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A B S T R A C T   

Land cover mapping over large areas is essential to address a wide spectrum of socio-environmental challenges. 
For this reason, many global or regional land cover products are regularly released to the scientific community. 
Yet, the remote sensing community has not fully addressed the challenge to extract useful information from vast 
volumes of satellite data. Especially, major limitations concern the use of inadequate classification schemes and 
“black box” methods that may not match with end-users conceptualization of geographic features. In this paper, 
we introduce a knowledge-driven methodological approach to automatically process Sentinel-2 time series in 
order to produce pre-classifications that can be adapted by end-users to match their requirements. The approach 
relies on a conceptual framework inspired from ontologies of scientific observation and geographic information 
to describe the representation of geographic entities in remote sensing images. The implementation consists in a 
three-stage classification system including an initial stage, a dichotomous stage and a modular stage. At each 
stage, the system firstly relies on natural language semantic descriptions of time series of spectral signatures 
before assigning labels of land cover classes. The implementation was tested on 75 time series of Sentinel-2 
images (i.e. 2069 images) in the Southern Brazilian Amazon to map natural vegetation and water bodies as 
required by a local end-user, i.e. a non-governmental organization. The results confirmed the potential of the 
method to accurately detect water bodies (F-score = 0.874 for bodies larger than 10 m) and map natural 
vegetation (max F-score = 0.875), yet emphasizing the spatial heterogeneity of accuracy results. In addition, it 
proved to be efficient to provide rapid estimates of degraded riparian forests at watershed level (R2 

= 0.871). 
Finally, we discuss potential improvements both in the system’s implementation, e.g. considering additional 
characteristics, and in the conceptual framework, e.g. moving from pixel- to object-based image analysis and 
evolving towards a hybrid system combining data- and knowledge-driven approaches.   

1. Introduction 

Monitoring land cover dynamics is essential to address a wide 
spectrum of challenges related to climate change, health and well-being, 
food safety or environmental degradation such as listed by the United 
Nations through the Sustainable Development Goals (SDG) (Sachs, 
2012). The scientific community needs manageable spatio-temporal 

indicators to monitor the achievement of these SDGs (Hák et al., 
2016). In this regard, the remote sensing science is expected to play an 
essential role (CEO, 2018), contributing actively to the more general 
land change science that seeks to understand the land cover/land use 
dynamics as a coupled human-environment system (Turner et al., 2007). 
Yet, the task is challenging since end-users require spatial information at 
ever larger scale (e.g. regional to global scale), shorter time intervals (e. 
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g. annually or even more frequently) and higher spatial resolution to 
monitor ever finer land change dynamics (Cerbaro et al., 2020a) (e.g. 
mapping agricultural practices (Bégué et al., 2018) or forest degradation 
(Bullock et al., 2020; Câmara, 2020)). 

For this purpose, the remote sensing community has released many 
ready-to-use global or regional maps to serve as input for other scientists 
interested in land change sciences (e.g. climatology, health sciences, 
agronomy, ecology, geography, etc). While coarse resolution maps (250 
m to 1 km) have been considered inadequate for global change studies 
and for resource management (Giri et al., 2013; Rocchini et al., 2013), 
higher resolution large-scale remote sensing-based maps have been 
produced recently and their quality discussed in numerous scientific 
papers. For example, the Global Forest Change (Hansen et al., 2013), the 
Global Surface Water (Pekel et al., 2016), the FROM-GLC (Gong et al., 
2013) and the GlobeLand30 (Chen et al., 2015) products are global-scale 
maps of forest, water and land cover dynamics, respectively, at 30 m 
resolution. These breakthrough experiences were also completed by 
regional initiatives such as, among others, the Corine Land cover maps 
in Europe (Büttner, 2014), the French land use maps based on Landsat-8 
and Sentinel-2 time series (Inglada et al., 2017), the South American 
Landsat-based land cover maps (Giri and Long, 2014), the Brazilian 
initiatives for land cover mapping at national (Souza et al., 2020) and 
regional scale (Bullock et al., 2020; de Almeida et al., 2016; Souza et al., 
2019). 

But despite these great advances, the remote sensing community has 
not yet fully addressed the challenge to extract useful information from 
vast volumes of satellite data so that current regional and global land 
cover products still present major conceptual limitations (Congalton 
et al., 2014; Grekousis et al., 2015; Arvor et al., 2019). Below, we 
introduce some of these limitations regarding the use of inadequate 
classification schemes and data-driven approaches with regard to the 
end-users requirements. 

1.1. Inconsistencies between classification schemes and end-users 
requirements 

The first major limitation refers to the choice of an adequate classi
fication scheme. All land cover maps are based on a priori defined class 
labels such as”Forest formations” (Souza et al., 2020),”Primary Forested 
Natural Vegetation” (de Almeida et al., 2016),”Forests” (Giri et al., 
2013) or”Forest” (Chen et al., 2015). Each of these labels usually refers 
to one explicit definition so that the classification schemes turn to be 
very static. This is an issue since the maps are designed to be used by a 
wide community of users (Cerbaro et al., 2020b), who have their own 
conceptualizations of geographic concepts and their own final objec
tives. In this regard, using static classification schemes forces the user to 
adapt its own conceptualization to the map producer’s 
conceptualization. 

In addition, there are often inconsistencies between the class de
scriptions and the real capacity of remote sensors to map them. This 
issue is referred to as the sensory gap, i.e. the gap between the entity in 
the world and the information in a (computational) description derived 
from a recording of that scene (Smeulders et al., 2000). For example, the 
definition of the”Forests” class in Giri and Long (Giri and Long, 2014) 
refers to”plants, 3 m or greater in height” although the Landsat images 
used to produce the maps cannot measure vegetation height. Congalton 
et al. (Congalton et al., 2014) also pointed out this problem regarding 
standard classification schemes such as the Land Cover Classification 
System (LCCS (Di Gregorio, 2005)), i.e. a reference classification scheme 
used in various mapping efforts such as the AfriCover project (Kalensky, 
1998) or the South America land cover map (Giri and Long, 2014). They 
emphasized that the LCCS is based on inference rules using ecological or 
environmental criteria, which cannot all be identified from optical 
remotely sensed imagery (e.g. vegetation height, number of layers in 
vegetated areas, etc) (Congalton et al., 2014). 

Besides the sensory gap, the semantic gap is the lack of agreement 

between the information that one can extract from the visual data and 
the interpretation made of the same data by a user in a given situation 
(Smeulders et al., 2000). In other words, it describes the gap between the 
low-level information contained in an image (e.g. reflectance values 
assigned to pixels) and the high-level semantic concepts used to inter
pret the image (Arvor et al., 2019). As an example, the semantic gap is 
emphasized in remote sensing when complex features (e.g. a”urban” 
or”forest” area) are represented by different spectral signatures (Jensen, 
1983), thus making them difficult to map in pixel-based land cover 
products using the sole spectral information. Of course, depending on 
the comprehensiveness of the training dataset, advanced supervised 
classifiers can deal with such complex classes, e.g. by assigning the”
urban” class to different spectral signatures classified in different 
branches of a decision tree. But, in the case when two leaves of a decision 
tree have the same label, the interpretability of the classification model 
turns to be very complex, which tends to widen the semantic gap be
tween the numeric information contained in the pixels and its thematic 
interpretation. 

1.2. Inconsistencies between data-driven methods and end-users 
requirements 

The second major issue is related to the methodological approach 
applied to produce land cover maps. Here, we differentiate”data-driven” 
from”knowledge-driven” methods.”Data-driven” refers to methods that 
depend on the data that has been collected. In remote sensing, both 
supervised and unsupervised classifications can be considered as”data- 
driven” as they depend on the image and on the training (for supervised 
classifiers) datasets. In other words, if you change the training data or 
the EO data, you also change the classification model. In opposi
tion,”knowledge-driven” approaches depend on a priori expert knowl
edge and are thus independent from the data. For example, it is widely 
agreed by the remote sensing community that high reflectances in the 
near infrared (NIR) wavelengths are associated to vegetated land cover. 
Thus, the corresponding classification model (e.g.”high NIR values refer 
to vegetation cover”) is valid for all optical remote sensing data with a 
NIR band. 

In remote sensing, the main effort to promote knowledge-driven 
approach has been through Geographic Object-Based Image Analysis 
(GEOBIA (Blaschke et al., 2014; Blaschke, 2010)). Indeed, GEOBIA was 
initially designed to rely on descriptive assessment and knowledge, i.e. 
the approach was developed to incorporate the wisdom of the user 
(Blaschke and Strobl, 2001). In that regard, GEOBIA is characterized by 
the transformation of knowledge (Lang, 2008) and can be considered as 
a computer-aided photo-interpretation process (Arvor et al., 2013). Yet, 
in practice, GEOBIA presents major limitations. Mainly, GEOBIA in
cludes a fully data-driven image segmentation and an object classifica
tion stage based on rules that are usually defined through”trial-and- 
error” analysis or supervised classifiers and can thus also be considered 
as data-driven. From that perspective, GEOBIA may actually be 
considered as a hybrid knowledge- and data-driven classification 
approach restricted to local studies and difficult to transfer and auto
mate for large-scale applications (Lucas et al., 2007; Lucas et al., 2015; 
Adamo et al., 2020). 

Thus, although a few products rest, at least partially, on visual 
interpretation tasks (GlobeLand30 (Chen et al., 2015), TerraClass (de 
Almeida et al., 2016), Corine Land Cover (Büttner, 2014)), most studies 
dedicated to global or regional land cover mapping are based on data- 
driven approaches (Grekousis et al., 2015). Most high-resolution prod
ucts rely on supervised classification algorithms (Inglada et al., 2017; 
Giri and Long, 2014; Souza et al., 2020; Waldner et al., 2015) which 
excel at perceptual classification, i.e. to identify all pixels in an image 
that resemble to annotated training samples. In this regard, the last 
decade has been marked by the rapid emergence of ever more efficient 
classification algorithms like Support Vector Machines (Mountrakis 
et al., 2011), Random Forest (Belgiu and Dragut, 2016) or, more 
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recently, Deep Learning (Zhu et al., 2017). However, these approaches 
also present important limitations. 

First, supervised algorithms require many training data, which is a 
severe issue since it can induce heterogeneity in the final products 
depending on the availability and reliability of reference data collected 
through field campaigns, crowd-sourcing initiatives (Fritz et al., 2012; 
See et al., 2016) or very high resolution maps (based on UAVs for 
example (Alvarez-Vanhard et al., 2020)). This assertion is especially 
valid for Southern countries where major land use changes are expected 
to occur. 

Second, supervised classifiers are often used to produce maps where 
classes are mutually exclusive with discrete boundaries separating each 
other. Such approach is not adapted to the monitoring of vague and 
ambiguous geographic concepts such as vegetation gradients or urban 
areas. Indeed, the conversion of continuous quantitative information (i. 
e. spectral signatures) into discrete classes induces a loss of information 
or leads to an unrealistic representation of reality that may not suit with 
requirements for ecosystem monitoring (Rocchini et al., 2013). Simi
larly, Kennedy et al. (Kennedy et al., 2014) note that remote sensing 
approaches based on static representations of geographic entities mainly 
allow detecting occasional dramatic disruptions (e.g. deforestation) but 
are limited to capture continuous changes (e.g. degradation). Yet, it is 
worth noting that some supervised approaches can also provide a rele
vant continuous information for the monitoring of spatial gradients and 
fine temporal changes. However, these estimates derived from optical 
imagery suffer from a lack of interpretability (e.g. the probability of 
belonging to a given land cover class does not correspond to any physical 
reality on the ground) and/or from the sensory gap (see Section 1.1) 
since optical sensors do not enable direct measurement of variables such 
as the percent tree cover in Global Forest Change (Hansen et al., 2013) 
or the fraction of vegetation cover in Copernicus FCover product (Fuster 
et al., 2020)). 

Third, and most importantly from our perspective, supervised clas
sifiers are inefficient to deal with symbolic systems based on inference 
and abstraction (Marcus, 2018). In data-driven approaches, the knowl
edge corresponding to a land cover/land use class is a”numeric knowl
edge” expressed in classification models (e.g. random forest model) 
which suffers from a lack of interpretability (Small, 2020) whereas most 
end-users (e.g. geographers, ecologists, agronomists, etc) are used to 
work with abstract semantic definitions of geographic features (Arvor 
et al., 2019). For instance, end-users can easily understand the Land 
Cover Classification System (LCCS (Di Gregorio, 2005)) entirely based 
on inference rules (e.g. a vegetated area covered by trees whose leaf type 
is”broadleaved” and leaf phenology is”evergreen” will be assigned to a 
land cover class named”broadleaved evergreen trees”) but they can 
hardly interpret a classification model of the same class produced by a 
random forest or a deep learning classifier. Thus, such algorithms do not 
match with the way end-users are used to work. 

As a consequence, users often consider data-driven approaches 
as”black box” algorithms whose use is not sufficiently documented in 
land cover mapping methods (Congalton et al., 2014). As a partial 
answer, recent efforts have been carried out to share methods and al
gorithms (instead of sharing ready-to-use maps) designed for remote 
sensing-based land surface monitoring (e.g. the CLASLite software 
(Asner, 2009), the EODHaM system (Lucas et al., 2015), the iota2 pro
cessing chain (Inglada et al., 2017)). The application of such algorithms 
benefits from the emergence of online platforms dedicated to the cloud 
computing of large-scale geospatial data which allow both the produc
tion of high resolution maps and the sharing of image processing algo
rithms (Gorelick et al., 2017). By improving the transparency and 
democratization of high-performance technologies, such approaches 
contribute to facilitate the processing of big Earth Observation (EO) 
datasets by scientists from varied scientific domains, i.e. not only remote 
sensing experts. However, at the same time it fosters the use of EO data 
by non remote sensing experts, it also -and rather paradoxically- sup
ports the evolution of remote sensing from an environmental science to a 

computer science with a major focus on image and signal processing (e. 
g. improved classification algorithms, analysis of big EO data time se
ries, etc) rather than on the applications. The expert knowledge mobi
lized by environmental scientists to interpret remote sensing images 
thus tends to be somehow discarded from the image analysis. 

To summarize, the continuous development of new sensors and 
easier access to remote sensing data (Sudmanns et al., 2019; Zhu et al., 
2019) and techniques is transforming both the theory and practice of 
remote sensing (Arvor et al., 2019). The production of large-scale land 
cover maps is essential for many applications but the classification 
schemes and the methodological approaches present important limita
tions that may deepen the gap between the map producers and the end- 
users. In this context, the objective of this paper is to introduce a novel 
knowledge-driven methodological approach to automatically provide 
symbolic descriptions of time series of Sentinel-2 spectral signatures. 
These descriptions are based on low-level characteristics in order to 
avoid hasty over-interpretation with high-level semantic classes and 
thus reduce the sensory and semantic gaps. Then, the low-level de
scriptions can be adapted by the end-users to match their requirements. 
Section 2 presents the conceptual framework underlying our approach. 
Section 3 and Section 4 illustrate the implementation of the system 
through a concrete application in the Brazilian state of Mato Grosso. 
Section 5 discusses future perspectives to improve both the conceptual 
framework and the system’s implementation. 

2. Conceptual framework 

In order to address the issues raised in the introduction section, we 
propose a knowledge-based approach that draws on a conceptual 
framework inspired from ontological modelling. The Table 1 defines the 
main terms used in the presentation of the conceptual framework. 

2.1. Ontologies for the description of scientific observations 

We rely on a conceptual model that allows describing the way ex
perts observe geographic features of interest in remote sensing images. 
To do so, we inspired from ontologies especially designed to enable 
semantic and symbolic descriptions of scientific observations, such as 

Table 1 
Definitions of main terms used in the paper.  

Term Definition 

Ontology Formal, explicit specification of a shared conceptualization ( 
Gruber, 1993) 

Geographic 
Feature 

Abstraction of a real-world geographic phenomenon 

Geographic 
Entity 

Real-world entity that occupies a position in space (Mark, 1993) 

Geographic 
Object 

Digital representation of a geographic entity (Mark, 1993) 

Intentionality Purposes, intentions, motivations, needs, beliefs of an end-user ( 
Couclelis, 1992) 

Minor Entity Immaterial entity (surfaces, shadows and holes) (Casati, 2009) 
Observables Properties that depend on perceptual experiences,  

e.g. colour and texture whose description is subjective and 
difficult to express (Couclelis, 2010) 

Similarities Properties that refer to measurable and objective characteristics,  
e.g. vegetation height (Couclelis, 2010) 

OBOE Formal ontology for capturing the semantics  
of scientific observation and measurement (Madin et al., 2007) 

Knowledge- 
driven 

Methods that depend on a priori knowledge,  

i.e the classification model exists regardless of the data 
Data-driven Methods that depend on the data,  

i.e the classification model does not exist if there is no data 
EUEK End-User Expert Knowledge, usually implicit, symbolic and 

vague 
RSEK Remote Sensing Expert Knowledge, usually numeric and 

implicit  
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the Observation and Measurement (O&M) ontology (Cox, 2013) and the 
Extensible Observation Ontology (OBOE) (Madin et al., 2007; Madin 
et al., 2008). Both ontologies share many common concepts and can thus 
be aligned together. Here, we considered the OBOE ontology that pro
vides a formal conceptual framework for capturing the semantics of 
scientific observations and measurements (Madin et al., 2007). To make 
it short, OBOE asserts that an Observation of an Entity is carried out 
through the Measurement of one (or more) Characteristic using a mea
surement Standard. Finally, the Measurement has a Value, which can 
either be numeric (e.g. a reflectance value) or literal (e.g. a class label) 
(Fig. 1A). 

The OBOE ontology is called”extensible” because key concepts such 
as Entity, Characteristic or Value can be extended to include sub-concepts 
from a specific domain such as Earth Observation. For example, the 
Forest concept can be defined as a sub-class of Entity, Leaf phenology as a 

Fig. 1. Description of the ontological conceptual framework including (A) the Extensible Observation Ontology (OBOE), its application for the description of (B) 
geographic entities and (C) geographic objects, and its extension through the Entity (D) and Characteristic (E) concept. 

Table 2 
Steps of the semantic contraction proposed by Couclelis (Couclelis, 2010) and an 
example of its application (see also Section 3). Shaded rows identify the steps 
addressed in the present study.  

Semantic resolution 
level 

Example: A map of Permanent Protected Areas in Mato 
Grosso, Southern Brazilian Amazon 

7 Purpose Identify Permanent Protected Areas to be restored 
6 Function Represent the areas where natural vegetation has been 

degraded 
5 Composite objects A network of patches of natural vegetation 
4 Simple Objects Patches of natural vegetation 
3 Similarities Fields of measurable properties exhibiting diverse 

geometrical patterns (e.g. occurrences) 
2 Observables Field-like properties (e.g. Colours) 
1 Existence The relevant information exists at given spectral, spatial and 

temporal resolution  
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sub-class of Characteristic and Evergreen as a sub-class of Value. In the 
following section, we better detail how we extended the concepts of 
Entity and Characteristic based on ontologies of geographic information. 
The extension of the Value concept is then further described in the 
application section. 

2.2. Ontologies of geographic information 

An efficient use of OBOE framework requires investigating the roles 
of language and cognition in humans’ conceptualization of geographic 
concepts (Claramunt, 2020). Couclelis (Couclelis, 2010) introduced an 
ontological system to describe the observation of geographic features. 
This system is based on principles of cognitive geography, which is 
about the way humans understand, categorize and act in the geographic 
world (Couclelis, 1992). It takes the form of a suitably ordered semantic 
contraction made of seven levels differentiated by their degree of 
complexity, from highest (level 7) to lowest (level 1) (Table 2). Ac
cording to Lang et al. (Lang et al., 2014),”the semantic contraction is a 
kind of backtracking concept from rich geospatial information that, 
stepwise, loses purpose, function, composition, and ultimately its 
space–time relations, down to a piece of information without spatial or 
temporal context.” In this study, we focus on levels 1–3 of the semantic 
contraction corresponding to the field representation of geographic 
entities (pixel-based), in opposition to object representation at levels 4 
to 7. 

2.2.1. Purpose and existence 
The main peculiarity of this hierarchy is that any geographic infor

mation is understood as a function of at least two kinds of separate 
considerations: purpose (intentionality) and existence (scale) (Couclelis, 
1992). These two considerations (intention and scale) represent the two 
ends of the semantic contraction, i.e. level 7 and level 1 respectively. 
Intentionality refers to the purposes, intentions, motivations, needs, 
beliefs, and so on, of an observer or a user of the system (Couclelis, 
2010). For example, an ecologist may consider a hedgerow separating 
two neighboring cultivated fields as a corridor that allows forest species 
to move in an agricultural landscape, whereas an agronomist may 
consider the same hedgerow as an obstacle that impedes disease 
dispersion between two crop fields. These different point-of-views will 
drive the intentions of these two scientists at the time of mapping 
hedgerows, and consequently impact on their mapping requirements. 
The ecologist may require hedgerows to be represented as superficial 
areas to focus on their characteristics (e.g. width, internal heterogene
ity) while the agronomist may represent them as lines. 

In consequence, the intention of the end-users impacts the scale of 
analysis, which consists in identifying an appropriate spatio-temporal 
framework that enables to observe an entity (Couclelis, 2010). It thus 
refers to the existence of the entity at a particular granule of space and 
time. It is then an issue to determine the geographic features that can be 
observed in the data to be processed, e.g. 10 m resolution Sentinel-2 
images at a 5–10 days temporal resolution. With regards to the tempo
ral resolution, a critical issue to consider is: does a given remote-sensing 
tool describe change over time in a manner consistent with the ongoing 
process of interest (e.g. ecological processes, deforestation, urbaniza
tion)? (Kennedy et al., 2014). For example, information on vegetation 
phenology does not exist in single date remote sensing images and re
quires a multitemporal analysis. Similarly, considering that the spatial 
resolution of a sensor system should be less than half the size of the 
feature measured in its smallest dimension (Jensen, 1983), it gives an 
indication about the kind of geographic features that can (e.g. fields, 
forests, urban areas, large farm dams, etc) or cannot (e.g. plant crops, 
individual trees, houses, swimming pools, etc) be observed in 10 m 
resolution remote sensing images. In other words, we consider that, at 
this resolution, it is appropriate to map geographic spaces as defined by 
Freundschuh and Egenhofer (Freundschuh and Egenhofer, 1997), i.e. 
very large, non-manipulable spaces that due to practical limitations 

cannot be experienced via locomotion (e.g. agricultural landscapes, 
urban areas). 

2.2.2. Entities 
Between these two extremities (i.e. purpose and existence), the levels 

4–7 of the semantic contraction are focused on the description of 
geographic entities. It is worth noting that these levels can be collapsed 
as the semantics of the system contracts (Couclelis, 2010). For example, 
a label of”Forest” can be assigned to a simple object (Level 4), carrying 
implicit information about its function (Level 6) and purpose (Level 7) 
according to a given user. 

The Entity concept of the OBOE ontology was then extended to 
introduce the Geographic Entities of interest for the end users (Fig. 1B). A 
Geographic Entity is a real-world entity that occupies a position in space 
(e.g. a forest, a building), i.e.”for every set of coordinates in space, there 
is corresponding to it or associated with it, an instance of one or more 
substance terms” (Sack, 2010). In philosophy, material substances are 
hylomorphic compounds that can be described by their form and matter. 
In other words, a Geographic Entity can be characterized by the type of 
material of which it is composed (e.g. vegetation) and its associated 
form, i.e. its spatial (e.g. geometry) and/or temporal (e.g. phenology) 
pattern. 

In addition, it is worth noting that real-world material entities (e.g. 
geographic entities) refer to major entities that should be differentiated 
from minor entities, i.e. immaterial entities (Casati, 2009). Minor en
tities are dependent entities since their existence depends on major 
entities. Minor entities are surfaces, shadows and holes, where holes are 
defined as negative entities, i.e. local privations of matter. When applied 
to the case of remote sensing image classification, optical satellite im
ages can only be used to observe Geographic Minor Entities, i.e. land 
surfaces, shadows and clouds, the latter being assimilated to holes since 
they hinder the visualization of land surfaces (Fig. 1B). 

On the other hand, since we are interested in interpreting remote 
sensing images, we do not actually intend to classify Geographic Entities 
but rather their representation in satellite images. For this reason, we 
need to consider the concept duality issue between Geographic Entities 
and Geographic Objects (Arvor et al., 2019) (Fig. 1D). An object is an 
Entity in the digital world, which represents real-world phenomena as an 
instance of a generally recognized category (Voudouris, 2010). A 
Geographic Object is then defined as a bounded geographic region in the 
digital world that can be identified for a period of time as the referent of 
a geographic term (Castilla and Hay, 2020). It is noteworthy that, 
although both geographic entities and corresponding objects are natu
rally correlated, there is no semantic identity between them since both 
cannot be described with the same characteristics from the ground and 
from satellite images. Whereas a Geographic Entity (e.g. a forested area) 
can be characterized by its matter (e.g. vegetation) and form, i.e. its 
spatial (e.g. patch size) and temporal pattern (e.g. leaf phenology), its 
representation in an image may be described by its pixel characteristics, 
i.e. spectral, spatial (e.g. texture) and temporal pattern (e.g. time series 
analysis) (Fig. 1C). This brings us to extend the Characteristics concept of 
the OBOE ontology. 

2.2.3. Characteristics: observables and similarities 
The 2nd (Observables) and 3rd (Similarities) levels of the semantic 

contraction are centered on the measurement of characteristics enabling 
the identification of geographic features. These characteristics refer to 
field properties, i.e. spatially connected areas that share common 
characteristics (Fig. 1E). 

Similarities are measurable and objective field properties of 
geographic features (e.g. vegetation height, leaf type, etc) (Couclelis, 
2010). Such characteristics can be associated to categorical (e. 
g.”Broadleaved”) or numeric (e.g.”20 m”) values. In remote sensing, 
such Similarities may stand for spatial (e.g. area of a field of pixels 
sharing common characteristics) and temporal characteristics (e.g. 
occurrence of a given class in a time series). But, in the case of a pixel- 
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based classification, the geometrical shape is determined by the pixel’s 
shape (i.e. approximated to a square) and thus cannot be considered to 
qualify a material type. Consequently, in agreement with the”time-first, 
space-later” approach (Camara et al., 2016; Picoli et al., 2018), we 
focused on temporal Similarities. 

The spectral signature can also be considered as a Similarities char
acteristic since it is made of objective numeric reflectance values. 
However, its classification into spectral categories is subjective and open 
to debate, depending on the operator’s experience and intentions. In 
that sense, unlike reflectance values that refer to Similarities, spectral 
categories can be considered as Observable characteristics, which refer to 
Sense Qualia properties, i.e.”certain features of the bodily sensations 
especially, but also of certain perceptual experiences, which no amount 
of purely physical information includes” (Jackson, 1982). Observables 
are field-like properties that cannot be measured (Couclelis, 2010). 
Colour is a typical Sense Qualia whose perception is subjective and 
difficult to communicate. For example, the perception of shades of green 
to describe vegetated surfaces vary among humans (e.g.”green like a 
rain forest” or”green like a lemon”). According to Jensen (Jensen, 1983), 
Colour and the spectral signature is a fundamental biophysical variable 
amenable to remote sensing. More specifically, remote sensors meas
ure”spectral signatures of the material within a pixel, thus gaining 
insight about an object’s colour in the visible spectrum and also 

document its reflectivity beyond our human experience”. In other 
words, classifying spectral signatures means classifying colours of land 
surface material types. For this reason, we categorized spectral signa
tures including spectral bands from the non-visible spectrum in classes 
of Colour-Material, which is then an Observable characteristic related to a 
land surface material type (Fig. 1E). 

2.3. End-user expert knowledge vs remote sensing expert knowledge 

Once the ontological framework has been defined, further clarifica
tions on the expert knowledge to be described are necessary. Although 
the end-users are often the map producers themselves, we here differ
entiate the end-user expert knowledge (EUEK) from the remote sensing 
expert knowledge (RSEK) (Fig. 2). EUEK refers to the description of a 
geographic feature of interest from a real-world perspective whereas 
RSEK refers to the description of its representation from an image 
perspective. EUEK is often symbolic, implicit and vague. For example, 
while defining a”Natural Vegetation” land cover class,”one must 
recognize that there are often several communities that could be the”
natural” vegetation for any given site at any given time” (Sprugel, 1991). 
That being said, one may assume that”Natural Vegetation” includes a 
vegetation gradient that could be described (although the definition 
remains implicit) by physical characteristics (and their corresponding 

Fig. 2. Application of the ontological conceptual framework to describe the”Natural Vegetation” concept and its representation in a remote sensing image.  
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values) such as vegetation type (Trees, Shrubs, etc.), vegetation height 
(small to high), vegetation cover (open to dense) or leaf phenology 
(evergreen or deciduous). 

On the other hand, RSEK is numeric (in opposition to symbolic) and 
implicit, especially when expressed in hardly interpretable classification 
models. In this regard, reducing the gap between EUEK and RSEK ap
pears challenging. Since explicitly defining vague and ambiguous con
cepts of the EUEK may be unrealistic (Sprugel, 1991), we consider that 

the priority is to formalize the implicit and numeric RSEK into an 
explicit and symbolic knowledge (Fig. 2). To do so, we need to define the 
image characteristics (and their corresponding values) to formalize 
RSEK. This is a major objective of the system introduced in this paper. 

2.4. System’s architecture 

Based on these findings, we implemented a classification system 

Fig. 3. Classes of Geographic Minor Entities mapped at each stage of the classification system.  

Fig. 4. Flowchart of the proposed methodology to process Sentinel-2 time series.  
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inspired from the LCCS but focused on the description of image char
acteristics (instead of real-world characteristics in LCCS) defined to 
describe Pixels and relate them to Geographic Minor Entities of interest for 
the end-user. The system is divided in four successive stages (Fig. 3):  

• Initial stage: to discriminate land surfaces, clouds and shadows.  
• Dichotomous stage: to discriminate land surface material types, e.g. 

vegetated, mineral and aquatic areas.  
• Modular stage: to refine the description of land surface material 

types with additional characteristics in order to provide more com
plex low-level symbolic descriptions.  

• Thematic stage: to allow the end-users to relate the modular classes 
with high-level semantic labels, e.g. natural vegetation and water 
bodies. 

At each stage, the ontological conceptual framework is primarily 
used to explicit the information contained in the time series of spectral 
signatures of every pixels, while the end-user conceptualization of a 
Geographic Minor Entity can remain implicit (Fig. 2). The system is thus 
primarily designed to describe the information available in the remote 
sensing images, rather than to describe real-world entities, which is in 
line with the original approach proposed by (Couclelis, 2010)”whereby 
it is the information available about the world, and not the world itself, 
that forms the basis of the ontological system”. The explicit descriptions 
of pixels are built using symbolic natural language assertions in order to 
ease the interpretability of the classification rules by the end-users 
(Assertion 1). By doing so, we intend to reduce the semantic and sen
sory gaps, allowing the end-user freedom to do the final relation be
tween the geographic entity of interest (e.g. Natural Vegetation) and the 
pixel’s description. 

Assertion 1. A [”Geographic Object”] represents a [”Geographic Minor 
Entity”] if that [”Geographic Object”] is [a value to qualify an Occurrence 
characteristics] classified as [a value to qualify a Colour-Material 
characteristic]. 

For example, a”pixel” represents a”Natural Vegetation” if that”pixel” 
is”always” classified as”Strong Green Vegetation”. 

3. Application 

Based on this conceptual framework, we implemented an automatic 
knowledge-driven approach to classify Sentinel-2 time series in the 
Southern Brazilian Amazon. This approach is summarized in Fig. 4. 

3.1. Intention and scale: end-users, study area and data 

In order to test our approach, we worked in close cooperation with 
the Instituto Centro de Vida (ICV), a Brazilian Non-Governmental Orga
nization (NGO) acting for environmental preservation in the Southern 
Amazon. This NGO is very active in monitoring the application and ef
ficiency of environmental public policies in the Amazon. For example, 
ICV aims at assessing the level of compliance of private rural properties 
with the environmental legislation, as defined in the Brazilian Forest 
Code (Stickler et al., 2013; Taniwaki et al., 2018) and required for the 
Rural Environmental Registry (CAR) (Roitman et al., 2018). As a major 
example, ICV has been mandated by the Mato Grosso State Secretary for 
Environment (SEMA-MT) to produce the 2008 map of consolidated rural 
areas (CRA) (Arvor et al., 2021). The concept of consolidated rural area 
is legally defined as the area of a rural property under human occupation 
(i.e. water bodies and urban areas are not considered as CRA) before the 
reference date of July 2008. This map is of particular importance since it 
serves as a basis for the implementation of the Environmental Regula
rization Program (PRA), which has suspended all sanctions for envi
ronmental infractions that occurred before July 22, 2008. Although the 
sole map of 2008 serves as a legal basis, it needs to be updated to detect 
potential illegal land use changes (i.e. deforestation). To do so, ICV relies 
on the laborious and time-consuming visual interpretation of very high 
resolution images (mainly SPOT-5 images at 2.5 m spatial resolution) to 
discriminate occupied rural areas from natural vegetation. In addition, 

Fig. 5. Location of the study area and identification of the Sentinel-2 tiles and their corresponding number of images.  
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ICV leads important local and regional initiatives to support the resto
ration of Permanent Protected Areas (APP), i.e. riparian forests pro
tected by law (Taniwaki et al., 2018). This implies 1) to map water 
bodies, especially small and large water dams designed for energy pro
duction, irrigation and fish farming and whose proliferation represents a 
major environmental concern (Souza et al., 2019; Arvor et al., 2018), 
and 2) to locate and quantify corresponding degraded riparian vegeta
tion. For these reasons, we focused our study on two classes: 1) natural 
vegetation, with a special emphasis on riparian forests, and 2) water 
bodies, with a special emphasis on small water bodies. Finally, it is 
worth noting that, although the end-user is a GIS team from ICV with a 
long expertise in remote sensing, all the image processing tasks intro
duced in that paper have been computed by the research team. 

The study area is located in the Southern Amazon Brazilian state of 
Mato Grosso (Fig. 5) and covers three Amazonian watersheds (529.780 
km2), i.e. the Juruena (197.036 km2), Teles Pires (144.955 km2) and 
Xingu (187.789 km2) watersheds. Only the part of the basins located in 
the state of Mato Grosso were considered. This region is of special in
terest for two main reasons. First, it includes a south-north gradient of 
natural vegetation ranging from Brazilian savannas (Cerrado) to dense 
evergreen rainforests. Second, despite the delineation of many protected 
areas (e.g. the Xingu indigenous land), it has suffered from intense land 
cover changes during the last four decades. Indeed, a rapid colonization 
process initiated in the 1970s has been supported by the government to 
promote agricultural development. As a consequence, major land use 
types encountered in the Amazon are represented in the study area, i.e. 
small- and large-scale agriculture, pasture, reforestation, degraded for
ests, timber logging, urban areas, natural and artificial water bodies. 
This diversity of natural and anthropogenic land cover/use types draws 
scholars’ attention from diverse scientific areas (e.g. geography, 
agronomy, hydrology, climatology, ecology) and turns automatic land 
cover mapping a challenging task. 

In order to map this study area, we downloaded Sentinel-2 images for 
the year 2017 and spread across 75 tiles covering a total area of 726,981 
km2. Although we requested images with a low cloud cover rate (below 
50%), we noticed through visual inspection that many images still 
presented much higher cloud cover rates. For this reason, we manually 
discarded unusable data and finally acquired a total of 2069 Level 1-C 
Sentinel-2 images, i.e. 1793 Sentinel-2A images and 276 Sentinel-2B 
images. The entire dataset thus consisted in 75 time series including 
from 13 to 46 images. We used Top-of-Atmosphere reflectances of six 
spectral bands (R, G, B, NIR, SWIR1, SWIR2) in order to apply the Sat
ellite Image Automatic Mapper (SIAM) algorithm (see Section 3.2.1). All 
bands were resampled at 10 m spatial resolution with a bilinear algo
rithm in order to benefit from the highest spatial resolution. 

3.2. Image processing: characteristics 

We first processed the Sentinel-2 time series to compute the Ob
servables and Similarities characteristics as explained in Section 2.2.3. In 
this application section, we put a special emphasis on the methods and 
Values (or labels) chosen to describe these Characteristics. 

3.2.1. Observables: classes of colour-material 
Since Observables refer to Sense Qualia field-like properties, the major 

issue consists in assigning meaningful labels (i.e. values) to describe 
them, especially to describe spectral signatures. In this regard, models of 
qualitative colour description (e.g. (Falomir et al., 2013)) include colour 
labels (e.g.”pale-blue”,”light-green”) that appear limited to define 
remotely sensed spectral signatures including reflectances in spectral 
bands not accessible for human vision. The objective is then to define 
rules to categorize spectral signatures involving spectral bands from the 
non-visible spectrum, adding them semantic values corresponding to 
classes of Colour-Material. 

We relied on the seminal work from Baraldi et al. (Baraldi et al., 
2006) to process all images of the database. The Satellite Image 

Automatic Mapper (SIAM) is a rule-based per pixel classifier based on 
spectral-domain prior expert knowledge taken from the remote sensing 
literature (Baraldi et al., 2006). It thus does not require any training data 
and can be considered as a knowledge-driven approach (in opposition to 
a data-driven approach as explained in Section 1.2) relying on remote 
sensing expert knowledge. SIAM assigns pixels to spectral categories 
exclusively based on relative rules (i.e. applied on spectral indices and 
on ratios between spectral bands). As such, it aims at describing the 
pattern of the spectral signature rather than its absolute spectral values 
and can thus be applied to top-of-atmosphere or surface reflectance 
values. Finally, the resulting spectral categories do not correspond to 
land cover classes but should rather be considered as labels describing 
spectral signatures. For example, the SVHNIR spectral category refers to 
Strong Vegetation with High Near-Infrared values. 

All SIAM spectral rules are introduced in (Baraldi et al., 2006) and 

Table 3 
List of SIAM spectral categories for Sentinel-2 with associated classes of colour- 
material.  

ID Label Spectral category Colour Colour- 
material 

1 CL Cloud  White Cloud 
2 SN Snow  
4 ICSN Ice or Snow  
5 DPWASH Deep Water or Shadow  Blue Water 
6 SLWASH Shallow Water or Shadow  
7 PBHNDVI Pit bog with High NDVI  Weak Green 

Veg. 8 PBMNDVI Pit bog with Medium NDVI  
9 PBLNDVI Pit bog with Low NDVI  
10 SVHNIR Strong Vegetation with High 

NIR  
Strong Green 
Veg. 

11 SVLNIR Strong Vegetation with Low 
NIR  

12 AVHNIR Average Vegetation with High 
NIR  

13 AVLNIR Average Vegetation with Low 
NIR  

14 WVHNIR Weak Vegetation with High 
NIR  

Weak Green 
Veg. 

15 WVLNIR Weak Vegetation with Low NIR  
16 SSRHNIR Strong Shrub Rangeland with 

High NIR  
17 SSRLNIR Strong Shrub Rangeland with 

Low NIR  
18 ASRHNIR Average Shrub Rangeland with 

High NIR  
19 ASRLNIR Average Shrub Rangeland with 

Low NIR  
20 SHR Strong Herbaceous  
21 AHR Average Herbaceous  
22 DR Dark Rangeland  
23 BBBHNDBBBI Bright Barren Land with High 

NDBBBI  
White Cloud 

24 BBBLNDBBBI Bright Barren Land with Low 
NDBBBI  

Brown 
Mineral 

27 SBBF Strong Barren Land with flat 
response  

28 SBBNF Strong Barren Land with non- 
flat response  

31 ABBHNDBBBI Average Barren Land with 
High NDBBBI  

32 ABBLNDBBBI Average Barren Land with Low 
NDBBBI  

35 DBBF Dark Barren Land with flat 
response  

36 DBBNF Dark Barren Land with non-flat 
response  

39 WR Weak Rangeland  White Cloud 
40 SHV Shadow area with vegetation  Black Shadow 
41 SHB Shadow area with barren land  
42 SHCL Shadow clouds  
43 TWASHSN Shadow snow  
44 WE Wetland  
45 TWA Turbid Water  Blue Water  
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thus not repeated here. Nonetheless, it is worth noting that, since the 
method has initially been designed for Landsat-5 (TM) and Landsat-7 
(ETM+) images, a few adaptations were required in order to be 
applied to other optical sensors (Baraldi et al., 2010). For example, the 
absence of the thermal band in Sentinel-2 images needed to be addressed 
since it is used to discriminate a few spectral categories. In that case, all 
spectral categories whose corresponding rule set implied the thermal 
band were removed so that the final Sentinel-2 pre-classifications only 
considered up to 36 spectral categories whereas the original SIAM 
version implemented for Landsat data can identify up to 46 spectral 
categories. Also, it is worth noting that the red-edge band of Sentinel-2 
images was not used in this study since the original version of SIAM 
designed for Landsat data did not include any rule for this specific band. 

In addition, the spectral categories corresponding to cloud classes are 
based on the thermal band and could not be applied to Sentinel-2. Since 
cloud masking is very important, we created an equivalent spectral 
category in order to map clouds. For this purpose, we first intended to 
use the cloud mask product released with Level 1-C Sentinel-2 data. 
However, this product has been considered as highly inefficient in 
Amazonian rainforests due to the presence of complex cloudiness and 
high water vapor content (Coluzzi et al., 2018). Various software and 
algorithms to map clouds (and cloud-shadows) in Sentinel-2 images 
were then proposed recently (Frantz et al., 2018; Zhu et al., 2015). In 
this study, we implemented a ready-to-use decision tree designed to map 
clouds in order to be coherent with the overall approach based on de
cision rules. This decision tree has been proposed by Hollstein et al. 
(Hollstein et al., 2016) and the spectral rules for cloud masking are 
defined in Eq. (1): 

where Bi refers to the ith Sentinel-2 spectral band. 
At the end, the pre-classifications consisted in 36 spectral categories 

listed in Table 3. The labels assigned to SIAM spectral categories can be 
considered as related to the surface material type being observed at a 
given date. For example, the BBBHNDBBBI label refers to a spectral 
category that qualifies the spectral signature of a bright barren land. 
Nonetheless, it does not necessarily means that all pixels assigned to this 
label represent bright barren lands due to confusions that may exist with 
other classes with close spectral signatures. For example, we noticed that 
the BBBHNDBBBI and the WR (Weak Rangeland) categories often cor
responded to clouds. Thus, in order to limit confusions between cate
gories and simplify the analysis, the SIAM spectral categories were 
reclassified in six main classes of colour-material, whose labels were 
constructed by associating a colour with the most likely corresponding 
geographic minor entity (i.e. land surface material type, clouds and 
shadows). The six classes of colour-material were:”White Cloud” 
(WhCl),”Black Shadow” (BlSh),”Blue Water” (BlWt),”Strong Green 
Vegetation” (StGVg),”Weak Green Vegetation” (WkGVg) and”Brown 
Mineral” (BrMin). The”White Cloud” label then refers to a field-like 
property, i.e. it describes a pixel whose spectral signature looks like a 
cloud spectral signature, but not necessarily representing a cloud due to 
potential confusions (with buildings for example, see Supplementary 

Material 5). The correspondences between the original SIAM spectral 
categories and the colour-material classes are defined in Table 3. 

3.2.2. Similarities: descriptors of time series 
Similarities refer to objective and measurable characteristics. Here, 

we emphasized the importance of the temporal characteristics to 
describe land surface material types. In this regard, we implemented a 
scoring approach computed on a per-pixel basis which simply consists in 
counting (i.e. summing) the occurrences of a colour-material class in a 
time series. At each date, the counting is weighted by the quality of the 
corresponding image considering its cloud cover rate. For example, a 
pixel assigned to the SVHNIR spectral category in an image with a 30% 
cloud cover was attributed a score of 0.7 (70%) to the corre
sponding”Strong Green Vegetation” colour-material class. By doing so, 
the objective was to give more importance to pixels observed in high 
quality cloud-free images while the information contained in pixels 
observed in low quality images was more uncertain. Finally, each pixel 
time series is described by six scores corresponding to the six classes of 
colour-material. These scores were then used to derive various 
information. 

First, the”Best Possible Score” (BPS) corresponds to the sum of all six 
scores. It represents the maximum score potentially assigned to a pixel 
that would always be classified in the same class of colour-material. BPS 
gives a first broad overview of pixel quality since it is related to the 
number of observations, thus considering the inhomogeneity of the data 
(Sudmanns et al., 2019). 

ScoreBPS =
∑

Scorecolour− material (2)  

where Scorecolour− material refers to the scores of the six classes of colour- 
material. 

Second, the”Best Land Surface Score” (BLSS) is the sum of all scores 
corresponding to classes of colour-material related to a land surface 
material type, i.e. all classes except”White Cloud” and”Black Shadow” 
(Eq. (3)). The BLSS ranges from 0 (when a pixel is never classified in any 
colour-material class related to a land surface material type) to the BPS 
value of the corresponding time series (when a pixel is always classified 
in the same colour-material class). In this regard, it can be considered as 
an indicator of pixel quality, with higher values corresponding to higher- 
frequency observations, and consequently better descriptions of the land 
surface material types. 

ScoreBLSS = ScoreBPS − (ScoreWhCl + ScoreBlSh) (3)  

where ScoreWhCl and ScoreWlSh refer to the scores of the”White Cloud” 
and”Black Shadow” classes of colour-material, respectively. 

Third, we calculated the ratio between the scores of colour-material 
classes related to land surface material types and the BLSS in order to 
compute the occurrence of each colour-material class, i.e. the proportion 
(in %) of observations in a given colour-material in a time series (Eq. (4)). 
These occurrences were then partitioned in eight categories labeled with 

Cloud =
[

(B3 < 0.139) AND (B8A < 0.166) AND
(

B2

B10
< 16.689

)

AND
(

B2

B9
≥ 0.788

)]

OR
[

(B3 ≥ 0.139) AND
(

B5

B11
< 4.33

)

AND (B11 − B10 < 0.255)
]

OR
[

(B3 ≥ 0.139) AND
(

B5

B11
< 4.33

)

AND (B11 − B10 ≥ 0.255) AND (B1 ≥ 0.3)
]

(1)   
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adverbs of time to remain as close as possible to natural language. These 
adverbs were:”Never”,”Rarely”,”Sometimes”, 
”Regularly”,”Predominantly”,”Usually”,”Often” and”Always”. The 
thresholds adopted to define each adverb are listed in Table 4. It is worth 
mentioning that the”Never” adverb is chosen when a score is < = 1 in a 
given Colour-Material class in order to avoid giving too much importance 
to pixels with low absolute score values but high occurrence values. 

OCCcolour− material =
Scorecolour− material

ScoreBLSS
(4)  

where OCCcolour− material stands for the occurrence (in %) of values for a 
given class of colour-material. 

3.3. Classification of geographic minor entities 

3.3.1. Initial stage 
At this level, the objective is to discriminate land surfaces, clouds and 

shadows. For this purpose, we set the assertions 2 to 4 to explicitly 
describe these classes in natural language. 

Assertion 2. A pixel represents a land surface if that pixel is (at least) 
sometimes classified in a Colour-Material class that refers to a land surface, i. 
e.”Blue Water” or”Brown Mineral” or”Strong Green Vegetation” or”Weak 
Green Vegetation”. 

Assertion 3. A pixel represents a cloudy area if that pixel is not classified 
as land surface but (at least) often classified as either”White Cloud” 
or”Brown Mineral” Colour-Material. 

Assertion 4. A pixel represents a shadow area if that pixel is neither 
classified as land surface nor cloudy area. 

These assertions are expressed in Eq. (5): 

MinorEntity =

⎧
⎨

⎩

LandSurface, if (OCCBLSS >= 10%)

Cloud, if (OCCWhCl+BrMin ≥ 90%)

Shadow, Otherwise
(5)  

where OCCclass refers to the occurrence of the corresponding class of 
Colour-Material, i.e. WhCl and BrMin stand for”White Cloud” and”Brown 
Mineral”, respectively. 

3.3.2. Dichotomous stage 
The dichotomous stage aims at discriminating land surface material 

types. It thus produces a broad classification to separate large chunks of 
matter considering vegetated and aquatic areas as proposed in the two 
first steps of the Land Cover Classification System (LCCS; (Di Gregorio, 
2005)). 

Firstly, we computed a binary”Realm” classification to differ
entiate”Aquatic” and”Terrestrial” areas. In this regard, the natural lan
guage description of a pixel belonging to the”Aquatic” class is expressed 
in assertion 5. 

Assertion 5. A pixel represents an aquatic area if that pixel is (at least) 
usually classified as”Blue Water” Colour-Material class. 

Realm =

{
Aquatic, if (OCCBlWt ≥ 50%)

Terrestrial, Otherwise (6)  

where OCCBlWt refers to the occurrence of the”Blue Water” Colour- 
Material. 

Secondly, a binary”Substance” classification was computed to dis
criminate”Vegetation” and”Non-vegetation” areas. As expressed in 
assertion 6 and in Eq. (7), we classified a pixel as”Vegetation” if it is 
observed in”Green Vegetation” (either Strong or Weak Green Vegeta
tion) at least once in a time series. Indeed, due to phenological cycles 
and agricultural calendars, pixels corresponding to vegetated areas are 
not always observed as vegetation. For example, in our case study, most 
cloud-free images are acquired during the dry season (July–August, 
(Asner, 2001; Sano et al., 2007; Martins et al., 2018)) when many fields 
are non-vegetated since crops are cultivated during the rainy season. 

Assertion 6. A pixel represents a vegetated area if that pixel is not never 
classified as”Strong Green Vegetation” or”Weak Green Vegetation” in a time 
series. 

Substance =

{
Vegetation, if

(
ScoreStGVg+WkGVg

)
> 1

)

Non − Vegetation, otherwise (7)  

where ScoreSGVg+WGVg refers to the sum of scores in”Strong Green 
Vegetation” and”Weak Green Vegetation”, respectively. 

Finally, these two binary classifications were crossed together to 
produce the dichotomous stage classification including the following 
four classes of land surface material types: Terrestrial Vegetation, Min
eral (i.e. Terrestrial Non-Vegetation), Aquatic Vegetation and Water (i.e. 
Aquatic Non-Vegetation). In addition, Cloud and Shadow pixels identi
fied at the initial stage are also preserved (Table 5). 

3.3.3. Modular stage 
At the modular stage, the descriptions of land surface material types 

observed at dichotomous stage were extended by associating additional 
Similarities characteristics, especially considering the occurrences of 
Colour-material classes. The objective was to assign each pixel to a label 
that explicitly describes its time series of spectral signatures. 

In the present case, we only extended the”terrestrial vegetation” 
class identified at the dichotomous stage to add temporal characteristics. 
We focused on that class since the end-user (ICV) was mainly interested 
in mapping natural vegetation and water bodies, the latter being already 
identified at the dichotomous stage. Although it is worth reminding that 
the image characteristics (Colour-material and occurrences) are not 
direct measurements of real-world characteristics, we consider that 1) 
colour-material classes provide information on photosynthetic activity 
and vegetation structure (canopy structure or vegetation cover) in a 
given time whereas 2) occurrence of colour-material classes is related to 
vegetation phenology (see also Supplementary Material 1 to see com
parisons of the final modular classification with vegetation cover 
products). 

The terminology used at the modular stage was constructed by 
associating adverbs of time with classes of colour-material. All pixels 
were assigned a composite label describing the temporal signatures 
based on the possible combinations between the occurrences of”strong 
Green Vegetation”,”Weak Green Vegetation” and”Brown Mineral” 

Table 4 
Temporal rules to define temporal occurrences. OCCcolour− material refers to the 
occurrence of each class of colour-material.  

Adverb of time Logical rule Label ID 

Never Scorecolour− material < = 1 NEV 1 
Rarely 0 %  ≤ OCCcolour− material < 10% RAR 2 
Sometimes 10 %  ≤ OCCcolour− material < 25% SOM 3 
Regularly 25 %  ≤ OCCcolour− material < 50% REG 4 
Predominantly 50 %  ≤ OCCcolour− material < 75% PRED 5 
Usually 75 %  ≤ OCCcolour− material < 90% USU 6 
Often 90 %  ≤ OCCcolour− material < 99% OFT 7 
Always OCCcolour− material > = 99% ALW 8  

Table 5 
Description, label, colour and ID of classes at dichotomous stage.  

Description Label Colour ID 

Terrestrial Vegetation Ter_Veg  10 
Terrestrial Non-Vegetation Mineral  20 
Aquatic Vegetation Aqu_Veg  30 
Aquatic Non-Vegetation Water  40 
Clouds Cloud  50 
Shadows Shadow  60  
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Colour-Material classes. The”Blue Water” class was not considered here 
since we were only focusing on areas of”Terrestrial Vegetation”. An 
example of composite label is”ALW-SV & NEV-WV & NEV-BM”, which 
refers to a pixel always classified in”Strong Green Vegetation” and never 
in”Weak Green Vegetation” nor”Brown Mineral”. This approach leads to 
a maximum of N = 512 combinations, from which many of them are 
impossible. For example, a pixel cannot be always classified as Strong 
Green Vegetation and Weak Green Vegetation in the same time. 

In addition, each composite label is associated to a 3-digit numeric ID 
where each digit corresponds to the numeric value (1 to 8) assigned to 
the adverb of time characterizing the occurrences of the”Strong Green 
Vegetation”, the”Weak Green Vegetation” and the”Brown Mineral” 
classes of Colour-Material, respectively. Consequently, the numeric IDs 
range from 111 for pixels never classified in any of these three classes of 
colour-Material to 888 for pixels always classified in each of these three 
classes of colour-Materials (which is actually an impossible case). 

Finally, since the number of modular classes is potentially very high, 
we assigned colours to every class automatically in order to ease the map 
visualization. For this purpose, we defined one reference colour, i. 
e.”darkgreen”,”yellow3” and”tan4” as defined in the R environment, for 
each of the three classes of colour-material used at the modular stage, i. 
e.”Strong Green Vegetation”,”Weak Green Vegetation” and”Brown 
Mineral” respectively. These reference colours were then converted to 
RGB colour space and mixed proportionally to the occurrences of their 
corresponding classes in order to compute a new colour for each 
modular class. For example, the modular class”345 - SOM-SGV / REG- 
WGV / PRED-BM” (i.e. sometimes (10–25%) Strong Green Vegetation, 
regularly (25–50%) Weak Green Vegetation and predominantly 
(50–75%) Brown Mineral) will be assigned a RGB colour that mixes: 1) 
17.5% (midpoint between 10 and 25%) of”darkgreen” (r = 0, g = 100, b 
= 0) with 2) 37.5% (midpoint between 25 and 50%) of”yellow3” (r =
205, g = 205, b = 0) and 3) 62.5% (midpoint between 50 and 75%) 
of”tan4” (r = 139, g = 90, b = 43). The RGB values of the resulting 
colour are then (see Eq. (8) and corresponding colour in fourth line of 
Table 6): 
⎧
⎨

⎩

r = (0.175*0 + 0.375*205 + 0.625*139)/(0.175 + 0.375 + 0.625) = 139
g = (0.175*100 + 0.375*205 + 0.625*90)/(0.175 + 0.375 + 0.625) = 128
b = (0.175*0 + 0.375*0 + 0.625*43)/(0.175 + 0.375 + 0.625) = 23

(8) 

Examples of modular classes and their associated colours are shown 
in Table 6. We also introduce potential land cover classes associated 
with the vegetation gradient. Browner colours refer to high occurrences 
of Brown Mineral classes of colour-material and are thus expected to 
correspond to permanent bare soils or urban areas (see also Supple
mentary Material 5). Crops are expected to be associated to mixed oc
currences of Strong Green Vegetation and Brown Mineral classes. 
Herbaceous vegetation (pasture and open cerrado) with a longer vege
tative cycle than crops and low biomass should be represented by 
yellow-green colours corresponding to high occurrences of Weak Green 
Vegetation. Woody vegetation is represented by greener colours due to 

higher occurrences of Strong Green Vegetation. Finally, evergreen for
ests should correspond to dark green colours corresponding to always 
Strong Green Vegetation. 

3.4. From image classification to thematic application 

The final classifications were analysed to assess how they could 
benefit the end-users with regards to their specific applications. In the 
present case, the situation is straightforward since the end-user’s 
requirement consists in mapping land cover classes (natural vegetation, 
with focus on riparian forests, and water bodies), whose accuracy can 
then be assessed by comparing the classifications with reference land 
cover maps. In this regard, we used different reference data sets pro
vided by the end-users and thus containing the main classes of interest 
according to their requirements. 

3.4.1. Natural vegetation 
At first, we aimed to assess how efficient the automatic approach was 

to map areas of natural vegetation. To do so, we relied on the 2008 map 
of consolidated rural areas (CRA) produced by ICV based on photo- 
interpretation of high resolution images (SPOT 5 images at 2.5 m 
spatial resolution) for the entire state of Mato Grosso. We then crossed 
that map with additional information in order to map remnants of nat
ural vegetation in 2017 (hereafter named NatVeg2017), i.e. at the date 
of acquisition of the Sentinel-2 images. For this purpose, we used 1) the 
annual official deforestation maps provided by INPE (Brazilian National 
Institute for Space Research) through the PRODES program (the Bra
zilian Deforestation Monitoring Program) and 2) the 2017 MapBiomas 
land cover map (Collection 5) produced by a multidisciplinary team 
based on supervised classification of Landsat time series on Google Earth 
Engine. Areas of natural vegetation in 2017 were then defined as areas 
that were 1) neither considered as consolidated in 2008, 2) nor defor
ested between 2008 and 2017 according to PRODES maps, 3) nor clas
sified as water or urban in MapBiomas 2017. We then randomly selected 
500 validation point samples in each Sentinel-2 tile and retrieved their 
reference labels in the NatVeg2017 map and in the corresponding 
modular classifications in order to compute traditional validation sta
tistical indices such as the F-score. By doing so, we intended to analyze 
the spatial heterogeneity of the classification accuracy across the study 
area. 

Yet, beyond the statistical validation, we also wished to underline to 
the end-user that, although the reference map (NatVeg2017 map) is 
unique, various potentially accurate land cover classifications can be 
produced. In other words, various correct interpretations of a unique 
dataset of satellite images can coexist, thus illustrating the vagueness 
issue of geographic terms as mentioned in Section 1.1. For example, the 
validation of the natural vegetation land cover class was challenging 
since our approach did not produce an explicitly defined class of”Natural 
Vegetation” at the modular stage. Indeed, we rather mapped a gradient 
of terrestrial vegetation classes. Considering that most tropical native 
vegetation in the study is evergreen, we focused on the modular classes 
that were”never” or”rarely” observed as”Brown Mineral” Colour-Mate
rial. We ordered them in a gradient ranging from classes corresponding 
to pixels only classified in”Strong Green Vegetation” (i.e. IDs 811, 711, 
611, 511, 411, 311, 211) on the one side, to classes referring to pixels 
only classified in”Weak Green Vegetation” (i.e. IDS 
181,171,161,151,141,131,121), on the other side. It is worth noting that 
classes with little total occurrences in all classes of colour-material taken 
into account at the modular stage (e.g. ID = 211 or ID = 121) had more 
observations in the”Blue Water” colour-material but not enough to be 
classified as”Aquatic”. Between these two extremes, the modular classes 
were ordered according to their decreasing occurrences of”Strong Green 
Vegetation” and increasing occurrences of”Weak Green Vegetation”. 
Based on this gradient, we then iteratively computed the F-score 
comparing the reference labels (retrieved from the NatVeg2017 map) of 
the 500 randomly selected points in each Sentinel-2 tile with the various 

Table 6 
Examples of IDs, labels, colours and potential associated land cover classes 
defined at the modular stage.  

ID Colour/Label Vegetation Gradient 

118 NEV-SGV/NEV-WGV/ALW-BM Permanent Bare Soil (Urban) 
136 NEV-SGV/SOM-WGV/USU-BM  
316 SOM-SGV/NEV-WGV/USU-BM Crops 
345 SOM-SGV/REG-WGV/PRED-BM  
163 NEV-SGV/USU-WGV/SOM-BM Herbaceous Vegetation 
181 NEV-SGV/ALW-WGV/NEV-BM (Pasture, Open Cerrado) 
361 SOM-SGV/USU-WGV/NEV-BM  
541 PRED-SGV/REG-WGV/NEV-BM Woody Vegetation 
631 USU-SGV/SOM-WGV/NEV-BM  
811 ALW-SGV/NEV-WGV/NEV-BM Evergreen Forest  
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potential masks of natural vegetation computed by integrating a new 
class of the gradient at each new iteration until all classes of the gradient 
were considered. By doing so, we intended to set the optimal combi
nation of modular classes that would best discriminate areas of natural 
vegetation according to the end-user’s definition. 

In order to take the analysis of natural vegetation maps one step 
further, we then focused on the potential of our approach to estimate the 
level of degradation of riparian forests in Permament Protected Areas 
(PPA). For this specific task, we used four different reference land cover 
maps from 2016 (hereafter named LC2016_4) provided by the ICV NGO 
for four municipalities (Alta Floresta, Carlinda, CotriguaÃ§u and Para
naita) and with detailed information about native vegetation, PPA and 
associated water bodies. These maps were also produced by visual 
interpretation of very high resolution data (SPOT 5 images at 2.5 m 
spatial resolution). Finally, we assessed the effectiveness of the approach 
to assist the end-users in monitoring vegetation degradation in riparian 
protected areas by comparing the proportion of degraded riparian 

forests as measured by the end-user and as estimated by the system, 
using different thresholds in the vegetation gradient, for N = 1,239 
watersheds delineated by the Brazilian National Water Agency (ANA). 

3.4.2. Water bodies 
With regard to the mapping of water bodies, we used recent (2016) 

reference land cover maps provided by the end-user for 18 municipalities 
in northern Mato Grosso (hereafter named LC2016_18). These maps are 
similar to LC2016_4 except they do not contain information on the 
delineation of PPA and thus cannot be used to validate riparian forests. 
But, LC2016_18 maps contain many information on the location of natural 
and artificial water bodies and can thus be used to assess the potential of 
the approach to map this class. For this reason, we compared the”Water” 
samples from the reference data with their corresponding pixel values 
produced at the dichotomous stage, either considering only the”Water” 
class or both classes of”Water” and”Aquatic Vegetation”. In addition, since 
the width of water courses was informed by the end-users in the database, 

Fig. 6. Examples of SIAM classifications (Tile 21LXG) at four different dates. The complete legend is in Table 3.  
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it was possible to assess the effectiveness of the system to map different 
sizes of water bodies. In this regard, we applied iterative internal buffers 
(of 10 m to 100 m by 10 m step) to collect new water samples and thus plot 
the evolution of validation statistics in function of the size of water bodies. 

4. Results 

4.1. Observables 

The SIAM classifier was applied on the 2069 Sentinel-2 images in 
order to map spectral categories and their associated classes of Colour- 
Material (Table 3). Some resulting examples are shown in Fig. 6 for one 
tile (21LXG) located in central Mato Grosso between the cities of Sorriso 

and Sinop. For this specific tile, 20 images were acquired but only four 
SIAM maps corresponding to different months (January, May, August 
and November) are shown here. They illustrate the ability of the 
approach to detect clouds and cloud-shadows and to monitor the sea
sonal evolution of vegetation phenology (which follows the rainy season 
from September to May). Indeed, forests remain green throughout the 
year whereas other vegetation covers (i.e. mainly crops and pastures) 
are represented with changing colours (from brown to green). In the 
present case covering a large farm specialized in both cattle ranching 
and crop cultivation (soybean, maize and cotton), 1) the January image 
corresponds to the soybean harvest followed by the planting of cotton 
and maize thus explaining the large presence of bare soils in crop fields 
whereas pastures and forests are green, 2) the May image corresponds to 

Fig. 7. Density function of BLSS values.  

Fig. 8. Map of best land surface scores (BLSS).  
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a period of high photosynthetic activity in cotton and maize fields so 
that crop fields are as green as forested areas whereas pastures are in 
weak green, 3) the August image corresponds to the end of the dry 
season when no crop is photosynthetically active while forests 
(including riparian forests) remain green and 4) the November image 
corresponds to the beginning of the soybean vegetation cycle with crops 
appearing as weak green or even bare soil depending on the planting 
date. To summarize, forests remain green throughout the year whereas 
other vegetation covers (i.e. crops and pastures mainly) characterized by 
a strong phenological cycle are represented with changing colours (from 
brown to green). Finally, the water bodies such as the Teles Pires river, 
are mapped in blue in all images. 

4.2. Similarities 

We computed the scores for all classes of colour-material and then 
derived the Best Possible Score (BPS), Best Land Surface Score (BLSS) 
and the Scores of Colour-Material classes for all pixels of the study area. 

The Best Possible Score (BPS) refers to the best score that could be 

assigned to a pixel being always classified in the same class of Colour- 
Material. The Best Land Surface Score (BLSS) approximates to BPS 
except it only considers classes of Colour-Material related to land sur
faces, i.e. disregarding”Black Shadow” and”White Cloud”. Thus, BPS is 
higher or equal to BLSS and the higher is the difference between BPS and 
BLSS, the higher is the presence of clouds and/or shadows in the time 
series. Values range from 3.76 (at tile 21LTJ) to 36.95 (at tile LZK) for 
BPS and from 0 to 35.87 for BLSS. With respect to the latter, the density 
function (Fig. 7) indicates that 50% of pixels have a BLSS value between 
8 and 12.7, thus benefiting from a significant number of observation. In 
addition, 1% of pixels have a value below 2.8 (i.e. being rarely observed) 
and 5% present a value greater than 20 (i.e. being often observed). 
Moreover, both BPS (not shown) and BLSS (Fig. 8) show similar spatial 
patterns. At a regional scale, a east-west gradient can be noticed with 
lower values in western areas (Tiles 21LTL, 21LTK) corresponding to 
areas with very high cloud cover rates and/or missing data affecting the 
quality of image time series. At local scale, highest values correspond to 
overlapping areas at the border between two satellite swaths so that 
discrepancies inside Sentinel-2 tiles also appear. For example, tiles 

Fig. 9. Examples of scores measured for the main classes of Colour-Material (Tile 21LXG).  
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21LWL or 21LWK show much lower values in western areas than in 
eastern areas. 

Finally, the Fig. 9 shows the scores for the main classes of Colour- 
Material related to land surfaces at a same location in central Mato 
Grosso. High scores of”Strong Green Vegetation” correspond to ever
green forests with high vegetative activity throughout the year whereas 
high scores of”Weak Strong Vegetation” refer to pastures or sparse 
natural vegetation (i.e. Cerrado). Crop fields are represented with 
moderate to high scores of”Brown Mineral” due to the over represen
tation of dry season images in the time series. High scores in”Blue 
Water” emphasize the presence of natural or artificial water bodies. 
Also, it is worth mentioning that, as observed in Fig. 8, the overlapping 
areas have higher values in every score images (although not shown in 
Fig. 9) since scores are absolute values whose computation depends on 
the length and quality of the image time series. Yet, these areas are not 
processed differently in the next steps of the system since the classifi
cation rules are based on normalized occurrences (in percent) as 
expressed in Eq. (4) and Table 4. 

4.3. Classifications 

We here introduce the classifications obtained at the initial, dichot
omous and modular stages. The statistical analysis for validation is then 
introduced in Section 4.4. 

4.3.1. Initial stage 
The Fig. 10 introduces the map produced at the initial stage of the 

approach to discriminate minor entities, i.e. land surfaces, clouds and 
shadows. A large majority (99.96%) of pixels were classified as”Land 
Surface” confirming the possibility to produce a final (nearly) cloud-free 
map. Clouds (0.0055%) and shadows (0.03%) represented very little 
portions of the entire study area. Most shadows were encountered in a 
few tiles with low quality image time series (e.g. 21LTJ) or in urban 
areas where high buildings can be associated to projected shadows. 
Similarly, most cloud pixels were found in urban areas, where buildings’ 
roofs made of very reflective material (e.g. storage sheds) were confused 
with clouds. 

4.3.2. Dichotomous stage 
At the dichotomous stage, land surfaces were discriminated in four 

major land surface material types, i.e. Terrestrial Vegetation, Mineral, 
Aquatic Vegetation and Water (Fig. 11). The results show the predom
inance of terrestrial vegetation (98.66% of pixels classified as land 
surfaces at the initial stage), which includes both natural (i.e. forest and 
cerrado) and managed (crops and pastures) vegetation. Mineral areas 
covered 0.92% of the study area, mainly corresponding to urban areas 
(such as Sinop in tile 21LXG and Campo Novo do Parecis in tile 21LUF) 
or bare soils (as in tile 21LVE). Bare soils may correspond to fallow fields 
or cultivated fields that, for some reason (e.g. very high cloud cover rates 
during the rainy season), were only observed during the dry season 

Fig. 10. Map produced at the initial stage with minor entities, i.e. land surfaces, clouds and shadows.  
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when there was no standing crop. Water bodies represented 0.4% of the 
land surfaces, including rivers (as in tiles 21LUK, 21LXG and 22LBQ 
representing the main rivers in the study area) and small (tile 21LXG) or 
large artificial dams (as the Manso hydropower reservoir in tile 21LXD). 
Finally, only 0.011% of land surfaces were classified as”Aquatic Vege
tation” corresponding to pixels in wetlands or at the banks of water 
bodies. 

4.3.3. Modular stage 
At the modular stage, pixels classified as”Terrestrial Vegetation” 

were further described with additional characteristics regarding the 
occurrences of”Strong Green Vegetation”,”Weak Green Vegetation” 
and”Brown Mineral” classes of Colour-Material. At the end, 142 modular 
classes were encountered thus representing a large diversity of combi
nations. Nonetheless, the 20 most represented classes covered 87.8% of 
the total of”Terrestrial Vegetation” pixels (each of these 20 classes 
accounted for more than 1% of the total number of pixels). The distri
butions of these 20 classes, their label descriptions and their associated 
colours are shown in Fig. 12 and evidence the importance of 4 classes 
(811, 711, 154 and 145) which accounted for 53.1% of all”Terrestrial 
Vegetation” pixels. The Fig. 12 serves as a legend to understand the map 
produced at the modular stage (Fig. 13). At regional scale, the SE-NW 
vegetation gradient from Cerrado to rain forests appeared clearly. 
Pasture areas (tiles 21LUK, 21LXG and 22LCP) were classified with 
similar colour shades than cerrado areas (tiles 21LXD and 21LUE). This 
is because they actually both correspond to herbaceous land cover with 
sparse shrubs or trees. Crops were assigned to brown-green colour 
shades (e.g. as classes 335 or 415 in Fig. 12) corresponding to a mix of all 

classes of Colour-Material throughout the year. Finally, forests appeared 
in dark green. It is also worth noting that other classes discriminated at 
the dichotomous stage (”Water”,”Mineral” and”Aquatic Vegetation”) 
were preserved at the modular stage. 

4.4. From image classification to thematic application 

4.4.1. Water bodies 
The Fig. 14 shows subsets of classifications obtained at the modular 

stage and focused on water bodies. Main river courses such as Juruena 
(Fig. 14A) and Xingu rivers (Fig. 14D) were mapped, evidencing cases of 
anastomosis (Fig. 14A) or the presence of temporary river banks 
emerging during the dry season (mapped as Mineral in Fig. 14D). 
Similarly, large reservoirs were correctly delineated, as it was the case 
for the Teles Pires hydropower reservoir (Fig. 14B). Overall, small nat
ural and artificial water bodies were captured, as it was the case for 
excavated tanks for fish farming (Fig. 14C), small farm dams (Fig. 14E) 
or natural lakes in Cerrado areas (Fig. 14F). 

After visual assessment, the accuracy of the approach to map water 
bodies was also validated using the F-score statistical index (Table 7). 
Reference samples were extracted from land use maps produced by the 
end users (LC2016_18) and compared with the dichotomous classifica
tion. More specifically, two definitions of”Water” were considered, i.e. a 
restrictive definition considering only the”Water” class and a broad 
definition considering both classes of”Water” and”Aquatic Vegetation”. 
F-scores were always better when considering both classes of”Water” 
and”Aquatic Vegetation” as water bodies. As expected, the lowest F- 
scores (F = 0.802) were obtained when using all reference samples, i.e. 

Fig. 11. Map produced at the dichotomous stage with Land Surface Material Types.  
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including very small water bodies (< 10 m width) or hidden by the 
canopy. Then, the results improved significantly when focusing on water 
bodies larger than 10 m (F = 0.874), 20 m (F = 0.927) or even 100 m (F 
= 0.961), i.e. when considering that only water bodies larger than the 
image spatial resolution (10 m) can”exist” in Sentinel-2 images (see 
Section 2.2.1 about the existence stage of the semantic contraction 
proposed by Couclelis (Couclelis, 2010)). 

4.4.2. Natural vegetation 
The validation of the”Natural Vegetation” class was performed by 

comparing the modular classes retrieved at 500 random samples per tile 
(N = 37,500 samples for the entire study area) with the corresponding 
values in the reference NatVeg2017 map. The validation also intended 
to define the best combination of modular classes approximating the 
reference map. Considering that most natural vegetation in the study 
area is made of evergreen vegetation, we focused on the modular classes 
that were”never” or”rarely” observed as”Brown Mineral” Colour-Mate
rial, i.e. 41 classes out of a total of 142. These classes were then sorted 
according to a vegetation gradient ranging from”Always Strong Green 
Vegetation” (ID = 811) to”Always Weak Green Vegetation” (ID = 181), 
i.e. from the greenest to the yellowest classes. Combinations of modular 
classes were then tested iteratively including a new class at each itera
tion. Fig. 15 shows the evolution of the F-score for each combination of 
modular classes. The high F-score values (>0.8) achieved with all 
combinations indicated it did not exist a unique combination of classes 
to represent the areas of natural vegetation as originally delineated by 
the end-users. Interestingly, the F-score achieves its maximum value (F 

= 0.875) when considering all modular classes, i.e. pixels that are only 
classified as”Green Vegetation”, either”Strong” or”Weak”. This means 
that including modular classes with occurrences of “Brown Mineral” 
may potentially improve the mapping of natural vegetation. This is 
confirmed when analyzing the spatial variability of accuracy metrics 
across the study area (Fig. 16) evidencing lower F-score values (e.g. F =
0.68 in Tile 21LCJ) in southern areas dominated by open savannas 
which can be confused with bare soil during the dry season. On the 
contrary, dense rainforests in northern areas are better classified (F >
0.9) and considering less combinations of modular classes such as in tiles 
21LWK and 21LYG (Figs. 15 and 16). Yet, it is worth mentioning that 
few areas achieved very high F-score values (F = 1) when considering all 
combinations of modular classes. These areas actually correspond to 
protected areas (e.g. conservation units or indigenous lands) where 
small non forested areas (i.e. yellowest classes in the colour gradient) 
may still correspond to natural vegetation. 

In order to illustrate the implications of changing the combination of 
modular classes in the mapping of natural vegetation, we set five 
thresholds (NV1 to NV5) in the colour gradient of modular classes 
(Fig. 15) corresponding to five different definitions, ranging from a 
restrictive definition of natural vegetation corresponding to pixels al
ways classified as “Strong Green Vegetation” to an open definition of 
natural vegetation considering all pixels always classified as”Green 
Vegetation”, either”Strong” or”Weak”. The natural language definitions 
corresponding to these five combinations are expressed in Table 8. We 
then identified four examples illustrating the importance to consider 
vegetation gradients when monitoring fine changes in vegetation cover. 

Fig. 12. Distribution of the 20 most represented modular classes with their label descriptions and associated colours.  
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The first example (Fig. 17A) is centered around an area of degraded 
forest and shows the difficulty to accurately delineate forest patches. At 
NV1 (restrictive definition), degraded areas are discarded and forest 
patches are discontinuous whereas, at NV5 (Open definition), degraded 
areas are classified as forests and connectivity is preserved. Similar 
conclusions can be drawn from Fig. 17B centered on a logged forest. At 
NV1, forests appear as highly fragmented and degraded. At NV2 
(Closed), NV3 (Intermediate) and NV4 (Broad), only the human in
frastructures (logging roads and log landings) are discriminated. At 
NV5, the entire area is considered as forest. In Fig. 17C, humid riparian 
forests are surrounded by dry forests and Cerrado areas on neighboring 
plateaus. Here again, the maps differ dramatically from NV1 to NV5 
with Cerrado areas being totally included in the mask of natural vege
tation at NV5. Finally, Fig. 17D shows how the extension of an indige
nous village (Camaiura, inside the Xingu indigenous land) with 
traditional slash-and-burn agriculture varies depending on the chosen 
definition of natural vegetation. 

In addition, it is necessary to better assess the quality of the maps of 
natural vegetation for local scale applications, especially regarding the 
end-users interest in mapping degraded riparian forests in Permanently 
Protected Areas (PPA) according to the Brazilian Forest Code. For this 
purpose, we compared the proportion of degraded areas measured by 
the end-users through visual interpretation for N = 1,239 watersheds in 
Northern Mato Grosso with the corresponding estimates produced at 
modular stage (Fig. 18). As expected, the restrictive maps of natural 
vegetation (NV1) tended to overestimate degradation whereas the open 
forest maps (NV5) underestimated degradation. The highest correlation 
(R2 = 0.841) was achieved with the closed map (NV2), which means that 
this definition could be used on a regular basis to produce rapid updates 
on vegetation degradation in riparian Permanent Protected Areas. 

5. Discussion 

The knowledge-driven method proposed in this paper relies on two 
main pillars: 1) a robust conceptual framework to guide the system’s 
architecture and 2) the implementation of the system per se with regard 
to a specific application. Here we first discuss the limitations of the 
current implementation of the system in order to set out future prospects 
for improvement of the conceptual framework. Finally, we discuss how 
the approach could contribute to reducing the gap between remote 
sensing and end-user expert knowledge. 

5.1. The system’s implementation 

As for today, the system highly depends on the SIAM algorithm 
(Baraldi et al., 2006) to efficiently discriminate Observable characteris
tics, i.e. to classify main classes of Colour-Material. SIAM works with top- 
of-atmosphere (TOARF) or surface reflectance values (SURF), the latter 
being an ideal case of the former (Baraldi et al., 2010). In this study, we 
used TOARF data but we intend to consider how SURF data would 
improve the final classifications. Second, SIAM actually differentiates 
much more spectral categories (Table 3) that shall be further analysed in 
order to identify additional classes of Colour-Material and consequently 
other land surface material types. For example, the”Brown Mineral” 
Colour-Material could be split in various sub-classes as done for the”
Green Vegetation” classes. Conversely, other potentially interesting 
classes of Colour-Material were not discriminated by SIAM. For example, 
green cotton fields display higher NIR values than forested areas but 
both are classified as”Strong Green Vegetation” Colour-Material. This 
latter class is actually over represented in tropical forested areas since it 
can be assigned to many different vegetation types (i.e. forests, crops, 
pastures) depending on the date of the year. To address this issue, we 

Fig. 13. Map produced at the modular stage.  
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consider that the potential of the red-edge bands of Sentinel-2 images 
should be further explored to better discriminate vegetation classes (Lin 
et al., 2019). Finally, texture is another Sense Qualia observable char
acteristic whose effectiveness to improve land cover classification has 
long been studied, especially in tropical forests (Lu, 2005). But inte
grating texture in the approach would first require categorizing it in a 
robust manner. In this regard, the FOTO approach (Couteron et al., 
2005) can serve as an inspiration although it does not yet assign se
mantic labels to the texture classes. Texture could also be derived from 
other data such as Sentinel 1 since sensibility of SAR images to land 
surface roughness has long been studied (Lee and Pottier, 2009). In 
addition, using SAR images would also be useful to complete the time 
series, especially during the rainy season since the scoring approach 
resulted in giving more importance to dry season optical images (from 
May to September). However, in order to ensure the overall consistency 
of the approach, it would be necessary to rely on a similar approach than 
SIAM but adapted to SAR data, which does not exist to date. 

With regard to Similarities, we only focused on one measurable in
formation referring to the occurrences of Colour-Material classes as this 

information was considered sufficient to map the classes of interest (i.e. 
forests and water bodies). Yet, in the current version of the system, the 
counting of occurrences is weighted by the quality of the images that 
compose the time series considering their cloud cover percentage 
measured at tile-level. By doing so, the spatial distribution of pixel’s 
quality in an image is not taken into account since a unique weight is 
assigned to all pixels. In order to overcome that issue, we wish to test the 
feasibility to assign pixel-based weights based on the distance to clouds 
and shadows. But overall, other similarities related to temporal patterns 
may be computed to derive additional modular classes representing land 
cover trajectories as expressed by Câmara (Câmara, 2020). For example, 
it may consist in computing other knowledge-based temporal features to 
map annual croplands (e.g. maximum value in the red band, maximum 
NDVI, minimum NDVI, maximum positive NDVI slope and maximum 
negative NDVI slope as in (Waldner et al., 2015; Arvor et al., 2011)) or 
including endmembers fraction resulting from linear unmixing models 
regularly used to map forest degradation or stages of forest regeneration 
in the Amazon (Bullock et al., 2020; Asner, 2009; Lu, 2003).But, the 
accuracy of such temporal features also depends on the completeness of 

Fig. 14. Examples of detection of water bodies.  

Table 7 
F-score validation statistics for water bodies.   

Minimum width of water bodies 

All 10 m 20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m 100 m 

Water 0.802 0.867 0.918 0.934 0.938 0.920 0.944 0.947 0.960 0.961 0.960 
Water            
+ Aqu. Veg. 0.808 0.874 0.927 0.938 0.942 0.926 0.946 0.951 0.965 0.962 0.961 
N 1000 1000 1000 1000 1000 1000 1000 1000 820 626 495  
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Fig. 16. Validation of the natural vegetation land cover class with F-score statistics for each Sentinel-2 tile. The colour corresponds to the threshold in the colour 
gradient (see Fig. 15) at which the best F-score value was achieved. 

Fig. 15. Validation of the natural vegetation land cover class with F-score statistics computed for various combinations of modular classes.  
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the input time series, which usually suffer from spatial inhomogeneity 
(Sudmanns et al., 2019). In addition, spatial similarities (e.g. patch ge
ometry) and spatial or temporal relations between geographic objects 
may allow identifying more complex land use classes (e.g. urban areas, 
see Supplementary Material 5). 

Improving the computation of both Observables and Similarities 
should therefore improve the classifications produced at the initial, 
dichotomous and modular stages. At the initial stage for example, the 
mapping of clouds and shadows depends on the accuracy of the cloud 
and cloud-shadow mask implemented previous to SIAM. As for now, we 
used the algorithm proposed by Hollstein et al. (Hollstein et al., 2016) 
because it is entirely rule-based and thus in line with the other image 
processing steps of the system. However, Sanchez et al. (Sanchez et al., 
2020) recently compared the efficiency of different algorithms to mask 
clouds in Sentinel-2 images of the Brazilian Amazon. They especially 

emphasized the good results achieved by the Fmask method (Qiu et al., 
2019) whose potential to significantly improve the initial classification 
should then be assessed. 

At the dichotomous stage, land surfaces are sub-divided in four 
classes (”Terrestrial Vegetation”,”Aquatic Vegetation”,”Water” and”
Mineral”) by crossing two binary masks of vegetated and aquatic areas. 
Whereas this approach was sufficient to monitor the classes of interest 
for this specific application, it is worth noting that the”Mineral” class is 
actually implicitly identified since it is defined by combining”Non 
Aquatic” and”Non Vegetated” areas. Yet, an explicit classification 
of”Mineral” classes directly based on the occurrences of the”Brown 
Mineral” class of Colour-Material may improve the mapping of land 
surface material types, also potentially including additional dichoto
mous classes such as”Aquatic Mineral” corresponding to temporary 
flooded bare areas (e.g. sandy banks). 

At the modular stage, the combination of occurrence classes of 
Colour-Material led to a large number of potential classes (142 identified 
in the present study). If additional observables (e.g. texture) and simi
larities (e.g. endmember fractions, patch geometry) were to be 
computed, this number could even increase dramatically. As a conse
quence, the automatic definition of IDs, colours and labels for an 
increasing number of modular classes may become an issue. We suggest 
the IDs could be handled in bit flag arrays as in the quality assurance 
data associated with MODIS Land Products (GSFC-NASA, 2020). Bit flag 
arrays contain multiple flags (e.g. binary values) stored in fixed bit po
sitions of the array depending on the characteristic they measured. The 
binary strings can then easily be converted in numeric decimal values. 
With regard to colours, the colour mixing approach based on weighted 
RGB values as used in this study is somehow simplistic. Additional tests 

Table 8 
Natural language definitions of the five potential classes of natural vegetation 
identified in Fig. 15.  

Label Natural language definition  

A pixel represents a Natural Vegetation if that pixel is… 
NV1- Restrictive …Always Strong Green Vegetation 
NV2- Closed …(At least) Predominantly Strong Green Vegetation 

and Never or Rarely Brown Mineral 
NV3- Intermediate …(At most) Regularly Strong Green Vegetation and 

(at most) Regularly Weak Green Vegetation 
and Never or Rarely Brown Mineral 

NV4- Broad …(At least) Rarely Strong Green Vegetation 
and Never or Rarely Brown Mineral 

NV5- Open …Always Strong or Weak Green Vegetation  

Fig. 17. Examples of classification of woody vegetation according to different thresholds of forest definition for four study cases: A) Degraded forest in a pasture 
landscape, B) Logged forest, C) Forest-Cerrado transition and D) Indigenous village surrounded by small-scale agriculture. 
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in alternative colour spaces (e.g.HSL and HSB spaces) should be per
formed to mix colours more closely with the way human vision perceives 
colours. Yet, the most challenging issue is certainly the non-numeric 
one, i.e. to improve the description of image pixels and objects with 
meaningful semantic labels based on natural language terms (Câmara, 
2020). 

Finally, whereas the effectiveness of the approach was here assessed 
through traditional statistical indices to validate the accuracy of land 
cover maps, we wish to emphasize that the resulting classifications may 
not necessarily be assessed through comparisons with land cover refer
ence samples. For example, ecologists used to process land cover maps to 
understand the distribution of animal species could run distribution 
models with various input maps based on different combinations of 
modular classes in order to identify a range of classes (related to ranges 
in the vegetation gradient) that best correlates with the presence of that 
species of interest. By considering numerous low-level symbolic labels 
describing the spectro-temporal signatures instead of a few arbitrarily- 
defined high-level thematic land cover classes, it would both reduce 
the gap between the data and the end-users and avoid overly simplifying 
representation of reality that may not adequately represent how species 
perceive their environment (Rocchini et al., 2013; Comber et al., 2005). 

5.2. The conceptual framework 

A major objective of the approach proposed in this paper was to 
assess if a well justified and simple rule-based knowledge-driven 
approach could achieve high scores of classification accuracy. For this 
reason, we intentionally implemented the current version of the system 
as a fully knowledge-driven approach relying on threshold-based rule
sets. These thresholds (except for cloud detection whose rules were 

inspired from (Hollstein et al., 2016)) were defined based on logical 
considerations. For example, all thresholds in Table 4 were fixed arbi
trarily to cover all the gradient from 0 to 100% occurrence, as in other 
knowledge-driven classification systems such as LCCS or General 
Habitat Categories (GHC) (Kosmidou et al., 2014). The results obtained 
for this specific application using Sentinel-2 images of the Southern 
Brazilian Amazon were encouraging and confirmed the relevance of the 
approach, especially to monitor vegetation gradients in tropical land
scapes of pioneer frontiers. Additional tests (see Supplementary Mate
rials; SM) performed in other study areas in Brazil (SM 2 and 5), France 
(SM 3), India (SM 4), Indonesia and Congo (SM 6), with other data 
(Landsat-8) and other classes of interest (i.e. urban areas, urban vege
tation, irrigated fields, coniferous forests) also illustrate the potential of 
the system to compete with more traditional data-driven approaches 
(SM 2 and 3). 

Yet, beyond our intention to test the system for other applications, 
we also need to discuss further evolution of the conceptual framework. 

First, as mentioned previously, the perspective to integrate addi
tional similarities (e.g. about patch geometry) may require moving from 
a pixel- to an object-based image analysis, thus adopting the GEOBIA 
principles (Blaschke et al., 2014; Blaschke, 2010). Considering the se
mantic contraction proposed by Couclelis (Couclelis, 2010), the”field- 
to-object” transition occurs between the 3rd and 4th steps of the 
contraction (Table 2), i.e. when fields of properties (i.e. Observables and 
Similarities) are used to identify and name simple geographic objects. 
Moving to a GEOBIA approach would then be an important step towards 
a full implementation of the semantic contraction. In this regard, the 
method introduced in this paper may be considered as complementary 
to the approach described by Lang et al. (Lang et al., 2014) who started 
from a GEOBIA land use classification to focus on levels 4 to 7 of the 

Fig. 18. Correlations between the proportions of degraded riparian forest in N = 1,239 watersheds as estimated by visual interpretation (Reference data set) and by 
the Sentinel-2 classification, using various thresholds at the modular stage. 
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same semantic contraction. 
Second, we need to better consider the temporal dimension in the 

conceptual framework, especially to assess the potential of such 
knowledge-based approach to monitor fine temporal changes. Kennedy 
et al. (Kennedy et al., 2014) identified various cases of changes (i.e. 
abrupt, trend or cyclic changes). Whereas abrupt changes (e.g. land use 
conversions such as deforestation) should be detectable, we hope that 
fine land cover modifications can also be evidenced (e.g. as for the 
logged forest in Fig. 17). Yet, detecting temporal trends and cycles is 
more complex. In that case, it may be necessary to rely on statistical 
algorithms to describe and qualify such evolution (e.g.”bimodal distri
bution of Strong Green Vegetation” to characterize double-cropping 
systems). 

Third, although our motivation to continue investigating knowledge- 
driven approaches remains a priority, it is worth noting that, at a time 
when machine learning classifiers tend to prevail in remote sensing 
science, we shall also consider evolving towards an hybrid version of the 
system combining both knowledge- and data-driven approaches. 
Indeed, supervised or unsupervised statistical learning classifiers 
(Mountrakis et al., 2011; Belgiu and Dragut, 2016; Zhu et al., 2017) may 
be useful to map Observables by identifying classes of Colour-Material or 
to categorize Similarities. Novel approaches of semantic segmentation 
based on deep learning algorithms have also been proven to be efficient 
to delineate and label image objects starting from a pixel-based classi
fication (Kemker et al., 2018). By doing so, the knowledge-driven part of 
the system would then focus on the articulation of the image charac
teristics in order to derive the three classification stages. 

In this regard, and fourthly, the role of ontologies to formalize and 
handle symbolic expert knowledge should be crucial (Arvor et al., 2019; 
Arvor et al., 2013; Claramunt, 2020). To be effective, ontology-based 
applications must rely on existing framework ontologies such as OBOE 
as introduced in this paper (Madin et al., 2007). These ontologies are 
essential since they can be connected to other framework ontologies 
such as, for example, 1) ontologies dedicated to the representation of 
spatial relations (Kong et al., 2003) for the purpose of adopting a 
GEOBIA approach or 2) the Semantic Sensor Network (SSN) ontology 
that provides a framework to describe sensors and their observations 
(Compton et al., 2012), thus potentially articulating multisource (e.g. 
Landsat, MODIS and Sentinel 1) observations in a unique system. 

Nonetheless, moving from theory to practice is challenging. Whereas 
the current method has been entirely implemented in the R environment 
(R Core Team, 2019), its formal implementation in Semantic Web 
standards to integrate ontologies is anything but straightforward 
(Claramunt, 2020). For example, the experiment led by Andrés et al. 
(Andrés et al., 2017) to reproduce SIAM in an ontology-based system 
emphasized the difficulty to operationalize image processing tasks with 
ontologies. 

5.3. Improving end-user and remote sensing expert knowledge 

Due to these operational limitations, as for now, the main advantage 
of ontologies may actually lie in its ability to formalize, aggregate and 
share expert knowledge about the symbolic definitions of land cover 
classes. This would firstly concern the symbolic descriptions from a 
remote sensing perspective. For example, similarly to spectral libraries 
used to store numeric knowledge about spectral signatures of target 
objects, we argue that our system could serve as a basis to build libraries 
of symbolic definitions of the representation of land cover classes in 
remote sensing images. Performing additional tests in other contexts 
would indeed make it possible to accumulate symbolic definitions of 
land cover classes in order to build a remote sensing expert knowledge 
database to be stored in ontologies. For example, if N end-users used the 
approach to classify”Forests” in N study areas across the world, we could 
retrieve the N symbolic definitions of the representation of Forests in 
Sentinel-2 images and store them into ontologies. Then, any new end- 
user interested in mapping Forests could reuse these ontologies 

containing the experience of the N first users to derive N maps of”F
orests”. Such strategy for ontology-building would follow the recom
mendations of Janowicz (Janowicz, 2012) who argued for “a radical 
paradigm shift in ontology engineering away from a small number of 
authoritative, global ontologies developed top-down, to a large number 
of local ontologies that are driven by application needs and developed 
bottom-up based on observation data.” In this regard, the remote sensing 
community should benefit from experiences in other scientific commu
nities to build collaborative web-based tools for the construction of 
thesaurus and ontologies in ecology (Laporte and IsabelleMougenot, 
2012) and geosciences (Kalbasi et al., 2013). 

On the long term, we consider that aggregating remote sensing 
expert knowledge in ontologies should improve the interpretability of 
remote sensing images by facilitating the discovery of relationships 
between the image characteristics of geographic objects and the real- 
world characteristics of corresponding geographic entities. For 
instance, in the present study, occurrences of Green Vegetation Colour- 
Material appeared to be efficient to map dense, evergreen, woody 
vegetation but limited to map open cerrado areas. In this regard, 
improving the interpretability of remote sensing images would 
contribute to reducing the semantic gap between end-users and remote 
sensing experts. 

Finally, the interpretability issue questions the possibility to evolve 
from a user-adaptive to a user-centered remote sensing. Indeed, if effi
ciently connected to remote sensing expert knowledge, formal and 
explicit end-user expert knowledge focused on the definitions/de
scriptions of real-world geographic entities could drive the interpreta
tion of remote sensing images. For example, end-users interested in 
mapping dense evergreen forests in other regions of the world than the 
Amazon may capitalize on the expert knowledge formalized in this study 
to implement efficient workflow of image processing tasks. Of course, 
this would first require convincing end-users to explicit and formalize 
their own conceptualization of land cover classes of interest in order to 
achieve mapping results that better suits with their requirements. This is 
the reason why, beyond being useful and effective, such system needs to 
be primarily usable by end-users, following major principles of user- 
centered agile software development (Brhel et al., 2015). To do so, we 
need interactive web-tools to allow the end-users to access and process 
the maps. For this reason, we are currently implementing the approach 
in Google Earth Engine and we then intend to develop interactive tools 
to do the class assignment without any specific geoprocessing skills. 

6. Conclusion 

We introduced an automatic knowledge-driven methodology to 
interpret time series of Sentinel-2 images. The method is based on a 
conceptual framework inspired from ontologies of scientific observa
tions (i.e. the OBOE ontology (Madin et al., 2007)) and ontologies of 
geographic information (i.e. the semantic contraction introduced by 
Couclelis (Couclelis, 2010)). We relied on this framework to implement 
a rule-based system to map forested areas and water bodies on a large 
area (529,780 km2, 75 Sentinel-2 tiles) in the Southern Brazilian 
Amazon as requested by local end-users. The method includes the 
mapping of characteristics (i.e. Observables and Similarities) to then 
derive three classifications, i.e. initial, dichotomous and modular clas
sifications. The accuracy results confirmed the potential of the 
knowledge-driven approach to monitor vegetation gradients and map 
water bodies at regional and local scale, taking full advantage of the 10 
m spatial resolution. 

At a time when data-driven approaches to classify remote sensing 
images tend to prevail, we consider that the remote sensing community 
should pay more attention to knowledge-driven approaches since they 
enable to reduce the gap between the map producers and the end-users. 
Yet, it implies to formalize both end-user and remote sensing expert 
knowledge in order to effectively guide the image processing tasks. In 
this regard, the use of knowledge representation techniques such as 
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ontologies appears promising, although still challenging to implement 
operationally. 

Data 

The 2017 modular classifications can be accessed at: doi: 
10.35110/0e3e3a68-871c-4359-9c56-716d4071e992. 
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