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a b s t r a c t 

Growing experimental evidence points at relationships between the phase of a cortical or bodily oscillation and 
behavior, using various circular statistical tests. Here, we systematically compare the performance (sensitivity, 
False Positive rate) of four circular statistical tests (some commonly used, i.e. Phase Opposition Sum, Circular 
Logistic Regression, others less common, i.e., Watson test, Modulation Index). We created semi-artificial datasets 
mimicking real two-alternative forced choice experiments with 30 participants, where we imposed a link between 
a simulated binary behavioral outcome with the phase of a physiological oscillation. We systematically varied 
the strength of phase-outcome coupling, the coupling mode (1:1 to 4:1), the overall number of trials and the 
relative number of trials in the two outcome conditions. We evaluated different strategies to estimate phase- 
outcome coupling chance level, as well as significance at the individual or group level. The results show that 
the Watson test, although seldom used in the experimental literature, is an excellent first intention test, with a 
good sensitivity and low False Positive rate, some sensitivity to 2:1 coupling mode and low computational load. 
Modulation Index, initially designed for continuous variables but that we find useful to estimate coupling between 
phase and a binary outcome, should be preferred if coupling mode is higher than 2:1. Phase Opposition Sum, 
coupled with a resampling procedure, is the only test retaining a good sensitivity in the case of a large unbalance 
in the number of occurrences of the two behavioral outcomes. 
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. Introduction 

Oscillations are ubiquitous in the sensory and cognitive brain
 Buzsáki et al., 2013 ). The phase of neural oscillations modulates not
nly spike rate ( Fries et al., 2007 ) and spike timing ( Fiebelkorn and Kast-
er, 2020 ) but also behavior. For instance, the phase of infraslow, theta
r alpha oscillations at which a near-threshold stimulus is presented
orrelates with its probability of detection, in the visual ( Busch et al.,
009 ; Dugué et al., 2011 ; Helfrich et al., 2018 ; Mathewson et al., 2009 ),
uditory ( Ng et al., 2012 ; Rice and Hagstrom, 1989 ; Strauß et al.,
015 ) and somatosensory domain ( Ai and Ro, 2013 ; Baumgarten et al.,
015 ; Monto et al., 2008 ). Phase has been also been related to other
ypes of behavior such as reaction time ( Callaway and Yeager, 1960 ;
ustman and Beck, 1965 ), decision-making ( Wyart et al., 2012 ), vi-

ual search performance ( Dugué et al., 2015 ) or auditory discrimina-
ion ( Kayser et al., 2016 ; McNair et al., 2019 ). The timing of eye move-
ents depends on brain alpha phase ( Drewes and VanRullen, 2011 ;
aarder et al., 1966 ; Hamm et al., 2012 ; Staudigl et al., 2017 ). Finally,

he phase of various oscillatory bodily signals, such as the cardiac cy-
le, the gastric rhythm, or respiration, also influences both neural activ-
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ty and behavior (for reviews, see Azzalini et al., 2019 ; Garfinkel and
ritchley, 2016 ; Tort et al., 2018 ). 

Most studies relating the phase of neural or bodily oscillations with
ehavior aim at establishing a statistical link between phase and a given
inary outcome (e.g. “hit ” or “miss ” in a near-threshold detection ex-
eriment). However, just as there is an abundance of paradigms and
ognitive variables studied, there is a large variety of statistical meth-
ds employed, hindering comparisons between studies. Besides, the rea-
ons why a certain method is favored in a given experimental situa-
ion are usually not provided, and only few systematic investigations
f the properties of statistical tests relating phase to behavior exist
 VanRullen, 2016 ; Zoefel et al., 2019 ). Here, we systematically com-
are the performance of four statistical circular tests (Phase Opposition
um, Circular Logistic Regression, Watson’s test and Modulation Index)
o quantify relationships between oscillatory phase and a binary out-
ome with opposite preferred phases. 

We created semi-artificial datasets based on real data acquired from
0 participants at rest, from which we extracted the phase of a neural
hythm (alpha rhythm, 8–12 Hz) and the phase of a bodily rhythm (gas-
ric rhythm, ~0.05 Hz – Wolpert et al., 2020 ). We simulated a typical
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Fig. 1. Procedure for simulating behavior. (a) In a first step, a series of “trials ” was distributed with a random Inter-Trial-Interval (ITI) selected from a flat distribution 
between 100 and 2000 ms, mimicking button presses uniformly distributed over time (b) Next, mutually exclusive behavioral outcomes, as in two-alternative forced 
choice experiments (hits and misses) were determined for each trial as a function of phase. A hit was assigned with mean probability of 0.5 (dashed lines), which was 
modulated over a cycle of the carrier frequency by a cosine function, such that hit probability (solid lines) ranged between 0.2 and 0.8. For a 1:1 coupling mode (left), 
p Hit contained a single peak. For a 2:1 coupling mode (right), the probability function was rescaled to contain two peaks. The probability function for misses (dotted 
line) was defined as 1-p Hit . By design, hits and misses where therefore distributed to occur at opposite phases. Middle rows show an example of resulting occurrences 
of hits and misses. Of note, the phase range at which a given outcome was more likely was fixed within a participant, but could vary between participants. (c) 
Phase-outcome coupling strength was varied by randomly reassigning labels (hits or misses) to a proportion of behavioral outcome. Top row: time series with 100% 

phase-outcome coupling, no label reassignment. Middle row: time series at 50% phase-outcome coupling strength (random label reassignment in 50% of the trials). 
Bottom row: time series with 0% phase-outcome coupling (random label reassignment in 100% of trials). Hits and misses are distributed randomly. 
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wo-alternative forced choice experiment, where participants have to
hoose between two mutually exclusive options at each trial – stimulus
een vs. not in an experiment probing vision at threshold, or dog vs.
at in a categorization experiment with morphed images. Behavior was
enerated as transient events belonging to two categories ( “hits ” and
misses ”) with a flat distribution over time. We then imposed a statisti-
al link between phase and behavior ( Fig. 1 ), with hits more likely (resp.
isses less likely) in one phase range, hence creating two behavioral
2 
utcomes with opposite preferred phases. The use of a semi-artificial
ataset has the advantage of retaining all the complexity of real data,
hat can be difficult to model, such as the inter- and intra-individual
ariability in power law exponent ( Podvalny et al., 2015 ; Voytek et al.,
015 ), individual differences in peak frequencies of oscillations of in-
erest ( Haegens et al., 2014 ), or the cycle duration variability necessary
or some statistical procedures ( Bahramisharif et al., 2013 ; Richter et al.,
017 ). While this approach is ideally suited to derive practical conclu-



N. Wolpert and C. Tallon-Baudry NeuroImage 236 (2021) 118050 

s  

a  

f  

c
 

p  

P  

o  

a  

t  

I  

b  

t  

b  

o  

e  

a  

o  

h  

c  

c  

i  

c  

B  

t  

a  

q  

F  

c  

2  

h  

p  

d  

p
 

b  

a  

t  

t  

–  

b  

t  

a  

e  

t  

n  

(  

W  

i  

a  

T  

b  

b  

o  

s  

p  

b

2

2

 

w  

h  

s  

l  

u  

s  

t  

t  

s  

m  

1  

t  

w  

r  

t  

h  

a  

b  

×  

a  

(  

s  

o  

d  

o  

s  

s  

w  

M  

a  

a
 

b  

d  

S  

c  

o  

w  

r  

E
1  

F  

fi  

t  

(  

f  

t

2

 

1  

p
w
(  

t  

t  

s  

a  

“  

l  

a  

f  

p  

o  

c  

o  

d  

a  
ions on the performance of different statistical tests, which is the main
im of this article, it does not allow an in-depth assessment of the ef-
ect of data quality and features. We therefore also performed a selected
ontrol analysis on synthetic data. 

We characterize each of the four tests not only by its sensitivity (the
robability of finding an existing phase-outcome effect) but also its False
ositive rate (the probability of a significant result despite the absence
f a true effect). We systematically varied parameters such as the over-
ll number of observations as well as the relative number of observa-
ions in the two outcome conditions. We also varied coupling mode.
ndeed, most studies so far relied on the assumption that the phase-
ehavioral outcome relationship would be a 1:1 coupling with respect
o an underlying carrier frequency in an a priori specified frequency
and (e.g., 8–12 Hz alpha oscillation or 0.05 Hz gastric rhythm), i.e. with
nly one phase range associated with a given behavioral outcome. How-
ver, phase-behavioral outcome coupling might be more complex, with
 given behavioral outcome being more frequent in several phase ranges
f the band-specific oscillation, resulting in 2:1 coupling, over even
igher coupling modes. Mathematically, a behavioral outcome with 2:1
oupling with an oscillation at frequency f would be equivalent to 1:1
oupling of behavior with an oscillation at frequency f ∗ 2. However, data
nterpretation would be different. Indeed, the brain generates some spe-
ific rhythms at a given frequency, like the parieto-occipital rhythm.
odily rhythms, such as respiration or the gastric rhythm, are defined by
heir central frequency (respectively ~0.3 Hz and ~0.05 Hz). Thus, from
 biological perspective, 2:1 coupling at a (neural or bodily) carrier fre-
uency is not equivalent to 1:1 coupling at twice the carrier frequency.
urthermore, it is possible that there exists inter-subject variability in
oupling mode (i.e., with some subjects exhibiting 1:1 coupling, others
:1 etc.), with regards to the same carrier frequency. We thus probed
ow the four tests compare in relation to such “higher ” modes of cou-
ling, and show that Modulation Index ( Tort et al., 2010 ), originally
evised for continuous variables, detects the link between (continuous)
hase and a binary response variable. 

Before presenting the results, we remind the reader of the rationale
ehind each of the four evaluation methods we test ( Fig. 2 ), which
re all non-parametric methods. In logistic regression, the phases of
he two groups are used as circular predictors in a regression model
o predict the outcome (e.g. choice in an auditory discrimination task
Kayser et al., 2016 ; McNair et al., 2019 ). Another method that has

een proposed is Phase Opposition Sum (POS), which measures the ex-
ent to which phases of different groups cluster at different portions of
 cycle ( VanRullen, 2016 ). It is based on the Inter-Trial phase Coher-
nce (ITC), which quantifies the extent of phase concentration across
rials ( Lachaux et al., 1999 ; Tallon-Baudry and Bertrand, 1999 ). Sig-
ificance testing is done with non-parametric permutation statistics
 VanRullen, 2016 ). The Watson test is the nonparametric version of the
atson-Williams two-sample test. It computes a test statistic U 

2 , which
s based on the ordering of the phases and computing the cumulative rel-
tive frequency distributions. Last, we adapted the Modulation Index (MI,
ort et al., 2010 ), initially proposed to detect phase-amplitude coupling
etween continuous variables, to coupling between phase and a binary
ehavioral outcome. Here, MI is computed based on an event rate of
ne of the conditions (e.g., hit rate per phase bin). This method mea-
ures the extent to which an empirical distribution (here, hit rate per
hase bin) differs from a uniform distribution. Significance is estimated
y a surrogate procedure, as for POS. 

. Material and methods 

.1. Experimental data 

We used real data to extract physiological phase time series, on
hich we simulated behavioral output. Data were obtained from 30
ealthy participants (16 male, mean age 24, range 19–30) in resting-
tate with eyes open, 21 corresponding to already analyzed and pub-
3 
ished data ( Richter et al., 2017 ; Wolpert et al., 2020 ) and the rest to an
npublished pilot study. All participants signed a written informed con-
ent and were paid for participation. The procedures were approved by
he Ethics Committee CPP Île de France III and were in accordance with
he Helsinki declaration. Recordings were of 12–15 min length. Brain
pontaneous activity was measured with an Elekta Neuromag® TRIUX
agnetoencephalography (MEG) system with a sampling frequency of
000 Hz. Signal Space Separation (tSSS) was performed using MaxFil-
er (Elekta Neuromag) to remove external noise. Subsequent analysis
as conducted on magnetometer signals. The cardiac artifact was cor-

ected using Independent Component Analysis (ICA), as implemented in
he FieldTrip toolbox ( Oostenveld et al., 2011 ). Briefly, MEG data were
ighpass-filtered at 0.5 Hz (zero phase shift 4th order butterworth filter)
nd epoched from 200 ms before to 200 ms after each R-peak. The num-
er of independent components to be identified was the rank of the time
trial matrix. Continuous magnetometer data were then decomposed

ccording to identified ICA components. The pairwise phase-consistency
PPC, Vinck et al., 2010 ) was computed between the ICA-decomposed
ignals and the ECG signal to isolate those components most reflective
f ECG activity. Components with PPC values larger than 3 standard
eviations than the mean were rejected iteratively from the continu-
us MEG data from each block until either no component exceeded 3
tandard deviations or 3 components were rejected. In practice, this re-
ulted in 3 components being rejected in each subject. Blink artifacts
ere defined by the EyeLink eyetracker system, padded by ± 100 ms.
uscle and movement artifacts were identified automatically based on
 z-value threshold on the MEG data filtered into a band of 110–140 Hz
nd 4–30 Hz respectively. 

Concomitant to MEG, electrogastrogram (EGG) data were recorded
y means of seven active electrodes placed on the abdominal skin (for
etails on EGG acquisition and preprocessing see Wolpert et al., 2020 ).
ince we wanted to compare results using phase time series of two os-
illations with very different frequencies, we extracted both the phase
f MEG alpha oscillations (8–12 Hz) from the magnetometer channel
ith the largest alpha power, as well as the phase of the gastric slow

hythm (~0.05 Hz) from the abdominal electrode showing the largest
GG signal. To obtain the alpha phase time series, we first applied an 8–
2 Hz bandpass 6th order Butterworth zero-phase shift filter using the
ieldtrip toolbox ( Oostenveld et al., 2011 ). The EEG time series were
ltered around gastric peak frequency (mean 0.049 ± 0.005 Hz) with a
hird-order frequency sampling designed finite impulse response filter
MATLAB: FIR2), with a bandwidth of ± 0.015 Hz around gastric peak
requency. We then retrieved instantaneous phase applying the Hilbert
ransform to the filtered data. 

.2. Simulations of phase-behavior relationships 

The general rationale for simulations was as follows. We simulated
000 virtual “experiments ” with 30 participants each. For each partici-
ant, we created an artificial time series of outcomes, “hits ” and “misses ”
ith a two-step procedure. First ( Fig. 1 a), we created a series of “events ”

mimicking “trials ” in a perceptual experiment) with a random time in-
erval selected from a flat distribution between 100 and 2000 ms. In
his way, trials were distributed uniformly with respect to phase. In a
econd step ( Fig. 1 b), the label “hit ” or “miss ” was assigned to each trial
ccording to a probability function depending on phase. The outcome
hit ” was assigned with a mean probability of 0.5, which was modu-
ated as a cosine function of phase defined on –𝜋 to + 𝜋, rescaled in
mplitude to take values between 0.2 and 0.8. The probability function
or misses was then defined as p Miss = 1 - p Hit . In other words, an event
laced at the preferred phase for hits would have an 80% probability
f being a hit and 20% probability of being a miss. Note also that be-
ause p Miss and p Hit sum up to 1 at each phase, hits and misses have
pposite preferred phases. We rotated the probability function to a ran-
om degree, such that preferred phases varied across subjects within
n experiment, as well as across experiments. To simulate higher cou-
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Fig. 2. Illustration of statistical tests compared in this paper. The aim is to assess whether hits (blue) and misses (red) are occurring at different oscillatory phases (polar 
circle, top). Phase Opposition Sum ( VanRullen, 2016 ): This measure is based on the Inter-Trial Coherence (ITC), which quantifies the extent of phase concentration 
for a set of trials. Phase Opposition Sum combines the ITCs by subtracting the overall ITC from the separate ITC from each group. It thus becomes positive if the phases 
separated into hits and misses result in a higher ITC than the overall ITC. Modulation Index ( Tort et al., 2010 ): The phase is binned into N phase bins of equal width, 
and the hit rate per phase bin computed, yielding a hit rate distribution. Note that the hit rate distribution is the mirror image of the miss rate distribution. If hits 
and misses occur at different portions of the cycle, the distribution will deviate from uniformity. MI measures the extent to which the empirical hit rate distribution 
deviates from a flat uniform distribution. Watson’s test: Phases from hits and misses are sorted in ascending order, and for each trial, index i counts the cumulative 
number of hits and index j the cumulative number of misses. At each trial (row), the difference between the respective cumulative relative frequencies ( i /#hits and 
j /#misses) is then computed. These differences are combined into a test statistic U 

2 (for formula see 2.3). Circular logistic regression: The sine and cosine of phases 
for hits and misses are used as predictors in a circular logistic regression model with coefficients 𝛽1 and 𝛽2 and the intercept term 𝛽0 . To quantify the performance 
of the fit, a root-mean square is then computed using true outcomes and predictor coefficients.) (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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ling modes, probability functions were rescaled to contain two, three
r four peaks and troughs per physiological phase cycle, thereby rep-
esenting different “coupling modes ”, with either one, two, three or
our preferred phases. We refer to these coupling modes as 1:1, 2:1, 3:1
nd 4:1. 

Finally, we introduced a parameter to vary the strength of the effect,
hich we call the strength of phase-outcome coupling ( Fig. 1 c). This was
one by adding a certain amount of randomness or “noise ” to the out-
omes of events: A given proportion of trials was selected where a hit or
iss was re-assigned with 50:50% chance. For example, with a strength

f phase-outcome coupling of 30%, the outcome of trials would depend
n phase in 30% of trials, whereas the remaining 70% of trials would be
andomly selected, independently of phase. Finally, we randomly sub-
ampled a set of a given size for hits and misses respectively, thereby
ontrolling the number of trials for hits and misses and the relative num-
er of trials in each group. 
c  

4 
In sum, our simulations varied the following parameters: 1) Strength

f phase-outcome coupling , or percentage of trials where outcome de-
ended on phase; 2) Coupling mode , or number of peaks of the probability
unction for outcome by phase, reflecting the number of preferred phase
anges for each behavioral outcome. We refer to these coupling modes
s 1:1, 2:1, 3:1 and 4:1, from 1 preferred phase range to 4. 3) Overall
umber of trials in the experiment, and 4) the relative number of trials for
ach behavioral outcome. 

.2.1. Sensitivity-analysis 

We aimed to assess which statistical test would be most sensitive to
etect phase-behavior relationships under a given coupling mode. For
his, we generated a time series of hits and misses, keeping the total num-
er of trials constant at 250 with as many hits as misses, while systemati-
ally increasing the strength of phase-outcome coupling. Phase-outcome
oupling strength started from 0% (i.e., random behavior, no relation-
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hip between behavioral outcome and phase) and was incremented in
teps of 5% up to 40% (i.e., behavioral outcome depends on phase in
0% of the trials). We verified that the difference in the number of obser-
ations between the two conditions after imposing noise was not more
han 10%. For each strength of phase-outcome coupling, we ran 1000
irtual experiments with 30 subjects each. For each virtual experiment,
e distributed events in each subject separately, assigned the labels hits
nd misses to those events according to the probability functions by
hase, and computed the phase-outcome statistics for the four different
ests (see Section 2.3 ). We then assessed for each virtual experiment if
here was a significant effect at the group-level ( p < 𝛼 = 0.05; for how
e assess significance at the group level, see Section 2.5 ). We repeated

his procedure for each of the coupling modes investigated from 1:1 to
:1. 

We defined the False Positive rate as the percentage of experiments
ith 0% strength of phase-outcome coupling, i.e. no effect present,
here significant group-level effect was (falsely) detected. Sensitivity

True Positive rate) for phase-outcome coupling strength larger than 0%
as computed as the percentage of experiments correctly detecting an

njected phase-outcome coupling. This allowed us to compare the per-
ormance of different statistical tests as the strength of phase-outcome
oupling was gradually increased. 

.2.2. Relative trial number between groups 

In a different set of simulations, we addressed how an imbalance
n the number of observations for hits and misses would affect the sta-
istical tests. We initially distributed 240 hits and 240 misses, with the
trength of phase-outcome coupling fixed at either 15%, to estimate sen-
itivity, or 0%, to estimate False Positive rate. From this pool of 2 × 240
vents, we subsampled a number of hits and misses, systematically vary-
ng the relative proportion in number of observations for hits vs. misses
i.e., 20:80, 30:70, 40:60, 70:30 and 80:20), while keeping the total
umber of trials constant at 300. To generate the sample with a ratio
f 20:80, we subsampled 60 of the initial set of hits and kept all 240
isses. To generate the sample with a ratio of 30:70, we build on the
0:80 sample by adding 30 hits and removing 30 misses, and so on. This
as done in 1000 virtual experiments with 30 subjects each. 

To assess how a potential loss in sensitivity for an imbalanced num-
er of trials can be recovered, we applied the resampling procedure
roposed by ( Dugué et al., 2015 ; Staudigl et al., 2017 ). This procedure
orks as follows: For each subject, one resamples (without replacement)
s many trials from the group with more trials as there are trials in the
maller group, and recomputes the phase-outcome statistics. This pro-
edure is repeated N times (in our case N = 100), resulting in a distri-
ution of N resampled values. The true test statistic is then estimated
s the mean of this resample distribution. To quantify the impact of
his resampling procedure, we computed for each hit:miss proportion
he phase-outcome statistics both with and without resampling. In sum,
his yielded 2 × 2 conditions: Effect present or absent and resampling
s. no resampling. 

.2.3. Amplitude of the underlying oscillation 

In an additional analysis, we investigated the impact of the ampli-
ude of the oscillation modulating outcome. For this, we first created a
ynthetic 10 Hz oscillation as a sinewave of amplitude scaled to [ − 1;1],
ith a sampling frequency of 1000 Hz and 15 min duration ( Fig. 3 ). For

ach of the 30 virtual subjects, hits and misses were assigned based on
he synthetic 10 Hz sinewave. We then modulated the amplitude of the
0 Hz oscillation by a scaling factor ranging between 0 and 0.2 before
dding it to background noise, generated as pink noise with an ampli-
ude rescaled to [ − 1, 1]. The resulting combined signal was then filtered
round 10 Hz ( ± 1) using a 6th order Butterworth zero-phase shift filter,
nd the Hilbert transform was applied on the combined signal to extract
nstantaneous phase. The resulting phase time series thus represented
he “empirical ” phase time series whose signal-to-noise ratio depended
n the amplitude of the true underlying oscillation. Phases for hits and
5 
isses were extracted, and the phase-outcome statistics computed for
ach amplitude. This was repeated in 1000 virtual experiments, to com-
ute sensitivity and False Positive rate. 

.3. Statistical tests 

We applied four circular statistical tests commonly used in the field
f neuroscience ( Fig. 2 ). 

.3.1. Phase Opposition Sum (POS) 

The Phase Opposition Sum (POS) index is a non-parametric method
ssessing phase differences between conditions ( Drewes and Van-
ullen, 2011 ; Dugué et al., 2011 ; VanRullen, 2016 ). It is based on a com-
arison of the phase concentration of hits and misses to a phase locking
omputed over all trials. The extent of phase concentration is quantified
sing the Inter-Trial Coherence measure (ITC – Tallon-Baudry et al., 1996 ;
achaux et al., 1999 ), which is defined as: 

𝑇 𝐶 𝑎𝑙𝑙 = 

∑𝑁 𝑎𝑙𝑙 

𝑖 =1 
Φ𝑖 ∕ 𝑁 𝑎𝑙𝑙 (1)

𝑇 𝐶 ℎ𝑖𝑡𝑠 = 

∑𝑁 ℎ𝑖𝑡𝑠 

𝑖 =1 
Φ𝑖 ∕ 𝑁 ℎ𝑖𝑡𝑠 (2)

𝑇 𝐶 𝑚𝑖𝑠𝑠𝑒𝑠 = 

∑𝑁 𝑚𝑖𝑠𝑠𝑒𝑠 

𝑖 =1 
Φ𝑖 ∕ 𝑁 𝑚𝑖𝑠𝑠𝑒𝑠 (3)

here Φi is the phase angle at which the event i occurs, N all the total
umber of trials, and N hits and N misses are the number of hits and misses.
nter-Trial Coherence quantifies the phase-locking of a circular distribu-
ion of phases by taking values between 0 (uniform phase distribution)
nd 1 (perfect phase-alignment). The Phase Opposition Sum (POS) is then
efined as: 

OS = IT C hits +IT C misses − 2IT C all (4) 

POS is positive when the ITC of each group exceeds the overall ITC.
he POS measure is a recent improvement ( VanRullen, 2016 ) of the
hase Bifurcation Index, defined as (ITC hits - ITC all ) 

∗ (ITC misses - ITC all ),
hich has been the measure of choice for many studies on phase differ-

nces (e.g., Busch et al., 2009 ). Using the additive measure is motivated
y the finding that POS is more robust to low trial numbers and differ-
nces in relative trial numbers between groups compared to the Phase
ifurcation Index and a number of other measures ( Sherman et al., 2016 ;
anRullen, 2016 ). 

Note that the raw POS value obtained is not yet informative whether
ignificant phase-concentration is present or not. An additional step is
equired to quantify the deviance from a null distribution estimated by
 permutation procedure, as will be detailed in Section 2.4 . 

.3.2. Watson’s test 

The Watson test is the nonparametric version of the Watson-
illiams two-sample test, the circular equivalent of a two-sample t -

est for angular means ( Baumgarten et al., 2015 ; Samaha et al., 2015 ;
anRullen, 2016 ), since it does not rely on the assumption that the
ampled populations are unimodal. It is computed the following way
 Zar, 2010 ): First, the phases of hits and misses are separately grouped
n ascending order. Let N hits and N misses denote the number of samples
n each group, and N the total number of samples ( N hits + N misses ). With
 as the index of hits and j as index of misses, the cumulative relative
requencies for the observations in the two groups are then computed as
/ N hits and j/ N misses . Values of d k (with k running from 1 to N ) are de-
ned as the differences between the two cumulative relative frequency
istributions (d k = i / N hits - j/ N misses ). The test statistics, called Watson’s
 

2 , is then computed as: 

 

2 = 

𝑁 ℎ𝑖𝑡𝑠 𝑁 𝑚𝑖𝑠𝑠𝑒𝑠 

𝑁 

2 

⎡ ⎢ ⎢ ⎣ 
𝑁 ∑
𝑘 =1 

𝑑 2 
𝑘 
− 

( 
∑𝑁 

𝑘 =1 𝑑 𝑘 ) 
2 

𝑁 

⎤ ⎥ ⎥ ⎦ (5) 

Significance can be read from significance tables for U 

2 (see
ar, 2010 ). We also estimate significance of U 

2 using the same permu-
ation procedure as for POS and MI, described in Section 2.4 . 
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Fig. 3. Simulations on oscillatory amplitude. (a) A 

pure sine wave at 10 Hz was generated with an am- 
plitude between − 1 and 1, and hits and misses were 
distributed based on its instantaneous phase. (b) Back- 
ground activity was simulated as pink noise with an 
amplitude between − 1 and 1. The sine wave was mul- 
tiplied with a scaling factor and added to background 
activity, and instantaneous phase retrieved. Phases for 
hits and misses based on the phase time series of this 
combined signal were then retrieved and the phase- 
outcome statistics computed for each amplitude. 
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.3.3. Circular logistic regression 

Circular logistic regression is used to test whether phase predicts
utcome at the single-trial level. Phases are sine- and cosine transformed
nd used as circular predictors of the outcome in a regression model ( Al-
affaie and Khan, 2017 ): 

̂ i = β0 + β1 cos Φi + β2 sin Φi +ε (6) 

here ŷ i is the outcome for trial i, Φi is the phase at which the event
ccurred in trial i and 𝜀 the error term. A p -value for each participant
an be directly obtained by comparing the full regression model with
n intercept-only model using an F-Test, as described in ( Zoefel et al.,
019 ). The root-mean-square of the obtained predictor coefficients

 

√ 

β1 2 + β2 2 ) is used to quantify how well phase predicts behavioral out-
ome. As for the other tests, we here computed p -values using a permuta-
ion procedure (see Section 2.4 ) to assess whether the root-mean-square
as higher than expected by chance. 

.3.4. Modulation Index (MI) 

The Modulation Index ( Tort et al., 2010 ), or MI, measures the extent
o which an empirical distribution differs from a uniform distribution
ith the Kullback-Leibler distance. It was originally applied to detect
hase-amplitude coupling ( Tort et al., 2008 , 2009 ), i.e. between phase
nd a continuous neural variable. We modified the method to quantify
he relationship between phase and a binary response variable (hits vs.
isses). We transform hits and misses into a hit rate per oscillatory phase

in. Phases are sorted into K bins spanning the [- 𝜋, 𝜋] interval (here:
 = 10), and the hit rate computed for each bin. MI measures how far

he distribution of hit rate deviates from a uniform distribution with
espect to phase bins. (Note that MI could also be computed based on
iss rate. The two distributions are in fact complementary.) Formally,
I is defined as: 

I = 

log ( 𝐾 ) + 

∑𝐾 

𝑗=1 𝑃 ( 𝑗 ) ∗ log 𝑃 ( 𝑗 ) 
log ( 𝐾 ) 

(7) 

Where P(j) is the standardized hit rate in phase bin j : 

 ( j ) = 

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 φ ( j ) ∑𝐾 
𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 φ ( i ) 

(8)
𝑖 =1 

6 
And the hit rate per phase bin HR 𝜑 is the number of hits in the phase
in 𝜑 divided by the total number of trials in the phase bin: 

 R φ = 

𝑁 𝐻 𝑖𝑡𝑠 φ 
𝑁 𝐻 𝑖𝑡𝑠 φ + 𝑁 𝑀 𝑖𝑠𝑠𝑒𝑠 φ 

(9)

Note that MI thus differs from the other tests considered here since it
s not directly based on the phases themselves but based on a proportion

f hits relative to the number of trials in each bin. MI ranges from 0
f there is no phase-modulation of hit rate at all (meaning a perfectly
niform distribution) to 1 if there is perfect coupling (i.e. P( j ) = 1 for a
iven bin and 0 for all other bins). With a limited number of trials, it
ight happen that P( j ) is zero, i.e. no hit in that phase bin. The bin

an simply be ignored, because adding or removing an event with zero
robability does not alter entropy. 

.4. Significance at the single subject level 

While Watson’s test and circular logistic regression directly return a
 -value, POS and MI yield only raw values which do not inform on sta-
istical significance. We use a permutation-based approach to estimate
 distribution of phase statistics under the null-hypothesis of no phase-
utcome relationship ( Fig. 4 a). This step is necessary for POS or MI but
an be applied to other phase statistics (Watson’s U 

2 , root mean squares
f the logistic regression). 

The rationale for this procedure is to abolish the hypothetical ef-
ect of phase on behavioral outcome in the original data by randomly
eassigning behavioral outcomes in single participants. For each given
ubject, the event assignment to hit or miss is randomly permuted 100
imes, e.g. maintaining the hit/miss proportion and timings but ran-
omizing the link with phase by assigning the hit/miss label randomly.
ecause we distributed trials uniformly with respect to phase, surrogate
hase distributions would also converge to uniformity (with slight de-
artures due to noise – Fig. 4 b). Phase statistics are recomputed at each
ermutation, to generate the distribution of phase statistics under the
ull hypothesis. Chance level is defined as the mean (or median, but
ee 3.2) of this null distribution. The comparison of the empirical phase
tatistics with the null distribution yields a Monte-Carlo p -value at the
ingle subject level (proportion of surrogate values larger than the em-
irical one). Additionally, the difference between the empirical phase
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Fig. 4. (a) Permutation approach to estimate null distributions of no phase-outcome relationships. Top row: From the original time series of hits and misses, an 
empirical phase-outcome statistic is computed. The trial outcomes are then reshuffled (lower rows), with hit and miss labels randomly permuted, resulting in a new 

time series of hits and misses where the phase-outcome link is abolished while keeping the balance of relative number of observations and inter-stimulus intervals. 
This is repeated N times, and for each reshuffling, the phase-outcome statistic is computed. This results in a surrogate distribution (right). Chance level (black 
vertical line) is then defined as the mean of this distribution. The difference between the empirical phase-outcome statistic (green star) and chance level provides an 
individual metric of the strength of the phase-outcome effect. Additionally, an individual p -value can be computed as the proportion of surrogate values higher than 
empirical. (b) Example of empirical (left column) and surrogate (middle and right columns) phase distributions, for a phase-outcome coupling strength of 100% and 
250 trials. Upper row: Polar representation, lower row: distributions of hit rate per phase bin.(For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

7 
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tatistics and chance level provides an individual metric of the strength
f the phase-outcome coupling. 

.5. Testing for significance at the group level 

Significance at the group level can be assessed either by direct com-
arison between chance level statistics and empirical statistics, by com-
uting surrogate averages, or by combining individual p -values. 

.5.1. Empirical vs. chance level 

One option consists in comparing the empirical phase statistics to
hance level estimates across participants, using a one-tailed paired-
ample t -test, as in Richter et al., 2017 . The test is one-tailed because
he hypothesis is that there is more phase coupling than expected by
hance. 

.5.2. Surrogate average 

An alternative method is based on comparing the empirical group-
verage of phase statistics (e.g. POS values) against a null distribution of
urrogate group-averages ( Busch et al., 2009 ). One value is drawn ran-
omly from the surrogate distribution from each subject, the average
cross subjects computed, and this is repeated 1000 times. This yields
 distribution of 1000 surrogate averages under the null hypothesis. A
onte-Carlo p -value is then computed as the proportion of surrogate

verages that are larger than the empirical average, and the result is
onsidered as significant if this group-level p -value is below the thresh-
ld of significance ( p = .05). 

.5.3. Combining p-values 

Another option to calculate group-level significance is to combine
he results of the individual subjects ( VanRullen, 2016 ). We used the in-
ividual p -values corresponding to the proportion of permutations yield-
ng a higher phase-outcome statistic than the empirical value. In case
he p -value was smaller than 1 / N perm 

, we assigned the midpoint be-
ween zero and 1 / N perm 

, which is 1 / (2 ∗ N perm 

). ( vanRullen, 2016 ).
o combine p -values, a wide range of different methods is available
 Alves and Yu, 2014 ; Heard and Rubin-Delanchy, 2018 ; Loughin, 2004 ;
osenthal, 1978 ), of which we selected three of the most frequently
sed. 

.5.3.1. Fisher’s method. Fisher’s method combines the individual p -
alues from K independent tests into the following test statistic
 Fisher, 1938 ) 

 = −2 ∗ 
𝐾 ∑
𝑖 =1 

ln 
(
𝑝 𝑖 
)

(10)

here p i corresponds to the p -value of participant i . Under the null hy-
othesis, T follows a chi-square distribution with 2 K degrees of freedom
 Alves and Yu, 2014 ; Fisher, 1938 ; Zoefel et al., 2019 ). From this, a com-
ined p -value can be obtained. 

Fisher’s method has been shown to be asymmetrically sensitive to
mall compared to large p -values ( Whitlock, 2005 ). This might be a
rawback depending on the context in which this test is used. 

.5.3.2. Stouffer’s method. Stouffer’s method ( Stouffer, 1949 ) relies on
 transformation of one-tailed p -values of K independent tests into equiv-
lent z -scores, which are combined across observers into one z -score,
hich is finally turned back into a p -value: 

 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 1 − 𝐹 ( 
𝐾 ∑
𝑖 =0 

F −1 
(
1 − 𝑝 𝑖 

)
∕ 
√
𝑁 ) (11)

Where F is the normal cumulative distribution function. 
This test does not show any asymmetry with respect to p -values

s mentioned for the Fisher method. It can be seen as a compro-
ise between methods like Fisher’s method with high sensitivity to

mall p -values and other methods with high sensitivity to large p -values
 Heard and Rubin-Delanchy, 2018 ). 
8 
.5.3.3. Edgington’s method. Edgington proposed to combine p -values
y a simple sum across K observations ( Edgington, 1972 ): 

 𝐸 = 

𝐾 ∑
𝑖 =1 

𝑝 𝑖 (12) 

The combined p -value is then obtained from the cumulative distribu-
ion function for the resulting sum ( Heard and Rubin-Delanchy, 2018 ;
aykin et al., 2007 ). 

.6. Data and code availability statement 

The custom code as well as a set of phase time series
rom real participants for performing the simulations for this ar-
icle can be accessed online at the following address: https://
ithub.com/niwolpert/Simulations _ phase _ statistics . Our scripts make
se of Matlab’s Circular Statistics Toolbox ( Berens, 2009 , avail-
ble at: https://fr.mathworks.com/matlabcentral/fileexchange/10676-
ircular-statistics-toolbox-directional-statistics ). In addition, we made
se of Rufin van Rullen’s code on Phase Opposition ( VanRullen, 2016 ,
vailable at: www.cerco.ups-tlse.fr/~rufin/PhaseOppositionCode/ ). 

. Results 

.1. Sensitivity of statistical tests across different coupling modes 

We investigated the sensitivity of four statistical circular tests (circu-
ar logistic regression, Phase Opposition Sum (POS), Watson’s test, the
aleigh test and Modulation Index (MI)) to coupling between oscilla-

ory phase and behavioral outcome (i.e., hits vs. misses). We extracted
hysiological oscillations from real data of 30 participants, and created
rtificial series of behavioral outcomes where we controlled the statis-
ical relationship between phase and outcome, systematically varying
he percentage of events where the outcome probability depended on
hase, which we call the phase-outcome coupling strength. We also var-
ed coupling mode from 1:1 to 4:1 ( Fig. 1 b). For 30 virtual participants,
e set the number of trials to 250 and distributed hits and misses with

espect to phase, following a given coupling mode and strength of phase-
utcome coupling, and applied the four statistical tests. For each subject
e estimated a null distribution for the phase-outcome statistics of each

est (POS, MI, Watson’s U 

2 , and root-mean-square of circular logistic re-
ression) by a reshuffling procedure ( Fig. 4 ), and defined chance level
s the mean of the surrogate distribution. We then tested across sub-
ects if empirical values were significantly higher than chance levels by
eans of a one-tailed paired samples t -test (in the following denoted as

he “empirical vs. chance method ”). We performed 1000 of such virtual
xperiments with 30 participants each. Sensitivity was computed as the
ercentage of experiments detecting a significant effect ( p < .05). Ad-
itionally, we estimated the False Positive rate for each of the tests by
omputing the number of experiments that yielded a significant differ-
nce when outcomes were purely randomly assigned, independently of
hase. 

We performed these simulations for two types of real oscillations of
ery different frequencies and origin (alpha 8–12 Hz oscillation mea-
ured with MEG and gastric slow wave at ~0.05 Hz, during resting
tate), to ensure that the results do not depend on the frequency or ori-
in of oscillations. We also ran the same simulations on synthetic data
10 Hz sine wave superimposed on pink noise). As we observed very
imilar results for the different types of oscillations, we restrict the pre-
entation of results to the real alpha oscillation. 

The results on sensitivity for a 1:1 coupling mode are presented in
ig. 5 a,b. We observed that circular logistic regression, POS and the Wat-
on test were similarly sensitive ( Fig. 5 a), with True Positive rate sat-
rating at 25% phase locking strength. Circular logistic regression was
lightly more sensitive than the other two, to the cost of a higher False
ositive rate ( Fig. 5 b). The Watson test appears as a sensitive method
ith low False Positive rate. The sensitivity of MI was well below these

https://github.com/niwolpert/Simulations_phase_statistics
https://fr.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics
http://www.cerco.ups-tlse.fr/~rufin/PhaseOppositionCode/
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Fig. 5. Sensitivity of different tests to a 1:1 coupling mode (250 trials, 50% hits & misses). (a) Detection rate of True Positives as a function of phase locking strength. 
Circular logistic regression, POS and Watson’s test clearly outperform MI. (b) False Positive rate computed based on outcomes randomly assigned, independently of 
phase. Red: Circular logistic regression, yellow: POS, green: Watson’s test, blue: MI. (c) Sensitivity of the four tests as function of phase-outcome coupling strength 
and coupling mode. Color codes represent the percentage of True Positives. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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hree tests, sensitivity saturating at 35% strength of phase-outcome cou-
ling. The corresponding results for synthetic data are presented in Sup-
lementary Figure 1. 

Next, we investigated the influence of coupling mode on sensitivity
y varying coupling mode from 1:1 to 4:1. Results are summarized in
ig. 5 c. Circular logistic regression and POS do not detect coupling be-
ond the 1:1 coupling mode. The sensitivity of MI and the Watson test
ecreases when coupling mode increases, with a sharper decrease for
atson. 
We also tested whether sensitivity depended on the overall num-

er of trials for a 1:1 coupling mode by keeping the strength of phase-
utcome coupling constant at 20% and gradually increasing the num-
er of trials from 50 to 400 ( Fig. 6 ). Sensitivity increased for all
9 
our statistical tests, and circular logistic regression, POS and the Wat-
on test outperformed MI. False Positive Rate did not vary depend-
ng on the number of trials for any of the tests and was constantly
elow 5%. 

In summary, we found clear differences in sensitivity between the
tatistical tests for different modes of coupling between phase and out-
ome: For 1:1 relationships, circular logistic regression, POS and the
atson test were all similarly sensitive, while MI was substantially less

ensitive. In contrast, for higher forms of coupling, circular logistic re-
ression and POS completely failed, with MI and Watson test as only
ensitive tests. MI was the most powerful test for higher coupling modes.
he Watson test was the only test being sensitive to all types of coupling
odes, with a low False Positive rate. 
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Fig. 6. Sensitivity by number of trials (1:1 coupling 
mode, 50% hits & misses). Phase-outcome coupling 
strength is kept constant at 20%, and the number of 
trials (hits & misses) is gradually increased. Sensitivity 
increases with number of trials. Circular logistic regres- 
sion, POS and Watson outperform MI. 

Fig. 7. False Positive rate at 0% phase-outcome coupling strength and sensi- 
tivity at 15% phase-outcome coupling strength (1:1 coupling mode, 300 trials, 
50% hits & misses), when estimating chance level as the mean (open symbols) 
vs. the median (filled symbols) of surrogate distributions. Estimating chance 
level as the median of surrogate distributions increases sensitivity but also False 
Positive rate for all tests, especially for POS and the Watson test. False Positive 
rate remains below 5% for all tests when chance level is estimated as the mean 
of surrogate distributions. 
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.2. Different ways of assessing significance at the group level 

Significance of outcome-phase coupling at the group level can be as-
essed through various methods. In this section, we compare three dif-
erent methods: empirical vs. chance (employed in the results described
bove), surrogate average, and combination of individual p -values. 

In the T-test empirical vs . chance level approach, chance level is de-
ned in each participant as the mean of the surrogate distribution. One
an then test whether empirical values are higher than chance levels
cross participants with a one-tailed paired t -test. An advantage of this
pproach is that the difference between empirical and chance level cou-
ling is summarized by one value ( Richter et al., 2017 ). In the original
roposal by Richter et al., chance level (for a continuous variable) was
stimated as the median of the surrogate distribution. With the binary
utcomes we test here, we found that using the median of the surrogate
istribution inflates False Positive rate ( Fig. 7 ) for all tests, while us-
10 
ng the mean of the surrogate distribution produces False Positive rates
elow 5% for all tests. The reason for this is that our phase distribu-
ions resulted in surrogate distributions that were highly right-skewed
 Fig. 4 a). With right-skewed distributions, the mean is systematically
arger than the median, resulting in higher estimate of chance level with
he mean and hence a smaller False Positive rate. The skewness of sur-
ogate distributions is thus critical for the resulting False Positive rate
nd sensitivity. Since skewness depends on data only, it is important
o check the resulting False Positive rate and sensitivity for the data at
and to make an informed decision for the definition of chance level.
ere, we decided to use the mean of the surrogate distribution as an
stimation of chance level. 

The surrogate average procedure directly generates a surrogate value
t the group level. Significance is then expressed as the percentage of
urrogate averages that are higher than the empirical average across par-
icipants. In practice, one first computes the average empirical value of
he phase-outcome statistics (e.g. POS) across subjects. Then, a distribu-
ion of surrogate group-level averages is computed by randomly draw-
ng one value from the surrogate distribution of each subject, computing
he average over these random samples, and repeating this procedure a
umber of times ( Busch et al., 2009 ). This method is computationally
lightly more intensive since it requires an extra-step of surrogate statis-
ics. 

Finally, one can combine p -values obtained in each participant into
 single group-level p -value ( VanRullen, 2016 ). Individual p -values for
ach subject correspond to the percentage of surrogate values that are
igher than the empirical individual value. Numerous methods exist for
ombining p -values – we here restrain our analyses to the methods of
isher, Stouffer and Edgington. 

For each of the 1000 virtual experiments, we tested for significance
t the group level using each of these methods (empirical vs. chance,
urrogate averages, and p -value combinations: Fisher, Stouffer and Edg-
ngton). 

Results for a 1:1 coupling mode are presented in Fig. 8 for the Watson
est and POS, with circular logistic regression and MI resulting in very
imilar profiles. All group-level statistics methods had a very similar
ensitivity, except for the p -value combination using Stouffer’s method,
hich consistently underperformed when strength of phase-outcome

oupling was high. However, False Positive rate was consistently lower
hen using the t -test on empirical vs. chance level to assess significance
t the group level. 

.3. Relative number of observations 

In all previous simulations, the two behavioral outcomes were over-
ll equally probable in each participant. Real experiments typically de-
art from this ideal balance in numbers of observations between con-
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Fig. 8. Comparison of sensitivity and False Positive rate for the four different methods to test for significance at the group-level, with the examples of the Watson test 
and POS and for a 1:1 coupling mode (250 trials, 50% hits & misses). Circles: t -test on empirical vs. chance; triangles: surrogate average; stars: p -value combination 
using the Stouffer method; diamonds: p -value combination using the Fisher-method; squares: p -value combination using Edgington’s method. Left and middle panel: 
Sensitivity; right panel: False Positive rate. Most methods perform very similarly, although the p -value combination using Stouffer’s method performs comparably 
poorly for high strength of phase-outcome coupling, which was consistent across statistical tests. Using the paired t -test on empirical vs. chance resulted in the lowest 
False Positive rate for all the tests. 
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itions, and differences in the relative number of observations might
n turn influence the statistical power of the tests, as already demon-
trated for POS (van Rullen, 2016). A “resampling procedure ” has been
roposed to correct for an imbalance in number of observations ( Dugué
t al., 2015 ; Staudigl et al., 2017 ). In each participant, a random sub-
ample of N observations is drawn from the group with more observa-
ions, N being the number of observations in the condition with fewer
bservations. POS is recomputed, and the process repeated a 100 times,
esulting in a distribution of resampled POS values, with the empirical
OS being estimated as the mean of this resample distribution. 

We assessed to which degree the different statistical tests are im-
aired by an imbalance in number of observations between conditions
nd whether statistical power can be recovered using the resampling
rocedure described above. In the following, we created a time series
f hits and misses by setting the total number of trials to 300 and fixing
he strength of phase-outcome coupling at 15%. We systematically var-
ed the relative number of observations in each condition from 0.2:0.8 to
.8:0.2 in steps of 0.1. We computed phase-outcome statistics for each
elative number of observations, both with and without a resampling
pproach, in 1000 virtual experiments with 30 subjects each, with each
f the methods for phase-outcome statistics, and estimated group level
tatistics in each virtual experiment using one sided paired t -test be-
ween empirical and chance level phase-outcome statistics. True Posi-
ive and False Positive rate were computed for each trial balance, with
s. without resampling procedure. 

The results are presented in Fig. 9 for a 1:1 coupling mode. For a
alanced number of observations (50:50), we replicate the results of
ection 3.1 ( Fig. 5 ), with circular logistic regression, POS and the Wat-
on test being the most sensitive tests, and MI performing less well. We
bserved that all tests suffer from a loss in statistical power with larger
mbalance in number of observations between conditions. Loss in power
as most pronounced for POS. The resampling procedure (dotted lines)
id not change the result for any of the tests except for POS, with a large
ain in statistical power at large imbalance. Indeed, although POS per-
ormed less well than logistic regression and the Watson test for large
mbalance, the use of the resampling procedure increased the statistical
ower of POS to the point that it performed better than all other meth-
ds for large imbalance. Even for an extreme imbalance of 20:80%, the
ensitivity was only about 15% lower than for a 50:50% ratio. Note that
11 
ince resampling removes trials to equalize number of observations, it
esults in an overall lower number of trials, which itself decreases the
ensitivity of the test. We observed no systematic change in False Posi-
ive rate with relative trial number, which was below 5% for each sta-
istical test and balance in trial number. 

With varying ratios in trial numbers, MI showed some asymmetry in
he sense that it performed better when the trial imbalance went into
he direction of more hits than misses than vice versa. This is because MI
s based on hit rate (the opposite pattern was observed when computing
I based on miss rate). 

To conclude, these results demonstrated that all four statistical tests
uffer from an imbalance in number of observations between conditions,
ith POS being most vulnerable. However, the resampling procedure

estores POS sensitivity, which then exceeds the sensitivity of circular
ogistic regression, Watson and MI. 

.4. Amplitude of the underlying oscillation 

In the previous simulations, we presented results using empirical
ata, and hence could not analyze how the amplitude of the underlying
scillation affects results. To analyze the influence of signal-to-noise ra-
io, we generated synthetic data. We first generated a synthetic 10 Hz
ine wave, representing a “true ” underlying oscillation, and assigned be-
avioral outcomes based on its instantaneous phase. To simulate back-
round neural activity, we generated pink noise time series for 30 virtual
ubjects, with an amplitude in the range of − 1 to 1. We scaled the am-
litude of the sinewave by a factor varying between 0 and 0.2 before
dding it to pink noise. The resulting signal was filtered around 10 Hz
nd instantaneous phase computed. We retrieved phases for hits and
isses and computed phase-outcome statistics. This procedure was re-
eated in 1000 virtual experiments, and sensitivity and False Positive
ate computed. 

The results are presented in Fig. 10 for a 1:1 coupling mode. At zero
mplitude (pure pink noise), the sensitivity of all the tests was below 5%,
orresponding to their baseline False Positive rate. Sensitivity sharply
ncreased between 0.02 and 0.05 and saturated at an amplitude around
.15 for all tests. As expected, circular logistic regression, POS and Wat-
on’s test showed highest sensitivity while MI performed more poorly. 
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Fig. 9. Sensitivity of the different phase-outcome tests as a function of the relative number of observations for hits vs. misses (1:1 coupling mode, 300 trials, 15% 

phase-outcome coupling strength). Solid lines: without resampling; dotted lines: with resampling. 

Fig. 10. Sensitivity of the different phase-outcome tests 
as a function of the amplitude of the 10 Hz oscillation 
relative to pink noise (1:1 coupling mode, 250 trials, 20% 

phase-outcome coupling strength). 
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.5. Comparing permutation statistics with tabulated statistics 

Two tests also directly output a p -value: The Watson test yields a U 

2 -
tatistic from which a p -value can be obtained from significance tables.
or circular logistic regression, a p -value can be obtained by an F -test
omparing the full regression model to an intercept-only model. How-
ver, in the results presented so far, we combined the Watson test and
ircular logistic regression with a permutation procedure to estimate a
ull distribution in each participant for consistency across all methods.

We compared the performance of these two approaches to compute
 p -value on the individual level. For each of the 1000 virtual experi-
ents, we computed individual p -values for each of the 30 virtual sub-

ects using both the permutation p -value and the tabular p -value. For
ach strength of phase-outcome coupling, we computed the proportion
f subjects with a significant p -value, to infer True Positive rate in the
ase of a strength of phase-outcome coupling above zero and a False
ositive rate in the case of zero phase locking strength. Both strate-
ies resulted in roughly equivalent sensitivity and False Positive rate
 Fig. 11 ). 

. Discussion 

We compared the performance of four statistical circular tests (POS,
ircular logistic regression, Watson’s test and MI) at detecting relation-
hips between phase and behavioral outcome. We created artificial data
ets where we injected a statistical link between oscillatory phase and
12 
utcome (hit or miss) to compare the tests in terms of sensitivity and
alse Positive rate. We systematically varied the strength of the phase-
utcome coupling and the coupling mode, as well as the total and rel-
tive numbers of observations. We observed that circular logistic re-
ression, POS and the Watson test are similarly sensitive to a unimodal
oupling mode (one preferred phase for each behavioral outcome). In
omparison, MI performed poorly. The Watson test had the lowest False
ositive rate, followed by MI, POS and logistic regression. In contrast,
hen going to higher coupling modes (groups have multiple opposed
referred phases), MI and Watson were the only sensitive tests, while
ll the other tests completely failed at detecting the effect. For those
igher coupling modes, MI showed a higher sensitivity than the Watson
est, especially for 3:1 and 4:1 coupling. 

.1. Advantages and limitations of each test for the detection of 

hase-outcome locking at the participant’s level 

Phase Opposition Sum has frequently been used to test phase-
utcome coupling (e.g., Busch et al., 2009 ; Drewes and VanRullen, 2011 ;
ugué et al., 2011 ; Hamm et al., 2012 ; McLelland et al., 2016 ;
uzzoli et al., 2019 ; Staudigl et al., 2017 ). Two methodological stud-

es ( VanRullen, 2016 ; Zoefel et al., 2019 ) identified POS as a powerful
ethod for detecting (unimodal) coupling. Our findings are in line with

hese results, but we add to this literature that the sensitivity of POS is
n par with the Watson test and circular logistic regression, and that
he sensitivity of POS comes at the cost of a higher False Positive rate
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Fig. 11. Computing p -value based on permutations or on the direct output of 
the statistical test, for the Watson test and circular logistic regression, all for 
a 1:1 coupling mode (250 trials, 50% hits & misses). Left: Sensitivity (%True 
Positives), right: False Positive rate. Black: Permutation approach; gray: direct 
output. Both the Watson test and circular logistic regression are equally sensitive 
with either approach. 
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ompared to the Watson test. Moreover, POS is not sensitive to higher
oupling modes. POS is based on the Inter-Trial Coherence, which is
he norm of the mean vector of all phases of a group of behavioral out-
omes. If a behavioral outcome has two (or more) preferred phases, the
esulting mean vector will be small, the two preferred phases tending to
ancel each other. Compared to the other tests investigated here, POS is
he most vulnerable to an imbalance in relative number of observations.
his drop in sensitivity results from two factors: First, an insufficient
umber of trials in one of the two groups, which equally affects all the
ethods tested here ( Fig. 6 ). Second, with high imbalance in relative
umber of observations, ITC all becomes biased to toward either ITC hits 
r ITC misses (the one with more observations), which increases ITC all 
nd results in a reduced empirical POS ( VanRullen, 2016 ). The resam-
ling procedure compensates for this second factor, which is specific to
OS, and has no effect on the other tests analyzed here. As a drawback,
ote though that resampling comes at the cost of longer computation
ime. Permutations can become computationally expensive especially if
ime-frequency data are analyzed ( VanRullen, 2016 ), which increases
xponentially with resampling. 

Our results highlight the Watson test as an interesting method with
everal advantages that has remained underused in the experimental lit-
rature. First, the Watson test is among the three most sensitive methods
or detecting unimodal coupling, and it also comes with the lowest False
ositive rate. Second, it is the only method among the three winning
ethods for 1:1 coupling mode that was also sensitive to higher cou-
ling modes. It could therefore be described as an “allrounder ” method
ith a good tradeoff between sensitivity and False Positive rate and the
otential to detect 2:1 coupling. Finally, the Watson test is computa-
ionally cheap: As it yields the same results whether the permutation
rocedure is used or p -values are directly computed, permutations are
ot strictly necessary for this test. It is also quite robust to moderate
mbalances in relative number of observations. 

Our findings concerning circular logistic regression as one of the
ost sensitive methods are in line with the results of Zoefel et al., 2019 ,
13 
ho found it to be the best performing method. Still, by distinguish-
ng between sensitivity and False Positive rate, we also observed that
t came with the highest False Positive rate among the methods tested
ere, and it does not detect coupling modes higher than 1:1. The lat-
er is due to the fact that circular logistic regression is fitting weights
or an optimal linear separation between groups ( Fig. 2 ), while two dis-
ributions clustering at more than one circular portion are not linearly
eparable. 

We observed that among the four methods tested, MI was least sen-
itive to 1:1 coupling. This observation might be explained by an over-
stimation of chance level. Indeed, MI measures the departure of a dis-
ribution from uniformity ( Tort et al., 2010 ). To determine whether a
iven MI value could be obtained by chance, we compare empirical MI
ith chance level MI, where chance level is estimated by reshuffling

he behavioral outcomes, while keeping the same timing of behavioral
vents. Because the number of behavioral outcomes is finite, surrogate
it rate distributions only approximate uniformity, leading to a poten-
ial over-estimation of chance level. Additionally, MI values might be
iased if behavioral events, irrespective of behavioral outcome, are not
istributed evenly across all phase bins. Last, MI does not make any as-
umption on the type of departure from uniformity. What results in the
ood performance of MI at higher coupling modes comes at a cost at
:1 coupling mode. In particular, a surrogate phase distribution might
y chance display a bimodal distribution, which would be measured as
 departure from non-uniformity and lead to an inflated chance level
stimation. In contrast to 1:1 coupling, MI was clearly the most sen-
itive method for detecting higher coupling modes. Note that MI was
riginally devised for detecting relationships between phase and a con-
inuous variable (e.g., phase-amplitude coupling – Tort et al., 2009 ). We
how here that MI is also valuable to detect coupling between phase and
 transient event such as a button press. 

.2. Testing for significance at the group level 

We compared five different strategies to estimate significance on the
roup level: Running a paired t -test on empirical vs. chance level, creat-
ng a surrogate average distribution, and combining individual p -values
ith Stouffer’s, Fisher’s and Edgington’s method. All methods had very

imilar sensitivity, except for Stouffer’s p -value combination, which was
ubstantially less sensitive when the strength of phase-outcome coupling
as high. Note that there is an extensive literature investigating the
ower and properties of the different ways to combine p -values (e.g.,
eard and Rubin-Delanchy, 2018 ; Whitlock, 2005 ). For example, it is
onsidered that Fisher’s method is asymmetrically sensitive to small
 -values, while Stouffer’s and Edgington’s methods are seen as com-
romises between higher sensitivity to smaller vs. higher sensitivity to
arger p -values. We here did not investigate in further detail how these
ethods compare, but observe that the Stouffer may be not the optimal

hoice in this context. 
Using a t -test on empirical vs. chance resulted in a lower False Pos-

tive rate than the other four methods. Another advantage of relying
n empirical vs. chance level is that one can quantify the strength of
oupling on the individual level by computing empirical minus chance.
his gives a continuous measure that can be regressed against other pa-
ameters of interest (e.g., to identify individual factors like age or day-
ime of recording that explain interindividual differences in strength of
oupling). For those two reasons, the empirical vs. chance test seems a
ood option. Importantly, we here found that estimating chance level
s the mean, rather than the median, of surrogate distributions should
e preferred to avoid large False Positive rates. More generally, this re-
ult points to the importance of the method retained to estimate chance
evel when computing statistics on phase. We demonstrate this impor-
ance for phase-behavior coupling, but similar issues probably also arise
or phase-phase or phase-amplitude coupling. 

One important aspect in the design of our simulations is that we
andomly vary the preferred phase for hits and misses from one sub-
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ect to the other. Several previous studies have relied on the as-
umption that preferred phase would be constant across subjects (e.g.,
athewson et al., 2009 ; Monto et al., 2008 ; Rice and Hagstrom, 1989 ).
owever, there are different reasons for this to not hold true. For neu-

al data, the measured phase at the scalp level might differ between
articipants due to factors like conduction relays ( VanRullen, 2016 ).
epending on the context, it might therefore be advisable to fo-
us on relative phase difference instead of absolute measured phase.
o circumvent this issue, studies analyzing effects of phase on hit
ate ( Baumgarten et al., 2015 ; Zoefel and Heil, 2013 ) or continu-
us outcomes like evoked responses ( Busch and VanRullen, 2010 ;
hakravarthi and Vanrullen, 2012 ; Neuling et al., 2012 ) have frequently
ealigned phase bins to the “preferred phase ” for each participant (e.g.,
he phase with highest hit rate), to then run tests (e.g., ANOVA, Rayleigh
est, or circular-linear correlation) on the phases pooled across subjects.
ere, the tests we are using do not rely on phases being consistent across
articipants, and therefore do not require this additional realignment
tep. 

onclusions 

In conclusion, we advocate the use of the Watson test, especially
f the imbalance between observations in each condition is not larger
han 40:60, and one wants to be open to higher coupling modes. POS
ecomes the measure of choice for 1:1 coupling when there is a large
mbalance in the relative number of observations. In case one wants
o investigate more complex coupling modes, MI seems as the optimal
hoice. To estimate significance on the group level, a good strategy is
o compare empirical vs. chance levels, which comes with a low False
ositive rate and provides an individual metric for the strength of the
ffect. 

Note that we here constrained to the scenario of a binary outcome
nd did not consider the case of only one condition (e.g., clustering of
accades at a specific portion of the cardiac cycle – Ohl et al., 2016 ).
mong the tests considered here, only MI can be directly used to assess-

he phase-dependency of events of only one type. MI has the advantage
f detecting higher coupling modes, but requires a sufficient number of
vents to be present in all phase bins, which might not be the case for
vents whose onset is not in the control of the experimenter. Alterna-
ively, other one-sample tests such as the Rayleigh test can be applied
n this scenario ( Ai and Ro, 2013 ; Galvez-Pol et al., 2019 ; Wyart et al.,
012 ). In addition, because we modelled a two-alternative forced choice
xperiment where the two behavioral outcomes are by design of oppo-
ite phase, we did not consider other possibilities, such as one outcome
lustered at a specific phase, and the other homogenously distributed. 
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