Supporting information

Fluorogenic squaraine dendrimers for background-free imaging of integrin receptors in cancer cells

Pichandi Ashokkumar ${ }^{1,2}$, Mayeul Collot ${ }^{1 *}$ and Andrey S. Klymchenko ${ }^{1 *}$
${ }^{1}$ Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch, France.
${ }^{2}$ Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi-630 004, Tamil Nadu, India.
*Corresponding author emails: andrey.klymchenko@unistra.fr; mayeul.collot@unistra.fr

Table of Contents

1. General Information S2
1.1 Methods and Materials S2
1.2 Lipid vesicles preparation S2
1.3 Cell culture preparation and fluorescence imaging S2
2. Synthesis and characterization S3
3. Table S1. Spectroscopic properties of all the compounds in various solvents S11
4. Figure S1. Normalized absorption and fluorescence spectra of all the dyes in various solvents S12
5. Figure S2. Normalized absorption, excitation and fluorescence spectra of all the dyes in water S13
6. Figure S3. Normalized fluorescence and excitation spectra of all the dyes in water S14
7. Figure S4-S8. Absorption and fluorescence spectra of all the dyes in water-dioxane mixtures S14-S15
8. Figure S9. Normalized absorption spectra of all the dyes in phosphate buffer, DOPC and BSA S16
9. Figure S10. Corrected total fluorescence intensity per cell of U-87 MG cells incubated with all SQ probes S16
10. Figure S11. Fluorescence images of U-87 MG cells incubated with SQPEG-oct-RGD at $37^{\circ} \mathrm{C}$ for various times S17
11. Figure S12. Fluorescence images of U-87 MG cells incubated with SQPEG-oct at $37^{\circ} \mathrm{C}$ for various times S18
12. Figure S13. Fluorescence images of $\mathrm{U}-87 \mathrm{MG}$ cells incubated at $4^{\circ} \mathrm{C}$ for 1 hr with SQPEG-oct-RGD and SQPEG-RGD S19
13. Figure S14-S30. NMR and mass spectra of all the compounds S20-S28
14. References S28

1. General procedures

1.1 Methods and Materials

All starting materials for synthesis were purchased from Alfa Aesar, Sigma-Aldrich, or TCI Europe and used as received unless stated otherwise. NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to residual solvent signals. Data are presented as follows: chemical shift (ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constant $\mathrm{J}(\mathrm{Hz})$ and integration. Mass spectra were obtained using an Agilent Q-TOF 6520 mass spectrometer and the MALDI-TOF spectra were collected on a Bruker autoflex II TOF/TOF mass spectrometer (Bruker Daltonics, Billerica, MA). Absorption spectra were recorded on a Cary 4000 spectrophotometer (Varian). Fluorescence spectra were recorded on a Fluoromax-4 (Jobin Yvon, Horiba) spectrofluorometer. Emission measurements were systematically done at $20^{\circ} \mathrm{C}$, unless indicated otherwise. All the spectra were corrected from the wavelength-dependent response of the detector. Relative fluorescence quantum yields were measured using DID in MeOH ($\mathrm{QY}=$ $0.33)^{1}$ as standard.

1.2. Lipid vesicles preparation

Large unilamellar vesicles (LUVs) were obtained by the extrusion method as described in the literature. ${ }^{2}$ Briefly, a suspension of multilamellar vesicles was extruded by using a Lipex Biomembranes extruder (Vancouver, Canada). The size of the filters was first $0.2 \mu \mathrm{~m}$ (7 passages) and after that $0.1 \mu \mathrm{~m}$ (10 passages). Mean diameter of the monodisperse vesicles were measured with a Malvern Zetamaster 300 (Malvern, U.K.) and it was found to be 0.11 to $0.12 \mu \mathrm{~m}$.

1.3. Cell culture preparation and fluorescence imaging

U-87 MG cells that expressing $\alpha_{\nu} \beta_{3}$ integrin receptors were obtained from ATCC, Manassas, VA, USA. Cells were grown in Dulbecco's modified Eagle medium (DMEM, Gibco-Invitrogen), supplemented with 10% fetal bovine serum (FBS, Lonza) and 1% antibiotic solution (penicillin + streptomycin, Gibco-Invitrogen) at $37^{\circ} \mathrm{C}$ in humidified atmosphere containing $5 \% \mathrm{CO}_{2}$. Cells were seeded onto a chambered cover glass (IBiDi®) at a density of 1×10^{5} cells/well 24 h before the microscopy measurement. For imaging, the culture medium was removed and the cells were washed two times by gentle rinsing with PBS. Next, the cells were incubated in Opti-MEM (Gibco-Invitrogen) with SQ probes at $37^{\circ} \mathrm{C}$ for the specified time period. For RGD saturation experiment, the cells were first treated with free RGD ligand $(100 \mu \mathrm{M})$ at $22^{\circ} \mathrm{C}$ for 20 min in Opti-MEM, then the SQ probe was added and incubated at 37° C for 1h. The plasma membrane was stained with Wheat Germ Agglutinin (WGA), Alexa Fluor тм 488 Conjugate (ThermoFisher Scientific) prior to imaging. Fluorescence imaging without any washing steps was performed in the spinning disk mode using X-Light CREST module in

Nikon Ti-E inverted microscope with a 60x objective. SQ probes and WGA-488 marker were excited with 640- and 488 nm lasers, while emission was detected using 705/72 and 530/30 nm band-pass filters, respectively. ImageJ software was used to process the fluorescence images. Corrected total cell fluorescence intensity (CTCF) is calculated from 4-5 cells of three different images for each probe. CTCF = Integrated Density - (Area of selected cell x Mean fluorescence of background).

2. Synthesis and characterization

Scheme S1. Synthesis of squaraine (SQ-OH), tetramer (SQ-tet) and octamer (SQ-oct).
The precursors $\mathbf{1}^{3}$ and $\mathbf{2}^{4}$ for squaraine dye and Boc-protected dendrons Lys-tet ${ }^{5}$ and Lys-oct ${ }^{6}$ were synthesized by following the procedure reported in the literature.

SQ-OH dye (3)

To a solution of $1(2.0 \mathrm{~g}, 4.22 \mathrm{mmol}, 1$ equiv.) in ethanol (35 mL) was added NaOH ($0.68 \mathrm{~g}, 16.89 \mathrm{mmol}, 4$ equiv.) previously dissolved in water (5 mL) and stirred at $100^{\circ} \mathrm{C}$ for 10 minutes. The reaction mixture is cooled and neutralized with IR $120 \mathrm{H}+$ resin (prewashed with MeOH). The resin was filtered off, washed with methanol and the solvents were evaporated to dryness. The crude was dissolved in a toluene/butanol mixture ($1 / 1,70 \mathrm{~mL}$) and $2(1.64 \mathrm{~g}, 4.22$ mmol, 1 equiv.) was added. The flask was equipped with a Dean-Stark apparatus and the solution was heated at $110^{\circ} \mathrm{C}$ overnight. The solvents were evaporated and the crude was purified on a silica column (eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5$) to obtain $\mathbf{S Q}-\mathbf{O H}$ dye (3) (1.54 g , 53% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H})$, $6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.01(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 10 \mathrm{H}), 3.53-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $2.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.85(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.77(2 \mathrm{~s}$ overlapped, 12 H$), 1.64-1.60(\mathrm{~m}$, 2H), $1.58-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 182.43,179.80,178.85$, $170.55,170.16,143.12,142.35,141.72,127.89,127.71,123.95,123.68,122.39,122.06$, $110.28,109.51,86.84,86.65,71.98,71.18,70.70,70.64,70.56,70.53,67.78,62.52,59.06$, $49.43,49.29,43.98,43.24,32.47,27.23,27.06,26.25,24.92$. HRMS (ESI), $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{7}\right]^{+}$687.4009; found: 687.4016.

Compound 4

To a stirred solution of $\mathbf{3}(1.5 \mathrm{~g}, 2.18 \mathrm{mmol}, 1$ equiv.) in DCM (14 mL) was added pyridine ($0.69 \mathrm{~g}, 0.71 \mathrm{~mL}, 8.74 \mathrm{mmol}, 4$ equiv.) and 4-nitrophenyl chloroformate $(1.1 \mathrm{~g}, 5.46$ $\mathrm{mmol}, 2.5$ equiv.) and stirred for 16 h at room temperature. After completion of the reaction as monitored by TLC, the solvent was evaporated and the residue was dissolved in ethyl acetate and the organic layer was washed with water and brine solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified on a silica column (eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97 / 3$) to obtain $\mathbf{4}(1.51 \mathrm{~g}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.29-8.25(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.11$ $(\mathrm{m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}$ overlapped with triplet, 2H), 4.02 (br s, 2H), $3.85(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.51$ (m, 12H), 3.36 ($\mathrm{s}, 3 \mathrm{H}$), $1.85(\mathrm{br} \mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 14 \mathrm{H}), 1.51(\mathrm{q}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 182.32,170.39,170.30,155.68,152.60,145.45,143.08,142.46,127.89,127.77$, 125.37, 123.93, 123.80, 122.49, 122.10, 121.90, 110.40, 109.39, 108.50, 86.73, 72.02, 71.23, $70.74,70.68,70.60,70.58,69.36,67.82,59.10,49.47,49.39,44.04,43.63,28.49,27.26,27.17$, 27.05, 26.75, 25.63. HRMS (ESI), $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{48} \mathrm{H}_{58} \mathrm{~N}_{3} \mathrm{O}_{11}\right]^{+}$852.4071; found: 852.4090 .

SQ-tet

To a solution of tert-butyloxycarbonyl (Boc)-protected Lys-tet ($35 \mathrm{mg}, 0.042 \mathrm{mmol}, 1$ equiv.) in dry DCM (1.2 mL) was added trifluoroaceticacid (TFA; $1.21 \mathrm{~mL}, 16.25 \mathrm{mmol}, 390$ equiv.) and stirred at room temperature for 3 h . The solvent was removed from the reaction mixture by rotary evaporation and the sample was then dried under high-vacuum condition for 30 min . to yield puffy solid substance. The obtained solid was dissolved in anhydrous DMF (1 mL) and diisopropylethylamine (DIEA; $62 \mu \mathrm{~L}, 0.375 \mathrm{mmol}, 9$ equiv.) was added to neutralize the amine-TFA salt formed after Boc-deprotection. To this reaction mixture was added a solution of 4 ($213 \mathrm{mg}, 0.25 \mathrm{mmol}, 6$ equiv.) in anhydrous DCM (1.5 mL) and triethylamine (TEA; $61 \mu \mathrm{~L}, 0.437 \mathrm{mmol}, 10.5$ equiv.) and stirred for 28 h at room temperature. After completion of the reaction as indicated by TLC, the solvents were removed under vacuum. The residue was re-dissolved in DCM (50 mL) and washed successively with saturated sodium bicarbonate solution ($50 \mathrm{~mL} \times 3$) and water to remove most of the by-product (4-nitrophenol) formed. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified on preparative silica gel TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 94 / 6$ as an eluent to obtain SQ-tet ($85 \mathrm{mg}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.36-7.28(\mathrm{~m}, 16 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 12 \mathrm{H}), 6.99(\mathrm{dd}, J=8.0,4.8 \mathrm{~Hz}, 4 \mathrm{H})$, $5.94-5.93$ (2 s overlapped, 8 H), 4.36 (br s, 3H), 4.22 (br s, 8 H), 4.01 (br s, 19H), $3.84(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 8 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 47 \mathrm{H}), 3.35(\mathrm{~s}, 12 \mathrm{H}), 3.16(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 56 \mathrm{H})$, $1.64(\mathrm{~s}, 22 \mathrm{H}), 1.42$ (br s, 20H). HRMS (ESI): calcd for $\mathrm{C}_{189} \mathrm{H}_{251} \mathrm{~N}_{15} \mathrm{O}_{35}(\mathrm{M}+2 \mathrm{H})^{2+} / 2$ 1645.4161, found: 1645.4149.

SQ-oct

To a solution of tert-butyloxy carbonyl (Boc)-protected Lys-oct ($26.3 \mathrm{mg}, 0.015 \mathrm{mmol}$, 1 equiv.) in dry DCM (1 mL) was added TFA ($1 \mathrm{~mL}, 13.35 \mathrm{mmol}, 890$ equiv.) and stirred at room temperature for 3 h . The solvent was removed from the reaction mixture by rotary evaporation and the sample was then dried under high-vacuum condition for 30 min . to yield puffy solid substance. The obtained solid was dissolved in anhydrous DMF (0.8 mL) and DIEA ($42 \mu \mathrm{~L}, 0.255 \mathrm{mmol}, 17$ equiv.) was added to neutralize the amine-TFA salt formed after Bocdeprotection. To this reaction mixture was added a solution of $4(204.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 16$ equiv.) in anhydrous DCM (1.2 mL) and TEA ($21 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 10$ equiv.) and stirred for 48 h at room temperature. After completion of the reaction as indicated by TLC, the solvents were removed under vacuum. The residue was re-dissolved in DCM (50 mL) and washed successively with saturated sodium bicarbonate solution $(50 \mathrm{~mL} \times 3)$ and water to remove most of the by-product (4-nitrophenol) formed. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified on preparative silica gel TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 93 / 7$ as an eluent to obtain $\mathbf{S Q - o c t}$ (55.9 mg , 56% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.34-7.27(\mathrm{~m}, 32 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 24 \mathrm{H})$, $6.99(\mathrm{t}, J=8.6 \mathrm{~Hz}, 8 \mathrm{H}), 5.93(\mathrm{~s}, 16 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 10 \mathrm{H}), 4.21$ (br s, 16 H), 3.99 (br s, 35 H), 3.84 ($\mathrm{t}, J=6.0 \mathrm{~Hz}, 16 \mathrm{H}$), $3.61-3.50(\mathrm{~m}, 96 \mathrm{H}), 3.35(\mathrm{~s}, 24 \mathrm{H}), 3.13(\mathrm{br} \mathrm{s}, 10 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 1.76-$ 1.71 (2 s overlapped, 144 H), 1.58 ($\mathrm{br} \mathrm{s}, 14 \mathrm{H}$), 1.40 ($\mathrm{br} \mathrm{s}, 44 \mathrm{H}$). HRMS (ESI): calcd for $\mathrm{C}_{381} \mathrm{H}_{509} \mathrm{~N}_{31} \mathrm{O}_{71}(\mathrm{M}+4 \mathrm{H})^{4+} / 4$ 1663.6793, found: 1663.6808.

Scheme S2. Synthesis of PEGylated squaraine (SQPEG) and octamer (SQPEG-oct).

SQPEG

To a solution of $\mathbf{4}$ ($78 \mathrm{mg}, 0.091 \mathrm{mmol}, 1$ equiv.) in a mixture of anhydrous DCM (1.4 mL) and anhydrous DMF (0.1 mL) was added TEA ($51 \mu \mathrm{~L}, 0.366 \mathrm{mmol}, 4$ equiv.) and $\mathrm{NH}_{2} \mathrm{PEG}_{8} \mathrm{OH}$ ($50.7 \mathrm{mg}, 0.137 \mathrm{mmol}, 1.5$ equiv.) and stirred at room temperature for 3 h . After completion of the reaction as indicated by TLC, the solvents were removed under vacuum. The residue was re-dissolved in DCM (40 mL) and washed successively with saturated sodium bicarbonate solution ($50 \mathrm{~mL} \times 3$) and water to remove most of the by-product (4-nitrophenol) formed. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified on a silica column (eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $90 / 10$) to obtain 5 ($87.2 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.37-7.28$ (m, $4 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.94$ (2 s overlapped, 2H), 5.38 (t, J $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66-3.51(\mathrm{~m}, 40 \mathrm{H}), 3.38-3.34(\mathrm{~m}, 5 \mathrm{H}), 1.96(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 12 \mathrm{H}), 1.62(\mathrm{q}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 13 \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl} 3) ~ \delta 182.45,170.54,170.19,156.98,142.50,142.37,127.96,127.78,124.00$, $123.73,122.47,122.14,110.36,109.59,86.82,72.74,72.06,71.27,70.78,70.74,70.72,70.69$, $70.66,70.64,70.62,70.45,70.29,67.86,64.74,61.83,59.15,49.54,49.37,43.79,40.92,29.82$, 29.07, 27.33, 27.17, 26.87, 25.87. HRMS (ESI): calcd for $\mathrm{C}_{58} \mathrm{H}_{89} \mathrm{~N}_{3} \mathrm{O}_{16}(\mathrm{M}+2 \mathrm{H})^{2+} / 2$ 541.8121, found: 541.8120.

Compound 6

To a solution of $\mathbf{5}(76 \mathrm{mg}, 0.07 \mathrm{mmol}, 1$ equiv.) in DCM (0.9 mL) was added pyridine ($22.7 \mu \mathrm{~L}, 0.281 \mathrm{mmol}, 4$ equiv.) and 4-nitrophenyl chloroformate ($28.3 \mathrm{mg}, 0.14 \mathrm{mmol}, 2$
equiv.) and stirred for 16 h at room temperature. After completion of the reaction as monitored by TLC, the solvent was evaporated and the residue was dissolved in ethyl acetate and the organic layer was washed with water and brine solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified on a silica column (eluted with $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 92 / 8\right)$ to obtain 6 ($69.2 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.27$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H})$, $6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.94(2 \mathrm{~s}$ overlapped, 2 H), $4.30(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{br} \mathrm{s}$, 2 H), $4.04(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.00$ (br s overlapped with triplet, 2 H), $3.85(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68-3.50(\mathrm{~m}, 38 \mathrm{H}), 3.38-3.35(\mathrm{~m}, 5 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 14 \mathrm{H}), 1.61$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 182.37,180.15$, $170.49,170.18,156.90,155.63,152.58,145.51,142.46,127.92,127.74,125.40,123.96$, $123.71,122.43,122.09,121.89,110.33,109.55,86.76,72.02,71.23,70.82,70.75,70.72,70.68$, $70.63,70.60,70.58,70.39,70.23,68.72,68.42,67.82,64.72,59.10,53.53,49.50,49.34,44.03$, 43.75, 40.88, 29.78, 29.44, 29.02, 27.28, 27.13, 26.82, 25.83. HRMS (ESI): calcd for $\mathrm{C}_{65} \mathrm{H}_{92} \mathrm{~N}_{4} \mathrm{O}_{20}(\mathrm{M}+2 \mathrm{H})^{2+} / 2624.3152$, found: 624.3160.

SQPEG-oct

To a solution of tert-butyloxy carbonyl (Boc)-protected Lys-oct ($6 \mathrm{mg}, 3.42 \mu \mathrm{~mol}, 1$ equiv.) in dry DCM (0.3 mL) was added TFA ($0.3 \mathrm{~mL}, 4.04 \mathrm{mmol}, 1180$ equiv.) and stirred at room temperature for 3 h . The solvent was removed from the reaction mixture by rotary evaporation and the sample was then dried under high-vacuum condition for 30 min . to yield puffy solid substance. The obtained solid was dissolved in anhydrous DMF (0.25 mL) and DIEA ($9.6 \mu \mathrm{~L}, 58.2 \mu \mathrm{~mol}, 17$ equiv.) was added to neutralize the amine-TFA salt formed after Boc-deprotection. To this reaction mixture was added a solution of $\mathbf{6}(59.8 \mathrm{mg}, 47.9 \mu \mathrm{~mol}, 14$ equiv.) in anhydrous DCM (0.4 mL) and TEA ($4.8 \mu \mathrm{~L}, 34.2 \mu \mathrm{~mol}, 10$ equiv.) and stirred for 48 h at room temperature. After completion of the reaction as indicated by TLC, the solvents were removed under vacuum. The residue was re-dissolved in DCM (40 mL) and washed successively with saturated sodium bicarbonate solution $(50 \mathrm{~mL} \times 3)$ and water to remove most of the by-product (4-nitrophenol) formed. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude product was purified on preparative silica gel TLC with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 93 / 7$ as an eluent to obtain $\mathbf{S Q}$-oct (18.5 mg , 55% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.36-7.28(\mathrm{~m}, 32 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 24 \mathrm{H})$, $6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 5.95(\mathrm{~s}, 16 \mathrm{H}), 4.22-4.18(\mathrm{br} 2 \mathrm{~s}, 32 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 32 \mathrm{H}), 3.85(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 16 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 252 \mathrm{H}), 3.56-3.51(\mathrm{~m}, 79 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 40 \mathrm{H}), 3.11(\mathrm{br}$ $\mathrm{s}, 12 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 126 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 30 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 46 \mathrm{H})$. MALDI-TOF MS: $\mathrm{m} / \mathrm{z}=[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{517} \mathrm{H}_{770} \mathrm{~N}_{39} \mathrm{O}_{143}\right]^{+} 9813.418$; found: 9813.272.

Scheme S3. Synthesis of RGD functionalized squaraine (SQPEG-RGD) and octamer (SQPEG-oct-RGD).

The cyclic RGD peptide was synthesized on a 2-chlorotrityl chloride resin applying Fmoc-based solid phase peptide synthesis as reported earlier. ${ }^{7}$ Azide functionalization of RGD was carried out with NHS-activated azidopentanoic ester as described elsewhere. ${ }^{8}$

SQPEG-oct-RGD

To a solution of SQPEG-oct ($3.8 \mathrm{mg}, 0.387 \mu \mathrm{~mol}, 1$ equiv.) and \mathbf{c} (RGDfK)-azide (1 $\mathrm{mg}, 1.372 \mu \mathrm{~mol}, 3.5$ equiv.) in DMF (0.2 mL) was added a pre-mixed heterogeneous solution
of CuSO4.5H2O ($2.29 \mathrm{mg}, 9.171 \mu \mathrm{~mol}, 23.7$ equiv.) and of sodium ascorbate ($2.62 \mathrm{mg}, 13.22$ $\mu \mathrm{mol}, 34.2$ equiv.) in $25 \mu \mathrm{l}$ of water. The mixture was stirred at room temperature for 14 h before being extracted with DCM and washed with a 0.1 M solution of EDTA. The organic phase was evaporated and the crude product purified through a LH-60 column (DCM/MeOH $1 / 1$). The first blue coloured fraction was evaporated and lyophilized to give pure SQPEG-octRGD ($2.4 \mathrm{mg}, 58.8 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.37-7.28(\mathrm{~m}, 33 \mathrm{H}), 7.19$ $-7.10(\mathrm{~m}, 29 \mathrm{H}), 6.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 5.95(\mathrm{~s}, 16 \mathrm{H}), 4.17$ (br s, 38 H), 4.03 (br s, 34 H), 3.85 ($\mathrm{t}, J=5.8 \mathrm{~Hz}, 16 \mathrm{H}$), $3.63-3.59(\mathrm{~m}, 252 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 80 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 45 \mathrm{H}), 3.11(\mathrm{br} \mathrm{s}$, 14 H), 1.78 (br s, 134 H), $1.68-1.61$ ($\mathrm{m}, 36 \mathrm{H}$ overlapped with $\mathrm{H}_{2} \mathrm{O}$ peak), $1.47-1.41$ ($\mathrm{m}, 48 \mathrm{H}$). MALDI-TOF MS: [M+Na] ${ }^{+}$calcd for [$\left.\mathrm{C}_{549} \mathrm{H}_{817} \mathrm{~N}_{51} \mathrm{O}_{151} \mathrm{Na}\right]^{+}$10563.772; found: 10563.036.

SQPEG-RGD

To a solution of $6(3.5 \mathrm{mg}, 2.806 \mu \mathrm{~mol}, 1$ equiv.) in DMF (0.4 mL) was added $\mathbf{c}($ RGDfK) ($3.0 \mathrm{mg}, 4.969 \mu \mathrm{~mol}, 1.8$ equiv.) and TEA ($1.6 \mu \mathrm{~L}, 11.511 \mu \mathrm{~mol}, 4$ equiv.) and stirred for 8 h at room temperature. After completion of the reaction as monitored by TLC, the solvent was evaporated and the crude product purified through a LH-60 column (DCM/MeOH $1 / 1)$. The first blue coloured fraction was evaporated and lyophilized to give pure SQPEGRGD ($2.98 \mathrm{mg}, 62.0 \%$ yield). MALDI-TOF MS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{86} \mathrm{H}_{127} \mathrm{~N}_{12} \mathrm{O}_{24}\right]^{+} 1711.909$; found: 1712.008.

Table S1. Spectroscopic properties of all the compounds in various solvents.

Dye	$\lambda_{\text {max }}$ absorption, nm						
	Dioxane	DMSO	DMF	EtOH	MeOH	Water	Phosphate buffer
SQ-OH	639	645	642	633	631	628	630
SQPEG	639	645	642	633	631	629	629
$\begin{aligned} & \text { SQPEG- } \\ & \text { RGD } \end{aligned}$	639	645	642	634	631	$\begin{aligned} & 635, \\ & 592 \end{aligned}$	634, 592
SQ-tet	639	645	642	633	631	$\begin{gathered} 644, \\ 604 \end{gathered}$	645, 604
SQ-oct	639	645	642	634	631	$645,$	660, 604
SQPEG- oct	639	645	642	634	631	$\begin{gathered} 643, \\ 599 \end{gathered}$	651, 603
$\begin{gathered} \text { SQPEG- } \\ \text { oct- } \\ \text { RGD } \end{gathered}$	639	645	642	634	631	$\begin{gathered} 641, \\ 599 \end{gathered}$	641, 599
Dye	$\lambda_{\text {max }}$ fluorescence, nm						
	Dioxane	DMSO	DMF	EtOH	MeOH	Water	Phosphate buffer
SQ-OH	647	654	650	641	639	636	636
SQPEG	648	655	651	641	639	637	638
$\begin{gathered} \text { SQPEG- } \\ \text { RGD } \end{gathered}$	650	655	651	643	641	642	642
SQ-tet	652	657	652	646	643	$\begin{aligned} & \hline 636, \\ & 684 \\ & \hline \end{aligned}$	636, 688
SQ-oct	655	659	654	652	649	$\begin{gathered} 637, \\ 686 \end{gathered}$	637, 690
SQPEGoct	651	656	652	645	643	$\begin{array}{r} 640, \\ 682 \\ \hline \end{array}$	643, 685
$\begin{aligned} & \hline \text { SQPEG- } \\ & \text { oct- } \\ & \text { RGD } \\ & \hline \end{aligned}$	650	656	652	644	643	645	646

Figure S1. Normalized absorption (A-G) and fluorescence (H-N) spectra of SQ-OH (A, H), SQPEG (B, I), SQPEG-RGD (C, J), SQ-tet (D, K), SQ-oct (E, L), SQPEG-oct (F, M) and SQPEG-oct-RGD (G, N) in 1,4-dioxane (black), DMSO (blue), MeOH (red) and water (magenta). $\lambda_{\mathrm{ex}}=600 \mathrm{~nm}$.

Figure S2. Normalized absorption, excitation (λ_{em} at its emission maximum) and fluorescence spectra ($\lambda_{\text {ex }}=600 \mathrm{~nm}$) of SQ-OH (A), SQPEG (B), SQPEG-RGD (C), SQ-tet (D), SQ-oct (E), SQPEG-oct (F) and SQPEG-oct-RGD (G) in water.

Figure S3. Normalized fluorescence $\left(\lambda_{\mathrm{ex}}=600 \mathrm{~nm}\right)$ and excitation $\left(\lambda_{\mathrm{em}}=685 \mathrm{~nm}\right)$ spectra of all dyes in water.

Figure S4. Absorption (A) and fluorescence spectra ($\lambda_{\mathrm{ex}}=600 \mathrm{~nm}$) (B) of SQ-tet in waterdioxane mixtures; the percentage of dioxane are $0,10,20,30,40,50,75,100 \%$.

Figure S5. Absorption (A) and fluorescence spectra ($\lambda_{\text {ex }}=600 \mathrm{~nm}$) (B) of SQ-oct in waterdioxane mixtures; the percentage of dioxane are $0,10,20,30,40,50,75,100$.

Figure S6. Absorption (A) and fluorescence spectra ($\lambda_{\mathrm{ex}}=600 \mathrm{~nm}$) (B) of SQPEG in waterdioxane mixtures; the percentage of dioxane are $0,10,20,30,40,50,75,100$.

Figure S7. Absorption (A) and fluorescence spectra ($\lambda_{\text {ex }}=600 \mathrm{~nm}$) (B) of SQPEG-oct-RGD in water-dioxane mixtures; the percentage of dioxane are $0,10,20,30,40,50,75,100$.

Figure S8. Absorption (A) and fluorescence spectra ($\lambda_{\mathrm{ex}}=600 \mathrm{~nm}$) (B) of SQPEG-RGD in water-dioxane mixtures; the percentage of dioxane are $0,10,20,30,40,50,75,100$.

Figure S9. Normalized absorption spectra of SQ-OH (A), SQPEG (B), SQPEG-RGD (C), SQ-tet (D), SQ-oct (E), SQPEG-oct (F) and SQPEG-oct-RGD (G) in phosphate buffer ($\mathrm{pH}=7.4,20 \mathrm{mM}$), DOPC and BSA. Concentration of BSA is $20 \mu \mathrm{M}$ and DOPC is $200 \mu \mathrm{M}$.

Figure S10. Corrected total fluorescence intensity per cell of U-87 MG cells incubated with SQ probes for 1 h at $37^{\circ} \mathrm{C}$. Probe concentration was 3 nM for SQPEG-oct-RGD and SQPEGoct; 20 nM for SQPEG-RGD and SQPEG. SQ probes were excited with 640 nm laser, while emission was detected using 705/72 band-pass filter.

Figure S11. Fluorescence images of U-87 MG cells incubated with 3 nM of SQPEG-oct-RGD at $37^{\circ} \mathrm{C}$ for $30 \mathrm{~min}(\mathrm{~A}), 1 \mathrm{~h}(\mathrm{~B}), 2 \mathrm{~h}(\mathrm{C})$ and $3 \mathrm{~h}(\mathrm{D})$. Membranes were stained WGA-488 marker (50 nM). Spinning disk imaging mode was used; SQ probe and WGA marker were excited with 640 and 488 nm lasers, respectively, while emission was detected using 705/72 and 530/30 band-pass filters, respectively. Scale bar is $15 \mu \mathrm{~m}$. (E) Corrected total fluorescence intensity per cell obtained from corresponding imaging data at different incubation times.

Figure S12. Fluorescence images of U-87 MG cells incubated with 3 nM of SQPEG-oct at $37^{\circ} \mathrm{C}$ for $30 \mathrm{~min}(\mathrm{~A}), 1 \mathrm{~h}(\mathrm{~B}), 2 \mathrm{~h}(\mathrm{D})$ and $3 \mathrm{~h}(\mathrm{~F})$. Images (C), (E) and (G) represents 10 -fold multiplied intensity to make the signal visible for image (B), (D) and (F), respectively. Membranes were stained WGA-488 marker (50 nM). Spinning disk imaging mode was used; SQ probe and WGA marker were excited with 640 and 488 nm lasers, respectively, while emission was detected using 705/72 and 530/30 band-pass filters, respectively. Scale bar is 15 $\mu \mathrm{m}$. (H) Corrected total fluorescence intensity per cell obtained from corresponding imaging data at different incubation times.

Figure S13. Fluorescence images of U-87 MG cells incubated at $4^{\circ} \mathrm{C}$ for 1 hr with 3 nM of SQPEG-oct-RGD (A) and 20 nM of SQPEG-RGD (B). Image (B) represents 10 -fold and (D) represents 5 -fold multiplied intensity to make the signal visible for image (A) and (C), respectively. Membranes were stained WGA-488 marker (50 nM). Spinning disk imaging mode was used; SQ probes and WGA marker were excited with 640 and 488 nm lasers, respectively, while emission was detected using 705/72 and 530/30 band-pass filters, respectively. Scale bar is $15 \mu \mathrm{~m}$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S Q}-\mathbf{O H}$ in CDCl_{3} (${ }^{\text {(residual }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S Q}-\mathbf{O H}$ in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3} (${ }^{*}$ residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of Lys-tet in CDCl_{3} (x denotes grease).

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S Q}$-tet in CDCl_{3} (x denotes grease).

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of Lys-oct in CDCl_{3} (*residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; x denotes grease).

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S Q}$-oct in CDCl_{3} (*residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; x denotes grease).

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of SQPEG in CDCl_{3} (x denotes grease).

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of SQPEG in CDCl_{3}.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}$ in CDCl_{3} (*residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and x denotes grease).

Figure S25. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Figure S26. ${ }^{1} \mathrm{H}$ NMR spectrum of SQPEG-oct in CDCl_{3} (*residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and x denotes grease).

Figure S27. MALDI-TOF mass spectra of SQPEG-oct obtained using sinapic acid as a matrix.

Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of SQPEG-oct-RGD in CDCl_{3} (*residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and x denotes grease).

Figure S29. MALDI-TOF mass spectra of SQPEG-oct-RGD obtained using α-cyano-4hydroxycinnamic acid as a matrix.

Figure S30. MALDI-TOF mass spectra of SQPEG-RGD obtained using α-cyano-4hydroxycinnamic acid as a matrix.

References

[1] I. F. Texier Nogues, M. Goutayer, A. Da Silva, L. Guyon, N. Djaker, V. Josserand, E. Neumann, J. Bibette, F. Vinet, J. Biomed. Opt. 2009, 14, 054005-11.
[2] M. J. Hope, M. B. Bally, G. Webb and P. R. Cullis, Biochim. Biophys. Acta, 1985, 812, 55-65.
[3] I. A. Karpenko, M. Collot, L. Richert, C. Valencia, P. Villa, Y. Mély, M. Hibert, D. Bonnet, and A. S. Klymchenko, J. Am. Chem. Soc. 2015, 137, 405-412.
[4] L. I. Markova, V. L. Malinovskii, L. D. Patsenkerb and R. Häner, Org. Biomol. Chem. 2012, 10, 8944-8947.
[5] V. Haridas, K. Lal and Y. K. Sharma, Tetrahedron Lett. 2007, 48, 4719-4722.
[6] V. Haridas, Y. K. Sharma, R. Creasey, S. Sahu, C. T. Gibson and N. H. Voelcker, New J. Chem. 2011, 35, 303-309.
[7] X. Dai, Z. Su and J. O. Liu, Tetrahedron Lett. 2000, 41, 6295-6298.
[8] M. L. Hovlid, J. L. Lau, K. Breitenkamp, C. J. Higginson, B. Laufer, M. Manchester, and M. G. Finn, ACS Nano 2014, 8, 8003-8014.

