
local UTX occupancy while deacetylation by HDACs is considered uniform. The long-range spreading of 
methylation mediated by PRC2-H3K27me3 allosteric activation is shown as dashed lines. Histone turnover 
and DNA replication are not shown here for clarity. The model takes HME profiles as inputs (top) and makes 
predictions on the probabilities to find a given mark at a given position (bottom). (Top, Bottom) Graphical 
representations of the average occupancies of HMEs (top) and marks (bottom) expected around silent 
(PcG-target), active and bivalent genes. Methylation valency is defined as the relative ordering of H3K27me 
levels in the region.  
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To test this hypothesis quantitatively, we simulated the stochastic dynamics of H3K27 
modifications in a 20kbp-region around the TSS of a gene. This region, made of 100 
nucleosomes, is modelled as an array of 200 histones where we assumed that each nucleosome 
(~200bp) is made of two consecutive independent histones (each covering ~100 bp). The H3K27 
status of each histone can fluctuate among five states (Fig. 1B): unmodified (u), acetylated (ac), 
single-methylated (me1), double-methylated (me2) and tri-methylated (me3). Our model assumes 
that the dynamics of individual histones is mainly driven by the sequential addition or removal of 
acetyl and methyl groups by HMEs and by histone turnover (14,50–52). Below, we describe the 
three main features of this model (Fig. 1B). Their mathematical translation into reaction rates that 
control the stochastic transitions between histone states can be found in the Materials and 
Methods section.   

Addition and removal of the methyl groups by PRC2 and UTX 
Methylation of H3K27 is catalyzed by the PRC2 complex (53). In mammals, PRC2 is 
predominantly recruited at CpG islands (CGIs) by several cofactors including JARID2 (6,41) or 
vPRC1-mediated H2AK119 mono-ubiquitination (35–40). Its methyltransferase activity is carried 
out by the subunits EZH1 or EZH2 (30). While the EZH1 activity remains largely local, interactions 
between the PRC2 subunit EED and H3K27me3-marked histones at the core recruitment region 
may allosterically boost the EZH2 activity which is then allowed, via a reader-writer mechanism, 
to spread methylation at long-range, outside the PRC2 cognate binding sites (6,29,44). To 
account for this dual activity, we assumed that the methylation propensities at a given histone 
position are composed (i) by a local, nucleation term (of rate 𝑘"#$with 𝑥 ∈ {1,2,3}) proportional to 
the PRC2 occupancy at this position; and (ii) by a long-range term (of rate 𝜖"#$) accounting for 
the spreading capacity in 3D of distant PRC2 complexes bound to H3K27me3 histones at other 
positions that may spatially contact the locus by DNA looping (6). As 𝑘"#$  and 𝜖"#$ rates reflect 
the catalytic activity of the same complex (PRC2), we further considered that the ratios 𝜖"#$/𝑘"#$ 
(𝑥 ∈ {1,2,3}), which characterizes the fold-change in effective activity of the allosterically-boosted, 
long-range spreading vs local nucleation, is state-independent, ie 𝜖"#$/𝑘"#$ = 𝑅 for all x (see 
Materials and Methods).  
H3K27 methyl groups can be actively removed by the demethylase UTX with no evidence 
suggesting that UTX “spreads” its activity at long-range (47). Therefore, we modeled the 
demethylation propensities as being simply proportional to the local UTX density with a rate 𝛾"# 
that, to simplify, we assumed to be independent of the methylation status. 

Addition and removal of H3K27 acetylation 
At the promoters of active genes, acetylation of H3K27 is mediated by several acetyltransferases 
like p300 or CBP recruited by transcription factors (46,48,49). For p300-mediated acetylation, 
there is evidence suggesting that the bromodomain of p300 may trigger a reader-writer spreading 
process of acetylation (54), similar to the EZH2-mediated methylation. Such a mechanism would 
imply a long-range spreading of H3K27ac around the p300 binding sites. However, after analyzing 
H3K27ac and p300 ChipSeq data around promoters, we found that p300 peaks are actually even 
slightly wider than the acetylation peaks (Figure 2B-C). Furthermore, while the inhibition of 
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bromodomain enzymatic activity of p300 results in major loss of acetylation at enhancers, it only 
leads to minor changes at promoters (46). Since we aimed to describe acetylation at promoters, 
we neglected the bromodomain interplay and we simply assumed that the acetylation propensity 
is proportional to the p300 occupancy with a rate 𝑘23.  
In general, deacetylation kinetics is fast and the half-lives of acetylated histone residues have 
been measured at many sites (55). Therefore, we modeled the action of histone deacetylases 
(HDACs) as a uniform rate of 0.6 event per hour (56) acting on H3K27ac histones.  
 
Table 1: Parameters of the epigenetic model. 

Parameter Description  Best value  

𝑘"#4 PRC2-mediated methylation rate (𝑢 → 𝑚𝑒9) 3 × 𝑘"#;  

𝑘"#<  PRC2-mediated methylation rate (𝑚𝑒9 → 𝑚𝑒=) 3 × 𝑘"#;  

𝑘"#;  PRC2-mediated methylation rate (𝑚𝑒= → 𝑚𝑒>) 0.81	 ± 0.1	ℎE9 

R spreading-vs-nucleation ratio (𝜖"#$/𝑘"#$) 0.85 ± 0.01 

𝜖"#4 EZH2 allosteric spreading rate (𝑢 → 𝑚𝑒9) 𝑅 × 𝑘"#4 

𝜖"#< EZH2 allosteric spreading rate (𝑚𝑒9 → 𝑚𝑒=) 𝑅 × 𝑘"#< 

𝜖"#; EZH2 allosteric spreading rate (𝑚𝑒= → 𝑚𝑒>) 𝑅 × 𝑘"#; 

𝛾"# UTX-mediated demethylation rate  1.5	 ± 0.05		ℎE9 

𝑘23 P300-mediated acetylation rate 1.03	ℎE9 

𝛾23 deacetylation rate 0.6	ℎE9 taken from (64) 

𝛾HIJK  histone turnover rate 0.03	ℎE9 taken from (58) 

𝑇 cell cycle length 13.5	ℎ	taken from (63) 

Histone turnover and DNA replication 
In addition to the previous reactions that involve specific enzymes, the local state may be affected 
by histone turnover (57,58). We assumed that this process leads to the replacement of the current 
histone state by a ‘naive’, unmodified (u) histone with a rate of 0.03 event per hour as measured 
consistently by two different studies (58,59).  
DNA replication is also a major perturbative event for the epigenome as the ‘mother’ epigenetic 
information is diluted among the two sister chromatids (60). Since mother histones are 
symmetrically redistributed (61,62), we modeled replication as specific periodic events, occuring 
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every 13.5 hour (the median cell cycle length in mESC (63)), where half of the histone states are 
randomly lost and replaced by a ‘u’ state. 
 
All together, these three main features drive the dynamic transitions between the different states 
of H3K27. This epigenetic model takes as inputs the binding profiles of HMEs like PRC2, p300 or 
UTX (Fig.1B and S5) and, for a given set of (de)methylation and (de)acetylation rates (Table 1), 
makes predictions about the corresponding profiles of H3K27ac/u/me1/me2/me3 modifications 
based on the simulations of many single-cell stochastic trajectories of the epigenome (see 
Materials and Methods).  

The model recapitulates the epigenetic landscape of polycomb-
target genes under various conditions 
We first asked if our working hypotheses and the corresponding mathematical model are 
consistent with the average epigenetic landscape observed around PcG-target genes in mESCs 
grown in 2i medium (25) for which lots of data are available (see Table 2). For that, we designed 
a multi-step inference strategy (Figure 2) in order to fix, from available experimental data, the 
remaining-free parameters of the model, namely the methylation nucleation rates (𝑘"#9/"#=/"#>), 
the methylation spreading rates (𝜖"#9/"#=/"#>), the demethylation (𝛾"#) and acetylation (𝑘23) 
rates. In particular, we exploited data from wild-type and from perturbation experiments (29,32) 
where the activities of some HMEs have been modified. 

Latent acetylation of Polycomb domains in EZH1/2 double knockout 
In wild-type mESCs, the acetylated H3K27 histones sites are mostly spotted at the enhancers 
and promoters of active genes, overlapping with the genomic occupancy of both UTX and p300 
(49,57). Although p300 is present at the promoters of PcG-target genes (Fig.2B), there is almost 
zero H3K27 acetylation (orange circles in Fig.2I). However, on knocking out both 
methyltransferases EZH1and EZH2 (29), PcG genes become significantly acetylated (grey circles 
in Fig. 2C) and a deregulation of gene expression is observed (29). In this DKO situation where 
H3K27 methylation is absent, the epigenetic model reduces to a simple two-state model between 
u and ac states (Fig. 2A). This allowed us to infer the acetylation rate 𝑘23 = 1.03	ℎE9 based on 
the p300 average occupancy around PcG promoters (Fig.2B) by fitting the corresponding average 
H3K27ac profiles (orange line in Fig.2C) (see Materials and Methods). Interestingly, our 
estimation of 𝑘23 is consistent with acetylation rates measured in human embryonic kidney cells 
for various residues after HDAC inhibition (65). Since 𝑘23 is of the same order than the HDAC-
mediated deacetylation rate (∼ 0.6ℎE9), it also suggests that acetylation levels result from a fast 
exchange dynamics of acetyl groups. 
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Figure 2: Fitting the model with various perturbation experiments around PcG-target genes. All 
profiles in the figure are around TSS (position 0) of PcG-target genes. (A,D,G,J) Schematic representation 
of the epigenetic models used to simulate EZH1/2 DKO, EZH2KO, WT and UTX KO cases. (B) Average 
p300 occupancy in WT. (C) Fit of the average H3K27ac profile in EZH1/2 DKO cells. (E,H) Average SUZ12 
occupancy for the EZH2KO (E) and WT (H) cases. (F,I) Experimental (left) and simulated (right) profiles of 
H3K27 marks for the EZH2KO (F) and WT (I) cases. (K) Fit of the average H3K27me3 profile for the UTX 
KO condition. In (B,C,E,F,H,I,K), circles correspond to normalized Chip-Seq profiles (grey for HMEs, 
colored for H3K27 marks), grey full lines to gaussian fits of the HME profiles and colored full lines to the 
predicted profiles of the epigenetic states. 

Inference of methylation-related rates using EZH2 KO, WT and UTX KD 
profiles  
To infer the methylation-related parameters of the model, we designed an iterative scheme 
(Fig.2D-K) by sequentially using data from EZH2 KO, wild-type and UTX KD cells (see Materials 
and Methods section for details) for fixed ratios 𝑟9> ≡ 𝑘"#9/𝑘"#> and 𝑟=> ≡ 𝑘"#=/𝑘"#>. (i) We 
started by initializing the nucleation rate 𝑘"#> to an arbitrary value. (ii) Then, we took advantage 
of available data for EZH2 KO cells (29). Indeed, in this strain, while the average PRC2 occupancy 
is maintained (Fig.2E), PRC2 loses its allosteric long-range spreading capacity (Fig.2D). This 
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leads to a drastic reorganization of the methylation landscape (Fig.2F) with 𝑚𝑒= becoming the 
dominant methylation state in a 5kbp-large portion surrounding the TSS (compared to the wild-
type case on Fig.2I). By fitting this change of valency using a simplified version of the model with 
𝜖"#9/"#=/"#> = 0 (no long-range spreading), we could infer the demethylation rate 𝛾"#. (iii) Next, 
we reintroduced the spreading parameters (Fig.2G) and considered the wild-type profiles (Fig.2I) 
to fit the spreading-vs-nucleation ratio 𝑅 based on the methylation valency around promoters. (iv) 
After this step, there were no more free parameter in the model, however inferred 𝛾"#and 𝑅 values 
may depend on the initial guess made for 𝑘"#> at stage (i). We thus used an independent dataset 
to validate our full set of parameters. For this, we compared the quantitative H3K27me3 profile 
given by MINUTE Chip experiment for UTX KD cells (32) (Fig.2K) to the model prediction where 
active demethylation by UTX has been inhibited (𝛾"# = 0) (Fig.2J). If not consistent, the same 
data allowed us to correct and optimize the 𝑘"#>value, keeping all the other parameters fixed. By 
repeating steps (ii)-(iv) for this corrected value, we reevaluated 𝛾"#, 𝑅 and possibly 𝑘"#>, until 
convergence (Fig.S1).  
 
This overall inference strategy was then applied to several values for 𝑟9>and 𝑟=> (Table S1). Over 
all the tested cases, only one pair of ratios (𝑟9> = 3, 𝑟=> = 3) lead to the convergence of the 
inference scheme and to an overall acceptable goodness of fit (Fig.S1,2). Qualitatively, such 
ratios’ values are consistent with in vitro experiments on human EZH2 (50) showing a differential 
activity of PRC2 on H3K27u, me1 or me2 substrates with faster methylation rates towards me1 
and me2 states than towards me3 (𝑟9> ≥ 𝑟=> ≥ 1). Quantitatively, our estimation suggests that, in 
vivo, addition of the third methyl group (me2 to me3 transition) is a rate-limiting step for chromatin 
to acquire a H3K27me3 - repressed - state, but at least 2 or 3 times less that initially observed in 
vitro (50). The other optimal parameters are 𝑘"#> = 0.81	ℎE9, 𝑅 = 0.85 and 𝛾"# = 1.5	ℎE9	(Table 
1). Interestingly, such close-to-one value for the spreading-vs-nucleation parameter 𝑅 suggests 
that the allosteric boost of the EZH2 spreading efficiency mediated by H3K27me3 is of the order 
of 5- to 10-fold (see Materials and Methods), in very good agreement with in vitro experiments on 
human EZH2 (44,66).  

PRC2 spreading efficiency dictates the shapes, valencies and correlations 
of methylation profiles 
Our inference process illustrates how the epigenetic model and the underlying mechanistic 
hypotheses may consistently reproduce the profiles of all H3K27 marks around PcG-target genes. 
Remarkably, while parts of the inference are based on qualitative fits of the average methylation 
valencies around the promoter, the model predicts quantitatively the inversion of valency 
occurring far from the promoter in wild-type and in EZH2KO cells (Fig.2 F-G and J-K). In particular, 
by varying the value of the spreading-vs-nucleation ratio 𝑅 while keeping HME profiles and other 
parameters as in the WT-case, simulations strongly suggest that valency around PcG genes is 
mainly driven by the long-range, allosteric spreading capacity of PRC2 (Fig.3A). When 𝑅 is very 
low (EZH2KO-like situation, 𝑅 ∼ 0), me2 dominates at the nucleation sites (Fig.3A, TSS < 2.5 
kbp) while me1 is predominant in the rest of the region (Fig.3A for distances to TSS> 2.5 kbp). 
Interestingly, in this low-𝑅 regime, while the proportions of methylation states are overall limited,  
the model predicts that the levels of H3K27 acetylation are still low (less than 10%) everywhere 
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and therefore we may expect that most of the PcG-target genes should remain inactive. This is in 
line with experimental observations showing that the massive transcriptional deregulation of PcG-
target genes observed in EZH1/2 DKO cells is already rescued in EZH2 KO cells (31). As 𝑅 
increases, we progressively observed the emergence of H3K27me3 as the dominant state. The 
increase in me3 follows a switch-like, sigmoidal, function as a function of 𝑅 (blue lines in Fig.3A), 
signature of a phase-transition driven by the allosteric spreading. Strikingly, the inferred 
parameter for WT (𝑅 = 0.85, red dotted lines in Fig.3A) lies in the transition zone between the low 
and the high me3 regimes.  
 

 
Figure 3: Effect of spreading efficiency on PcG-target genes. (A) Average predicted proportion of a 
given mark as a function of the spreading-to-nucleation ratio R, all other parameters fixed to WT. Panels 
from left to right correspond to regions close or far from TSS. (B) Correlation between H3K27 states at 
different positions around TSS for the WT parameters. (C) Predicted (top) and experimental (down) WT 
profiles around the gene Tcfap2b.  
 
As the spreading mechanism is constrained by the presence of H3K27me3 marks at the binding 
sites of PRC2, we expected to observe long-range correlations between the H3K27me3 level 
around the TSS where HMEs bind and the methylation state at more distal regions. More 
generally, to estimate the co-occurence of H3K27 states at different positions, we computed from 
the simulated stochastic trajectories (Fig.S3) the correlations (see Materials and Methods) 
between the instantaneous local epigenomic state of any pairs of loci in the WT situation. Fig.3B 
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illustrates the complex pattern of correlations existing between states and loci. As expected, 
positive correlations are observed between H3K27me3-tagged loci. Acetylated loci are weakly 
negatively (respectively positively) correlated with highly (resp. lowly) methylated states me2/3 
(resp. me0/1). Due to the ‘synchronized’ dilution happening at replication, H3K27u-tagged loci are 
highly correlated. Other correlations between states translate the local competition between them 
and the long-range spreading capacity of H3K27me3 states at TSS. For example, me2 at (resp. 
out of) TSS is negatively (resp. positively) correlated with me3 everywhere. Indeed,  me2 at TSS 
does not allow spreading methylation while me2 out of the nucleation region is the pathway 
towards me3 via spreading by me3 from TSS.  
 
So far, we have parameterized and analyzed our model using the average experimental densities 
of HMEs around PcG genes as inputs and the corresponding average experimental profiles of 
H3K27ac/me1/me2/me3 modifications as targets. Therefore, we wanted to test whether the same 
parameters are also viable for individual genes. Overall, plugging HME densities of individual 
genes into the simulations, we found that the individual profiles for each modification as well as 
the methylation valencies are well captured by the model (see examples in Fig.3C and Fig.S4). 
This is remarkable that we can still reproduce the specificity of each gene knowing that our 
parameterization has been based on an average signal that smoothed out these specificities.   

Parameter-free predictions of H3K27 modifications at active and 
bivalent genes 

 
Figure 4: Predictions of H3K27 modifications for active and bivalent genes. (A,C) Average p300 
occupancy in WT around active (A) and bivalent (C) genes. (B,D) Predictions of the average H3K27ac 
profile in EZH1/2 DKO cells for active (B) and bivalent (D) genes. (E-L) Experimental (E,G,I,K) and 
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simulated (F,H,J,L) profiles of H3K27 marks for the EZH2KO (E-H) and WT (I-L) cases around active 
(E,F,I,J) and bivalent (G,H,K,L) genes. Circles correspond to normalized Chip-Seq profiles (grey for HMEs, 
colored for H3K27 marks), grey full lines to gaussian fits of the HME profiles and colored full lines to the 
predicted profiles of the epigenetic states. 
 
In our epigenetic model, the various methylation or acetylation patterns observed at different loci 
emerge from the differential binding of HMEs at these regions. We therefore asked if the shapes 
and valencies of H3K27 modifications observed around active and bivalent genes (25,29) may be 
predicted by the model using the same parameters as previously inferred at PcG genes but with 
the active and bivalent average HME profiles.  

 
In EZH1/2 DKO cells, the model is able to predict quantitatively the acetylation profiles of bivalent 
and active genes using their respective corrected p300 profiles (Fig. 4A-D). In EZH2 KO cells, the 
model well predicts the methylation valencies for both active and bivalent genes but fails in 
capturing the acetylation level (Fig.4E-F), suggesting that the p300/UTX profiles that we took from 
WT as they were not available in the mutant strain, may be strongly perturbed in EZH2KO around 
non-PcG genes with a higher occupancy as observed in EZH1/2 DKO cells.  
 
In the WT case, active genes exhibit an inverse H3K27 methylation landscape compared to PcG 
domains with a valency me1 > me2 > me3 (Fig.4H). Interestingly, the average HME densities are 
also inverse with those around PcG genes: poor PRC2 binding and rich UTX/p300 occupancy 
(Fig.S5). Using these profiles as inputs, the model is able to well predict the average histone 
marks profiles including the observation that acetylation is higher than the methylation levels at 
the promoter (Fig.4I), the behavior around individual genes being also well captured (Fig.S6). At 
bivalent genes, H3K27me3 has the almost same peak density (average) as H3K27me2 around 
the promoter (± 2.5 kbp), both being higher than H3K27me1 and ac (Fig.4J). Our epigenetic 
model performs reasonably well in this region (Fig.4K) even if prediction for H3K27me3 is slightly 
lower than observed (see also Fig.S7). However, the model completely fails for more distal 
regions where ChipSeq experiments show for example a flat profile for H3K27me2 that we don’t 
capture. This suggests that other mechanisms not included in the model might play an important 
role at bivalent genes. For example, activating marks like H3K4me or H3K36me, also present at 
bivalent genes (32,33), may interfere with the H3K27 dynamics (16,59). 

Competition between activating and repressing factors shapes the 
local epigenomic landscape 
More generally, we asked how the differential recruitment of HMEs around TSS may impact the 
local epigenetic landscape and subsequently gene regulation. To investigate this, we 
systematically computed the average profiles of H3K27 modifications as a function of the 
recruitment strengths of p300/UTX and PRC2 (see Materials and Methods). For each recruitment 
condition, we estimated the methylation valencies around TSS (Fig.S8) and found that the phase 
diagram of the system can be divided into 3 qualitative behaviors (Fig.5): PcG-target-like 
landscapes with me3>>me2>me1 for ‘high’ PRC2 and ‘low’ p300/UTX recruitments, active-like 
landscapes with me1>me2>>me3 for ‘low’ PRC2 and ‘high’ p300/UTX recruitments, and other 
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types of landscape including bivalent-like cases (me2~me3>me1) for intermediate situations. The 
frontiers between these regions are almost straight lines with a stiffer dependency to the PRC2 
occupancy, signature of the asymmetric tug-of-war between the acetylation by p300 and 
demethylation by UTX from one side and the methylation by PRC2 on the other side. The levels 
of p300/UTX at an average PcG-target gene in mESC (blue dot in Fig.5A) would need to be 3 
times higher than the levels typically observed around active genes in mESC (orange dot in 
Fig.5A) to switch the gene into the active area for the same PRC2 level; while the level of PRC2 
at an average active gene in mESC should be increased by 80% of the typical level found at PcG-
target genes in mESC to move the gene into the PcG area. This suggests that activation of former 
PcG-target genes, during differentiation for example, at more reasonable levels of p300/UTX 
would require a concomitant decrease in PRC2 occupancy in parallel to the increase in p300/UTX 
recruitments. As repressors (PRC2) and activators (p300/UTX) binding motifs or recruitment 
signals are usually colocalized around TSS (67), a competition for their bindings to chromatin may 
naturally cause the inhibition of repressor occupancy while activator binding increases (or vice 
versa) (17).  

 
Figure 5: Differential recruitment of HMEs at nucleation sites.  (A) Phase diagram of the model behavior 
obtained by varying the strengths of recruitment of p300 (x-axis) or Suz12/PRC2 (y-axis) around TSS for 
WT parameters. P300 (Suz12) peak intensities are normalized by the corresponding value at active (PcG-
target) genes. The blue area represents situations where the methylation valency around TSS is PcG-
target-like (me3>>me2>me1), the orange area to active-like conditions (me1>me2>>me3), the white zone 
to other cases including bivalent genes (me2~me3>me1). Colored dots give the positions of WT 
experimental profiles studied in Fig.2 and 4. Black dots are other special examples shown in panel (B). (B) 
Predicted epigenetic state profiles at different positions in the phase diagram (black dots in (A)).  
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The model captures the maintenance and spreading dynamics of 
H3K27me3  
Previously, we showed that our model well captures the average, ‘static’ epigenetic landscape 
around genes for a population of asynchronized cells. We finally sought to use it to better 
characterize the dynamics of regulation of H3K27 modifications.  
 
We first interrogated how the epigenetic landscape is re-established after the strong, periodic 
perturbation of the system occurring every cell cycle at replication where half of the epigenetic 
information is lost. With the WT parameters inferred above, focussing on PcG-target genes, we 
tracked the dynamics of each H3K27 marks after replication for a population of synchronized cells 
in a periodic steady-state (Fig.6A). The me1 level rapidly increases up to ~4-fold (reached at ∼
𝑇/7) and then slowly decays by 2-fold towards its pre-replication value. The me2 profile reaches 
almost its pre-replication value after ∼ 𝑇/3. The me3 level slowly grows along the whole cell cycle. 
This dynamics translates the gradual and slow re-establishment of H3K27me3 marks from the 
unmarked histones newly integrated at replication that are rapidly methylated to me1, which 
represents a transient state towards higher methylation states. Even if me2 reaches plateau 
suggesting that the ‘me1 to me2’ and ‘me2 to me3’ fluxes equilibrate, the system as a whole never 
reaches a steady-state during cell cycle due to the ‘me2 to me3’ rate-limiting step that occurs 
more slowly than the other transitions (𝑟9> = 3, 𝑟=> = 3, see above).  Remarkably, our predictions 
are in qualitative agreement with the cell cycle dynamics of whole-genome contents of 
H3K27me1/me2/me3 measured in human HeLa cells using SILAC (Fig.6B) (60). The model even 
captures the small decrease in H3K27me3 level just after replication, that in our model can be 
interpreted by a significant demethylase activity not yet compensated by the methylation flux from 
the me2 state.  
 
To better characterize the dynamics of newly integrated histones in the maintenance of a stable 
epigenetic landscape, we turned to a simpler system of unsynchronized cells where, we tracked 
the time-evolution of the epigenetic state of unmarked histones incorporated in the region after a 
given time 𝑡S due to histone turnover or replication (scheme at the top of Fig.6C,E).  For this pool 
of ‘new’ histones, we observed the same type of dynamics than along the cell cycle: me1 has a 
transient dynamics, me2 reaches a plateau and me3 grows very slowly (Fig.6E), confirming that 
the establishment of me3 marks on new histones extends over a long period (∼ 2𝑇). Consistently, 
the proportion of me3 in the pool of ‘old’ histones that were integrated before 𝑡S is still slowly 
increasing after 𝑡S, while me2 levels remain almost constant and the me1 content slightly 
decreases (Fig.6C). Again, both predictions on old and new pools are qualitatively consistent with 
recent whole-genome SILAC experiments performed on mESC (Fig.6D,F) (59), the recovery rate 
of H3K27me3 being even slower in the experiments than predicted.  
 
Finally, we analyzed the spreading dynamics of H3K27me3 around PcG-genes. We prepared the 
system as a population of unsynchronized cells evolving with a EZH2 inhibitor (𝑅 = 0, no 
spreading) (scheme at the top of Fig.6G,H). Then, at a given time 𝑡S, the inhibitor is washed out 
(𝑅 = 0.85, WT parameters) and we tracked the establishment of the epigenetic landscape after 
𝑡S (full lines in Fig.6G, top). Due to the inhibition of EZH2, at t=𝑡S, the global level of me1 is higher 
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than in normal WT condition (dashed lines in Fig.6G, top), while me2 and me3 are less present 
(see also Fig.2F,I). For t>𝑡S, we observed that the spreading of H3K27me3 and the recovery 
towards the WT state is slow and takes few cell generations (∼ 2𝑇). These predictions are in 
perfect agreement with similar experiments on mESC studied with whole-genome SILAC (Fig.6G, 
bottom) (59) or Chip-Seq (31) but also with EED-KO rescue experiments in mESC showing a 
recovery of the WT levels about 36 hours after the rescue (6). After the release of the inhibition, 
we also followed the dynamics of newly incorporated histones (full lines in Fig.6G) and compared 
it to the dynamics of new histones but in WT conditions (Fig.6E and dashed lines in Fig.6G).  
Overall, we observed a shift of ∼ 𝑇/5 in the establishment of the epigenetic identity of the new 
histones compared to WT, consistently with SILAC experiments (59). This delay is imputable to 
the weak density of H3K27me3 marks at the nucleation sites at 𝑡Sthat limits initially the long-range 
spreading by PRC2. This highlights the role of pre-existing H3K27me3 in controlling the dynamics 
of de novo methylation states thanks to the reader-writer capacity of PRC2.  
 

 
Figure 6: Dynamics of H3K27 modifications. (A,B) Intra-cell cycle dynamics for a population of 
synchronized cells as a function of the time after the last replication, predicted by the model for the WT 



 

16 

parameters averaged around mESC PcG-target genes (A) or measured by whole-genome SILAC 
experiments (B) on HeLa cells (data extracted from (60), see Materials and Methods). For each cell type, 
time is normalized by the corresponding cell cycle length (𝑇 = 13.5h for mESC simulations, 𝑇 = 24h for 
HeLa cells). Dotted lines in (B) are a guide for the eye. (C-F) In WT conditions, we tracked from a given 
time (t=0) the dynamics of marks in the pools of (E, F) newly incorporated (after turnover or replication) and 
(C,D) remaining (old) histones, for a population of unsynchronized cells. Predictions for the WT parameters 
averaged around mESC PcG-target genes are given in (C, E); whole-genome SILAC experiments on mESC 
in (D,F) (extracted from (59), see Materials and Methods). Time is normalized by the effective histone decay 
time (𝑡# = 12.7h for simulations, 𝑡# = 28.6h for experiments) (see Materials and Methods). (G, H) A 
population of unsynchronized cells is first evolved in presence (EZH2i) or absence (WT) of an EZH2 
inhibitor. Then, at t=0, if present, the inhibitor is washed out and we tracked the dynamics of marks in all 
histones (G) or in newly incorporated histones after t=0 (H). Predictions for the WT parameters averaged 
around mESC PcG-target genes are given in (G, top; H); whole-genome SILAC experiments on mESC in 
(G, bottom) (extracted from (59), see Materials and Methods). Time is normalized as in (C-F).  

Discussion and conclusion 
In this work, we developed a model which accounts for the recruitment of HMEs at a domain of 
interest and then determines the histone modification levels as a consequence of a complex 
competition between the spreading and erasing capacities of these HMEs. In the light of rich 
quantitative data available from recent experiments, we picked up the case of H3K27 
modifications in mESCs which allows, by modeling one residue, to investigate Polycomb-
repressed, active and bivalent genes at the same time. By integrating key mechanistic details like 
the reader-writer capacity of PRC2 and experimental data of HME occupancy (Fig.1), this 
framework allowed us to analyze different conditions under one umbrella.  
In particular, we inferred model parameters using data from WT and mutant conditions (EZH1/2 
DKO, EZH2 KO, UTX KD) around PcG-target genes (Fig.2). We found that, to reach the 
repressive H3K27me3 state, the me2 to me3 transition was the limiting time step (50). Our 
strategy also highlights the importance of looking at the full density profiles and methylation 
valencies around TSS (or nucleation sites) to efficiently estimate the spreading activity of PRC2. 
In particular, we estimated that the ‘writing’ efficiency of PRC2 is boosted by 5- to 10-fold when 
bound to H3K27me3 histones (44).  
Our analysis suggested that such long-range, enhanced mechanism drives a transition between 
a low and high me3 regime and is essential for maintaining a proper H3K27me landscape 
(Fig.3A). The sigmoidal shape of this transition suggests that the epigenetic landscape could be 
sensitive to variations in the spreading efficiency (9). While this may be advantageous for WT 
embryonic cells that are plastic and may need to differentiate rapidly following developmental 
cues, perturbations of this key allosteric capability may have deleterious impacts on gene 
expression. For example, gene deregulation in pediatric gliomas is associated with a loss of the 
EZH2 allosteric stimulation, mediated by the interactions between PRC2 and the oncohistone 
H3K27M or the oncoprotein EZHIP (68).  
While the model was parameterized using average data around PcG-target genes, it was able to 
predict semi-quantitatively the H3K27 densities around individual PcG-target genes, but also 
around active and bivalent genes, by only plugging in the corresponding HMEs profiles (Fig.4). A 
systematic analysis of the role of HME recruitment (Fig.5A) allowed us to characterize the 
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competition for epigenetic control between active and repressive factors. We showed that genes 
can be categorized as repressed, active or bivalent depending on the levels of recruitment of 
activators and repressors. In particular, we observed that PRC2 binding at promoters, even at 
mild degrees, is essential to avoid spurious transcription by increasing the level of P300/UTX 
recruitment needed for transcriptional activation (14,33). Activation of PcG-target genes should 
be necessarily accompanied by a significant decrease in PRC2 binding via, for example, the 
competition with activators for the binding at promoters (17,69). Moreover, looking at the 
consistency between the predicted category of expression (silenced, active, bivalent) and the 
observed one may be used to identify genes that are under the direct control of the H3K27 marks 
and associated HMEs.  
Beyond the ‘static’, average description of H3K27 profiles around TSS, the model can be used to 
predict the dynamics of maintenance or establishment of the epigenetic landscape (Fig.6). In 
perfect agreement with experiments (59,60), we observed that the (re)formation of H3K27me3 
domains de novo or after replication is a slow process in cycling mESCs. This indicates that 
regulation of the cell cycle length during embryogenesis for example may also impact the stability 
and plasticity of the epigenetic landscape (17,70). We showed that the reader-writer capacity of 
PRC2 strongly influences such dynamics at PcG-target genes. Simply put, PRC2 which is 
recruited at promoters, first tri-methylates histones H3K27 at these nucleation sites, and then, 
thanks to allosteric activation, can tag more distal sites and spread methylation. The initial 
presence of H3K27me3 thus accelerates this process. This suggests that defects in partitioning 
of maternal H3K27me3 histones between the leading and lagging daughter strands (61,62) may 
generate asymmetries that may propagate to further generations as the H3K27me3 recovery 
dynamics is slow (71).  
 
Previous generic models of epigenetic regulation (8–11,17) suggested mathematically that the 
maintenance of a robust and plastic epigenetic state may be associated with bistability that 
emerges from the self-propagation capacity of some epigenetic marks (8,9). Here, we proposed, 
in line with recent experiments for the PcG system (6,31,72), that robustness is associated with 
the stable recruitment of HMEs at specific nucleation sites coupled to the long-range, 
allosterically-boosted spreading capacity of PRC2. As it is, our model cannot lead to mathematical 
bistability: PcG-target-like repression and bivalency are not bistable states (16) in our framework 
but rather correspond to a bimodal and a highly fluctuating state, respectively (Fig.S9).  
Compared to the few other explicit models of PcG regulation in mammals (14,18,25), our 
framework also integrates a spreading process in competition with antagonistic erasing and 
activating processes, but the mechanistic nature of spreading differs.  Chory et al (25) did not 
account for the allosteric enhancement of PRC2 and hypothesized that spreading from the 
nucleation site occurs via histone exchange between nearest-neighbor (NN) nucleosomes.  Berry 
et al (14) considered the allosteric boost and that any H3K27me3 histone can spread methylation 
to its NN sites, allowing bistability to emerge. In terms of spreading, our formalism is closer to 
Erdel et al (15) that modeled H3K9me3 regulation in S. pombe from the methylation long-range 
activity of enzymes bound at a nucleation site.  
 
In addition to the richness of available datasets, by modeling H3K27 regulation in mESCs, we 
were hoping that the high plasticity of these cells would allow us to explain their epigenetic 
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landscape by simply focusing on main, primary mechanisms while neglecting a priori secondary 
effects. Our good description of the H3K27 profiles in different conditions around PcG-target 
genes and, to a lesser extent, around active and bivalent genes validated our approach. However 
our predictions also contained discrepancies suggesting missing ingredients that may improve 
the description of H3K27 regulation in mESCs but also in more differentiated cell types.  
A strong hypothesis that we made is that H3K27 profiles are only readouts of the HME 
occupancies via a complex network of interactions, but they do not feedback the binding of HMEs 
or the model parameters like UTX activity (47) or the histone turnover rate that may be impacted 
by transcription (14,25,73,74). For example, the PRC2 ‘reader’ subunit EED is known to interact 
with H3K27me3 histones (44). We assumed that such interaction was only relevant at nucleation 
sites to enhance EZH2 activity, but it may also lead to the recruitment of PRC2 at more distal sites 
and allow a self-propagation of the H3K27me3 mark (66). We expect however such an effect to 
be weak in mESCs as the profile of H3K27me3 around TSS is much larger than the PRC2 binding 
density (Fig.2H,I), a significant self-propagation would have led to profiles with more similar 
shapes. To account for such feedback, one would need to model explicitly the binding and 
unbinding of HMEs. This would allow also to describe in more detail the role of PRC1 variants in 
nucleation and maintenance (35–37) or the competition for the binding of antagonistic HMEs 
around the same site (17). 
Another simplification made in our work was to only model H3K27 modifications. While this might 
be sufficient to describe the regulation of PcG-target genes, a more acute description of active 
and bivalent genes may require accounting for other ‘active’ modifications like the methylations 
of H3K4 and H3K36 by Trithorax-group proteins (16,59,75) that may interfere with H3K27me 
states (75).  
In our formalism, the long-range spreading of methylation results from 3D contacts between 
nucleation and distal loci. In this work, we assumed that such contacts were dependent only on 
the genomic distance and were not affected by the local epigenetic landscape. However, PRC1 
that binds to H3K27me3 may form condensate (45,76–78) , the so-called Polycomb bodies, and 
may subsequently impact the local 3D organization of the locus (79,80), an increase compaction 
may in turn facilitate spreading (81–83). Accounting for this positive feedback loop between long-
range spreading and 3D chromosome organization may allow a better characterization of the role 
of genome folding in epigenetic regulation (84,85). 
 
To conclude, the ideas and formalisms developed here are general in nature and are adaptable 
to other cell types or epigenetic systems. In particular, it would be interesting to investigate the 
generality of the inferred parameters for more differentiated cells where H3K27me3 domains are 
usually more extended around PcG-target genes than in mESCs. It would allow to understand if 
these changes are solely due to differential HME binding, to modifications of rates like histone 
turnover (73,86) or to some unconsidered mechanisms as discussed above. More generally, our 
approach represents a first step towards a quantitative description of PcG regulation in various 
cellular contexts where ‘secondary’ effects may be integrated step-by-step to better estimate their 
importance in normal or disease contexts. 



 

19 

Materials and methods 

Chip-seq data analysis 
We collected the raw Chip-seq data of various histone modifying enzymes (SUZ12, p300, UTX) 
and of H3K27-me3/me2/me1/ac marks from various sources as listed in Table 2. Corresponding 
fastq files were imported in the Galaxy environment (87) and mapped using bowtie2 (88) to the 
mouse genome (mm9). For ChipSeq data with spike-in control, reads were mapped to the 
combined mouse + drosophila genomes (mm9+dm6). After removing the duplicates and sorting 
the bam files using samtools (89), reads were normalized by the total number of mm9 mapped 
reads for normal Chip-seq and by the one of dm6 for Chip-seq with spike-in (90). While utilizing 
all of these tools, we made sure that the same settings as in the original papers were used. To 
analyze the Chip-seq data, we first used bamcoverage from the deepTools 2.0 suite (91) to 
generate genomic profiles at a binning of 50bp. Then, to make quantitative comparisons between 
different histone modification levels, each profile was further normalized (25) using R by dividing 
each bin value by the maximal value of the bin count over the genome, this maximum being 
estimated after removing outliers (bins outside the quantile range (0.1%,99.9%)). Although the 
above normalization method allows for comparison across different antibodies (25), we want to 
make it clear that these are not absolute probabilities a priori. Normalized average profiles around 
TSS for PcG-target, bivalent and active genes were computed from the matrix files given by 
computeMatrix (deepTools 2.0) (91) for each list of genes that we took from (25).  

The above method was used for normal ChipSeq data except for the UTX/JMJD3 inhibited 
experiment obtained with MINUTE Chip (32). In this case, the normalized bigwig file was directly 
sourced and fed to computeMatrix. Different from normal Chip-seq or Chip-seq spike-in 
experiment, the reads are normalized with total mapped reads of input to evaluate the input 
normalized read count (INRC).  It was shown in (32) that the INRC can be regarded as a signal 
proportional to the true density of H3K27me3 histones over the genome. Here, we further assume 
that in absence of demethylase and demethylase-driven activation signals, genes targeted by 
Polycomb will attain maximum possible H3K27me3 levels. Then, the INRC at PcG-target genes 
is further scaled with the average peak density to approximate the actual density of H3K27me3 
at PcG-target genes in UTX/JMJD3 inhibited mESCs. 
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Table 2: List of Chip-Seq data used in this study 

Antibody Cell line and 
perturbation 

Experiment Source 

H3K27me3/me2/m1/ac Wild type mESCs-2i Chip-seq Spike-in GSE116603 

SUZ12 Wild type mESCs-2i Chip-seq  

H3K27me3/me2/m1 EZH2KO mESCs-2i Chip-seq Spike-in 

SUZ12 EZH2KO mESCs-2i Chip-seq  

H3K27ac EZH1/2 DKO mESCs-
2i 

Chip-seq Spike-in 

p300 Wild type mESCs-
Serum 

Chip-seq  GSM2417169 

UTX Wild type mESCs-
Serum 

Chip-seq  GSM2575693 

H3K27me3 UTX/JMJD3 inhibited 
mESCs-2i 

MINUTE Chip 
(calibration 
experiment) 

GSM3595377 

Description of the stochastic epigenetic model 

Mathematical formulation of the kinetic transition rates 
The dynamics of the epigenetic state is driven by kinetic rates accounting for the main features 
of the model described in the main text: 

● Addition of one methyl group to histone i to reach state 𝑚𝑒U (𝑥 ∈ {1,2,3}) is governed by 
(𝑚𝑒S ≡ 𝑢) 
𝑚𝑒UE9(𝑖) → 𝑚𝑒U(𝑖) 	= 𝑘"#$𝜓ZI[9=(𝑖) + 𝜖"#$ ∑^

_`ab4<(^)
(^Ec)d

𝛿 ,"#>	     (1) 

𝑘"#$𝜓ZI[9=(𝑖)represents the local nucleation of the 𝑚𝑒U (𝑥 ∈ {1,2,3}) state with 𝑘"#$ the 
corresponding rate and 𝜓ZI[9=(𝑖) the density of bound PRC2 at locus i. Practically, 𝜓ZI[9=(𝑖)is 
given by the normalized Chip-Seq profile of Suz12 (see below). The right part in Eq.1 describes 
the long-range, allosteric spreading capacity of PRC2 with 𝜖"#$  the corresponding enzymatic 
activity and 𝛿 ,"#> = 1 if histone j is trimethylated (= 0	otherwise). This term depends on the 
probability of contact between two loci. To simplify, we assume a power-law contact model ∼
1/|𝑗 − 𝑖|i, capturing the average polymeric behavior of chromatin (92), with |𝑗 − 𝑖| the genomic 
distance between two histones i and j, and 𝜆 = 1 in accordance with Hi-C data in mESC (93).  

● Removal of one methyl group to a 𝑚𝑒U histone (𝑥 ∈ {1,2,3}) at position i is driven by: 
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𝑚𝑒U(𝑖) → 𝑚𝑒UE9(𝑖) 	= 𝛾"# 𝜓klm(𝑖)       (2) 
with  𝛾"# the corresponding demethylation rates and 𝜓klm(𝑖) the density of bound UTX at locus i 
that we extracted from the normalized ChipSeq data. 

● Addition of acetylation at histone i follows the propensity:  
𝑢(𝑖) → 𝑎𝑐(𝑖) 	= 𝑘23 𝜓p>SS(𝑖)     (3) 

with 𝑘23 the acetyltransferase activity of p300 and 𝜓p>SS(𝑖) the density of bound p300 at locus i 
that we extracted from the normalized ChipSeq data. 

● Removal of acetylation at histone i is given by 
𝑎𝑐(𝑖) → 𝑢(𝑖) 	= 𝛾23       (4) 

with 𝛾23 = 0.6	ℎE9the uniform deacetylation rate. 
● Histone turnover leads to the loss of the current histone state replaced by a ‘u’ state: 

𝑋(𝑖) → 𝑢(𝑖) 	= 	 𝛾HIJK    (5) 
with 𝑋 ∈ {𝑎𝑐,𝑚𝑒9,𝑚𝑒=,𝑚𝑒>} and 𝛾HIJK = 0.03	ℎE9the uniform turnover rate. 

● DNA replication occurs every 𝑇 = 13.5	ℎ. During this periodic event, the state of each 
histone can be lost with a probability ½ and replaced by a ‘u’ state. 

Relation between the nucleation and spreading rates 
In the epigenetic model (see above), a PRC2 complex bound to locus i has a local (nucleation) 
activity with rates 𝑘"#$and may have, if i is trimethylated, a long-range activity on any locus j with 
rates 𝜖"#$/(𝑗 − 𝑖)

i (Eq.1). Actually, this last term represents the allosterically boosted activity of 
PRC2 (𝐹 × 𝑘"#$) times the probability 𝑃>t(𝑖, 𝑗) for PRC2 in i  to contact j in 3D: 𝜖"#$/(𝑗 − 𝑖)

i ≡
𝐹𝑘"#$𝑃>t(𝑖, 𝑗) with 𝐹 the fold-change of PRC2 activity due to allostery.  Simple polymeric 
arguments lead to 𝑃>t(𝑖, 𝑗) ≈ v6/𝜋(𝑎/𝑑c^)>with 𝑎 the typical 3D ‘capture distance’ of PRC2 and 
𝑑c^ ≈ 𝑑S(𝑗 − 𝑖)i/> the average distance between loci i and j. Therefore 𝑅 ≡ 𝜖"#$/𝑘"#$ =

𝐹v6/𝜋(𝑎/𝑑S)> is independent of x. Assuming that 𝑎 ∼ 10	𝑛𝑚 the typical size of PRC2 complex 
(94) and 𝑑c^ ∼ 100nm for 10-kbp (|𝑗 − 𝑖| ∼ 100histones) genomic distance (95) (ie, 𝑑S ∼ 22	𝑛𝑚), 
𝐹 ∼ 8	 × 𝑅.  

Simulations of the model 
For given parameters (Table 1) of the epigenetic model and for given profiles for Suz12, p300 
and UTX (Fig.1B), the corresponding stochastic dynamics (Fig.S3) of the system was simulated 
using a home-made Gillespie algorithm (96) implemented in Python 3.6 that is available at 
https://github.com/physical-biology-of-chromatin/PcG-mESC. For data in Figures 2, 3, 4 and 5, 
32 independent trajectories per parameter set were simulated over 25 cell cycles to ensure the 
system has reached a periodic steady-state. Predicted average profiles of 
H3K27ac/u/me1/me2/me2 correspond to the probability for a given locus to carry a given mark in 
an asynchronous cell population (i.e. averaged over time and trajectories) at steady-state. For 
data in Fig.6, 500 independent trajectories were simulated over 100h. In Fig.6A (cell cycle 
dynamics), average proportions along the cell cycle for each mark are given for a synchronized 
cell population (i.e. averaged over trajectories and over various cell cycles) that has reached a 
periodic steady-state. In Figs. 6C-E, average values correspond to a population of asynchronized 
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cells (i.e., at a given absolute time, different trajectories may correspond to different relative times 
along the cell cycle) for which we tracked the replacement of histones by turnover or dilution from 
a given absolute time (t=50h). In addition, for Figs. 6G-H, the asynchronized population was first 
evolved in a EZH2i-like situation (𝜖"#$ = 0) until steady-state before being switched to a WT-like 
situation at a given absolute time (t=50h).  

Profiles of HMEs used in the simulations 
To simulate the average epigenetic landscape around PcG-target, active or bivalent genes in 2i 
condition (Fig.2-4), we directly used the average normalized Chip-Seq profiles of p300, UTX and 
SUZ12 around TSS for each gene category (Fig.S5), as described above. Note that SUZ12 
profiles have been well measured in 2i condition but p300 and UTX are taken from serum 
condition experiments (Table 2). However, we assumed that p300 and UTX profiles are also valid 
for the 2i condition for all gene categories. 
 
For predictions around single genes (Fig.4C), the noisy normalized Chip-Seq profiles (50 bp-
binning) were smoothed out with a moving average over a 300bp-long window. 
 
To investigate the interplay between the recruitment strengths of p300/UTX and PRC2 (Fig.5), 
we first fitted the average HME profiles (Fig.S5) by Gaussian-like functions: 𝜓"𝑒𝑥𝑝[−(𝑖 − 𝑖S)=/
(2𝜎S=)] + 𝜓~ with 𝜓~ the background level, 𝜓" the height of the binding peak from background, 𝑖S 
the position of the peak and 𝜎S  the typical width of the peak. Then, we predicted the average 
H3K27 proportions for hypothetical genes characterized by a Suz12/PRC2 profile 
𝜓�I[9=(𝑖)=𝛼	𝜓",�I[9=(𝑃𝑐𝐺)𝑒𝑥𝑝[−(𝑖 − 𝑖S,�I[9=)=/(2𝜎S,�I[9== )] + 𝜓~,�I[9=, a p300 profile 
𝜓�>SS(𝑖)=𝛽	𝜓",�>SS(𝐴𝑐𝑡. )𝑒𝑥𝑝[−(𝑖 − 𝑖S,�>SS)=/(2𝜎S,�>SS= )] + 𝜓~,�>SS and a UTX profile 
𝜓klm(𝑖)=𝛽	𝜓",klm(𝐴𝑐𝑡. )𝑒𝑥𝑝[−(𝑖 − 𝑖S,klm)=/(2𝜎S,klm= )] + 𝜓~,klm where 𝜓",�I[9=(𝑃𝑐𝐺)is the 
amplitude measured around PcG-target genes and 𝜓",�>SS/klm(𝐴𝑐𝑡. )around active genes, 𝛼 and 
𝛽 are two multiplicative factors allowing to vary the amplitudes of the HME profiles around TSS. 
Here, for simplicity, we assumed that p300 and UTX evolved with the same factor 𝛽. For example, 
WT PcG-target gene in 2i condition corresponds to (𝛼; 𝛽) ≈ (1; 0.3) and active genes to (𝛼; 𝛽) ≈
(0; 1).  

Parameter inference 
To fix the remaining free parameters of the model, we develop a multi-step inference strategy 
based on the different perturbation experiments (EZH1/2 DKO, EZH2 KO, Wild Type and UTX 
inhibited) from (29,32). To be self-consistent, the fitting was carried out exclusively with the 
average profiles obtained for PcG-target genes (see above).  
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Acetylation rate 
In EZH1/2 DKO cells, the epigenetic model becomes a two-state model between the ‘ac’ and ‘u’ 
states since methylation is not possible. In this simple case, the probability of being acetylated at 
position i is given by 

𝑃23(𝑖) = 𝑘23𝜓�>SS(𝑖)/[𝑘23𝜓�>SS(𝑖) + 𝛾23 + 𝛾HIJK + 𝑙𝑜𝑔(2)/𝑇]               (6) 

The p300 ChipSeq density 𝜓�>SS for EZH1/2 DKO cells was unavailable, so we used the wild type 
p300 occupancy with a correction factor. We first fitted the WT profile by a Gaussian-like function 
(full line in Fig.2B), 𝜓�>SS�l (𝑖)=𝜓"𝑒𝑥𝑝[−(𝑖 − 𝑖S)=/(2𝜎S=)] + 𝜓~, with 𝜓~ = 0.1196 the background, 
non-specific binding level of p300, 𝜓" = 0.1666 the specific maximal increase of binding at the 
peak, 𝑖S = −0.5438 the position of the peak and 𝜎S = 5.1875 the typical width of the peak. 
Assuming a uniform difference in p300 occupancy between WT and DKO situations, we model 
the DKO p300 profile as 𝜓�>SSt�� (𝑖)=𝜓"𝑒𝑥𝑝[−(𝑖 − 𝑖S)=/(2𝜎S=)] + 𝛼𝜓~ with 𝛼 < 1 the correction 
factor. Using this profile in Eq.6 and minimizing a chi-squared score between model predictions 
and experiments (Fig.2C), we can infer 𝑘23 = 1.03	ℎE9 and 𝛼 = 0.6 (see also Fig.S10). 

(De)methylation rates 
Inference of methylation-related parameters follows an iterative multi-steps strategy as described 
in the main text.  

1. Ratios 𝑟9> ≡ 𝑘"#9/𝑘"#> and 𝑟=> ≡ 𝑘"#=/𝑘"#> are fixed to arbitrary values. 
2. The absolute nucleation rate 𝑘"#> is initialized to a random value. 
3. In our model, EZH2 KO cells correspond to an epigenetic system without spreading 

(𝜖"#$ = 0). For various values of 𝛾"#, we simulated this situation using the SUZ12 Chip-
seq density measured in EZH2 KO by Lavarone et al (29). We could not find the UTX/p300 
occupancy of EZH2KO cells in literature, so wild type UTX/p300 occupancy was used. At 
this point, we do not see any indication that knockout of EZH2 will significantly alter the 
presence of UTX/p300 occupancy for PcG genes. As normalized Chip-seq densities are 
more pertinent in terms of relative comparison, we fixed the value of 𝛾"# that is qualitatively 
consistent with the methylation valency observed around the promoter of PcG-target 
genes in EZH2 KO cells, i.e. the profile of me2> profile of me3> profile of me1 at TSS 
(Fig.2F-H).  

4. Using wild-type cells data, we then fixed the spreading rates 𝜖"#$ , or more exactly the 
ratio 𝑅 = 𝜖"#$/𝑘"#$ . Again, estimation of 𝑅 was based on capturing the methylation 
valency at PcG-target genes rather than absolute Chip-Seq density, such that H3K27me3 
is prevalent in the large regions around TSS’s and eventually overtaken by H3K27me2 at 
~5 (±0.5) kb from TSS (Fig.2J-K).  

5. At this point, all parameters have been fixed (𝑘"#9/"#=/"#>) or inferred (𝛾"#, 𝑅). We used 
MINUTE Chip experiments for UTX inhibited cells to validate these parameters. The 
corresponding H3K27me3 experimental profile has been calibrated such that it 
quantitatively corresponds to the probability that H3K27 is trimethylated (32) (see above) 
and can therefore be directly compared to model predictions. We simulated these cells 
with 𝛾"# = 0 and neglecting the acetylation pathway considering that UTX is a stimulant 
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for p300 recruitment (46). By keeping 𝑅 to the inferred value in step 4 and 𝑟9> and 𝑟=> to 
the imposed values in step 1, we corrected the 𝑘"#> value to minimize a chi-squared 
distance between predictions and experiments. 

6. Steps 3 to 5 are repeated until convergence (Fig.S1) or failure of the fitting process when 
steps 3 & 4 cannot capture the experimental methylation valencies.  

7. Steps 2 to 6 are repeated for different initial values of 𝑘"#> (Fig.S1). We found that, in 
absence of failure, the strategy always converged to the same final parameter values. 

8. Steps 1 to 7 are repeated for different values of 𝑟9> and 𝑟=>. We limited the scanning of 
these ratios to integer values between 1 and 9 with setting 𝑟9> ≥ 𝑟=> as suggested by the 
in vitro experiment (50).  

Correlations of the local epigenomic state 
In Fig. 3B, the correlation 𝐶c,^(𝑥, 𝑦) between the state x of locus i and the state y of locus  j (𝑥, 𝑦 ∈
{𝑎𝑐, 𝑢,𝑚𝑒9,𝑚𝑒=,𝑚𝑒>}) is given by the Pearson correlation correlation between the random 
variables 𝛿c(𝑥) and 𝛿 (𝑦) where 𝛿c(𝑥)=1 if the H3K27 state of locus i is x (=0 otherwise) in the 
current simulated configuration: 

𝐶c,^(𝑥, 𝑦) = �< 𝛿c(𝑥)𝛿 (𝑦) > −< 𝛿c(𝑥) >< 𝛿 (𝑦) >�/�< 𝛿c(𝑥) >< 𝛿 (𝑦) > (1 −< 𝛿c(𝑥) >)�1−< 𝛿 (𝑦) >� 

with <.> the time and population average of the given random variable.  

Data extraction from SILAC experiments 
Model predictions on the dynamics of H3K27 modifications (Fig.6) are compared to experimental 
data obtained using the SILAC and mass spectrometry technologies that measure the global, 
genome-wide proportions of a given modification in different pools of histones (59,60).  
 
Data in Fig.6B on the cell cycle dynamics of the different marks in all histones were obtained by 
averaging the proportions a given mark in the pools of old (light medium) and new (heavy medium) 
histones at different times after the release into S phase (which corresponds also to the moment 
of medium change) extracted from Fig.3E and Fig.S4C of (60). Here, we arguably assumed that 
after replication and during one cell cycle, the pools of old and new are of similar sizes, as also 
done in Fig.3A of (60).  
Data in Fig.6D,F on the dynamics of the marks in new and old histones were obtained from 
Fig.1D-F and Fig.S1A of (59). The dynamics in the new histone pool were directly extracted from 
Fig.1F, left (Generation 3). The dynamics in the old histone pool were computed as the weighted 
average of the Generation 1 (extracted from Fig.1E, left) and Generation 2 (extracted from Fig.1D, 
left) data. The weight for each generation at a given time was taken proportional to the percentage 
of Generation 1 or 2 histones among all the histones (extracted from Fig.S1A).   
Data in Fig.6G (bottom) on the dynamics of the marks in all histones after the release of the EZH2 
inhibitor were directly extracted from Fig.S3C of (59). 
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In Fig.6A,B, to correct for differences in cell cycle lengths between simulations that are made on 
mESC and experiments made on HeLa cells, time after replication is normalized by the 
corresponding cell cycle length (𝑇 = 13.5h for mESC simulations, 𝑇 = 24h for HeLa cells).  
In Fig.6C-H, to correct for differences in global histone turnover rates between simulations and 
experiments, time is normalized by the corresponding effective histone decay time 𝑡#that captures 
the combined effect of direct histone turnover and of dilution after replication in a population of 
unsynchronized cells. 𝑡# is equal to the characteristic time of decay of the proportion of ‘old’ 
histones among all histones and can be obtained by fitted the corresponding curves by 
𝑒𝑥𝑝(−𝑡/𝑡#).  For simulations, we estimated 𝑡# = 12.7 h. For experiments, we obtained 𝑡# = 28.6h 
by fitting the time-evolution of the sum of the proportions of Generation 1 and of Generation 2 
extracted from Fig.S1A of (59). 
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