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INTRODUCTION

In eukaryotic cells, the genome structure is characterized by a complex three-dimensional (3D) organization (1-3) that plays a crucial role in regulating gene function and expression [START_REF] Sexton | The role of chromosome domains in shaping the functional genome[END_REF][START_REF] Dekker | The 3D Genome as Moderator of Chromosomal Communication[END_REF] , and in determining cell-fate decisions [START_REF] Bonev | Multiscale 3D Genome Rewiring during Mouse Neural Development[END_REF][START_REF] Stadhouders | Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming[END_REF][START_REF] Paulsen | Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation[END_REF][START_REF] Dixon | Chromatin architecture reorganization during stem cell differentiation[END_REF] , and cell-development [START_REF] Bonev | Multiscale 3D Genome Rewiring during Mouse Neural Development[END_REF][START_REF] Zheng | The role of 3D genome organization in development 34 and cell differentiation[END_REF] .

Microscopy and chromosome conformation capture (3C) [START_REF] Dekker | Capturing chromosome conformation[END_REF] techniques have been used to unveil the architectural folding of the genome. Using microscopy techniques such as FISH [START_REF] Cremer | Chromosome territories, nuclear architecture and gene regulation in mammalian cells[END_REF] , 3D-FISH [START_REF] Boyle | The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells[END_REF][START_REF] Bolzer | Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes[END_REF] and cryo-FISH [START_REF] Branco | Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations[END_REF] , it was possible to visualize that each chromosome occupies a distinct portion of the nucleus called chromosome territory (CT) with a non-random radial location [START_REF] Cremer | Chromosome territories, nuclear architecture and gene regulation in mammalian cells[END_REF][START_REF] Boyle | The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells[END_REF][START_REF] Bolzer | Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes[END_REF] .

High-throughput chromosome conformation capture (Hi-C) [START_REF] Lieberman-Aiden | Comprehensive mapping of long-range interactions reveals folding principles of the human genome[END_REF] confirmed the presence of CTs by probing much stronger cis-than trans-chromosome interactions [START_REF] Lieberman-Aiden | Comprehensive mapping of long-range interactions reveals folding principles of the human genome[END_REF][START_REF] Sexton | Three-dimensional folding and functional organization principles of the Drosophila genome[END_REF] . Analysis of Hi-C maps also revealed the presence of a typical checkerboard pattern that reflects the physical segregation of the genome into multi megabase chromatin compartments [START_REF] Lieberman-Aiden | Comprehensive mapping of long-range interactions reveals folding principles of the human genome[END_REF][START_REF] Wang | Spatial organization of chromatin domains and compartments in single chromosomes[END_REF] . These are characterized by different GC-content, gene density and epigenomic marks, suggesting that they mostly match the classical partition of the genome in hetero-and euchromatin [START_REF] Imakaev | Iterative correction of Hi-C data 35 reveals hallmarks of chromosome organization[END_REF][START_REF] Rao | A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[END_REF][START_REF] Boettiger | Super-resolution imaging reveals distinct chromatin folding for different epigenetic states[END_REF][START_REF] Xu | Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenetic States in Single Mammalian Cells[END_REF] . At the sub-megabase level, Hi-C experiments also revealed that the genome is organized in self-interacting regions termed topologically associating domains (TADs) [START_REF] Sexton | Three-dimensional folding and functional organization principles of the Drosophila genome[END_REF][START_REF] Dixon | Topological domains in mammalian genomes identified by analysis of chromatin interactions[END_REF][START_REF] Nora | Spatial partitioning of the regulatory landscape of the X-inactivation centre[END_REF] , that have been also visualized by super-resolution microscopy approaches [START_REF] Bintu | Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells[END_REF] . In mammals and Drosophila melanogaster (D. melanogaster) , TADs are considered the structural and functional units of the genome that define the regulatory landscape [START_REF] Szabo | TADs are 3D structural units of higher-order chromosome organization in[END_REF][START_REF] Dily | Hormone-control regions mediate steroid receptor-dependent genome organization[END_REF][START_REF] Szabo | Principles of genome folding into topologically associating domains[END_REF] .

In animals, computational studies based on polymer modelling enabled to relate the organizational layers of the genome to specific active and passive physical mechanisms. The formation of chromosome territories may be facilitated by the slow relaxation dynamics of topologically-constrained polymers [START_REF] Rosa | Structure and dynamics of interphase chromosomes[END_REF][START_REF] Rosa | Looping Probabilities in Model Interphase Chromosomes[END_REF][START_REF] Vettorel | Statistics of polymer rings in the melt: a numerical simulation study[END_REF][START_REF] Halverson | From a melt of rings to chromosome territories: the role of topological constraints in genome folding[END_REF] . The segregation between active and repressive chromatin compartments was suggested to be primed by micro-phase separation promoted by proteins such as heterochromatin protein 1 (HP1) and polycomb group (PcG) proteins binding to repressive histone marks [START_REF] Brackley | Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains[END_REF][START_REF] Pierro | Transferable model for chromosome architecture[END_REF][START_REF] Di Pierro | De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture[END_REF][START_REF] Jost | Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains[END_REF][START_REF] Ghosh | How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes[END_REF] . The formation of TADs was associated with mechanisms of active [START_REF] Sanborn | Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes[END_REF][START_REF] Fudenberg | Formation of Chromosomal Domains by Loop Extrusion[END_REF] or passive [START_REF] Brackley | Nonequilibrium Chromosome Looping via Molecular Slip Links[END_REF] loop-extrusion. Within plants, Arabidopsis thaliana ( A. thaliana ) is an important model organism for structural genomics studies and has the most comprehensive collection of chromosome data available. Its genome, that is constituted by 5 chromosomes, is diploid, and is smaller (~120 mega-base pairs, Mbp) and gene-denser compared to other plant genomes, which makes it more suitable for computational studies.

In interphase, A. thaliana chromosomes are organized as well-defined chromosome territories [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila[END_REF][START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF] with generally no preferential radial positioning nor chromosome pairing [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF][START_REF] Schubert | Organization and dynamics of plant interphase chromosomes[END_REF] . Notable exceptions lie in the short arms of acrocentric chromosomes 2 and 4, that bear the nucleolus-organizing regions (NOR2 and NOR4) and typically associate in a single central nucleolus [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Armstrong | Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana[END_REF][START_REF] Berr | Interphase Chromosome Arrangement in Arabidopsis thaliana Is Similar in Differentiated and Meristematic Tissues and Shows a Transient Mirror Symmetry After Nuclear Division[END_REF][START_REF] Pontvianne | Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome[END_REF] .

A t the nucleolar periphery, the telomeres appear to be clustered [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila[END_REF][START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF][START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF] . Within chromosome territories, A. thaliana chromatin contains active and repressive chromatin [START_REF] Sequeira-Mendes | Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus[END_REF] , that, differently from mammals and D. melanogaster [START_REF] Lieberman-Aiden | Comprehensive mapping of long-range interactions reveals folding principles of the human genome[END_REF][START_REF] Sexton | Three-dimensional folding and functional organization principles of the Drosophila genome[END_REF] in which they form large compartments of ~100 kbp, are organized in s maller domains [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila[END_REF] . The chromocenters (including centromeres and peri-centromeres), that are the largest heterochromatic regions, are spatially and dynamically confined at the nuclear periphery [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF][START_REF] Fang | Centromere Positioning and Dynamics in LivingArabidopsisPlants[END_REF][START_REF] Bi | Nonrandom domain organization of the genome at the nuclear periphery[END_REF] and anchor protruding euchromatic loops of about 0.1-1.5 mega-base pairs (Mbp) resulting in a looped rosette overarching structure [START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF] . In individual nuclei, chromocenters may also self-associate, leading to trans-chromosome contacts and larger heterochromatin foci [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila[END_REF][START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF][START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF] . Hi-C data have also revealed the existence of long-range cis-and trans-chromosomal contacts, the so-called KNOT Engaged Elements (a.k.a. IHIs) structure [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila[END_REF] that has structural counterparts in other plant species such as the compact silent centre (CSC) in rice [START_REF] Zhou | Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes[END_REF] . At fine scales , although TADs are not prominent features [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis[END_REF] , TAD-boundary-like elements have been shown to correlate with open chromatin and actively transcribed genes [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF] , and local self-interacting domains can be formed between H3K27me3-enriched gene-clusters [START_REF] Yu | Delineation of metabolic gene clusters in plant genomes by chromatin signatures[END_REF] . At the scale of a few kilo-base pairs (kbp), local chromatin loops are suggested to connect the 5' and 3' ends of genes [START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF] .

Previous modelling exercise [START_REF] Nooijer | Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei[END_REF] , using a phenomenological ad-hoc coarse-grained polymer model, have suggested that the peripheral positioning of the chromocenters and the central localization of the nucleoli may be the consequences of entropic forces emerging from the formation of large permanent intra-chromosome loops and of steric constraints. However, a detailed description and characterization of the specific biological and Physico-chemical mechanisms leading to the genome organization in A. thaliana is still missing.

Here, we test the hypothesis that epigenomics, as previously suggested [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF][START_REF] Sequeira-Mendes | Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus[END_REF][START_REF] Roudier | Integrative epigenomic mapping defines four main chromatin states in Arabidopsis[END_REF][START_REF] Sequeira-Mendes | The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States[END_REF] , is a driving force of the genome structural organization in A. thaliana [START_REF] Simon | Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana[END_REF] . We use polymer modelling and molecular dynamics together with epigenomic data to generate genome-wide chromosome models. By providing quantitative comparisons of our predictions with Hi-C and microscopy data, we demonstrate that three fundamental elements may be sufficient to determine the genome organization in A. thaliana. First, chromosomes need to be preconditioned as V-shaped objects.

Second, the self-attraction of NORs shapes the overall nuclear organization. Third, the repulsion between constitutive heterochromatin and other epigenomic states explains the segregation and the localization at the nuclear periphery of chromocenters. At local scales, the self-attraction between facultative heterochromatin regions recovers the formation of self-interacting gene-clusters.

MATERIAL AND METHODS

Our work consists of three main parts: (1) processing of ChIP-seq datasets to classify the Arabidopsis thaliana (A. thaliana) chromosomes in epigenomic states;

(2) genome-wide molecular dynamics simulations models, and (3) analysis of the obtained 3D models and validation against published experimental data.

Epigenomic states analyses.

ChIP-seq epigenomic data at 400 bp of resolution for 4 histone marks: H3K4me2, H3K4me3 (signatures of active genes), H3K27me3 (signature of facultative, polycomb-like heterochromatin), and H3K9me2 (specific to constitutive heterochromatin) were collected from previously published works [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF] . To each 3kbp-genomic region of the genome, an average epigenomic signal was assigned for each of the 4 marks. A K-means algorithm (Euclidean distance, k=4) allowed clustering the 3kbp-regions into 4 groups: active chromatin (AC) enriched in H3K4me2/3, facultative heterochromatin (FH) enriched in H3K27me3, constitutive S1A .

Genome-wide chromosome simulations.

The chromosome polymer model . Molecular dynamics simulations of the diploid A. thaliana genome were run using the 30nm-fibre model [START_REF] Finch | Solenoidal model for superstructure in chromatin. 40[END_REF] , in which each bead hosts 3 kbp of DNA sequence and has a diameter of 30 nm. Each A. thaliana chromosome was represented as a chain of beads using the Kremer-Grest bead-spring model [START_REF] Kremer | Dynamics of entangled linear polymer melts: A molecular-dynamics simulation[END_REF][START_REF] Di Stefano | Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization[END_REF] resulting in a fibre thickness of 30 nm and a persistence length of 150 nm [START_REF] Bystricky | Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques[END_REF] and avoiding chain crossings ( Supplementary methods ). The lengths of A. thaliana chromosomes (in bp and in models' beads) and the genomic locations of special sequences (NORs and centromeres) are reported in Supplementary Table S1 .

Additional epigenomics-based short-range interactions were added to test how the attractions or repulsions between the A. thaliana chromatin states shape the chromosome organization. These interactions have been modelled using attractive or repulsive Lennard-Jones potentials of strengths 0.05, 0.50 and 1.00 , where k B =1.38×10 -23 J/K is the Boltzmann constant, and T=298 K is the temperature of the system . Finally, the dynamics of the polymer model was simulated by integrating the (underdamped) Langevin equation of motion using LAMMPS ( Supplementary Methods ).

Single-chromosome preliminary simulations . Single-chromosome simulations were performed for chromosome 4 (Chr4) described as a chain of 6,195 beads (excluding the NOR4 to simplify). To enhance the statistics, we simulated at the same time 5 copies of Chr4 placed in a cubic simulation box (size 2.0 µm) with periodic boundary conditions (DNA density of 0.012 bp/nm 3 as used in previous works [START_REF] Rosa | Structure and dynamics of interphase chromosomes[END_REF][START_REF] Di Stefano | Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization[END_REF] ). To mimic a mitotic-like state, each model chromosome was initially prepared in an elongated solenoidal-like configuration [START_REF] Rosa | Structure and dynamics of interphase chromosomes[END_REF] , and the 5 copies were placed in a random, yet non-overlapping arrangement. For each parameter set, the dynamics of 10 independent trajectories were then simulated using LAMMPS ( Supplementary Methods ). The genome-wide models . For genome-wide simulations, we prepared the initial conformations as (i) linear rod-like chromosomes, (ii) V-shaped chromosomes generated by linear pulling along the same direction, (iii) V-shaped chromosomes generated by linear pulling along radial directions. The procedures to generate the shapes of the chromosomes, to form the nucleolus by preconditioning the NORs arrangement, and to confine the chromosome models in a spherical nuclear environment are discussed in detail in Supplementary Methods . The initial conformations were used for the simulations in which the optimal settings of the epigenomic-based interactions were applied on a genome-wide scale.

KNOT engaged elements-driven steered molecular dynamics . 50 steered molecular dynamics simulations were performed to promote the spatial proximity between the KNOT engaged elements (KEEs) [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] starting from the final snapshots of the optimal-model simulations. In particular, harmonics were applied between the central beads of the KEEs regions each spanning ~450 kbp. Briefly, the distances between the central beads of the KEEs were computed both cis -and trans -chromosome in all the 50 initial conformations and the closest bead pairs across all the snapshots were co-localized ( Supplementary Methods ) using the experimental FISH association rates (65) (20% of the KEE6-KEE1, 35% of the KEE5-KEE4, 66% of the KEE6-KEE3, and 16% of the KEE5-KEE10 pairs), or the average rate of 34% for all the other KEEs pairs.

Analysis of the polymer models.

Comparison with Hi-C data . Three Hi-C datasets for A. thaliana Col-0 seedlings were downloaded from the sequence read archive (SRA) ( Supplementary Table S2 ) using fastq-dump (https://github.com/ncbi/sra-tools/wiki). Each experiment was processed through the TADbit pipeline (66) (https://github.com/3DGenomes/tadbit).

Briefly, the pipeline consists of (i) Checking the quality of the FASTQ files; (ii) Mapping of the paired-end reads to the A. thaliana reference genome (release TAIR10 ftp://ftp.ensemblgenomes.org/pub/release-40/plants/fasta/arabidopsis_thaliana/dna/) using GEM [START_REF] Marco-Sola | Efficient Alignment of Illumina-Like High-Throughput Sequencing Reads with the GEnomic Multi-tool (GEM) Mapper[END_REF] taking into account the DpnII restriction enzyme cut-site using fragment-based mapping (66) ; (iii) Filtering to remove non-informative reads using the following (default) TADbit filters: self-circle, dangling-ends, error, extra-dangling-ends, duplicated and random-breaks (66) ; (iv) Merging of the datasets into a single one for the restriction enzyme DpnII; (v) Normalization of the merged datasets using the OneD (68) method at 3 kbp and 30 kbp resolution. Before merging the datasets (point (iv)), their mutual consistency was verified using the reproducibility score (R-score) [START_REF] Yan | HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps[END_REF] . The obtained R-score values ranged between 0.56 and 0.84 indicating consistency between the merged datasets [START_REF] Yan | HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps[END_REF] .

For each simulated configuration, contacts were computed using a cut-off distance of 200 nm which characterized roughly the spatial resolution of Hi-C experiments [START_REF] Fudenberg | FISH-ing for captured contacts: towards reconciling FISH and 3C[END_REF][START_REF] Cattoni | Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions[END_REF] . From these contacts, we then built contact maps for the single-chromosome ( Figure 2M-R ; Supplementary Figure S3 ) and genome-wide ( Figure 3D , 3I , and 3N ; Figure 5I-J ; Figure 6B-F ; Supplementary Figure S6G-H ; Supplementary Figure S9B-D ) cases. In the latter, we also estimated the average contact probability P(s) by averaging the predicted contact frequency over all the pairs of loci at the same genomic distance s ( Figure 3E , 3J , and 3O ). To compare visually predicted and experimental Hi-C data, the number of contacts in the models were re-scaled such that the average number of contacts at a genomic distance of 300kb (the number of bp in one Kuhn segment) equals the experimental one. Quantitative comparisons were made using the Spearman correlation coefficient (SCC) analysis applied to cis-chromosomal, genome-wide matrices and the P(s) ( Figure 2S-X ; Supplementary Figure S6E-F ; lower panels of Supplementary Figures S7 andS8 ) were obtained by dividing the number of particles by the volume of each shell. The standard deviations per shell were computed as the standard error of the mean over the 50 replicates.

Number of distinct chromocentric regions . Each chromocenter was considered as a sphere (radius = the radius of gyration of the constitutive particles; centre = their centre of mass) ( Figure 4L ). The overlap between two spheres was computed using the formula in Weisstein, Eric W. "Sphere-Sphere Intersection." From MathWorld--A

Wolfram

Web Resource. http://mathworld.wolfram.com/Sphere-SphereIntersection.html . The average number of distinct chromocenters was computed varying the overlap volume threshold between 0.0 and 1.0 every 0.1. The threshold of 0.4 corresponded to an average of 8.5 distinct chromocenters close to the experimental estimate of 8.6+/-0.2 [START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF] .

RESULTS

Epigenomics-driven folding of A. thaliana chromosomes using polymer models .

In this study, we tested the hypothesis that epigenomics is a driving force of the genome structural organization in A. thaliana . To this end, we built polymer models of the chromosomes using beads of 30 nanometers (nm) hosting each 3 kilobase pairs (kbp) of chromatin ( Figure 1A ). Next, we used short-range attractive or repulsive interactions between 3kbp-regions defined by their epigenomic state and studied how these interactions shape the 3D organization genome-wide in conditions of density and confinement mimicking the nuclear environment.

Based on the enrichment in epigenomic marks [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF] , we assigned to each 3kbp-region one of four chromatin states (36) ( Methods ). A total of 52% of the genome was assigned to active chromatin (AC) enriched in H3K4me2 and H3K4me3, 14% to facultative, polycomb-like heterochromatin (FH) decorated with H3K27me3, 14% to constitutive heterochromatin (CH) enriched in H3K9me2, and 12% to undetermined (UND) regions that were depleted in all the considered epigenomic marks ( Figure 1B and C , and Supplementary Figure S1 ).

The remaining parts of the A. thaliana genome were assigned to two other genomic categories that we used as complementary to the epigenomic states . The nucleolar organizing regions (NORs), that are the constitutive sequences of the nucleolus [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Berr | Interphase Chromosome Arrangement in Arabidopsis thaliana Is Similar in Differentiated and Meristematic Tissues and Shows a Transient Mirror Symmetry After Nuclear Division[END_REF][START_REF] Pontvianne | Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome[END_REF] , account for 6% of the genome and are localized in the small arms of chromosomes 2 and 4, called NOR2 and NOR4 respectively. The telomeres, that account for about 1% of the genome, are the initial and terminal ~150 kbp regions of each chromosome ( Figure 1C , Supplementary Figure S1B andD , Supplementary Table S1 ). To account for the high concentrations of RNA and proteins within the nucleolus [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Berr | Interphase Chromosome Arrangement in Arabidopsis thaliana Is Similar in Differentiated and Meristematic Tissues and Shows a Transient Mirror Symmetry After Nuclear Division[END_REF][START_REF] Pontvianne | Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome[END_REF] and for the typically increased stiffness of the telomeres [START_REF] Dekker | Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction[END_REF] , NORs and telomeric 3kbp-regions were modelled as thicker beads of diameter 132 nm ( Figure 1A and Supplementary methods ).

Excluding the NORs, the more extended epigenomic domains of ~400 kbp were assigned to constitutive heterochromatin (CH) ( Figure 1B ) and, consistently with previous analysis [START_REF] Roudier | Integrative epigenomic mapping defines four main chromatin states in Arabidopsis[END_REF][START_REF] Sequeira-Mendes | The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States[END_REF] , were localized at the chromocenter (centromeric and pericentromeric region) of each chromosome ( Figure 1C and Supplementary Figure S1A-E ). The genomic regions occupied by active chromatin and facultative heterochromatin were organized into many interspersed domains of shorter lengths (maximum 93 kbp for AC and 84 kbp for FH, and median 6 kbp for AC and 3 kbp for FH).

Single-chromosome analysis allows parametrizing the epigenomics-driven interactions.

To find the optimal epigenomics-driven model, we designed a strategy to minimize the amount of numerical calculation needed and yet get a good understanding of how the different parameters affect the final compliance with the experiments. We focussed initially on the folding of chromosome 4 as it is the shortest in A. thaliana ( Supplementary Table S 1 ) and neglecting for simplicity the nucleolar organizing region (NOR4). Hence, we simulated a toy-model with 5 copies of chromosome 4 with random initial placements and orientations in a cubic box with periodic boundary conditions at the typical DNA density (ρ=0.012 bp/nm 3 ) of the nuclear environment (29, 63) ( Methods ).

We tested different types of short-range interactions involving the epigenomic chromatin regions defined above: self-attraction (full circles in Figure 2A-F and Supplementary Figure S2 ) and repulsion (dashed lines in Figure 2A-F and Supplementary Figure S2 ). Unless specified, the model beads interact with an excluded volume that allows the fibre to maintain a thickness of 30 nm and to avoid chain crossing ( Methods ). Yet simple, these physical mechanisms effectively account for known interactions that have been shown to occur in the nucleus. For instance, the heterochromatin protein 1 (HP1) binds to regions with high repressive histone methylation (H3K9me2) [START_REF] Strom | Phase separation drives heterochromatin domain formation[END_REF][START_REF] Macpherson | Bottom-up modeling of chromatin segregation due to epigenetic modifications[END_REF] and favours the segregation of constitutive heterochromatin in the nucleus and in vitro [START_REF] Strom | Phase separation drives heterochromatin domain formation[END_REF][START_REF] Larson | Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin[END_REF] . Building on this previous On top of the CH repulsions, we explored 6 possible different scenarios illustrated in Figure 2A-F . Namely, we tested the self-attraction of the active-chromatin (AC) regions ( Figure 2A ), the repulsions of the facultative heterochromatin (FH) with the AC and the undetermined regions (UND) ( Figure 2C ), and the mutual repulsions between AC, FH, and UND regions ( Figure 2E ). The other interaction sets were obtained from the previous ones adding the self-attraction of the constitutive-heterochromatin (CH) regions ( Figure 2B , 2D , and 2F ).

For each set of interactions, we used 3 values of interaction strength equal to 0.05, 0.50, or 1.00 k B T. One k B T typically represents an energy of the order of the thermal noise. The selected values of interaction strength allow sampling distinct scenarios in which each of the imposed interactions is 1/20th (0.05 k B T), half (0.50 k B T) or of the same order (1.00 k B T) of the thermal noise. We simulated 10 independent trajectories of a few hours [START_REF] Rosa | Looping Probabilities in Model Interphase Chromosomes[END_REF][START_REF] Di Stefano | Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization[END_REF] using Langevin dynamics ( Methods ) and obtained an ensemble of ~400 conformations per parameter set ( Figure 2G-L for illustrative snapshots at the end of the simulations).

To select the optimal interaction model, we estimated predicted contact maps at 30 kbp resolution ( Figure 2M-R and Methods ) and computed the Spearman correlation coefficient (SCC) [START_REF] Trussart | Assessing the limits of restraint-based 3D modeling of genomes and genomic domains[END_REF][START_REF] Serra | Restraint-based three-dimensional modeling of genomes and genomic domains[END_REF] between predictions and the experimental Hi-C maps [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF] ( Figure 2S-X and Methods ).

The obtained SCC values were larger than 0.65 for all the tested interaction models ( Figure 2S-X ) indicating that the explored parameters allow capturing the overall arrangement of chromosome 4. These high correlations are mainly due to the formation of a segregated domain ( Figure 2M-R ) at the chromocenter, that, in the models, is favoured by the repulsive interactions between heterochromatin (CH) and other beads. The difference in SCC among the 6 different scenarios, that account for at most 0.19 , is due to the additional interactions. For instance, the attractive interaction between constitutive heterochromatin (CH) beads ( Figure 2B , Figure 2D , and Figure 2F ) only minimally improved (1% higher SCC at most) the correlation with the Hi-C data, indicating that already the repulsive interactions involving CH Notably, we found that the SCCs obtained from the simulations with the weak strength (0.05 k B T) were consistently higher than the others ( Figure 2S-X ). These trends are due to the fact that the intra-arm contact patterns of Hi-C maps made of strips (~100 kb thick) of mildly increased (or depleted) interactions are captured in the predicted contact maps. But, as the interaction strength increases, the separation between enriched and depleted strips becomes sharper with the effect of degrading the correlation with the Hi-C map ( Supplementary Figure S3A-C ).

The highest correlation value of 0.84 was obtained for the scenario where the weak repulsions (E CH-* =0.05 k B T) of constitutive heterochromatin (CH) regions was applied together with the weak self-attraction (E AC-AC =0.05 k B T) between active-chromatin (AC) regions ( Figure 2A , 2G , 2M , and 2S ). The addition of the self-attraction between constitutive heterochromatin ( Figure 2B , 2H , 2N , and 2T ) only marginally improved the results. The parsimonious/minimal set of interactions of the test-case in Figure 2A was then used to obtain genome-wide models.

Genome-wide models reveal an overall preferential V-shape for A. thaliana chromosomes .

To generate genome-wide models, we prepared each of the 10 model chromosomes (chromosomes 1 to 5 in 2 copies each, Supplementary Table S 1 ) as ideal rod-like structures of stacked rosettes along the main axis [START_REF] Rosa | Structure and dynamics of interphase chromosomes[END_REF][START_REF] Di Stefano | Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization[END_REF] to mimic a simplified shape of the mitotic chromosome ( Supplementary Figure S4A ). The positions and orientations of each chromosome were chosen randomly inside a sphere of diameter 5.0 micrometre (µm), that is the typical A. thaliana nucleus size [START_REF] Dittmer | LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana[END_REF] .

From 50 independent replicates of these initial chromosome conformations ( Figure 3B ), we simulated a few hours of the full genome dynamics (63) applying the optimal set of parameters inferred from the single-chromosomes simulations ( Figure 3A ). To characterize the contact patterns of the obtained models (representative snapshot in Figure 3C ), we computed the genome-wide contact map ( Figure 3D ) and the average probability of contact (P) as a function of the genomic distance (s) between genomic regions on a set of ~2,000 conformations and compared them with the genome-wide interaction map and the P(s) obtained from Hi-C experiments [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF] ( Figure 3E and Methods ).

Models recovered the main large scale contact patterns of the Hi-C ( Figure 3D ).

Chromosomes appear along the main diagonal as squares of much higher contacts than the trans-chromosome parts, indicating that the models capture the organization in distinct chromosome territories [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] .

Interestingly, the epigenomics-driven models capture also the contact enrichment between chromocenters and telomeres of different chromosomes indicating that the effective repulsions between CH and the other chromatin states recover both the segregation of chromocenters at the cis-chromosome scale and the effective trans-chromosome attraction between chromocenters (41, 42, 44-46, 52, 65) .

We also found a discrepancy between the experimental and the predicted contact probabilities P(s) ( Figure 3E ). The experimental P(s) exhibits two regimes: at short and intermediate genomic distances (100 kbp < s < 10 Mbp) P(s) decays as s -0.84 , which is very well captured by the models. But, at larger genomic distances (s > 10 Mbp), corresponding to the typical range of inter-arm contacts, the observed increase of P(s) in Hi-C is missing in our prediction.

To quantify the similarities of the models with experiments, we computed the Spearman correlation coefficient between the genome-wide maps, the 5 cis-chromosome maps and the P(s) ( Figure 3F ) in Hi-C and in our predictions. The comparisons between contact maps resulted in significant SCC values. We found that the minimal SCC of 0.46 was obtained for the genome-wide contact maps, where the size of the compared samples is ~7,000,000, and that in the per-chromosome comparisons the SCCs were always larger than 0.70 (sample-size > 180,000). Confirming the visual impression, the prediction of the P(s) was only marginally accurate (SCC=0.42 for sample-size=1,014).

To account for the inter-arm increase of contacts in the Hi-C maps, we designed a completely novel strategy to precondition the chromosome models in V-shaped arrangements ( Figure 3G ). The preconditioning attempts to incorporate an effective memory of chromosome structure throughout the cell cycle. During anaphase chromosomes are pulled, centromere first, towards opposite poles of the mother cell [START_REF] Fang | Centromere Positioning and Dynamics in LivingArabidopsisPlants[END_REF][START_REF] Tiang | Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants[END_REF] . This results in a V-shape organization for metacentric chromosomes 1, 3 and 5 and in hook-like structures for acrocentric chromosomes 2 and 4. Assuming that chromosomes exhibit inherent properties of long-polymers in dense or semi-dilute solutions [START_REF] Vettorel | Statistics of polymer rings in the melt: a numerical simulation study[END_REF][START_REF] Halverson | From a melt of rings to chromosome territories: the role of topological constraints in genome folding[END_REF][START_REF] Rosa | Topological Constraints in Eukaryotic Genomes and How They Can Be Exploited to Improve Spatial Models of Chromosomes[END_REF] we hypothesise that chromosomes maintain an effective memory of these V-like shapes during interphase.

Next, we initially arranged each chromosome in the linear (rod-like) shape ( Supplementary Figure S4A ) and then pulled it by the kinetochore (centromere) with harmonic forces along parallel directions ( Supplementary Figure S4B ). To allow for the dragging of the entire chromosome structure, during the pulling process we pinned the chromosomes in a looped conformation using harmonic bonds bridging regions at a typical separation of ~40 kbp (14 model beads) ( Supplementary methods ).

We simulated 50 replicates of the system with V-shaped chromosomes using the optimal epigenomic-driven interactions ( Methods ) and characterized quantitatively the obtained conformations (representative snapshots in Figure 3H ) computing the genome-wide contact map and the P(s) ( Figure 3I and3J ). Applying the SCC analysis to compare with Hi-C, we observed that preconditioning the chromosomes in V-shaped conformations allowed capturing qualitatively and quantitatively the behaviour of the P(s) ( Figures 3J and3K ). The results obtained for the comparison of the contact maps ( Figures 3K ) were also improved in the genome-wide case and for chromosomes 2 and 4, while for the others were the same (chromosome 3) or only marginally degraded (chromosomes 1 and 5).

Interestingly, we also tested the possible formation of V-shaped chromosomes from a radial chromosome pulling which is less biologically-founded ( Figures 3L-P , Supplementary Figure S4C , andMethods ). We found overall lower correlations with the Hi-C ( Figures 3P ). In particular, the SCC of the P(s) dropped from 0.86 for the parallel pulling case to 0.73 for the radial one.

The epigenomics-driven models capture the nuclear organization in A. thaliana . To further characterise the models obtained from the optimal set of parameters , we looked at the preferential nuclear location of the regions assigned to each epigenomic state ( Figure 4A-E ) and computed the distribution of their radial positions ( Figure 4F-J and Methods ). To disentangle which of the typical nuclear positioning was to attribute to the specific epigenomics-based interactions, we designed and performed a reference set of simulations in which the initial V-shaped chromosome positioning and the NORs and telomeres attractions were maintained, but the other interactions were removed (network in Supplementary Figure S5C ).

The results of this variant system are shown in the histograms in Figures 4F-J in white colour as a term of comparison with the optimal interaction model whose results are shown in the characteristic colour of the epigenomic state.

Interestingly, we found that the nucleolus typically assumed a round shape with a radius around 1,250 nm and occupied the centre of the model nucleus ( Figure 4A and 4F ). The telomeres tended to localize at the nucleolar periphery ( Figure 4B and 4G ). These features are consistent with the reference model in which NORs and telomeres are involved in the same interactions. Notably, the constitutive heterochromatin (CH) domains typically occupied the outermost shell of the nucleus in the optimal model but were pushed more to the nuclear interior in the reference one ( Figure 4C and4H ), in which the CH repulsions are lost. The active-chromatin and the facultative heterochromatin also tended to a slightly more peripheral positioning than in the reference interaction model ( Figure 4D-E and 4I-J ). Overall, these results are consistent with experimental evidence on the typical positioning of the nucleolus at the nuclear centre [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Berr | Interphase Chromosome Arrangement in Arabidopsis thaliana Is Similar in Differentiated and Meristematic Tissues and Shows a Transient Mirror Symmetry After Nuclear Division[END_REF][START_REF] Pontvianne | Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome[END_REF] , of telomeres at the nucleolar periphery [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF][START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF][START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] , and of heterochromatic regions at the nuclear periphery [START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF][START_REF] Fang | Centromere Positioning and Dynamics in LivingArabidopsisPlants[END_REF] .

Next, we tested whether the preferential locations of the nucleolus and heterochromatin are also consistent with the fact that the telomeres, and chromocenters of chromosomes 2 and 4, which host the NORs, associate with the nucleolus forming the so-called nucleolar-associated domains (NADs) [START_REF] Pontvianne | Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome[END_REF] . In A. thaliana , NADs correspond to repetitive elements that are transcriptionally silenced by repressive histone modifications and DNA methylation. To identify the predicted NADs in the nuclear models, we computed per each 3kbp-region (1 bead) in the models the number of contacts with the NORs particles within a distance cutoff of 200 nm ( Methods ). In agreement with the experiments (50) , we found that the top 10% regions making contacts with the NORs particles are the telomeric regions of each chromosome and the short arms of chromosomes 2 and 4 ( Figure 4K ). As a consequence, also the chromocenters of chromosomes 2 and 4 are involved in many contacts with the nucleolus and are typically found in a perinucleolar location in agreement with experimental data [START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF][START_REF] Fang | Centromere Positioning and Dynamics in LivingArabidopsisPlants[END_REF] .

Next, we tested whether the typical location of the heterochromatic regions at the nuclear periphery is also consistent with the experimental evidence that groups of chromocenters coalesce together in 8.6+/-0.2 distinct foci with a characteristic distribution [START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF] . Specifically, in each snapshot of the trajectories, we considered the regions composing each of the 10 centromeres (as a proxy of the chromocenters, Supplementary Table S 1 ) and associated to each of them a sphere centred at the centre of mass of the beads with a radius equal to their radius of gyration ( Figure 4L ). Per each chromocenters pair, we computed the overlap volume between the two representative spheres. To compare with experiments (46) , we selected the threshold of the significant overlap to 0.4 so that the average number of distinct chromocenters in the model nuclei over the 50 replicates simulations is 8.5 that matches the average number measured experimentally (8.6+/-0.2). The correspondent distribution of chromocenters' numbers resembles the experimental one with all the predicted values per bin showing no significant differences with the experimental ones ( Figure 4M ).

NORs and heterochromatin interactions shape the nuclear organization in A.

thaliana .

To test the role of each epigenomics-based interaction, we generated models for four variant cases in which we modified the interactions involving one chromatin state at a time. Specifically, we perturbed the optimal interaction model ( Figure 3A) by first removing the self-attraction among NORs and telomeric 3kbp-regions ( Figure 5A and5C-D ), second removing the repulsions between constitutive heterochromatin beads and the other epigenomic states ( Figure 5B and5E ), third by removing the self-attraction between active chromatin regions ( A Supplementary Figure S6A andC ), and fourth by adding the self-attraction between facultative heterochromatin beads ( Supplementary Figure S6B andD ). Next, each of the four variants was compared to the optimal epigenomic model by considering the radial distributions of 3kbp-regions ( Figure 5F-H , and Supplementary Figure S6E-F ) and the genome-wide contact maps ( Figure 5I-J and Supplementary Figure S6G-H ). The similarities with the Hi-C interaction maps were quantified for each of the variant systems using the SCC analysis ( Supplementary Figure S5D-G ).

Interestingly, we found that removing the self-attraction of the NORs and the telomeric beads causes the most dramatic nuclear rearrangements. The compact nucleolus was disrupted ( Figure 5C, representative snapshot) and the NORs regions were spread over the entire nucleus, resulting in an enrichment of NORs beads at the nuclear periphery and a depletion at the centre with respect to the optimal interaction model ( Figure 5F ). The telomeres also lost their preferential perinucleolar positioning and relocalized in more peripheral shells of the nucleus ( Figure 5D and5G ). Furthermore, the perturbation of NORs interactions affected also the nuclear positioning of the constitutive heterochromatin (CH), active chromatin (AC) and facultative heterochromatin (FH) regions, that are found in more central nuclear positions despite their epigenomics-driven interactions were maintained in this perturbed system ( Supplementary Figure S7 ). Interestingly, the large change in nuclear positioning has a marginal role in perturbing the contact patterns for this NORs' variant system. The corresponding genome-wide contact map, that does not include the NORs regions for consistency with the Hi-C interaction maps, appears to be visually very similar to the one obtained for the optimal interaction model ( Figure 5I ) and quantitatively correlates equally well with the Hi-C interaction maps ( Supplementary Figure S5D ).

The removal of the repulsive interactions between CH beads and the other epigenomic states ( Figure 5B ) had the effect to push the heterochromatic regions towards the nuclear centre so that CH beads are less probably found in the outermost nuclear shell than in the optimal interaction model ( Figure 5E and5H ).

Notably, the CH perturbation also marginally affected the nuclear location of the other epigenomic (AC and FH) states by pushing them slightly towards the nuclear centre ( Supplementary Figure S8 ). Interestingly, the main reverberation of the CH perturbation appears in the genome-wide contact map. Specifically, the signatures of the segregation of the centromeric regions are visually lost, and the trans-chromosome sections of the map are different from the correspondent parts in the optimal interaction case ( Figure 5J ). Quantitatively, the correlation of the model contact map and the Hi-C interaction map is, in fact, lower (SCC=0. [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF] than the between the central beads of KEEs' pairs ( Methods ). To use the minimal set of harmonics and the minimal possible forces, we computed the distances between all the pairs of KEEs central beads (both in cis-and trans-chromosome) in the 50 final snapshots obtained from the optimal model simulations and ranked the pairs for increasing mutual distance. On the same 50 snapshots (representative snapshot in Figure 3H ), we applied harmonics ( Methods ) between the closest 34% (or, when available, the specific FISH association rate ( 65) ) of each KEEs pair to promote their spatial colocalization.

We found that the plasticity of the models allowed accommodating all the KEEs interactions and that the generated contact pattern around KEEs pairs was a cross appearing in the inter KEEs portions of the contact map ( Figure 6A ). This specific pattern was due to the applied constraints that bring into spatial proximity only the central beads. However, recovering the KEEs contacts largely affected the large-scale chromosome rearrangements as it is conveyed visually by the genome-wide contact map ( Figure 6B ) and quantitatively by the Spearman correlation with the Hi-C interaction map, that degrades both genome-wide and in each cis-chromosome parts with respect to the optimal interaction model ( Supplementary Figure S9D and Supplementary Figure S5H ).

Next, we focussed on local structural features involving the 162 clusters of genes enriched in the H3K27me3 polycomb-related histone mark (median length 7.5 kbp and maximum length 95 kbp) that have been identified in the entire A. thaliana genome [START_REF] Yu | Delineation of metabolic gene clusters in plant genomes by chromatin signatures[END_REF] . Typically these clusters form a local plaid pattern in the experimental Hi-C maps indicating the formation of interactions between many, yet not all of them.

To illustrate this contact pattern, we focussed on a 4 Mbp region (chr4:6,700,000-10,700,000) ( Figure 6C ) centred around the longest gene cluster, the 95kb-long cluster-100 in Ref. [START_REF] Yu | Delineation of metabolic gene clusters in plant genomes by chromatin signatures[END_REF] . We observed that in the optimal interaction mode the FH regions are only involved in the effective repulsions with NORs and constitutive heterochromatin ( Figure 3A ). The optimal model is, as a matter of fact, not primed to capture the formation of local interaction domains between H3K27me3-enriched gene clusters ( Figure 6E ).

To test whether the structural models are sufficiently plastic and allow to recover the formation of the H3K27me3-enriched gene clusters, we performed simulations 19 increasing the interaction energy between FH beads to the maximum value used in this study (1.0 k B T). On these simulations, we computed the model contact map (representative local portions in Figure 6D and 6F ), and the SCC analysis with the genome-wide Hi-C interaction map ( Supplementary Figure S5G ). Notably, we found that the addition of strong self-attraction allows recovering the formation of local interacting domains between H3K27me3 enriched gene-clusters ( Figure 6D and 6F ) without affecting the large-scale chromosome organization that correlated with the Hi-C interaction map as good as the optimal interaction model ( Supplementary Figure S5G ).

DISCUSSION AND CONCLUSION

We studied how and to what extent epigenomics-driven interactions shape the structural organization of the Arabidopsis thaliana genome. For this purpose, we developed a novel strategy based on an underlying polymer model that, decorated with epigenomics-based interactions (attractions and repulsions) and simulated via molecular dynamics, allowed generating accurate genome-wide structures of the A. thaliana chromosomes coarse-grained at 3 kbp.

Overall, we found a constitutive organizational role for the attraction between the nucleolar organizing regions NOR2 and NOR4, and for the repulsions of the constitutive heterochromatin (CH) regions and the rest of the genome. Interestingly, these interactions, that are part of the optimal interaction model, allow recovering several established experimental results ( Figure 3 and4 ). Specifically, the formation and the central nuclear positioning of the nucleolus [START_REF] Pecinka | Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes[END_REF][START_REF] Berr | Interphase Chromosome Arrangement in Arabidopsis thaliana Is Similar in Differentiated and Meristematic Tissues and Shows a Transient Mirror Symmetry After Nuclear Division[END_REF][START_REF] Pontvianne | Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome[END_REF] , the close positioning of NADs to the nucleolus itself [START_REF] Pontvianne | Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome[END_REF] , the peripheral positioning of the CH regions [START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF][START_REF] Fang | Centromere Positioning and Dynamics in LivingArabidopsisPlants[END_REF][START_REF] Andrey | Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei[END_REF] , and the coalescence of chromocenters in discrete foci [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Fransz | Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate[END_REF][START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] were all recapitulated in our models. Importantly, these accurate predictions are lost when we remove separately the NORs self-attraction ( Figure 5 and Supplementary Figure S7 ) or the CH repulsions ( Supplementary Figure S8 ).

The major role of nucleolus and centromeres to shape the nuclear organization in A. thaliana is consistent with previous findings from genome modelling [START_REF] Nooijer | Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei[END_REF] , that we largely extend by providing mechanistic insight. We modelled the formation of the 20 nucleolus by the aggregation of the self-attractive constitutive NORs regions and by preconditioning them at the nuclear centre. We also tested that the NOR self-attractions are essential to maintain both a compact and central nucleolus ( Figure 5 ) implying that the preconditioning and non-specific interactions, such as the depletion effect which may act due to the different size of the NOR beads, are not enough to achieve accurate structural organization. Our computational protocol for the formation of the nucleolus is also one of the first attempts of its kind in the modelling of the 3D genome organization higher eukaryotes. The only exception is yeast in which the rDNA sequence on chromosome XII has been modelled with an effective repulsion [START_REF] Wong | A predictive computational model of the dynamic 3D interphase yeast nucleus[END_REF] or with ad hoc confinements [START_REF] Kalhor | Genome architectures revealed by tethered chromosome conformation capture and population-based modeling[END_REF][START_REF] Di Stefano | Impact of Chromosome Fusions on 3D Genome Organization and Gene Expression in Budding Yeast[END_REF] .

Our findings also reveal that the segregation of the chromocenters, their preferential positioning at the nuclear periphery, and their association in discrete clusters can be explained by epigenomics-driven effective repulsions of the constitutive heterochromatin with the other epigenomic states. In A. thaliana , it is known that the nuclear envelope hosts the nucleoskeleton (85) , a peripheral matrix that is functionally comparable to the lamina in animal cells. It has been demonstrated that the proteins crwn 1 in presence of crwn4 and non-CG DNA methylation [START_REF] Pawar | A novel family of plant nuclear envelope-associated proteins[END_REF][START_REF] Hu | Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery[END_REF] can bridge to the nucleoskeleton genomic regions, called Plant Lamina-Associated Domains (PLADs), in analogy with the LADs in animals [START_REF] Kind | Single-cell dynamics of genome-nuclear lamina interactions[END_REF][START_REF] Kind | Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells[END_REF] . PLADs are enriched in repressive chromatin marks and silenced chromatin but don't show a perfect correspondence with heterochromatin, suggesting that other factors, such as the epigenomics-based interactions proposed here, may aid the recruitment and the dynamical tethering of the chromocenters at the periphery. This feature of A. thaliana may be a difference with the genome organization in mammals in which the tethering of heterochromatin to the nuclear membrane via Lamin proteins has been shown to be essential for the recruitment and the tethering of heterochromatin at the nuclear periphery [START_REF] Paulsen | Computational 3D genome modeling using Chrom3D[END_REF][START_REF] Falk | Heterochromatin drives organization of conventional and inverted nuclei[END_REF][START_REF] Sati | 4D Genome Rewiring during Oncogene-Induced and Replicative Senescence[END_REF] .

Together with NORs and CH interactions, another important finding of our study is that different initial shapes of chromosomes have a huge impact in recovering experimental evidence. We showed here that preconditioning the chromosome structures in a V-shape state, as expected for (sub)metacentric chromosomes, dramatically improves the description of the contact probability vs. the genomic 3I-J ). This finding is to ascribe to topological constraints that allow long polymers (that are viable models for chromosomes [START_REF] Tavares-Cadete | Multi-contact 3C data reveal that the human genome is largely unentangled[END_REF] ) keeping a partial memory of their initial arrangements over long timescales [START_REF] Rosa | Structure and dynamics of interphase chromosomes[END_REF][START_REF] Halverson | From a melt of rings to chromosome territories: the role of topological constraints in genome folding[END_REF][START_REF] Rosa | Topological Constraints in Eukaryotic Genomes and How They Can Be Exploited to Improve Spatial Models of Chromosomes[END_REF] . The models allow discerning that the V-shapes obtained from the parallel (not radial) pulling of all chromosomes by the centromeres generate the most accurate models ( Figure 3K and 3P ). Interestingly, our optimal pulling protocol resembles to some extent the large-scale dynamics during cell division in A. thaliana when the chromosomes of each daughter cell, after the first transient dynamics, move in parallel, centromere first, towards opposite poles of the mother cell [START_REF] Fang | Centromere Positioning and Dynamics in LivingArabidopsisPlants[END_REF][START_REF] Tiang | Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants[END_REF] . We also wish to point out that we gathered this insight by analysing the P(s) from the Hi-C datasets. This fact is a clear example that the Hi-C contact patterns, once they are properly interpreted, can inform on the large scale chromosomes organization and that 3D modelling approaches offer a viable bridge to contextualize and quantitatively reconcile imaging and Hi-C results [START_REF] Fudenberg | FISH-ing for captured contacts: towards reconciling FISH and 3C[END_REF][START_REF] Giorgetti | Closing the loop: 3C versus DNA FISH[END_REF] . It is likely that this partial memory of the initial V-shape applies to other species with (sub)metacentric chromosomes like humans and flies where P(s) also exhibits an increase at genomic scales corresponding to inter-arm contacts [START_REF] Sexton | Three-dimensional folding and functional organization principles of the Drosophila genome[END_REF][START_REF] Rao | A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping[END_REF][START_REF] Tjong | Population-based 3D genome structure analysis reveals driving forces in spatial genome organization[END_REF] .

Interestingly, the optimal interaction model we found is largely consistent with known weak (~0.05 k B T) protein-and RNA-mediated interactions which may shape the chromatin structure in vivo . Specifically, the formation of the nucleolus by the attraction of the NORs in chromosome 2 and 4 may suggest an architectural role for ribosomal RNA (rRNA), RNA Polymerase I, and transcription factors that are enriched at the nucleolus [START_REF] Mcstay | The epigenetics of rRNA genes: from molecular to chromosome biology[END_REF][START_REF] Grummt | Epigenetic control of RNA polymerase I transcription in mammalian cells[END_REF][START_REF] Morf | RNA proximity sequencing reveals the spatial organization of the transcriptome in the nucleus[END_REF] . The repulsion of constitutive heterochromatin (CH) is consistent with the evidence that the heterochromatin complex 1 (HP1) binds to repressive histone marks (e.g. H3K9me2) and possibly forms insoluble protein droplets (75) that effectively increase the local chromatin volume. Similarly, the self-attraction of active chromatin (AC) could be justified by the binding of RNA PolII to active genes priming a similar micro-phase separation phenomenon [START_REF] Sabari | Coactivator condensation at super-enhancers links phase separation and gene control[END_REF]100) .

Interestingly, comparably weak epigenomic-driven interactions have been found in similar studies on D. melanogaster [START_REF] Ghosh | How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes[END_REF] and humans [START_REF] Brackley | Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains[END_REF][START_REF] Di Pierro | De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture[END_REF][START_REF] Macpherson | Bottom-up modeling of chromatin segregation due to epigenetic modifications[END_REF](101)(102)(103) . In the latter, the chromatin states are linearly organized into large (~100 kbp) blocks (104, 105) that concur to the formation of chromatin compartments in humans and TADs in 1A and Supplementary Figure S1 ) (44, 58, 59) is characterized by small domains (median ~10kb) interspersed along all chromosomes, that may explain why we do not observe strong epigenomics-related compartments or TADs in A. thaliana [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution[END_REF][START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] .

Additionally, the optimal models presented a degree of plasticity that allowed enforcing and satisfying the long-range contacts between pairs of KNOT Engaged Elements (KEEs). This mechanism might result from the molecular action of nuclear myosins that have been shown to promote long-range genomic contacts in mammals (106-108) . However, we found in these simulations overall lower correlations between model contact patterns and Hi-C ( Figure 6 ). This result suggests that the formation of KEEs interactions cannot be modelled by long-range harmonics applied on the optimal models, but has to be ascribed to alternative mechanisms. We may speculate, for instance, possible tethering of all (or part of) the KEEs to nuclear landmarks, as it is the case of the centromeres in yeast that are attached to the spindle pole body via microtubules (109) . Also, short-range interactions could promote KEEs contacts, but, to be properly described using polymer modelling, they need a specific preconditioning procedure, such as the ones applied in this work for the nucleolus formation.

Interestingly, relatively strong (1 k B T) short-range self-attraction between facultative-heterochromatin FH regions allow reproducing local contact patterns of the Hi-C maps ( Figure 6 ). Specifically, in these simulations, the local interaction pattern between gene clusters enriched in H3K27me3 histone mark is recovered and minimally affects the correlations with Hi-C contact patterns. This finding suggests that we could recapitulate structural features at the scale of a few hundreds of kilobases, that are close to the limit of the model coarse-graining (~300 kb).

In conclusion, we show that using polymer models and epigenomics-driven interactions it is possible to predict the genome organization of A. thaliana and to discern the crucial role of NORs and heterochromatin in shaping its 3D genome.

Additionally, we demonstrate that within the same modelling framework fine-scale genomic features, such as H3K27me3-enriched gene clusters and KEEs, can be quantitatively tested. Our fine-grained analysis unveils that our approach can also be used to test reliably and quantitatively local genomic structural features (close to the coarse-graining limit), and also demonstrates that polymer modelling can robustly propose or rule out possible mechanisms underlying the formation of the contact patterns by verifying simultaneously their effect at large and local genomic scales. The computational modelling introduced here for A. thaliana will help to unravel the mechanisms behind the genomic organization not only in other complex plant species such as wheat and rice but also in many eukaryotes in which the nucleolus and heterochromatin are highly conserved elements. V-shape from parallel pulling (G-K) , and V-shape from radial pulling (L-P) . (B , G , L) Examples of initial (for a copy of chromosome 1) and (C , H , M) final (for all chromosomes) conformations. (D , I , N) Predicted genome-wide contact maps (top left triangles) together with the corresponding experimental Hi-C map (bottom right triangles). (E , J , O) Average intra-chromosome contact probability P vs genomic distance s computed from simulations (black curve) and from Hi-C (red curve). (F , K , P) Spearman correlation coefficients (SCC) computed to compare the models and the Hi-C data from genome-wide maps (magenta), cis-chromosome matrices (black), and P(s) (orange). The red box highlights the optimal case. optimal interaction model (light colour). Significant differences (two-sided Wilcoxon test p-value<0.0001) are marked with asterisks. (I-J) Genome-wide contact map for the perturbed cases (top left triangles) vs maps obtained from the optimal interaction model (bottom right triangles). contact maps at 30 kbp resolution in the chr4:6,700,000-10,700,000 bp region for the optimal set of parameters used in Figures 3 and4 ( C ) or the optimal set complemented with strong self-attraction (1 k B T) between polycomb-like beads ( D ).

(E-F) Zoomed views of (C-D) around the largest gene cluster (cluster 100 of Ref.

(56) ) (chr4:8,668,000-9,109,000 bp at 3 kb resolution). Black squares show the positions and extents of the gene clusters enriched in H3K27me3 mark [START_REF] Yu | Delineation of metabolic gene clusters in plant genomes by chromatin signatures[END_REF] . On the left of each map, blue lines indicate the positions of polycomb-like beads.

Figure 3F ,

 3F Figure 3F , 3K , and 3P ; Supplementary Figure S2 , S5 and S9 ). Nuclear positioning of genomic regions . Radial positions of the beads for each epigenomic state were used to build the histogram of the number of beads per concentric nuclear shell of width 250 nm. Final bar plots ( Figure 4F-J ; Figure 5F-H ;
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Figure 3 .

 3 Figure 3. Genome-wide simulations: exploring the optimal epigenomics-based interactions and the effects of initial conformation . (A) Network of physical interactions used in the genome-wide simulations. In the red rectangle, the network is decomposed to highlight the interactions of each chromatin state. (B-P) Results of the genome-wide simulations for three alternative initial conformations: linear (B-F) ,

27

 27 

.Figure 4 .

 4 Figure 4. Nuclear positioning of the epigenomic states . (A-E) Representative snapshots of the nuclear localization of 3kbp-beads for each epigenomic state. (F-J) Probability to find a bead in concentric shells of the nucleus for each epigenomic state for the optimal interaction model ( Figure 3A ) (coloured bars). White bars illustrate the results of a null model ( Supplementary Figure S5C ) where all but NORs and telomeres interactions are switched off. The significantly enriched/depleted shells with respect to the null model (Two-sided Wilcoxon statistical test with p-value<0.0001) are marked with asterisks ( Methods ). (K) Predicted number of contacts within 200 nm with NORs particles along the different chromosomes. The top 10% of the contacting regions are highlighted in red. (L) Each group of centromeric beads per chromosome is represented by a sphere (radius = the radius of gyration of the constitutive particles; centre = their centre of mass) . Spheres with a volume overlap larger than 40% the volume of the smaller sphere are part of the same focus. (M) Number of distinct centromeric foci per simulated conformation (dark green bars) and per experimental single cell (46) (light green bars). Error bars were computed as the square root of the average value under the hypothesis of a Poissonian distribution. For each bin, we tested if the

Figure 5 .

 5 Figure 5. NORs and constitutive heterochromatin shape the A. thaliana nuclear organization . (A-B) Perturbed interaction networks. The interactions that are removed from the optimal case are crossed in magenta. (C-E) Illustrative snapshots for NOR ( C ) and telomeric ( D ) beads in the perturbed system shown in ( A ). ( E ) As in ( C, D ) but for CH beads in the scenario shown in ( B ). (G-H) Distributions of the radial positions of the 3kbp-regions in the perturbed systems (dark colour) compared to the

Figure 6 .

 6 Figure 6. Plasticity of the optimal models in response to long-range and local interactions. (A) Average contact map of a 1Mbp-region around the KNOT Engaged Elements (KEEs) for the KEEs-restrained models. (B) Genome-wide contact maps in the KEEs-restrained case (top left triangle) and from experiments (bottom right triangle). (C-D) Predicted (top left triangles) vs experimental (bottom right triangles)
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optimal interaction model (SCC=0.50), although the average contact probability as a function of the genomic separation, P(s), is captured accurately (SCC=0.95) ( Supplementary Figure S5E ).

The perturbations of the AC and FH interactions ( Supplementary Figure S6A-B ), that involve a sizeable fraction of the genome (52% and 14%, respectively) had only a negligible effect on both the radial positioning of the corresponding chromosome regions ( Supplementary Figure S6C-F ) and the genome-wide contact pattern ( Supplementary Figure S6G-H and Supplementary Figure S5F-G ).

The model plasticity allows recovering fine-scale structural properties: the KNOT Engaged Elements (KEEs) and the local polycomb-like domains.

To test whether adding specific sets of interactions (both epigenomics-driven or not) may help to recover structural properties at fine-scale without compromising the ones at large-scale, we studied more in detail the structural role of the KNOT engaged elements, KEEs (aka Interacting Heterochromatic Islands (IHIs)) [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] and of the facultative, polycomb-like (FH) heterochromatin ( Figure 6 and Supplementary Figure S9 ). In particular, we tested whether it is possible to recover the formation of long-range interactions between the 10 KNOT Engaged Elements (aka IHIs) that had been identified in Hi-C contact maps of A. thaliana [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF][START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] . KEEs appear as strong cis-and trans-chromosome peaks in the Hi-C interaction maps. Notably, we found that the KEEs associated peaks are completely absent in the predictions of the optimal epigenomics-driven model ( Supplementary Figure S9A ) indicating that it is unlikely that such contacts can be promoted by epigenomics-driven interactions alone. In fact, the KEEs are not decorated in our analysis by a common epigenomic mark, and consistently with alternative ChIP-seq analysis [START_REF] Wang | Genome-wide analysis of local chromatin packing inArabidopsis thaliana[END_REF][START_REF] Sequeira-Mendes | The Functional Topography of the Arabidopsis Genome Is Organized in a Reduced Number of Linear Motifs of Chromatin States[END_REF] , that allow for even more than four epigenomic states, KEEs are usually not associated to a specific chromatin state [START_REF] Feng | Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis[END_REF] .

Association rates of 4 KEEs' pairs (KEE6-KEE1 20%, KEE5-KEE4 35%, KEE6-KEE3 66%, KEE5-KEE10 16% with an average of 34%) were previously measured by Fluorescent In Situ Hybridization (FISH) [START_REF] Grob | Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila[END_REF] , which showed an average of 34% co-localization of KEEs pair. To enforce their mutual spatial proximity, we applied long-range harmonics (both cis-and trans-chromosomes)
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