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We present here how a coherent perfect absorber-laser (CPAL) enabled by parity-time (PT )-
symmetry breaking may be exploited to build monochromatic amplifying devices for flexural waves.
The fourth order partial differential equation governing the propagation of flexural waves leads to
four by four transfer matrices, and this results in physical properties of the PT -symmetry specific to
elastic plate systems. We thus demonstrate the possibility of using CPAL for such systems and we
argue the possibility of using this concept to detect extremely small-scale vibration perturbations
with important outcomes in surface science (imaging of nanometer vibration) and geophysics (im-
proving seismic sensors like velocimeters). The device can also generate finite signals using very low
exciting intensities. The system can alternatively be used as a perfect absorber for flexural energy
by tailoring the left and right incident energy with many applications in civil engineering.

In recent years, the use of resonant elements enriched
the properties of periodic media, with the paradigm shift
of metamaterials. These are constructed from a judi-
cious arrangement of physical resonators whose size is
very small compared to the typical wavelength of in-
terest [1] and permit some exotic applications such as
negative refraction [2, 3] or scattering cancellation tech-
nique (SCT) [4, 5]. Several research groups have worked
on the extension of metamaterials and metasurfaces to
elastic waves in solid structures [6, 7]. For instance,
the tensorial nature of the equations governing elastic
waves requires complex analytical and numerical model-
ing that takes into account the coupling between pres-
sure and shear waves at solid interfaces [8]. In the same
vein, a particular type of elastic solid, the thin elastic
plate (TEP), has drawn a growing interest in the wave
physics community [8, 9]. The plate has a small vertical
dimension (thickness) in comparison to its lateral dimen-
sions and the wavelength [8], resulting in the vertical dis-
placement of the plate largely determined by the flexural
mode (i.e. no shear), sometimes designed as A0 mode
[8]. The bending of these TEPs can be described by the
Kirchhoff-Love equation (fourth order partial differential
equation (PDE)) and interestingly has a scalar nature in
the case of isotropic plates [8]. This feature allows for a
more straightforward numerical modeling of waves prop-
agating in isotropic TEPs. Subsequently, several designs
have been proposed for flexural waves, including cloaking
[10, 11], negative refraction [12], localized surface plate
modes [13], SCT [14], elastic plate crystals [15], etc.

On another side, it was shown in 1998 that
non-Hermitian Hamiltonians with Parity-Time (PT )-
symmetry have real eigenvalues [16]. First used in quan-
tum mechanics [17], this feature was then applied to op-
tics because the paraxial wave equation is mathemat-
ically equivalent to the Schrödinger equation [18, 19],

leading to some remarkable properties, such as an asym-
metric propagation of the modes or the existence of an ex-
ceptional point (EP) where the PT -symmetry is broken
[20, 21]. PT -symmetry gained a tremendous momentum
among the photonics community due to its promising
outcomes, e.g. environmental sensing [22], on-chip opti-
cal systems [23], cavity-mode selection in microring lasers
[24]. In the same vein, it was shown that acoustic waves
exhibit such non-reciprocal behavior when loss and gain
layers are balanced [25, 26]. Hence, although these PT -
symmetric acoustic systems are still at an early stage,
several promising applications have been recently envi-
sioned, e.g. unidirectional invisibility cloaking [27], invis-
ible acoustic sensor [28], phononic laser [29], and acous-
tic Willis coupling [30]. With regards to elastodynamics
waves, shunted piezoelectric thin materials may lead to
gain/loss in elastic plates, depending on the resistance of
the shunted circuit [31–33], which was previously used to
realize negative refraction [34]. Flexural waves in beams
were further shown to possess PT -symmetric effects [35].
In Ref. [36], a different technique was employed to pro-
duce non-reciprocal wave transmission.

We show in this Letter the possibility to realize the
equivalent of lasing in elastic plates, i.e., coherent per-
fect absorber laser (CPAL) thanks to gain and loss values
corresponding to the lasing threshold displaying a quan-
tized behavior, which occurs due to topological character
of the system. The spectral singularity could be also used
for coherent perfect absorber in elastic plates.

Flexural waves propagating within an isotropic homo-
geneous TEP obey the Kirchhoff-Love biharmonic equa-
tion [8], in terms of the vertical displacement W , in the
frequency-domain regime, i.e., by assuming an e−iωt time
dependence (See Supplementary Material (SM) [37] for
the general equation in heterogeneous TEPs) ∆2W −
β4W = 0, where ∆ is the Laplacian operator [38]. More-
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FIG. 1. (a) Structure of the gain/loss device. (b) 2D plot of the eigenvalues versus frequency and the imaginary part of the
Young modulus. (c) Eigenvalues for specific values of the loss/gain in the Young modulus (0, 0.1, 0.2, 0.25, 0.4, and 0.5) GPa.

over, the derivation of the transfer and scattering matri-
ces of this fourth order system are detailed in SM [37].
This equips us with the necessary mathematical arsenal
to fully characterize such layered elastic plate systems
in terms of transmission and reflection. In addition to
the normally propagating flexural waves, i.e., eiβx and
e−iβx, there exist evanescent (inhomogeneous) flexural
waves, differentiating the TEP from its acoustic coun-
terpart, in which only the propagating waves are consid-
ered. In the free propagation domain, only the propagat-
ing component survives as shown in Eq. (8) in Ref. [37],
the evanescent wave is proportional to eβLx on the left
propagating side (negative x) and to e−βRx on the right
side (positive x). Since these evanescent waves decay ex-
ponentially as they travel away from their corresponding
interfaces, they do not contribute to the transmission and
reflection coefficients, which are measured in the far-field.
This is similar to the calculation of the radar scattering
cross-section, considered for example in [14]. However,
in order to fully characterize the transmission and reflec-
tion of flexural waves, one has to take into account the
contribution of all waves at the inner interfaces (shown in
Fig. 1 in the SM [37]). What is more intriguing is that
evanescent waves establish propagating components, in
the presence of gain and loss. This behavior is contrary
to the case of elastic plates without loss and /or gain,
where the evanescent waves are confined to the interfaces.

The structure we consider (schematized in Fig. 1(a))

consists of three elastic layers denoted as G, L, and P,
which stand for gain, loss, and passive, respectively. The
possible realization of gain and loss in such elastic struc-
tures has been proposed in Refs. [33, 34]. A shunted
piezoelectric TEP [31, 32] may lead to an effective Young
modulus (of flexural rigidity) with a positive (loss) or neg-
ative (gain) imaginary part, depending on the use of an
inductor and a positive (negative) resistor. We thus as-
sume that the gain and/or loss can be tuned in a reason-
able range. The geometry of the structure is given in Ref.
[39]. The eigenvalues and the reflection and transmission
spectra of this structure are computed using the S-matrix
(See SM [37]) when a plane flexural waves is impinging
from the left and/or the right. The results are depicted in
Fig. 1(b)-(c), in the frequency range 10-40 Hz. Since PT -
symmetric wave systems are reciprocal, the transmit-
tance is the same for wave incident from both directions.
However, for this specific PT -symmetric scenario, the re-
flectance is drastically different for the right (RR) and left
(RL) incidences as shown in the SM [37] (Fig. 2). The two
are related to the transmittance through rLr

∗
R + tt∗ = 1.

The eigenvalues of the scattering matrix (s±) are ob-
tained as function of the S-parameters (t, rR, and rL),
i.e. s± = t ± √rLrR = t(1 ± i

√
(1/|t|2 − 1)) (See SM

for details [37]). Figures 1(b)-(c) depict the absolute
value of the two (propagating) eigenvalues versus the
spectral range considered earlier for different values of
=(E) (highlighted curves show the case of =(E) = 0.25).
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FIG. 2. (a) Amplitude of the eigenvalues in the frequency domain where CPAL takes place. Points A and B indicate lasing and
perfect absorption operation, respectively. (b) Transmittance and reflectance from the CPAL structure. The inset plots the
output coefficient Ψ. (c) Snapshots of flexural energy for the PT -symmetric CPA flexural laser in (a) at operating frequency
541 Hz indicated by A in Fig. 2(a), operated in the lasing mode when the incident wave impinges from the left (top) and the
right (bottom). (c) Same as in (a) but for the CPA mode (indicated by B in Fig. 2(a)) at the same frequency but with both
left and right incidence related through Ω2

R = Ms
21Ω1

L.

For frequencies lower than 31 Hz (of the highlighted
curves), one can observe non unit-modular eigenvalues.
This stems from the fact that |t|2 > 1, and the flex-
ural system is thus in the so-called broken phase. On
the contrary, for frequencies higher than 31 Hz, s± have
both unit-module and are non-degenerate, implying that
the system is in the symmetric phase. Around this crit-
ical frequency, a sudden phase change occurs, whence
the PT -symmetric structure flips from a broken-PT to
a PT -symmetric domain: an EP takes place. This EP
means a sudden change in the output of the elastic system
due to spontaneous breakdown of the PT -symmetry. For
a small value of =(E), the EP frequency is around 10 Hz,
while for =(E) = 0.5 GPa, a blueshift close to 36 Hz can
be observed. This behavior is confirmed by observing the
phase of rL, that undergoes an abrupt jump of π-radians,
around the same frequencies [37], validating the possibil-
ity of tuning the EP location by varying the imaginary
part of the Young modulus of gain/loss layers. Such a
large tunability of the EP with the amount of (equal)
loss (and/or gain) in Young’s modulus is somehow spe-
cific to flexural waves, as in acoustics, for example, the

location of the EP changes only slightly with =(ρ) (less
than 10% change in the EP frequency compared to 400%
for the flexural case for an equivalent change in the rel-
ative imaginary part; also for acoustics the frequency is
redshifted with increasing imaginary part, while here it
is blueshifted). More detailed analysis of the peculiar-
ity of flexural PT -symmetric systems is given in SM [37]
and showcase more degrees of freedom to tune and thus
control the location and even shape of the EP zone, in
comparison to other wave systems, essentially due to its
parabolic dispersion relation and the coupling between
propagating and evanescent waves in the gain/loss lay-
ers.

Inspired by this behavior of EP for flexural waves, we
consider now the possibility of CPAL effect. In fact, it
is well known that in optics, PT -symmetric systems can
operate as coherent perfect absorbers by totally absorb-
ing the incoming energy (from impinging waves) and as
lasing oscillator by emitting coherently outgoing waves
[40–42]. These two phenomena can be characterized by
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the overall output flexural coefficient Ψ

Ψ =
|Ω2
L|2 + |Ω1

R|2

|Ω1
L|2 + |Ω2

R|2
, (1)

which accounts for the ratio of total outgoing intensity
(energy that exits the system) to that of the incoming
waves (energy that impinges onto the system). As ab-
sorbing and even perfectly-absorbing structures are al-
ready known in elasticity and acoustics, we focus here on
the effect of lasing for these waves, and that represents
the main novelty of this Letter. In the previous results,
at best the eigenvalues are offset by 15%. However, for
structures consisting of a few unit-cells shown in Fig. 5
of SM [37], we can see that more offset may be observed,
but the values are still too low to be considered as lasing.
To obtain efficient lasing, we maintain the same struc-
ture as before (i.e., the three layers shown in Fig. 1) and
we apply higher loss/gain parameter, as well as shift to
higher (blueshifted) frequencies. The result is plotted in
Fig. 2(a), that depicts the eigenvalues (|s±|) for frequen-
cies in the range 450 Hz-650 Hz, corresponding to wave-
lengths between 18.8 cm and 22.6 cm (to be compared
to the width of these layers (in the x-direction) assumed
to be identical and set as 20 cm). The plot is given for
three values of =(Eg,l) (1.49, 1.5, and 1.5 GPa) and |s+|
can reach lasing regime, with |s+| > 103, at frequency
around 541 Hz (denoted A). The complementary eigen-
value |s−| ≈ 0, which is reminiscent of CPA regime (as in
fact we have s− = 1/s∗+). Thus, at the same frequency,
one has the lasing regime (s+) where the outgoing en-
ergy is hugely amplified and CPA regime (s−) where the
outgoing energy is cancelled (i.e., all impinging signal is
absorbed by the plate system).

To get a clearer picture, we consider the behavior of
the CPAL system operating at the frequency of point A
(highlighted in Fig. 2(a)) under an incident flexural wave
of unit-amplitude |Ω1,2

L,R| = 1. The transmitted and re-
flected flexural energy T and R are depicted in Fig. 2(b).
At the CPAL point, both T and R reach extremely high
values. The coefficient Ψ, shown in the inset of Fig. 2(b),
gives a better picture of the lasing efficiency of the de-
vice. At frequency 541.4 Hz the spike reaching 106 is
a clear evidence of the lasing effect. To further demon-
strate this effect, in Fig. 2(c) we plot the flexural energy
in the vicinity of the CPAL device where a normally in-
cident flexural wave of unit-amplitude is impinging from
the left (top panel) and the right (bottom panel). In both
cases, the outgoing waves (reflected and transmitted) are
significantly amplified (in the range of 105 to 106 depend-
ing on the incidence region). However, for one scenario
(left incidence) the transmittance is higher than the re-
flectance. For the other scenario (right incidence) it is
the reflectance which is higher as can be seen from the
plots.

These results demonstrate the potential of using simple
and compact (60 cm width and 2 cm thickness δ) flex-

ural structures to achieve the equivalence of a flexural
laser that we might call a FLASER. Consider a flexural
wave with very small vertical displacement, of amplitude
|W | ≈ 10µm (i.e., |W | � δ) incident on the CPAL. Al-
though this signal is small, it will be amplified by the
CPAL flexural device, and the output displacement will
be in the range of 1 cm, i.e., |W | ≈ δ. Now to relate this
effect to the transfer matrix (See SM [37]) it is straight-
forward to see that lasing may occur, when we have finite
(propagating) outgoing signals Ω2

L and Ω1
R for very small

incoming signals. This may occur for Ms
22 = 0 (and

Ms
12 = Ω1

R/Ω
2
L) if we ignore the evanescent fields, by in-

spection of Eqs. (21)-(22) in the SM [37]. However, this
is generally not possible, as the evanescent fields Ω4

L and
Ω3
R cannot be assumed to be zero at the boundary of the

system. Hence, the reduced system (in terms of reflec-
tion coefficients) to be satisfied in the general case, i.e.,
here we ask that the incident signal has unit-amplitude
(Ω1

L = 1) and that the outgoing signals diverge, that is(
Ms

22 Ms
24

Ms
42 Ms

44

)(
Ω2
L

Ω4
L

)
= −

(
Ms

24

Ms
41

)
. (2)

If the incidence is taken to be zero and if one imposes
finite scattering signals, as occurs in lasing, one must thus
ensure that the determinant of the matrix in the LHS of
Eq. (2) is zero, which yields Ms

22M
s
44 − Ms

42M
s
24 = 0,

which is markedly different from the simple condition
Ms

22 = 0 for acoustic or optical systems, for example. For
the transmitted signals, it is easy to obtain their expres-
sion, by taking the first and third line in Eq. (23) of the
SM [37]. This gives for example Ω1

R = Ms
12Ω2

L +Ms
14Ω4

L.
This complexity stems thus from the interplay between
propagating and evanescent waves that cannot be ignored

FIG. 3. Contourplot of the variation of the parameter
Ms

22M
s
44 − Ms

42M
s
24 versus teh frequency and the imagi-

nary part of the young modulus (in GPa), in logarithmic
scale. The dark regions correspond to the lasing regime (i.e.,
Ms

22M
s
44 −Ms

42M
s
24 ≈ 0).
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for flexural systems, as clearly demonstrated by the lasing
equation that mixes amplitudes of both kinds of waves.
The variation of the parameter Ms

22M
s
44 −Ms

42M
s
24 re-

sponsible for infinite outgoing amplitudes (i.e., lasing) is
depicted in Fig. 3 versus the frequency of the flexural
wave and the imaginary part of the young modulus (in
GPa). The dark regions correspond to the lasing regime
(i.e., Ms

22M
s
44 −Ms

42M
s
24 ≈ 0). One can clearly see that

if lasing is defined when the logarithmic amplitude of the
lasing parameter is below -20 dB, a lasing threshold in
terms of =(E) can be defined for each frequency, below
which no lasing can occur. From this figure it can also
be seen that the lowest threshold occurs for a frequency
of 541 Hz, as was discussed previously.

A similar reasoning can be made for the CPA effect.
In fact, for perfect absorption to occur, one must cancel
the outgoing waves for finite incoming waves. The same
analysis as before shows that for CPA to take place, one
must ensure that M11 = 0 and Ms

21 = Ω2
R/Ω

1
L, over-

looking again evanescent waves. However, in the gen-
eral case, if also an evanescent wave is allowed to be
incident, one must ensure Ms

11Ω1
L + Ms

13Ω3
L = 0 and

Ms
21Ω1

L + Ms
23Ω3

L = Ω2
R. However, in the CPA case,

Ω3
L = 0 as it corresponds to an exponentially growing

field when x → −∞. Thus for the CPA operation,
evanescent waves are not directly present in the condi-
tion on the amplitudes. However, their indirect effect
in the M -matrix is still present. Therefore, one needs
to launch two waves incoming form opposite directions,
and by changing their (complex) amplitude ratio, one
will be able to selectively excite the lasing or CPA mode,
as can be seen in Fig. 2(d). If their amplitude ratio
Ms

21 = Ω2
R/Ω

1
L, one will obtain the CPA operation mode.

For the rest of cases, i.e., Ms
21 6= Ω2

R/Ω
1
L one will have

the FLASER mode. This is, however, a very narrowband
effect for both CPA and lasing.

The scattering of flexural waves propagating in lay-
ered thin-plates has been solved analytically, by means of
the transfer matrix and scattering matrix formalism, and
has been subsequently analyzed. We make use of recent
proposals suggesting that the use of externally shunted
circuits, with positive and negative resistances, permits
to obtain gain and/or loss in beams and TEPs, alike.
With this intriguing property, we analytically investigate
the existence and tunability of EPs for such elastic struc-
tures (thin-plates), and show that the well-known behav-
ior of unidirectional reflectionless photonic and phononic
devices can similarly be observed for flexural waves in
TEPs. The spontaneous breaking of PT -symmetry has
been observed both in the frequency domain (γ = 1)
and/or at fixed frequency, versus the non-Hermiticity pa-
rameter γ. This design shows that despite the existence
of evanescent waves (localized at the interfaces), both
robust PT -symmetry and EP take place. More impor-
tantly, an effect reminiscent of lasing is discovered in this
Letter by making use of the same PT -symmetry but in

a different frequency and gain/loss regimes. This mech-
anism takes roots in the coherent perfect absorber laser
effect. This CPAL device can be used as ultra-sensitive
flexural sensor to detect sub-micrometer displacements
or as perfect absorber of flexural energy. However, a
striking difference with Maxwell equations, the flexural
waves equation assumes displacement that are small in
comparison to the thickness of the plate, so our device
could find use as source, by applying very small displace-
ments, these will be amplified and coherently transmitted
to the outside. On the detection side, if some strong
signal/noise impinges on the device, it can be hugely
amplified and can lead to its dislocation. One way to
avoid this unwanted effect is to use a filter that can-
cels out incoming signals above a certain threshold. Our
work can thus pave the way to several interesting appli-
cations in surface science and civil engineering, e.g. in
precision-displacement sensing, vibration control of me-
chanical systems, and seismic energy harvesting, to name
a few.

The research reported in this manuscript was sup-
ported by King Abdullah University of Science and Tech-
nology, Baseline Research Fund BAS/1/1626-01-01.
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