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Abstract

In a previous study [1] we have studied the effect of an array of plates or beams over an elastic
ground on the propagation of waves hitting the interface. The study was restricted to the low
frequency regime where only flexural resonances take place. The present study presents a gen-
eralization to higher frequencies which allows us to account for both flexural and longitudinal
resonances and to evaluate their interplay. An effective model is obtained using asymptotic anal-
ysis and homogenization techniques, which can be expressed in terms of the ground alone with
an effective dynamic (frequency-dependent) boundary conditions of the Robin’s type. For an in-
plane wave at oblique incidence, the scattered displacement fields and the reflection coeflicients
are obtained in closed forms and their effectiveness to reproduce the actual scattering is inspected
by comparison with direct numerics in a two-dimensional setting.

Keywords: asymptotic analysis; elastic waves; metamaterials; metasurfaces; multimodal
methods.
2010 MSC: 00-01, 99-00

1. Introduction

The ability of arrays of resonant beams to modify the propagation of waves in a substrate
which support them is now well established. Their study, primarily focused on the case of a plate
substrate, have been then extended to the case of a half-plane substrate. In both cases, mass-
spring oscillator models have been used as the simplest models, see e.g. [2, 13, 4]. Assuming
point contacts between the resonators and the substrate, the displacement X of a single oscillator

Preprint submitted to Journal of the Mechanics and Physics of Solids July 26, 2020



Ty

(P Ass 1)

Figure 1: Array of cylindrical beams atop an isotropic substrate submitted to bending and longitudinal resonances; with
kr the wavenumber in the substrate, kth, = O(1) and kr VS = 0(772).

(with a mass M and a stiffness K) satisfies MX = K(u, — X) where u, is the horizontal surface
2
displacement. In the harmonic regime it follows that X = ﬁux (w% = %). In the effective

medium approach, for a wavelength much greater than the array spacing the average force per
unit surface is identified to the normal stress along x hence o, = %(X — uy) (S is the surface
area of the unit cell), resulting in

K &?
Sw} - w?

e))

Oaz = Zoltg, Zo =

If the physics of the substrate is accounted for, the dynamics of the resonators is considerably
simplified. The complexity of actual beam resonators has been accounted for in more recent
studies [15 16} 7, [8L [OL [10, [111[12]]. The case of a plate substrate is simpler than that of a half-plane
substrate, both experimentally and theoretically. From a theoretical point of view, this is because
the dynamics of the resonator and of the substrate can be reduced to a one-dimensional problem.
Besides a rigid plate substrate does not couple easily to the flexural motions of the resonators,
which further simplifies the analysis to the coupling between the flexural modes in the plate and
the longitudinal modes in the resonators [5,16]. The influence of flexural modes in the resonators
for less rigid plates has been studied theoretically in [[7] and recently confirmed experimentally
(1O, [L1].

The first experiments on the interaction of beams with a half-plane substrate have been re-
ported in [13], and largely developed in the framework of the metaforest project [? ]. From a
theoretical point of view, this situation is more involved; the reduction of model to one-dimension
is not possible in the substrate and it is not straightforward in the resonator. Besides, the sub-
strate can now couples efficiently to the beams both in flexion and compression; and as long as
the full wave problem has not be specified, it is not possible to infer that displacements and a
fortiori resonances in one direction can be neglected. In [7] the problem is solved considering
the longitudinal resonances only. It is specified that the flexural motion could be accounted for
but the analysis seems sufficient for the specific application considered by the authors. However,
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there is a greyness in the term rods or rod-like resonator introduced by the authors and which
has been further used e.g. in [8l[12]: beams would support both flexural and longitudinal waves
while rods would only support compressional waves. This denomination suggests that the ability
of the resonators to couple in flexion or in compression with the substrate is an intrinsic property
of the resonator. However, the weak coupling in flexion observed for a plate substrate cannot
be attributable to the resonators on their own and the term “rod-like resonators” is a minima
confusing. The first study on the effect of flexural resonances has been proposed recently in
[Ol]; the interest is in the derivation of approximate dispersion relations of Rayleigh waves using
exotic junction conditions between the substrate and the array of beams. The authors introduce
the term “beam-like resonator” which refer to situations where the longitudinal motions could
be neglected; as for its ’rod-like” version, this term is confusing as long as the wave context has
not be specified. Recently, we considered longitudinal and flexural motions of beams and we
restricted our analysis to the low frequency regime [1]]. Low frequency ment that only flexural
resonances can take place namely frequencies below the first longitudinal resonance frequency
(see forthcoming figures 2]and[3).

The present study aims to generalize the results of [1] to higher frequencies. As in [1]], both
flexural and longitudinal motions are accounted for and higher frequencies means that longitudi-
nal resonances, in addition to the flexural ones, can take place. We consider beams with circular
cross- section in three dimensions. (The case of plates in two-dimensions, much simpler, is given
in[Appendix B]) The adaptation of the methodology proposed in [1]] is demanding. The asymp-
totic analysis has to account for a separation of the length scales between the periodicity of the
array and the beam height which was already the case in [1]; however we have now to account for
an additional separation of the scales between the wavelength associated to flexural resonances
and that associated to the longitudinal resonances. The resulting full model which is the main
result of our study is given in §2]and discussed in view of existing models. The derivation of
the model based on asymptotic analysis and homogenization is detailed in §3] Eventually we
provide in §4]a validation of the model for a problem of scattering by comparison with direct
numerical simulations in a two-dimensional settings.

2. The actual problem and the effective problem

We consider an array of beams atop an isotropic elastic substrate in three-dimensions, with
X = (x,,2), see figure|l] The unit cell of the array has a section S = ¢, X {,; the beams have
a circular cross-section with radius r, and their height is A, with h, > r,; we define ¢ = ﬂrf /S.
We denote (4,, 1, p,) the Lamé coefficients and the mass density of the beams, (4, 1, p,) those

of the substrate. We also introduce the Young’s modulus E, = ’%ﬁ“b) and Poisson ratio

vy = of the beam. We consider a low frequency regime for which the typical wavelength

Ab
2(Ap+pp)
k in the substrate being of the order of magnitude of k; = ﬁ ork, = ﬁ satisfies k VS < 1, with

s As+2p :
cr = IZ—', o= % with w the angular frequency.
S S
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2.1. The physical problem
In the actual problem, the equations of elastodynamics apply

in the substrate, z € (—c0,0) :  divo + pw’u=0, o =2us+Atr(e)l, €= %(Vu + 'Vu),

and in the beams, z € (0,4,) :  dive + pw*u =0, o =2u,&+ A tr(e)l,

(2)
where u is the displacement vector, o the stress tensor and & the strain tensor; / stands for the
identity matrix. At each interface between an elastic medium (the beams or the substrate) and air,
the stress free condition on = 0 applies (with n the normal to the interface). At each interface
between the beams and the substrate, the displacement and the normal stress are continuous.
This problem can be solved once the source u™ has been defined and accounting for the radiation
condition for z — —oco which applies to the scattered field (u — u™).

2.2. The effective problem

Below we provide the main results of the analysis developed in the forthcoming §3] It will
be shown that the problem reduces to a much simpler one set on the substrate on its own and
where the effect of the array is reduced to impedance conditions. Specifically, we obtain that the
effective problem reads

divo + pwu=0, o =2us+Atr(e)l, forze (—o0,0),

/ : : : 3)
O-UZ(X ’ 0) = /'lskT f;:(w’ hb) ua(x ’ 0)’ a=x, y’ O—ZZ(X > O) = ,uskT ﬁ(w9 hb) MZ(X b O):
where X’ = (x,y) and

oy kr shih, cos khy, + chih, sin kh, 40,02\

.fF(w, hb) = 90 - s - 5
ps K 1 + cos kh,chkh, E,r2 @

k
filw, hy) = ¢ %% tan Kh,, K = g_l; w

The boundary conditions on o, a = x,y, are the same as in [1l], the impedance function
Jfe(w, h,) encapsulating the flexural resonances at roughly kh, ~ 5 + nrx, n integerﬂ Next, the
impedance function f; (w, h,) encapsulates the longitudinal resonances at Kh, = 5 +nrn, n integer,
and the first flexural resonance frequency w; is much smaller than the first longitudinal resonance
w, With w, ~ ’;—:wF > wg. This is illustrated in ﬁgurewhere we report typical variations of the
impedance functions against /,. Note that in [[1], the analysis holds for small height &, resulting
in a linearized version of f; whose validity has been inspected up to 4, = 30 m, see figure 7 in [[1]
as (3) simplifies to o, (x’,0) = ©pohyw? u(x',0). For h, — 0 which corresponds to roughnesses,
we get 0;(x,0) = (ppbhba)z u;(x’,0), i = x,y,z, and in this limit the substrate couples to the array
equally in flexion and compression by a term of added mass.

IThe dispersion relation of the flexural resonances reads D(x) = (1 + cos khychkh,) = O resulting in «h, = 1.875,
4.694, 7.855, 10.995, ---; the approximation xh, ~ % + nm provides «h, = 1.571, 4.712, 7.854, 10.995 --- and the
agreement is better as n increases (with D(k) = 1).
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Figure 2: Variations of the impedance functions f and f; in @) against the beam height /,. The flexural resonances
correspond to |fz| — oo and the longitudinal resonance to [fi| — oo.

Once the effective problem (3) in the substrate has been resolved, the solution in the region
of the beams can be post-processed. Indeed, the asymptotic analysis which is detailed in section
B] shows that the vertical displacement U’ in the region of the beams is solution to

U
L4 KU. =0, withK= 2o,
072 E,
oU (5
UZ(X/’ O) = MZ(X/, 0)5 - (X/’ hb) = 07
0z
and the horizontal displacements U,, a = x,y, are solutions to Euler-Bernouilli problems
4 4 2\ 1/4
Vs _ iy, =0, Withkz( i ) ,
az* E,r? 6
ou, o*U >U ©
Ua(xl7 0) = ua(x” 0)’ aZa (XI’ 0) = 07 azza (X/7 hh) = 6Z3a (X/’ hh) = O

In (3)-(6), boundary conditions at the top of the beams z = h, correspond to free-end boundary
conditions while at z = 0, we have a clamped boundary condition, meaning prescribed displace-
ments at the junction with the substrate and zero rotation. Solving these two problems for which
the inputs are the prescribed displacements u(x’, 0) at the junction with the substrate gives

Us(X) = ug(X',00Vi(2), a=xy, U(x)=u(x,0)V.(2),
with  V,(2) = cos(Kz) + tan(Kh,) sin(Kz), (7N
Vi(2) = a(chk(z — hy) + cos k(z — h,)) + b(shk(z — h,) + sin(z — hy)),

1 1
with a = 7 (chkh, + coskhy), b = 7 (shkh, — sin kh,), d = 2(1 + chkh, cos «h,). It is worth noting

that at the dominant order, the effective surface is isotropic even for different spacings ¢, along x
and ¢ along y.

2.3. Comparison with previous models

If the flexural motions are neglected, our impedance conditions (3) on o, and the longitudinal
displacements U, in the region of the beams (7) are consistent with the findings of [3] [6]. As
previously said, in these references, the flexural motions are disregarded since the beams are
connected to a rigid plate substrate. In the present case, for a half-space substrate, we shall see
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in §] that neglecting the flexural resonances leads to incorrect predictions. Next, two recent
studies have accounted for flexural resonances only [1, [9]. In [1I, this is justified by the low
frequency regime below the first longitudinal resonance and our present model includes this
case, as previously stated. The comparison with the study [9]] is made difficult by the fact that
the authors consider different junction conditions among which some are exotic, but the case of
vertical beams clamped to a substrate (U,(x’,0) = u,(x’,0), aU" (x 0) = 0 from (6)) have not
been considered. To be specific, 3 junction conditions have been considered in [9], called simply
supported, beams on a rail and fully matched. They read, for a = x,y,

U,
simply supported  U,(x',0) = u,(x,0), ?(x’,O) =0
Z
U, U, _ou,
beams on the rails, (x’,0) = x,0) = ——(x',0),
072 0z " da
ou, ou,
fully matched, U,(x',0) = uy,(x',0), 5 x’,0) = _6_( ,0).
4

The simply supported configuration appears to be dangerously unstable, as the condition of
= 0 allows for free rotation. While this condition is often used for
a horizontal beam maintained by point contact, a vertical beam free to rotate at its Junctlon will
simply fall. The two other conditions assume that at z = 0, we have aU“ ~“(x',0) = (x 0) that
is a rotation prescribed in the beams by the gradient of the vertical dlsplacement ThlS condition
is exotic but as explained by the authors, although counterintuitive, it can be understood in terms
of the so-called gyroscopic hinges as studied in [[14].

3. Asymptotic analysis

The analysis is conducted assuming low frequencies which means that the typical array spac-
ing ¢, with S = ¢,£, = €2, is small compared to the typical incident wavelength 1/k, hence
k€ < 1 (with for instance k = k;). This ensures that incoming waves perceive the interface at
z = 0 essentially as an effective homogeneous interface. Next, in our analysis, we do not im-
pose particular scalings on the material properties. We do not assume neither a sparse array of
beams which means that r, = O(¢) hence ¢ = O(1). However we cannot dispense with a careful
length scalings in the vertical direction. Indeed, and as previously said, flexural and longitudinal
resonances of beams are associated with different length scales

he=x"' andh =K', (8

(with x and K given in (@) as illustrated with the typical deformation shown in figure[3] From
@. we have kh, = O (1) while kh, = O VkE) < 1. It results a hierarchy of 3 scales £ < h, < h;
which is accounted for owing to a small parameter 7 such that

kt =n*, kh.=0(@), and kh, = O(1). 9)

Accordingly, with x = (x,y,z), the analysis will be conducted owing to the rescaled spatial
coordinates being

oo (BY,2)

29,0 =——.

bl s Y.<

so
n n”
6
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Figure 3: The two length scales in the vertical direction, with A, ~ h, the length scale associated with longitudinal
resonances and ir < h, the length scale associated with flexural resonances; the center panels show the vertical rescaling
with the Z-coordinate, z € (0, i) and the horizontal rescaling with & = (&,9) € §,. The right panel show a typical
deformation associated to the displacement U, with variations at the scale A and colors associated to U, with variations
at the scale A;..

(We define X = (£,9,2) and X' = (X,9).) The coordinate Z aims to capture the rapid (in ;17)
spatial variations relative to flexural motions, while X aim to capture the very rapid (in n%) spatial
variations relative to evanescent fields. Eventually the coordinate x describe the slow variations
(in O(1)) associated with the wave propagation. Associated to these coordinates, rescaled lengths

are defined P
7 5 5 he r, € &y
(h’i;’fag):(_’_7_’_ .
TR \n T

3.1. Effective wave equation in the region of the beams

3.1.1. Notations

In the region of the array of beams, the displacements and the stresses vary in the horizontal
direction over small distances dictated by ¢ (£ = \/éTt’y) and over large distances dictated by the
incoming waves being of the same order of magnitude than 4,. These two scales are accounted
for by the coordinates X’ = (x,y) and & = (X,9) with X’ = :7‘—;; we define §, the cross-section of a
beam and

R €§, ={|%'| € (0,7)}.

In the vertical direction, the displacements and the stresses vary over the intermediate distance
h; that we expect to play a role for the flexural motions only and over 4,; this is accounted for by
the rescaled coordinates z and Z, with

Z € (O’ ilF)

It follows that the fields (u, o) are written of the form

u= Y Vi K,3, o= IrEY.?), (10)
n>0 n>0

7
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with all the terms in the expansions being periodic with respect to z € (0, ;) (figure 2?).
In the asymptotic analysis, the small scale X’ aims to disappear since we are interested in
macroscopic fields. Hence, we define at each order n the macroscopic displacement U? and axial

stress 1
U = Tf Vidk', N = f X7 dx, an
S, Js, 8p

where S, = |§,] = ﬂ?f is the rescaled surface area of beam section. We also define the macro-
scopic displacements, shear stresses and bending moments

1
ngTfVZdﬁ’, ngfzgzdfc', a=xy, M;;:—ffcz';zdﬁ', Mﬁ:—fyzgzdﬁ'.
Sb Sy S 8y ’ 8y
12)

3.1.2. The problem in the beam
According to the expansions in (T0) the differential operator reads
e, 0

1
V—)—2V§/+—
n

— + Vy,
n 07

where e, = (0,0, 1). Hence, the system in the region of the beams reads, from @D

) VAR YASR ) VSN ) YN ) SO V8 5
= — V” :()7 = b b

22 "oy )T e Tax T ey t e TV a=ny

62"+2 627&2 ozt 1 oxn o oz

E n XZ yZ 2z Xz yZ r44 Zvn — ()

&) [ch ’ ay)+ oz " ax gy o PR

(C)" "= AX(V™2) + A5 (V™) + AgX(Vh),

(Eo)" [
13)

where we have implicitly that " = V" = 0 for m < 0 and where A& (V) = 2u,e(V)+ A,tr(e(V)) I
which holds for € = €%, & = & and & = €. We shall also use the stress-strain relation written in
the form

o . 1
©Y (V) 4 E(VH) 4 (V) = Loy~ Yoy (14)
E, E,
The symmetric strain tensors with respect to &, 7 and x have the following forms
JOVe V.V, oV, 00 W
N T T E | aaé
V)= = vy v, |, £V)== 0o - |,
2 2— — 2 0z
99 99
ov,
0 27
Z
oV, Vv, . ov, av, N v,
| ox Oy ox 0z Ox
(V) == 2% vy n 9v;
2 dy 0z dy
3V
0z

From now on, we shall use the hierarchy of equations in (T3) and (T4).
8
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3.1.3. Useful forms of the displacements and stresses
We start by providing the explicit dependence with respect to the microscopic coordinate X’
of the displacements (V°, V') and the of stress X°.

— Displacements at orders 0 and 1 — The dependance of V* and V! on &’ read

V) = UNX,2), V) = U)X, 2), V0 = Ud(x),

5 .U - . 9 . .
VI=UIx2)+Q' x5, VI =Ulxd)-Q'®%E V! =U!x- > (V2 s+ 003).
(15)

To get (T3)), we have used (C*)~2 and (C*)~! in (T4)) from which £¥ (V?) = 0 and &X' (V!)+&7(V?) =
0. It follows that (V7', V;"), m = 0,1, are associated with rigid body motions (translation and
rotation), namely V7' = U (x,2) + Q"(X,2)J, V;’ = U;”(x, 7) — Q"(x,2)x. We also get that VS
depends only on x, and that %Vzl = —6% V9 for a = x,y. Doing so, we obtain the forms reported
in (A2)-(A3). To obtain the forms given in (I3)), we have anticipated the following properties

that we shall proof in the

oU! 00! ou?
To be shown: Pj:—==0 Py:— =0, P;:0°=0, P,:—%=0, a=x,y.
0z 0z 0z

(16)

— Stress at order 0 — The dependence of the stress £ on & can be obtained explicitly too. Indeed,
from (E,)~2, (E,)~% and from (C)° in ([3), we have divg. Z° = 0, X0 = A&¥ (V) + A& (V!) +
A&*(V?). As (V°, V) are known from (13), the problem is set on (Z°, V?) for &’ € §,. Besides it
can be decomposed into 2 decoupled boundary value problems. The first is set on the horizontal
displacements (Vg, Vyz) and the horizontal stress tensor 22 b @ b = x,y. The second is set on the
vertical displacement V2 and the antiplane stress vector (2., £0 ). Both problems can be solved
explicitly resulting in

o, _ & (V9% + U;’y)). (17)

0 _ 50 _ 50 _v0 _ 0 _ 0 _
EXX—EX}’_Z)’,V_ZXZ_EYZ_O’ z;zz_Eb( 0z 072

The associated displacement V? that we dont need in the following is given in (A4).

3.1.4. Macroscopic relations for the longitudinal motions

Once the dependance on X’ of the displacements and the stress at the order 0 are known,
we can determine the macroscopic relations. We start with those associated to the longitudinal
motions. The axial stress N2.(x) in () is obtained by integration of X2, in (T7) over &’ € §, and
owing to féb xd) = féb $d&’ = 0 for a circular cross-section. The equilibrium is then determined
using (E,)° in (T3) which reads %Eiz + (%251 + %E;Z + (%Z?z + pbwz US = 0 (we have used that
30 = Z(y)z = 0 from and V? = U%(x) from (T3)). Integrating the equilibrium over &’ € §, and

accounting for the boundary condition 2 n, + Efzny = 0 on 05,, we eventually get

0

@®=a&ﬂﬁu
0z

0
k44

7 X+ P’ SUIX) =0, (18)

1

0z 'z T

—(£N%(x) + p,w’@U2(x)), hence N!. could be a linear function of Z. However, such a linear
9

To get the equilibrium, we have used that aiz fﬁh TLdy = %Nzlz = 0. Indeed, we have ZN,
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dependence is prevented by the periodicity of the field with respect to Z, which allows us to

conclude. It is worth noting that N2 and U? do not depend on Z associated to flexural motions,
as expected. Also, from (I8), we recover the wave equation for longitudinal motion

2770

z Pb

+KU°=0, withK=_|=w. (19)
(9Z2 < Eb

3.1.5. Macroscopic relations for the flexural motions

In this section, we use a = x,y. Constitutive relations link the bending moments MS in @])
to the horizontal displacements V7. They are obtained by integrating 2. in (I7) over %’ € §, after
multiplication by a. Owing to f xdx = f yax’ = f X9 dX’ = 0 and introducing the area moment
of inertia [, = f a2ag = %f’f , we get

0/’ = A62U2 /o
Mu(x »Z) = Eb]ba_gz(x 91)’ a=xYy. (20)

We now move on the equations of equilibrium. Since ). = 0 from (T7), we also have 70 = 0 in
(T2). Next, from (E,)” in (T3) and using (T7), we have £33, + £X, + £l +p,w’V{ = 0 that
2

we integrate over X € §,. Accounting for the boundary condition 2,1, + Dl

for the forms of V¥ in (T3)), we get

ny = 0 on 08, and

1

aT R
7% =0, 62“ x,2) + p*S,U%X,2) =0, a=x,y, 21)

(which tells us that 7! does not depend on z). We still have to determine the relations between

bending moments and shear forces. To do so, we use (E;)™! in (T3), %E}Q + [%Z;Z + B%Z‘Z)z = 0 that

we integrate over &' € §, after multiplication by 4. Using that féb a ((;—12)1(1 + %Zylz) g’ = -T!
1

(integrating by part and accounting for X! n, + Z).ny =0 on d8,), we eventually get

0
a

= X,)+T'x,2)=0, a=xy. (22)
Z

Gathering (20), ZT) and 22), we recover the wave equation for the flexural motions

U
oz

4p,w* e
-&UY=0, a=uxy, withk:( - ) , (23)

E,??

which is the rescaled version of ().

3.2. Matching conditions and associated boundary/transmission conditions

The set of beam equations found in the previous section are valid far from the extremities,
bottom and top, of the beams. It has to be complemented with boundary conditions. These
conditions are obtained by making a suitable asymptotic analysis near the extremities of the
beams. Two regimes of boundary layers associated to two different length scales have to be
distinguished (see figure ).

The first boundary layer appears when, from the inner region of the beams that we have consid-
ered in the previous section, we approach z = 0 (resp. z = h,) within a distance of order n. By
10
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rescaling z as nZ near z = 0 (resp. z = nZ + h, near z = h,) with Z lying in (0, +00) (resp. (=0, 0)
near z = h,), we are entering an intermediate region where the fields loose their periodicity in Z.

These mesoscopic regions encapsulate the first boundary layers at the scale i, = «™'.

The second boundary layer appears when, from the mesoscopic regions, we approach z = 0
(resp. z = h,) within a distance of order 7>. Doing so, we entering a microscopic region where
evanescent fields enable (i) that the fields in the beam connect those in the soil at z = 0, (ii)
that the fields in the beam feel the traction-free termination at z = h,. These microscopic re-
gions encapsulate the second boundary layers at the scale €. A consistent dialogue between the
microscopic, the mesoscopic and the macroscopic regions is ensured through suitable matching
conditions on the displacements and stresses.

3.2.1. The mesoscopic region near the extremities : beams with boundary layers

In these intermediate regions where boundary layers for the beams are triggered, new expan-
sions of the fields have to be thought. In particular, we have to drop the periodic assumption on Z
to encapsulate the boundary layers (periodic terms are typically cos «z and the loss of periodicity
correspond to the appearance of terms in cosh kz). Specifically we assume that near z = z* with
z*=0orz* = h,, uand o can be expanded as

u= Y yV0L&.%,2, o= fYLeK.8.9, =0orh, (24)

n>0 n>0

where the fast variables (X', 7) lie in X] if z¥ = 0 and in X;,h if ¥ = h, with

X, = (& €8,,7€(0,+)}, X, ={& €8§,,Z € (—,0)}. (25)

The expansions (24) in the two intermediate regions at the extremities have to match the z-
periodic expansions (I0) inside the beams when [Z] goes to infinity. Making asymptotics on this
mesoscopic problem is straightforward from the previous section (with a% = 0, see also (A2)
and (A.3)) and we get the following results. First, the hierarchies of equations as in (T3) and (T4)
hold. Next, we find that the axial displacement Vf) and the normal force ]V?Z do not depend on
(X’,%,) and 7 respectively. Using the matching conditions with the inner region of the beam, we
get at the bottom of the beams and at the top of the beams

V. = U2x'.z"), N =Nox,z"), a=xy, 2" =0,h, (26)

4

Secondly, the tangential displacement still satisfies the Euler-Bernouilli equations as in the inner
region of the beams, the difference being that the equations are now set on a semi-infinite domain
as opposed to a periodic domain. Specifically the mesoscopic Euler-Bernouilli equations read at
bottom and the top of the beams

/0 770 ’ 70 170 2 a2l73'2*
Vilr = Uyl (X',2), Tyl- =0, Ml = EbIbT
‘ @7)
oM. ~ OT .. .
6—z| + Tyl =0, 6—1' +p’ Ul =0, a=xy, 2" =0h,
hence _ L
U, ~ . [4p,0)?
7‘;1 -0, =0, with & = (W) (28)
b

11
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Figure 4: The intermediate regions and the microscopic regions near z = z*, z* = 0 and h,. The intermediate regions Xo
and Xp, , correspond to the occurence of boundary layers as the flexural displacements loose their Ag-periodicity (valid

far from z = z*). The microscopic regions, 5(\0 and Yhh , correspond to the classical boundary layers at the scale of ¢.

The periodic behavior is retrieved when |Z| goes to infinity, the solution in the intermediate region
matching the Z-periodic solution in the inner region of the beams
70 770 Tl 0
Vo, M, T ~ (U, M)

a’

T)), |2 - oo, a=x,y. (29)

Therefore intermediate scale can be fully solved upon the determination of the boundary con-
ditions at Z = 0. These latter are obtained from the matching conditions with the microscopic
regions.

3.2.2. The microscopic regions near the extremities

The second step of the matching involves the microscopic region of extension 7> near z = z*.
In these regions, only the fast variable X acts in the three directions, while the slow variable x’ is
kept to allow for displacements at the scale of the wavelength. Accordingly, the expansions are
now thought of the form

u= >V, o= LK%, =0h, (30)
n>0 n>0

A

where the fast variable & = (¥, 2) lies in X, if z* = 0 and in X, if z* = &, with
X, = {8 €8,.2€ (0,400} UK €5,.2€(-0,0)}, s ={& €(0.0)% (0.4},
X €1V
Xn, = (& €8§,,2 € (—0,0)}.

Eventually, according to (30), the differential operator reads V — #Vi + Vy.

Effective boundary conditions at z = h,. OJO, j’en suis LA Near the top of the beams, each
term of the expansion (30) satisfies the traction-free condition X", n = 0 on 8§,. Next, the
whole expansions match those of the intermediate problem, (24) (set in Xj,). We shall need the

12
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matching conditions for the stress only. Using Z = 72 in (24), re-expanding and identifying with

(30), we get

T,

£, (¢, %,0) = lim £, (¢, %), T, (.%,0) = lim (2], (',%) - 2= (.8,0)|.
Z—o—00 - Z

(32)
To derive the boundary conditions we only need the equations of equilibrium which read

E)" divgZ" 2|y, + divg Z'], + oo’ V'], = 0. (33)
(We implicitly set £ = 0, V" = 0 for m < 0.)

At the dominant order, n = 0 from (33), div,;f%b = 0 that we integrate over th to get 0 =

f)%/ divgZ?, d& = — lim [ Z°|, e.d&’. From the matching condition (32) at dominant order,
iy 2—-c0 Ja

Sp
we thus have T2|hb x’,0) = féb 22z|hb x',%’,0)dX’ = 0, a = x,y, which is simply consistent with
(7). For the same reasons, we also get N2.|4, (x',0) = féb 20 | (X', %, 0)d&’” = 0 from (27) and

as N, does not depend on 7 from (26) we eventually have that @'hb = N2.(x',h,) = 0. At the
aT? ..
next order, we do the same (but we dont need NZ'Z); we use that % = 0 holds after derivation

. . ~ . = o 0T
with respect to Z in (27) hence T}, (x’,0) = lim (J;b |y d&' -2 féb azl'b x, 0)) = 0 from the

matching conditions (32)). At this stage we have obtained in the intermediate region at the top of
the beams,

MW (X,00=0, a=xy, n=0,1, N(x,%) =N.Xh,) =0. (34)

To derive the boundary conditions on the bending moments, we come back to div,{Z\OIhb = 0 that
we multiply by a = —Ze, + %e, and further integrate over X,,. By construction Va is antisymmet-

ric, hence Va X0 = 0. It follows that 0 = fa?/ a-X%,ndk = — lim ()% E?Jhb —ngzh,b) &’ =
it

oo Jg,

f X §21|hb d&’ where we have accounted for Tgh,b(x’, 0) = lim;_, féb §2z|hb dg’ = 0 from 27)

S
and (32), hence the boundary condition MO),,(x’,0) = 0. The procedure can be repeated with
a = —Ze, + ye_ resulting in M_?|hb(x’, 0) = 0. We have thus obtained

MO, (x',0) =0, a=x,y. (35)

Effective transmission conditions at z = 0. Near the interface between the beam and the sub-
strate, we shall need the solution valid in the substrate far from z = 0; this latter has variations
associated to the typical wavelength only, hence the expansions are sought of the form

u= Z 7' (x), o= Z "o (x). (36)

n>0 n>0

We first determine the transmission conditions for the displacements. Given the mesoscopic and
microscopic expansions (24) and (30), the matching conditions for the displacements between
13
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126

127

128

129

130

the soil, the microscopic region and the intermediate region read at the first orders
Vo', %, 0) = lim VOo(x', %), u’(x,0) = lim VOo(x', %),
Z—+00 Z—>—00

Vv
07

(37)

Vip(x'.%,0) = lim (Vllo(x',fi) -t (X, 0)), u'(x,0) = lim V'o(x'.%).

In the microscopic region, the hierarchy of constitutive and equilibrium equations is given by

(C)n Eﬂ|0 — Asﬁ (Vn+2|0) + ASX’ (Vﬂ|0> ,

s R (yn+2 X (n 1+ Vo Sn Vp n (38)
)y & (V |0)+8 (V |0): E p3 lO_Etr(E |O)I~
b b

We have from (C’)~2 and (C’)~! that V"Io = ﬁ”lo(x’) X X + ﬁ”lo(x’), n = 0,1, are piecewise
rigid body motions for Z < 0 and Z > 0. Invoking the periodic of V"|0 with respect to X’ for
2 < 0 and the continuity of V" at 2 = 0, these rigid body motions reduce to single translations
V"o = U"o(x") independent of . It follows from that the beams are clamped to the substrate
at the dominant order

(U 770 ’ aﬁgb ’
u,(x’,0) =Ulp(x’,0), a_Z(X ,00=0. 39)

In particular, we have used that since Vllo = ﬁllo(x’) does not contain any contribution linear
770

in Z, then a—f has to cancel so that the matching condition (37) between V! lo and V!]o(x’, %', 0)
Z
can be fulfilled .

We now establish transmission conditions on the stresses. The matching conditions for the
stresses between the soil, the microscopic region and the intermediate region read
(. &,0) = lim E}(x',R), o'(x,0) = lim T(x', %),
Z—>+00 i
Xy
0z

(', %,0) = lim (EHO(X',ﬁ) -3 (x',f(’,O)), o'(x,0) = lim T'o(x, R).
>+ Z——00

_ . _ 40)

By integration of divgX?|p = divgX!lo = 0 over X, = {%’ € §,,2 € (0, +c0)} and using (#0) we get

the following transmission conditions on the normal stress vector

T (X, 0) = ST, 0) =0, 0. (x,0) = §'To(x,0), a=ux.y, (41)
with § = 7, x Z’y being the rescaled periodic section area and where we have accounted for
oT?

ai|° (x,0) =0, a = x,y from 7).
Z

3.3. Construction of a unique problem
We construct the problem at the dominant order for the displacement U,(x) = US(X) and
Uy(x) = (Uy(X',2), U%o(X', 2), U, (X', %)) accounting for Z = z/n and r, = n*#,. Gathering the
longitudinal and flexural equations (T9), 23), 26), (28) in both the inner region of the beams
14
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132

and the intermediate region near the extremities, we get the final set of homogenized equations
for z € (0, h,) on the

0*U, 4p,0*
- —K4Ua=0, K4=ﬂ’
aZ Ebrh
2U p (42)
< +K*U, =0, K? = 2ot
072 : Ebw

Gathering the transmission conditions (39) and I} at z = 0 and free end boundary conditions
(34) and (33) at z = h, leads to the boundary conditions

U, s U,
=0 Us=uw(.0. FE=0,  0u.0)=—pET oS a=xy.
ou.
UZ = uz(xl’ 0)’ O—ZZ(X”O) = ‘pEb 6 Z?
4
Pu, U, U,
tz = h s = = O’ Z =
A= 07> 073 0z
(43)

4. Validation of the effective model

In this section, we shall inspect the ability of our effective model to reproduce the actual
scattering properties for an incident plane wave in a two-dimensional setting, with plates infinite
along y and incident waves in the (x, z) plane (figure3). In this case, we have

dive + pwu=0, o =2us+Atr(e)l, forze (—o0,0),

p (44)
(%, 0) = pkr fr(w, by) u (X', 0), 0(x,0) = uky fi(w, hy,) u (x,0),
and a
v ke shih, cos kh, + chh, sin kh, 30,07\
felw, b)) = —— s k=7 -
ps K 1 + cos kh,chkh, Eir? 45)
ky
filw,hy) = ¢ %E tan Kh,, K= /Z—E .
with 2 44, (A E
(p:i E = 1 ( b+ﬂb): b (46)

¢’ ° Ay + 20, 1—v2

b

We use as reference case:

At the angular frequency w = 120 rads™': £=1m,2r =0.5mandh, € (0,90) m,
Material properties: 0, = 500 kg.m™3, E, = 2 GPa, v, = 0.3 47
o, =1000kg.m™3, E. = 2 GPa, v, = 0.2,

resulting in C = 0.574 and K = 0.091.
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Figure 5: Scattering of an incident plane wave on an array of plates (two-dimensional settings); actual problem and
effective problem with an interface ruled by @4)-@3). The incident wave is characterized by (Ar,Ar), (30), and the
solution reads (3T) with four scattering coeflicients (52).

4.1. Explicit solution of the effective problem

To begin with, we stress that we dont have a one-to-one correspondance between frequency
w and height &, as the wavelength associated to the flexural motions scales as +/wh, while that
of the longitudinal motions scales as wh,. Next, we shall see that the effective conditions (]Z_Z[)
involve two non-dimensional parameters and a non-dimensional frequency or a non-dimensional
height.

4.1.1. Result for given h, varying the frequency w

From ([@4)-([@3), we have

. _  [eoE; _ \Bh _ 2 _ -1 [E
with C = ¢ pj, S= Tb’ and Q= (kh,)" = w%’ wo = - p—:,
Q shvQ Q+chVQ si Q Q
fQ: C,S)zci sh V@2 cos V62 + ch V02 sin \/_, f(Q C,S):Ctan(—).
S 1 + cos VQchvVQ S

(48)
The parameter C measures the effectiveness of the coupling between the plates and the substrate;
higher coupling is obtained for heavier or stiffer plates. Next S is a measure of the slenderness
of the plates; it does not affect the effectiveness of the longitudinal coupling between plates and
substrate but large slendernesses weaken the flexural coupling. Eventually, the flexural reso-
nances are given by constant VO o = g + nm, n integer, whatever the dimensions and material
properties of the plates. In contrast, the positions of the longitudinal resonances with respect

to the flexural ones depend on S through Q. .. = S (% + mr) (a larger slenderness produces a

relative denser populations of flexural resonances, with N ~ V.S flexural resonances between
two longitudinal ones).
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4.1.2. Result for given w and varying the height h,
We adapt the preceding expressions as S and wy depend on £, which now varies (at prescribed
frequency) and we obtain

) : 2 174
with C = ¢ ‘;bf", K = <@) , and H = (kh,),

. (49)
shH cos H + chH sin H

1+ cos HchH

The parameter C is still involved as it determines the coupling due to the contrast in the material
properties between the substrate and the plates. The new non-dimensional parameter K is a mea-

f(H; C,K)=CK

, fi(H; C,K) = C tan(KH).

sure of the frequency regime through wavenumber K = w /’g—z Higher frequency longitudinal

resonances take place for K large enough. The flexural resonances still take place at H ~ 5 + nr
and, at prescribed frequency, the density of flexural resonances between two longitudinal ones
goes as %

4.1.3. Solution of the effective problem

The scattering problem of an incident wave can be solved owing to the use of the Helmholtz
decomposition for the elastic potentials (¢, y), with u = V¢ + V x (i e,). The incident wave in
the substrate is defined in terms of the incident potentials

¢inc(x’ Z) — ALeiGLZeiﬁx’ l//inc(x’ Z) — ATEiaTzeiﬁx,

(50)
with (@, 8) = k. (cos6,,sin6,), (ar,B) = k; (cos O, sin6b,),
and kL = /15?2;15 w and kT = Z_; w. The solution in the substrate reads
#(x,2) = ¢™(x,2) + (RiL AL + Ry Ay) €_iaLZ€iﬁxa
(51

(x,2) = ¥™(x,2) + (Rr, AL + Ryp Ay) e710121P%
w £ lﬁ ’ TL L TT T

The effective problem is a one dimensional problem and making use of it can be solved
explicitly, specifically we get

1
R, = 5 [sin 26, 8in 26, — fz cos? 20, —i& (ficos O, — Efi.cosOr) — Ef, fircos(6, + QT)] s
1
Ry = 5 [sin 26, sin 26, — fz cos? 20; + & (ficos O, — Efi.cosOy) — Ef, ficos(6, + QT)] s
2 sin 26 in 26,
Ru= =502 o 020+ £1, R = 220 (50500, 4 £ f),

D
where D = sin 26, sin 26, + & cos® 260, — i& (f, cos 6, + £f. cos 0r) — £, f cos(6, — 6y),

with (£, ) in (@) or (@), and & = ,/12—2“

2The parameter K can be written X = £ = h—i; at prescribed frequency, it measures the relative wavelengths

(52)

K h
associated to flexural and longitudinal motions.
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We get the displacement fields in the substrate z € (-0, 0) with
u(x,2) = ik, [sin 6 (A€ + (RLAL + RuAr)e ™) = cos b, (A ™™ — (R A, + RpyAr)e™ )],

u,(x,2) = ik [cos 6, (AL — (R A, + RisAr)e ™) + sinf, (A€ + (Ru A, + RiAp)e ™),

159

160

161

162

163

164

165

166

167

168
169

170

171

(53)
and in the region of the beams z € (0, A,), with

Ux(-x$ Z) = ux(x, O)VL(Z)7 Uz(xa Z) = uz(x, O)VF(Z)’

ke . . . ;
u(x,0) = % [sin26,(2 cos O; — if,)A, — 2& cos 0.(¢ cos 26, — i cos B, f.)A;] €P~, (54)

i&k,

u(x,0) = D

[2cos 6, (cos26; —icos b, f) A, +sin20; (2cos 6, — i f,) A;] €.

4.2. Results

To begin with, we come back to the representation of the figure 12 in [1]] where we stressed
the limit of the model to the occurence of the first longitudinal resonance and this limitation to
low frequencies or small plates is now overcame El We have computed numerically the actual
displacements u,(x, 0) and u,(x, z9) (zo = —5 m) using the multimodal method presented in [15] in
the reference case [@7). We used (A, = i, Ap = —QLT) resulting in an incident wave with unitary
horizontal displacement at z = 0. Results are reported in figure[6]together with the displacements
given by the effective model @) For h, € (0,90) m, striking variations associated to the 17
flexural resonances are visible, being superimposed to an underlying smooth curve dictated by
the first two longitudinal resonances at 4, = 27.5 m and 82 m. The overall agreement between

vertical displacement

0.6 mean|u(z,0)| mean|u; (z, 29)|

0 30 he (m) 60 90 0 30 I, (m) 60 90

Figure 6: Variations of the mean vertical displacement u; at z = 0 and z = zp = =5 m in the reference case, @7),
for 6; = 45°. Plain blue lines show u, computed numerically, dotted black lines the close forms in (33) and green
dashed-dotted lines the same when neglecting the flexural motions of the plates (fi = 0 in (32)).

the actual and the effective solutions is good although the actual resonances appear to be slightly
shifted to frequencies lower than the predicted flexural resonances. We observe 11 resonances
between the two first longitudinal resonances in agreement with a density 7% with K =~ 0.092

3 At the occurence of the first longitudinal resonance, f;. diverges in (@3) resulting in u;(x,0) = 0 in [@4); this was not
captured in the model of [1]] as fi = go%:kThb was obtained as an approximation of f;, in @ for Kh, < 1.
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from (@8)). Next, because of the low contrast in the material properties the coupling C =~ 0.574 is
weak, however the influence of both resonances is neat.

Eventually, a noticeable higher discrepancy is visible for u,(x, 0) than for u,(x,z9 = —5 m);
in particular the actual displacement u,(x, 0) does not vanish at the longitudinal resonances for
h, ~ 28 m and 82 m as predicted by the effective model. We have checked that removing
the evanescent field from the actual solution, hence keeping only the propagating waves in the
substrate, the agreement is better and in particular the condition u,(x,0) = 0 is recovered. At the
deeper position 7y, the evanescent field is negligible and the agreement is better.

We now move on to the influence of the parameter (C,K) in (8). We have computed the
actual reflection coefficients varying the wave incidence and the height of the plates for 3 different
radii. The spectra of R;; and R,; are reported in figures and El The top panels show the actual

r, = 0.10

direct numerics

Figure 7: Real part of the reflection coefficient Ry against H = «hy, and the incidence angle 6, € (0,90°); the upper
part of the spectra above 6;, = 90° correspond to the range 6r € (6.,90°) with 6, ~ 37.8° where longitudinal waves are
evanescent (hence |Ryp| = 1).

spectra, together with those given by (52) (center panels). For comparison, the result when
neglecting the flexural motions (f; = 0 in (52))) are shown in the bottom panels. With &, € (0, 90)
m, the two first longitudinal resonances are visible at KH = g and 3, with K = 0.057, 0.091
and 0.122; accordingly, the density of flexural resonances between them decreases, with N =~ 17,
11 and 8. The variations of Ry, and R, against 6, for the substrate on its own corresponds to
H = 0; for the thinest plates, r, = 0.10 m, increasing H does not affect much this scattering

4The spectrum of Ry is reported against 6;, € (0,90°) in its lower-part. As 6;, = 90°, 6r = 6, with 6. = asin ,/RTZ;A, ~
37.8°. Increasing further the incidence of the transverse wave above 6., the longitudinal waves becomes evanescent and
no mode conversion occurs (hence [Rrr| = 1 and the figure |Z| shows the real part). Note that the expressions of the

reflection coefficients in (52) remain valid, with sin 6, = % > 1, hence a; imaginary.
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except at the 30 flexural resonances resulting in thin scars in the spectra and more neatly at the
two longitudinal resonances H ~ 27 and 83. For thicker plates, the coupling with the substrate
becomes significant (C = 0.230, 0.574, 1.033) and this is particularly visible in the vicinities of
the flexural resonances.

r, = 0.10 r, = 0.25 r, = 0.45

LI
lllllq* WL

Figure 8: Real part of the reflection coefficient Ry, ; same representation as in ﬁgurem

Another way to modify the coupling between the plates and the substrate is to increase the
contrast in the material properties. We have increased both p, and E, by a factor 5 (from C =
0.574 to 2.871), hence we have left identical the resonance frequencies. We report the results
in ﬁgure@by means of the profiles of (|R/|, |R;|) against H for 8; = 25.6° (6, = 45°). In the
reference case with moderate contrast, the scars at the flexural resonances already produce a
significant shift from the smooth underlying curve when accounting for f; only (dashed-dotted
green line). In particular, it is noticeable that the reflexion coefficients do not follow the simple
prediction |R| = 1, |R;] = O obtained when neglecting the flexural motions (dashed-dotted
green lines). For |f;| — +co, (52)) simplify to

_cosO, —ifscos(6, + 6r) _ —2ifysin6, cos O,
" cosO, —ificos(, —6;) " cosf, —if.cos(8, —6;)

(55)

hence their values depend on the relative position of the longitudinal resonance with the sur-
rounding flexural ones. Eventually, for strong contrast, the variations due longitudinal motions
only do not share much with the actual ones, as the influence of the flexural resonances are not
reduced anymore to local scars. It is worth noting that the discrepancy between our model (dotted
black lines) and that neglecting flexural motions (dashed-dotted green lines) is more important
for the reported absolute values than for the real parts in figures[8]and[9] This is due to the fact
that the imaginary parts of the reflexion coefficients have more pronounced variations around the
resonances (they cancel for the substrate on its own, (]3_7[)).

20



201

202

203

204

205

206

207

208

209

moderate contrast strong contrast

| R

| Rz

o 3 " 5 60

Figure 9: Variations of (|[Ryr|, |[Ryr|) against H for a moderate contrast, @) and for a strong contrast (see main text).
Plain blue lines shows the actual coefficients, dotted black lines those given by and the dashed-dotted green lines the
same when omitting the flexural motion.

We end this section with a slightly different representation by inspecting the conservation
of the energy fluxes. Conservation of the fluxes is measured in terms of the conservation of the
fluxes of the Poynting vector I1 = fz < I(0 y iy + 0 u,)dx where J means imaginary parts which,
from (33)), reads

R (aT|RTT|2 + aLlRLle)Az =R (aTAg) ) R (aL|RLL|2 + aTlRTle) Az =R (aLAs) )

(where R means real part) and the results holds by summing the two equations for an incident
flux R (aTA% + aLAf). For an incident transverse wave, we have computed the normalized energy
fluxes

D, = IRTT|2’ D, = R (ﬂ) |RLT|2’ (56)

ar

and the conservation of the fluxes is ensured by @+ ®,; = 1. The figure(10|shows the variations
of (@, ®,;) against H in the reference case for an incidence 6, = 30°, 60° and 88° (corresponding
to 6; =17.8°, 32.0° and 37.7°). For the substrate on its own, the conversion from transverse to
longitudinal wave is important, @ ~ 0.1, @, ~ 0.9 depending on the incidence. The presence of
the array drastically modifies the exchanges of energy between the two polarizations. In general,
the sharpest variations take place in the vicinity of the flexural resonances where the conversion
is forbidden. However, as H or 6; increases, less expected behaviors are observed, as the almost
complete conversion @, ~ 1 preceding or following the zero conversion at flexural resonances
(see 6, = 32.0°, H > 20).
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Figure 10: Variation of the energy fluxes @1 (blue lines) and ®;r (green lines) against H in the reference case, @), for
61 = 17.8° (top panel), 67 = 32.0° (center panel) and 6y = 37.7° (bottom panel). The dashed and dotted black lines show
@1 and @, in the effective model with @) in . The yellow and dashed-dotted black lines show (®rr + @rr) in the
numerics and in our model. The arrow indicates the position of the longitudinal resonance.

Appendix A. Proofs of the properties in(16)

Throughout the appendix, we shall use that for a symmetric tensor 7;; defined for X’ € §,, and for
a vector a; with antisymmetric tensor 8;a;, we have

f a,-(')j‘r,-j dr’ = f aTiin; dg’ - f c')ja,-‘rij dg’ = f aTiin; d)’i,, (Al)
éb a§b Béb [)ﬁb

since Bja,-‘r,-j =0.

22 Appendix A.1. Determination of (V°, V') and of (£°, V?)

As previously said in §3.1.3 the dependance of V° and V' on & = (%, §) is obtained starting from
(C’)~%2 and (C’)~! in (T4) which tell us that there exists (U°(x, %), Q°(x, 7)) and (U'(x, 2), Q'(x, 2))
such that

VW=Ux2+Qx2y V) =U)x2-Q 2t V) =UAx), (A2)
Vi=Ux 0+ Q'x29, V) =UjxD-Q'x)E '
Next, as %Vzl = —{%VB, {%Vzl = —(%Vf from (C”)~!, we have %Vg = i(%QO =0, hence
Q" 00 .
5 =0 V! =Ulx,2) - 6_2(ng + U%9). (A.3)
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The dependance of V2 with respect to &’ is more intricate as it requires to solve the following
problem set in the section &’ € §, with (£°, V?) as unknowns :

divgX? =0 in§,, n =0 onds,,
G 3 1+
& (V) + £(V!) + &5(V0) = — 30 _ 2 (20,
E, E,

with the input V° and V! given by (A2). For a circular section, this problem can be solved
explicitly. Specifically there exists (U?(x, Z), Q*(x, Z)) such that the displacement V2 is given by

V2= UXx,7

U (oU? . au‘; NS IAN
0x 0x ay ax (9y YNy

oul ou? 2 R —9?
<y fan L (02 ogg),
07 0z ’

auy  (3Uy  QUd\ & (09" Q0
2 12y 3 200 =8 Yo y N
Vi= Uij(x,2)-Q(x,2)%- a—y—(a + Byx)_ +( o i+ ﬁ_y) (A4)
aul U’ »* 2
—Vb( a;+ 7 )y+vb(,j (UOM—UOX zy),
Ve Uxg- Uy ou? LOUR) . U, .\ ou? . vy
T YT T Ty T T e Ty e )
and the corresponding stress tensor £° by
oQ°  oQ! oQ°  oQ!
o= —— =9 2= —— — |2
(8z+6z)y (8z+62)x
(A.5)

aul duY & o . 0 0 0
b((9_2+ 9z 0% (U +U, ))’ Lo =Xy =2, =0

ou!
Appendix A.2. Proof of Py : a—f =0in (16)
Z
We use (E,)~! in (T3), specifically

d d d
F)S}C, ;Eiz (ngzzo,

that we integrate over &’ € §,. Accounting for the boundary condition . n, + Zl .1y = 0on d§,,

we obtain that £ féb T df’ = 0. Next, with the form of 2. given in (A.3), and accounting for

the facts that (i) U? in (A2)) does not depend on Z and (ii) f xd] = f $dR’ = 0, we obtain that

aag = 0. The field U! could be a linear function of Z but this is prevented by its Z-periodicity

hence
au!
07

=0. (A.6)
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Appendix A.3. Proof of P, : e 0in
Z

We start by introducing the torsion force 7°
70 = f yZO - x2° dy’. (A7)

Using the forms of 20 and ZO in (A.5) we get that

0 1
TOx,3) = prb(a x) + a—(x z)) with J, = f @ +3Hd] = g?f. (A.8)

(J, is the torsion constant for a circular cross-section.) Now, we use divg X' + diVZEO =0, from
(E,)~! and (E,)™! in (T3), that we integrate over §, after multiplication by a = e, — fe,; we get

0
0= f a-divg X' dj’ + f a-div;2’dg’ = f a-(Z'n)dg’ + — f a-(Z%,)d%’. (A.9)
& & 8, 0z Js,

In (A9), we have applied (A-T) to the first integral involving X!. Indeed, it suffices to notice that
divg X! = divg X!l¢ where T!¢ is the 2x2 symmetric restriction of X! to the indices (x,y) and
that Vg a is antisymmetric. Since £'|¢n = £'n = 0 over 8,, we deduce that faéb a-(Z'n)d&’ = 0.

Now, recalling the definition (A7) of 770 as well as (A.8), we find

0 6‘7'0 0’Q!
0= x',) d&’ Jy—r
aNIa( e;)dx Ry
Thus, Q' is independent of 7 (a linear dependance w.rt. 7 is prevented by its Z-periodicity), and
770 reduces to

o% Q!
aa—z(x), LAY (A.10)

TO(X) =y
Appendix A.4. Proof of P3 : Q° = 0 in (16)
Here, we shall see that the equation for torsion (A.10) can be complemented to get the wave

equation for Q°; in addition that the associated boundary conditions impose Q° = 0. (From
(A3) we already know that Q°(x) does not depend of Z.)

Appendix A.4.1. The wave equation for torsion

We start with the derivation of the equation satisfied by the macroscopic rotation Q°. We use the
relation divg X% + div:E! + divyX? + p,w*V® = 0 from (E,)° and (E,)° in (T3), that we multiply
by a = je, — Xe, and integrate over (X', 2) € §, x (0, h:). We get

f a - divy X% dj’ dz + p,w? f a-V'dg' dz =0,
8px(0,71F) 8pX(0,7F)

where we have accounted for f a - divg 22 d&’ = 0 as in (A9) and for the Z-periodicity of X!.
Next, owmg to the form of V in (A22) (with Q° = Q%x) from (A3)) and the form of X° in (A3)
(with 2Q' = 0 from (AT0)), we obtain

aTO 2 0 Q0 200
S W +p0Q M0 =0 = X+ pw’ Q70 =0, (A.11)

with J, defined in (A.8).
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Appendix A.4.2. The corresponding boundary conditions
To conclude that Q° = 0, we have to specify the boundary conditions at z = 0 and A, by analyzing
the torsional behavior near the extremities.

At z = h,. In the intermediate region located near z = h,, we introduce the torsion force
T°,,(x',%). Repeating the same procedure than in |Appendix A.3|in the region of the beam,
we find that _ _
oQ° Q!
—), —=0. (A.12)

70 ’
= p,Jy =
T |hh (X ) M Oz Oz

Next we go to the microscopic scale near z = A, with the expansions (30). Multiplying divxfol hy =

0 by a = je, — Xe,, integrating over th {& €8§,,2 € (—c0,0)} and making use of the matching
conditions and traction free boundary conditions, we deduce that

T, (X') = lim f (5T, = £, ) d&” = 0. (A.13)
——00 §b

Finally, using the matching condition between the intermediate region and the inner region of the
beams we get _
7', hy) = lim 70, (x) = 0. (A.14)
7——00

At z = 0. In the intermediate region located near z = 0, in virtue of (I4) which holds also for
the intermediate expansions (24), we have &* (V0|0) = 0, hence V0|0 = U%(x, %) + Q0y(x’ ).
The goal is to show that Q% (x’) = 0. For that, we go at the microscopic scale near z = 0, where
we recall (see section (3.2.2))) that since & (VOIO) =0,V isa rigid body motion which can be
reduced to a translation thanks to the periodic conditions acting at this scale. Therefore we get
VOIO = U0|0(X ). It now suffices to apply the micro-meso matching conditions i.e. V0|0(X 0) =
lim; 4o V lo, to show that that QO|0(X ) = 0. Finally, using again matching conditions between
the intermediate region and the inner region of the beams we deduce that

Q'x',0) = lim Q%(x’) = 0. (A.15)
Z—+00

Given the wave equation (A.T1)) and the corresponding boundary conditions (A-14)-(A13)), we

Mo nm

deduce that outside the set of torsional resonant frequencies which correspond to w, = s Dy

with n € Z*, we have
Q%x) = 0. (A.16)

0
Appendix A.5. Proof of Py : aa_Lf) = aa—li" =0in (16)
Appendix A.5.1. Determination of V> and X'
The first step is to solve the problem on (Z!, V?3) which reads, from (E,)"! and (E,)!in (M3) and
from (C*)! in (T4),
divg X' + div:E* =0 in§,, Tn=0 onds,
1+, (A.17)

& (V) + (V) + 88 (V) = — 2! - %u(zl) I
b b
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We short-circuit the proof by assuming, or anticipating, that
2.=%,=2%,=0, (A.18)
which can be Verlﬁed a posteriori. As a result, from (A.I7) and with tr(X') = Z!, we have

. =E, (a\ﬂ ) Next, using VZ in (A&4), V. in (A3) and with V? = U?(x) independent of Z

from (A2), we obtam

Uz ou! 3
o+

07 dz 07

3! = E( s (Ulx+ U)3) - 238—; (V0% + Uy )) (A.19)

Let us consider now in (@) (second line) the strains associated to the 2D vanishing stress
components (X! , %! 9 ) We obtain

ov: ov! .
E, ot + o =",

=0.

OV VIV avi Vi ov
5 oy |T = Tar T ap T ax | oy

We find that there exists (U3 (x, 2), U}3, (x,2), Q3(x, 7)) such that the displacements (V?, V;) read

1 A
V3 aQl ol , au}cﬁ_ %Jr aul)y
x Ox dy Ox O0x dy |2

an aUz1 . Ul 2aUgg 252 (0U; 2aUO »
Vh(az az)““’a_z(afr az) 2 e e )Y

Q! Q! au, Uy 9U!
? = 3 ’~ _AA /\2 —_— _) " [— _y
y(%2) = L Oy R oy Yl T Oy

au? oul\ o ((aul _au0\ . (0Uy _oU?) 2 -3?
- + + vy + + .
"oz Ta ) e \er T e )Y T e T e ) 2
The remaining part of the solution, (£}_,X}.) and V2, is more demanding. From (A7) with X2,
in (A73) and using that ZU? = ZU! = 0 from (A2) and (A-6), these fields satisfy

62}& + 82}17 _ azgz 82

(UO +U0) in §,,

ax 8y 0z a
Lo (OVELAVE VI aviy (v 0VE avi ov)  (A20)
"l TTar Tax T g =T T e T ey T

1 1 _ a
Ty +Xpn, = 0 on05,.

(We have used the constitutive equation (C)! instead of (C’)! in the second line.) Now, we
rearrange the constitutive behavior using (1) (V2,V2) in (AF) (with Q° = 0 from (AT6)), (ii)

A% V}l, V! in (A2)-(A3) and (iii) % UO 0 from | resulting in

1= -89 N PUY (B FUY (3
. ( 5 +Z:Sfc = Vi (V2 + V) 40, a4 7 ) vbys’ o ) (A21)
Z ———— 2
V/
e
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where

0z Ox " 0z " 0z " E - 0z Y
a(ou? , auUy , (dUY) au°

- _xj- _)A; + | —+ X5 s
0z | ox ay ox ady

aQr 8l 14 (6U§.’ aU;’)

Z

U oU! oU! Uy eu! aU|
VI: ( X+ 4 x))AC 4 PN

(A22)

S =

oz "oz 207

ox ay

Basically, the idea is to work on the auxiliary displacement variable V’ which has absorbed V
associated to a gradient. Thus, it is now sufficient to solve the problem on (X', V") which satisfy
(&ZT) along with divg £’ = E, £ (Ugfc + U;)jz) and X'n = 0; by linearity, we can set

R & g o O o yrer
T (x28) = U D @) + 5 U D) o),
V'(x,Z,%) = a—?Ux(X, DVE)+ a_ngy(X’ DV E),
and solve
dive* =E,x in§,, o*n=0 onds,, divoe” = E,$ in§,, o' rn=0 ond§,
2-9? %
ot = u, Vv* +,ubvb( 2 ) o =, Vv’ +ubvb( )%2)_}5,2 )
Xy -

The above problems can be solved in polar coordinates with £ = #cos 6, § = 7sin6 by looking
for a solution of the form v* = g(#) cos @ and v* = g(?) sin 6, with g satisfying g”’ + & — £ = 27,

along with the boundary condition (2g’(7,) + vhf’hz) = 0. It follows that C
A3 3
g(i) = — - (- + ﬁ)ff?. (A.23)
Eventually the solution reads

vie_vii & ((vo+ vt5) %),

z 7 58
! o0 g 2, (8 _%\. g 8. \u
—Z)ICZZS +C(F|:U2((5+ 2}3) 2+(—3—Eb)y2 +US ,\_2_§+Vh v, (A.24)

with # = /22 + 32 and with (V/, S) defined in (A:22).

Appendix A.5.2. Macroscopic equation for the flexural motions U}

Now, we want to derive the relations equivalent to (Z0), (ZI) and 22). To do so, we iterate
the procedure conducted in First, we obtain M}l, a = x,y, by integrating Z%Z (whose
form is in (A:19)) over &’ € §, after multiplication by % then by $. Next, the equilibrium is

obtained starting with (E,)" in (I3): &3, + S5, + £%5, + £.5, +pw’V, = 0,a = x,y (since
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2!, = %}, = 0 from (AT8)), that we integrate over ¥’ € §,; then we use X)_ in (A24) and V,
in (A:2). Eventually, the relations between bending moments and shear forces are written from
(B in (@3): £Z3, + 25 + £EL + 220 +p,0° VY = 0 (since 29, = £), = 0 from ([7)), that we
integrate over X’ € §, after multiplication by a = %,9; then, we use E?Z in (T7) and V? in (A22).
We obtain

»’U} PUd T’ U
M! = E,I, P 2Elaa~, 6—;+pbw2¢U;+pbAaa3=0,
72 om! ’U° _0,
R 4 * 02072
with A, = —%(1 + v,)rd. The above system conduces to
aul U
Ul=B,—=%, a=uxy, A25
az —K a bazaz:s a X y ( )
with «* = £20” and B, = ‘2’;: -3 = —4. If UY depend on z (and we want to show that it is

not the case), then U2 solution of (23) reads US(X, 7) = A,(X)sinkZ + B,(x) cos kZ. Integrating
(A25) over Z € (0,2n/x) after multiplication by cos «Z (resp. by sin«Z) and integrating by part
four times provides [.}%Aa = 0 (resp. [.}%Ba = 0), which allows us to conclude that

ouY Uy
0z 0z

(A.26)

Appendix B. The case of a two-dimensional array of plates

We provide in this section the effective model for the alternative situation of a periodic array
of identical plates supported by a soil substrate. We transpose the notations of the beams case,
assuming that the plates have a height 4,, a thickness 2r, and that the periodicity of the array is ¢.
We denote (4, iy, 0,) the material parameters of the plates and (4, i, o,) those of the substrate.
The same scaling as for the beams case is used, see (@). For in-plane incident wave, the resulting
displacement fields remain in-plane with

ou, oU
Uy =0, dy - 6yz - Ty =0y, =0.

Following the same asymptotic procedure as for the beams, we derive an effective model for the
array of plates. In the substrate, the displacement field is governed by the classical balance of
linear momentum equation and constitutive equation of the substrate. The array of the plates is
replaced by frequency dependent boundary conditions which encapsulate both the longitudinal
and flexural resonant motions of the plates

dive + pwu =0, o =2ue+Atr(e)l, forze (—o0,0),

O (%, 0) = ukr fr(w, h,) uy(x,0), 0,(x,0) = ukr fi(w, hy) u,(x,0), (B.1)
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and

00 ke shih, cos kh, + chh, sin kh, 3p,0% )
fl‘f(w9hh):‘p__ s, K= ) 5
P, K 1 + cos kh,chkh, Elr; (B.2)
pb kT pb
filw, h,) = ¢ —— tan Kh,, K= |=w
L b 0. K b Eb

with 2 4u1,(A ) E
ry % (A, + My, b

= —, E* = = . B.3

¥ 4 ° Ay + 2, 1- VE (B.3)
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