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Abstract

We develop and implement a Gaussian approach to calculate partial cross-sections
and asymmetry parameters for molecular photoionization. Optimal sets of complex
Gaussian-type orbitals (cGTOs) are first obtained by non-linear optimization, to best
fit sets of Coulomb or distorted continuum wave functions for relevant orbital quantum
numbers. This allows us to represent the radial wavefunction for the outgoing electron
with accurate cGTO expansions. Within a time-independent partial wave approach,
we show that all the necessary transition integrals become analytical, in both length
and velocity gauges, thus facilitating the numerical evaluation of photoionization ob-
servables. Illustrative results, presented for NH3 and H2O within a one-active-electron
monocentric model, validate numerically the proposed strategy based on a complex
Gaussian representation of continuum states.
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France

1



 2

 4

 6

 8

 10

 15  20  25  30  35  40  45  50  55

THEORY

σ
(
M
b
)

Photon energy(eV)

H2O(1b1) photoionization cross-section

SC DW with complex Gaussians
LCAO B-spline DFT (2020)

SC HF (2019)
TD-DFT (2002)

 2

 4

 6

 8

 10

 15  20  25  30  35  40  45  50  55

THEORY

EXPERIMENTEXPERIMENT

σ
(
M
b
)

Photon energy(eV)

H2O(1b1) photoionization cross-section

Banna et al. (1986)
Truesdale et al. (1982)

Tan et al. (1978)

The theoretical description of molecular pho-
toionization requires a good description of the
outgoing electron wavefunction which oscil-
lates up to infinite distances. In a single-
center (SC) approach, the radial part of this
continuum state can be efficiently represented
up to a sufficiently large distance by an ex-
pansion on complex Gaussians (that is to say
Gaussian functions with complex exponents).
This greatly facilitates the calculation of cross-
sections because the matrix elements can be
evaluated analytically.
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INTRODUCTION

Ordinary Gaussian-type functions1,2 are not especially renowned for their adequacy to the

theoretical description of continuum states. Those are involved, for example, in dynamical

processes where an electron escapes from the system. In a recent theoretical study about

molecular photoionization,3 one can read that “conventional Gaussian- or Slater-type orbitals

are unsuitable for this purpose.” Everyone can intuitively agree with that, given that an

outgoing electron possesses a wavefunction with an oscillating and non-decreasing behaviour,

whereas Gaussian-type functions do not feature any nodes and always go to zero, more or less

rapidly depending on the exponent values. Such properties are intrinsically not compatible

with the asymptotic behaviour of continuum states. This said, if only there were a chance

that some Gaussian set manages to attenuate these apparent incompatibilities, this would

be very interesting from a numerical point of view in many applications involving electronic

detachment processes. Many Gaussian integrals could then be expressed in closed form and,

in the molecular case, multicentric integrals which naturally arise in cross-section calculations

could be drastically simplified by using the Gaussian product theorem.4,5

In this paper we focus on photoionization, which plays an important role in atomic and

molecular physics and is strongly related to several other sub-domains of physics, including

for example applications in astrophysics,6,7 plasma science8–10 or biology.11,12 Photoioniza-

tion has been studied since the early days of quantum mechanics, and the literature is quite

vast. Nowadays, while a theoretical-experimental agreement can be generally observed for

atoms, this is not always the case for molecular targets, especially in the near-threshold

region where autoionizing resonant structures are difficult to describe, as pointed out for

example in refs. 13,14. Such discrepancies are partly related to several theoretical difficul-

ties coming from the multicentric nature of the target. Recent photoelectron spectroscopy

experiments on molecules such as those presented in refs. 15–17 provide an ongoing and

renewed interest, and a challenge for theoreticians. Indeed, the process provides an indirect

tool to test the theoretical description of the target before and after the interaction, and thus

our capacity of describing correlation and many-body effects for both bound and unbound

electronic states. A number of methods have been proposed in the past, and some are cur-
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rently being developed with the aim of improving the accuracy of the dynamical parameters

describing photoionization (see, for example, refs. 3,14,18). We are precisely interested in

this difficult problem and we consider it as a good test case for a Gaussian representation of

continuum states.

For bound states, the efficiency of Gaussian-type orbitals (GTOs) needs no further proof.

For a review about the use of Gaussian basis sets in molecular calculations, see for example

ref. 2. However, in scattering processes, as for example photoionization of neutral species

or photodetachment of anions, an efficient description of continuum states is also required.

What is meant by efficient is that the continuum wavefunction describing an incident or

escaping charged particle, for example an outgoing electron, should be a good compromise

between accuracy over a sufficiently large radial domain and numerical efficiency. In terms

of accuracy, neither standard GTOs (with real exponents) nor Slater-type orbitals seem

very adapted to the task of describing oscillating, non-decreasing continuum wavefunctions,

as already stated above. However, as far as numerical efficiency is concerned, the use of

Gaussian-type functions may lead to strong savings in terms of computational time. Among

these two observations, the first (pessimistic) one about the inadequacy to deal with the

continuum seems to have outshined the second (optimistic) one on numerical gain; indeed,

in the literature there is a relatively low number of theoretical studies using Gaussian sets for

describing continuum states,19–22 sometimes within a hybrid basis set also including discrete

variable representations23 or B-splines.24,25

In a recent work, we have developed an optimization method able to provide sets of

complex Gaussians (i.e. Gaussian-type orbitals with a complex exponent) able to repro-

duce accurately Coulomb waves, and whose scattering applications in the benchmark case

of atomic hydrogen demonstrated their reliability.26 The complex Gaussian-type orbitals

(cGTOs) are defined as

G(r) = e−αr
2

with α ∈ C, (1)

where Re(α) > 0 ensures that the functions are square integrable. cGTOs were first intro-

duced in the context of resonance stabilization calculations.27–30 More recently cGTOs were

used in atomic photoionization calculations31,32 with an optimization method based on the

Prony’s algorithm used earlier by Huzinaga.33 In ref. 26 we have focused our efforts on the
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numerical method used to perform cGTOs optimization in order to improve their numerical

efficiency as a continuum representation. cGTOs oscillate with a spatial frequency increasing

with the radial coordinate r, a feature that is not physically satisfactory. On the other hand,

in comparison with real GTOs (rGTO), this oscillatory behavior due to the complex expo-

nent leads to more stable expansions of physically sound continuum wavefunctions. We have

also shown that optimized cGTO sets can actually be used to calculate accurate ionization

cross-sections for atomic hydrogen, under photon or electron impact. It turns out that the

necessary matrix elements can be evaluated analytically, making the approach numerically

efficient.

Here we wish to adopt a similar strategy by presenting cGTO calculations of molecu-

lar photoionization differential cross-sections and asymmetric parameters, using a number

of approximations: we use a monocentric description of the targets, considering only small

molecules of type AHn which are known to reasonably bear such an approximation; we re-

strict ourselves to a one-active-electron description; we assume the molecular targets to be

randomly oriented; we work in the dipolar approximation with linearly polarized light; the

initial bound orbitals of the target are described in terms of Slater-type orbitals with param-

eters taken from Moccia.34–36 The principal aim is not to develop a sophisticated chemical

model or to get as close as possible to the available experimental results, but rather to prove

that it is indeed possible to obtain converged results on differential photoionization cross-

sections for molecules using pure cGTO expansions of the radial continuum wavefunction.

Such a representation allows us to get closed-form expressions for the transition matrix in-

tegrals, the numerical evaluation of which becomes very fast. The monocentric (also often

named Single Center) approximation is an important restriction, and in a near future we

may definitely consider similar calculations with a multicentric description of the target.

The main idea of the present paper is to show that theoretical photoionization cross-sections

keep the same level of accuracy within a given model, even when cGTO expansions are used

to describe the outgoing electron.

In the rest of the paper, we first summarize the photoionization model and parameters in

section 1. We introduce the fitting method that we have used to find optimal cGTO expan-

sions of the (monocentric) continuum functions on a definite domain, adapted to molecular
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applications. Then, integrals needed for the photoionization cross-section calculations are

detailed. Finally, in section 2 come the results on two illustrative examples, the Ne-like

molecules NH3 and H2O, followed by some concluding remarks. Unless otherwise stated, we

use Hartree atomic units throughout the paper.

1 GAUSSIAN-SLATERMOLECULAR PHOTOIONIZATION

MODEL

1.1 Photoionization parameters

During the photoionization process, one electron of the target is ejected from an initial bound

orbital φi(r) to a continuum state ψ−ke
(r) with wavevector ke (kinetic energy Eke = k2e/2 and

solid angle k̂e). We restrict ourselves to a simple one-active-electron model with electronic

coordinate r, all other electrons remaining unaffected. We work in the dipole approximation

and the photon of energy Eγ is linearly polarized along a direction ε̂. The energy conservation

reads

Eγ = Eke + Vion, (2)

where Vion is the ionization energy associated with the initial state.

The photoelectron angular distribution (sometimes quoted with the acronym PAD in the

literature) is given by the differential cross-section, which should be averaged over all the

possible molecular orientations. In a time-independent framework, it is given by:37,38

dσ

dk̂e
= Ni

4π2keEγ
c

∫
dR̂

∣∣∣Tike(R̂)
∣∣∣2 (3)

where R̂ stands for the molecular orientation with respect to the laboratory frame (Euler

angles), Ni denotes the initial number of electrons in the concerned molecular orbital and c

is the speed of light. Although not explicitly written, the cross-section (3) is also differential

with respect to the photoelectron energy. The key quantities to be calculated are the dipole

transition moment elements Tike . In length and velocity gauges, they are respectively defined

by

T
(L )
ike

= 〈ψ−ke
|ε̂ · r|φi〉 (4)
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or

T
(V )
ike

=
1

ıEγ
〈ψ−ke
|ε̂ · p|φi〉 (5)

with p = −i∇. It is worth reminding that, while calculated cross-sections should be in

principle gauge-invariant, using an approximate Hamiltonian or non-exact wavefunctions

may lead to substantial differences between length and velocity gauges results.38

In the case of a linearly polarized photon, the differential cross-section for randomly

oriented molecules can also be expressed using an energy-dependent asymmetry parameter

β, through:39,40

dσ

dk̂e
=
σ(ke)

4π
[1 + βP2(cos (θ)] (6)

where

σ(ke) =

∫
dσ

dk̂e
dk̂e (7)

is the integrated cross-section (or partial ionization cross section, sometimes quoted with

the acronym PICS in the literature), P2(x) = 1
2
(3x2− 1) is the second Legendre polynomial,

and θ = (̂ε̂,ke) is the scattering angle in the laboratory frame. Compared to the integrated

cross-section, the asymmetry parameter β regulates the photoelectron angular distribution

and contains thus more detailed information; as a consequence, it is also more sensitive to

the quality of the involved wavefunctions.

A typical photoionization calculation thus needs sufficiently accurate wavefunctions for

the initial and continuum states to ensure that integrals (4) or (5) yield reasonable results.

1.2 Model wavefunctions

The initial molecular orbitals of the target are taken from Moccia (ref. 35 for NH3 and ref. 36

for H2O), who used a self-consistent-field calculation. He proposed a monocentric expansion

in terms ofNi Slater-type orbitals with real coefficients and real spherical harmonics, centered

on the heaviest atom. We transform the data to work with complex spherical harmonics

Y m
l (r̂) and complex coefficients Cij, and use the following form,

φi(r) =

Ni∑
j=1

Cijr
nj−1e−ζjrY

mj
lj

(r̂). (8)

with normalization 〈φi|φi〉 = 1.
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For the outgoing electron, we shall use a standard single center partial wave expansion,41

ψ−ke
(r) =

√
2

π

∑
l,m

(ı)le−ıδl
ul,ke(r)

ker
Y m
l (r̂)Y m∗

l (k̂e) (9)

where δl denotes the phase shift for a given angular momentum l. The radial part of the

wavefunction ul,ke(r) satisfies the following equation,[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ Umol(r)

]
ul,ke(r) =

k2e
2
ul,ke(r) (10)

for a central potential Umol(r). This one-dimensional differential equation can be numerically

solved by using, for example, the RADIAL code.42

As a very first approximation, we assume that the potential felt by the photoelectron is

Coulombic, Umol(r) ' −z/r, with a point charge z = 1, so that the continuum wavefunction

is a pure Coulomb wave. In this case the phase shift δl = arg (Γ(l + 1 + ıη)) with the

Sommerfeld parameter η = −z/ke, and the radial functions are the (real) regular Coulomb

functions

ul,ke(r) =Fl(η, ker)

=(2ker)
l+1e−

πη
2
|Γ (l + 1 + ıη)|

2Γ (2l + 2)
eıker

× 1F1 (l + 1 + ıη, 2l + 2;−2ıker) ,

(11)

where Γ is the Gamma function and 1F1 is the Kummer confluent hypergeometric function.43

Should one be interested in studying the photodetachment of anions, the remaining core is

neutral and the asymptotic charge of Umol(r) is z = 0. In this case, the Coulomb wave should

be replaced by a plane wave, and the radial function (11) is then a spherical Bessel function.

In reality, the main motivation for using a Coulomb wavefunction is methodological: within

such an approximation, the transition matrix integrals are fully analytical, allowing for a

rapid check of the convergence.

In subsequent calculations, the photoelectron is assumed to feel a distorted radial poten-

tial Umol(r), obtained as the angular average of the anisotropic potential calculated from the

direct term in the static exchange approximation.13,44–46 At short distances, this potential

behaves as −Zcenter/r, where Zcenter is the approximate charge number at the central nucleus,

and features a z = 1 Coulomb asymptotic behavior at large distances (again, in the case of
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photodetachment of anions, the asymptotic charge would be z = 0). This model potential,

which takes somehow into account the charge distribution of the core, can clearly be im-

proved as to include exchange and many-electron effects. As we shall see in section 2, the

potential Umol(r) not only provides a reasonable model that allows to capture the correct

physics, it serves here also to illustrate that our approach can be applied to any central

potential.

The fact that we use a central potential Umol(r) (pure Coulomb or distorted) thus putting

aside the multicentric nature of the target, is clearly a strong approximation. It would not

make much sense if we were interested for example in photoionization for a fixed molecular

orientation. Since in the present study we are looking at AHn molecules with a heavy central

atom, and the molecules are randomly oriented as in the experiments, an angular average of

the multicentric potential is not an heresy.

1.3 Complex Gaussian representation of the radial continuum wave-

function

In this subsection we give an overview of the cGTO representation method introduced in ref.

26, as a generalization of previous works on rGTOs.20,21 We also provide a table of optimal

exponents used later in section 2.

1.3.1 Fitting approach

We consider a set of arbitrary functions fp(r), p = 1, . . . , pmax that we would like to approx-

imate by linear combinations of N cGTOs:

fp(r) ≈ fGp (r) =
N∑
i=1

[ci]p exp(−αir2), (12)

where the exponents are complex, αi = Re(αi) + iIm(αi), with Re(αi) > 0. A minimization

is performed for the objective function Ξ defined as

Ξ (Re(α1), . . . ,Re(αN), Im(α1), . . . , Im(αN))

=
∑
p

∑
κ |fp(rκ)− fGp (rκ)|2∑

κ |fp(rκ)|2
+D(Re(α1), . . . ,Re(αN)),

(13)
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over some given radial grid {rκ}κ=1,...,κmax . The Ξ function depends on 2N non-linear

real parameters, {Re(αi), Im(αi)}i=1,...,N (the exponents), and N × pmax linear parameters

{[ci]p}i=1,...,N,p=1,...,pmax (the expansion coefficients). In eq. (13), D is a penalty function whose

aim is to avoid the convergence of two exponents to the same value. It is defined as

D(α1, . . . , αN) =
N∑
i=2

i−1∑
j=1

exp

(
−g
∣∣∣∣αiαj − αj

αi

∣∣∣∣) , (14)

where g is a fixed parameter (in general g ≈ rκmax).

We start the optimization with some reasonable set of exponents {αi}. Based on our

numerical experience, the real parts are picked between two research bounds Re(α1) = a and

Re(αN) = b and follow the distribution

Re(αi+1)

Re(αi)
=

(
b

a

) 1
N−1

. (15)

This choice ensures that most exponents start with a small real part. The imaginary parts

are initially set to zero for all αi.

The fitting error Ξ is then minimized following a two step iterative algorithm: (i) a

least square optimization gives an approximation for the coefficients {ci} and (ii) the expo-

nents {αi} are optimized by using the Bound Optimization BY Quadratic Approximation

(BOBYQA).47 We iterate over steps (i) and (ii) until some reasonable convergence is reached.

The BOBYQA algorithm requires research bounds that allow us to constrain the domain for

the optimal exponents.

1.3.2 Optimal exponents and accuracy

In preparation for molecular applications, basis sets are required for several partial waves,

l = 0, 1, 2, 3, 4 being sufficient for our purpose. An optimization has been performed with a

set of pmax = 6 regular Coulomb functions with z = 1 defined as

Fl : {Fν(r) = Fl(η, kνr)}ν=1,...,6 (16)

on a momentum grid kν = 0.5 + 0.25(ν − 1), ν = 1, . . . , 6. Each Coulomb set Fl is fitted in

a radial box r ∈ [0; 25] using N = 30 cGTOs, i.e., for each value of l there are 60 non-linear

real parameters to be optimized along with 30× 6 linear coefficients.
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The initial value for the real parts of the exponents are selected between a = 10−4 and

b = 102 and research bounds are chosen as to constrain Re(αi) ∈ [10−4, 103] and Im(αi) ∈

[−0.1, 0.1]. Table 1 reports the optimal exponents for l = 0, 1, 2, 3, 4 ordered according to

their real parts. The number of digits is necessary as to ensure accuracy. The fitting error for
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Figure 1: Top panel : regular Coulomb function with wavenumber ke = 1 a.u. (thin con-

tinuous line), superimposed with its cGTO fit (Real part: dashed line; null imaginary part:

dotted line). The bottom panel shows the corresponding absolute errors.

one representative Coulomb wave with ke = 1 is shown in Figure 1 within the radial fitting

box. Real and imaginary parts are equally well reproduced with errors less than 10−3. As

discussed in details in ref. 26, one should also be attentive to the fitting quality outside the

fitting box since some trouble may arise in case of divergences at large radial distances. We

have checked that in our case the fitted functions go reasonably fast to zero at large values

of r, thus not risking to jeopardize their application in cross-section calculations.

An optimization reaching (Ξ−D) < 10−4 for one value of l typically requires 4− 5 hours

using 8 CPU at 2.66 GHz. Optimizations have been made only for Coulomb functions (and

not distorted waves). However we expect that optimal exponent sets can also be used for
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distorted radial functions in the same energy range without significant loss of accuracy. This

will be later confirmed in the result section 2.

1.4 Closed-form expression of the cross-section using Gaussian-Slater

integrals

1.4.1 General expressions

We now turn to the explicit calculation of the photoionization differential cross-section and

asymmetry parameter. Let us start with a few considerations about the molecular orien-

tation. The incident photon polarization is defined in the laboratory frame, and so is the

photoelectron wavevector. Spherical harmonics transform from the molecular frame (from

now on, unprimed variables) to the laboratory frame (from now on, primed variables) using

Wigner rotation matrices,48

Y m
l

(
r̂′
)

=
l∑

m̃=−l

D l
m̃m

(
R̂
)
Y m̃
l (r̂) . (17)

For an arbitrary molecular orientation, the dipole operator in (4) can be written as (for

convenience we replace the modulus r′ = r hereafter)

T (L ) ≡ ε̂ · r′ = r cos (θ′)

= 2

√
π

3
rY 0

1 (r̂′)

=
1∑

µ=−1

D1
µ0

(
R̂
)
T (L )
µ ,

(18)

with

T (L )
µ = 2

√
π

3
rY µ

1 (r̂). (19)

A similar rotated expression holds for the gradient operator in velocity form (5),

T (V ) ≡ 1

ıEγ
ε̂ · p

=
1∑

µ=−1

D1
µ0

(
R̂
)
T (V )
µ ,

(20)
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with

T (V )
µ = − 1

Eγ
∇µ, (21)

∇µ being the spherical tensor components of the gradient operator (see section 5 of ref. 48).

We should also take into account the inverse rotation matrix between the molecular and the

laboratory frame since the photoelectron wavevector is measured in the laboratory frame

while φi in eq. (8) corresponds to a given molecular orientation. Thus the spherical harmonic

in eq. (9) is written as Y m∗
l (k̂e) =

∑l
m̃=−l D

l
mm̃

(
R̂
)
Y m̃∗
l

(
k̂′e

)
with k̂′e the wavevector

direction in the laboratory frame.

Following Chandra39 and in the case of a linearly polarized photon, the explicit formula

of (3) after averaging over all possible Euler angles becomes

dσ(G )
(
k̂′e

)
dk̂′e

=
∑
L

A(G )
L (ke) Y

0
L

(
k̂′e

)
(22)

where

A(G )
L (ke) ≡

8πEγ
ke c

∑
l1,m1,µ1

∑
l2,m2,µ2

(−ı)l1−l2eı(δl1−δl2)M(G )
l1,m1,µ1

(
M(G )

l2,m2,µ2

)∗

× (−1)m1−µ1

√
(2l1 + 1)(2l2 + 1)(2L+ 1)

4π

l1 l2 L

0 0 0

1 1 L

0 0 0


×

 1 1 L

µ1 −µ2 −µ1 + µ2

 l1 l2 L

−m1 m2 µ1 − µ2

 ,

(23)

and M(G )
l1,m1,µ1

stand for the integrals

M(G )
l,m,µ ≡

∫ (
ul,ke(r)

r
Y m
l (r̂)

)∗
T (G )
µ φi(r)dr. (24)

In (23), the superscript G refers to the gauge choice, the phase shifts δl1 and δl2 come from

the partial wave expansion (9), and the standard notation is used for Wigner 3j symbols.48

The summation in (22) actually involves only two non-zero terms, L = 0 and L = 2, and

is thus equivalent to expression (6) written in terms of the asymmetry parameter. Using

the above notations, the total cross-section and asymmetry parameter can be respectively
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calculated as

σ(G )(ke) =

∫ [
A(G )

0 (ke)Y
0
0

(
k̂′e

)
+A(G )

2 (ke)Y
0
2

(
k̂′e

)]
dk̂′e

=
√

4πA(G )
0 (ke)

=
8πEγ
3 ke c

∑
l,m,µ

∣∣∣M(G )
l,m,µ

∣∣∣2 ,
(25)

and

β(G )(ke) =
√

20π
A(G )

2 (ke)

σ(G )(ke)

=
√

5
A(G )

2 (ke)

A(G )
0 (ke)

,

(26)

with A(G )
2 (ke) given by (23).

The numerical calculation of (25) and (26) is greatly facilitated by the fact that inte-

grals (24) becomes analytical by using cGTOs expansions for the continuum radial function

ul,ke(r).

1.4.2 Transition integrals in length or velocity gauges

In the length gauge, we first insert the transition operator (19) in integral (24), and then

make use of the initial state expansion (8). The angular part yields the Gaunt coefficients48,49

denoted by 〈lf mf |LM |limi〉 ≡
∫
Y
mf∗
lf

(r̂)Y M
L (r̂)Y mi

li
(r̂) dr̂. We thus obtain

M(L )
l,m,µ = 2

√
π

3

Ni∑
j=1

Cij 〈l,m|1, µ|lj,mj〉 I(2)j,l (27)

where the radial integral

I(g)j,l =

∫ ∞
0

(ul,ke(r))
∗ e−ζjrrnj+g−1dr, (28)

is defined here for a given integer g. Note that the sum over j in (27) refers to different

contributions in the initial state expansion (8); each value of j is associated with a pair

(nj, ζj). The Gaunt coefficient imposes the restrictions l = lj ± 1 and m = µ+mj, selecting

therefore some specific terms in this expansion.

The formulation is a little bit more complicated in velocity gauge. First, the gradient

operator (21) is inserted in (24), leading to

M(V )
l,m,µ = − 1

Eγ

Ni∑
j=1

Cij

∫ ∞
0

r2dr
(ul,ke(r))

∗

r
〈l,m

∣∣∇µ

(
rnj−1e−ζjr

)∣∣ lj,mj〉 . (29)
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Replacing the gradient formula given in section 5.7 of ref. 48, the angular integral in (29)

becomes

〈l m|∇µ

(
rnj−1e−ζjr

)
|ljmj〉 = Π

mµmj
l 1 lj

∆l lj

(
∂r +

bl lj
r

)(
rnj−1e−ζjr

)
= Π

mµmj
l 1 lj

∆l lj

[
−ζjr +

(
nj − 1 + bl lj

)]
rnj−2e−ζjr

(30)

with angular coefficients

Π
mµmj
l 1 lj

= (−1)m

 l 1 lj

−m µ mj

 l 1 lj

0 0 0

−1 , (31)

∆l lj =


lj + 1√

(2lj + 1)(2lj + 3)
if l = lj + 1,

lj√
(2lj − 1)(2lj + 1)

if l = lj − 1,

(32)

and

bl lj =

− lj if l = lj + 1,

lj + 1 if l = lj − 1.
(33)

Using again the notation (28), the dipole integral becomes

M(V )
l,m,µ = − 1

Eγ

Ni∑
j=1

CijΠ
mµmj
l 1 lj

∆l lj

[
−ζjI(1)j,l +

(
nj − 1 + bl lj

)
I(0)j,l

]
. (34)

Now let us assume that the continuum radial function, as defined in (10) or (11), is

expanded in an optimal cGTO set of the form (12), i.e.,

(ul,ke(r))
∗ ≈

N∑
s=1

[cs]l,ke e
−[αs]lr2 . (35)

Then radial integrals (28) can be written in closed form as

I(g)j,l =
N∑
s=1

∫ ∞
0

[cs]l,ke e
−[αs]lr2e−ζjrrnj+g−1dr

=
(nj + g − 1)!

2nj+g

N∑
s=1

[cs]l,ke

[αs]
nj+g

2
l

U

(
nj + g

2
,
1

2
;

ζ2j
4 [αs]l

)
,

(36)

where U(·, ·; ·) is the Tricomi function.50,51 It can be numerically evaluated, for example, using

the Python library mpmath.52 Expression (36) depends on the optimal complex exponents
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{αs} and expansion coefficients {cs}. Note that if the radial continuum function ul,ke(r) is

real, the complex conjugation in (28) has no effect. However, in the case its cGTOs expansion

is not perfectly real, we approximate the integral to its real part, I(g)j,l ' Re(I(g)j,l ).

In the particular case of a pure Coulomb continuum function given by (11) with η = − 1
ke

,

it is even possible to compute integrals (28) in closed form without using cGTO expansions

of the radial function. Indeed, we have

I(g)Coul
j,l =

∫ ∞
0

Fl (η, ker) e
−ζjrrnj+g−1dr

= kl+1
e e

π
2ke

2l
∣∣∣Γ(l + 1− ı

ke

)∣∣∣
Γ (2l + 2)

Γ (nj + g + l + 1)

(ζj − ıke)nj+g+l+1

×2F1

(
l + 1 + ıη, nj + g + l + 1, 2l + 2;

−2ıke
ζj − ıke

) (37)

where 2F1 is the Gauss hypergeometric function (see formula 13.10.3 of ref. 53). This

analytical result can be easily evaluated.52 It can be used as a benchmark to validate the

evaluation of (36) that makes use of the cGTO representation.

Before presenting our results, we should emphasize that in ref. 54 the photoionization

of atomic hydrogen was considered and used as a testbed for the analytical evaluation of

matrix elements. Indeed, the cross-section from the exact initial states nilimi is known in

closed form, and formulae (36) and (37) could be tested successfully.

2 RESULTS

We shall now present partial cross-sections σ(ke) and asymmetry parameters β(ke) for NH3

and H2O photoionization. The initial state is described with Moccia’s monocentric expansion

as explained in subsection 1.2 and the final continuum state is represented with cGTO

optimal sets as introduced in subsection 1.3. In each case, assuming that the cGTO set

has been previously optimized, the numerical evaluation of closed-form expressions given

by eqs. (25), (26), (27) and (34) for one value of σ(ke) and β(ke) in the two gauges takes

about 2 minutes of computational time using one CPU at 2.67 GHz. For each molecule,

we first validate the cGTO approach using internal comparisons for one selected valence

orbital, i.e., we compare the results obtained using cGTO representations for the radial
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continuum function with results given by the original wavefunction. We do this for the

outgoing electron described by either a pure Coulomb wave or a distorted wave, and in both

velocity and length gauges. Then, we present the distorted wave results for cross-sections and

asymmetry parameters for some other orbitals, along with comparisons with experimental

and other theoretical results from the literature.

2.1 NH3 photoionization parameters

The ground state electronic configuration of NH3 is 1a21 2a21 1e4 3a21
1A1. Fig. 2 shows

the partial cross-section and asymmetry parameter for the lowest energy ionization (3a1

valence orbital), obtained using either optimal cGTO representation for the radial continuum

wavefunction, or the original wavefunction. Results are shown for length and velocity gauges,

and using either a pure Coulomb wave or a distorted wave as explained in subsection 1.2.

In the Coulomb wave case, we compare the results obtained using cGTOs and Gaussian

integrals (eq. (36)) with those obtained by direct Coulomb integrals (eq. (37)). The curves

being almost undistinguishable, the quality of the cGTO representation is clearly sufficient

to reproduce the exact results, in both length and velocity gauges. In the case of a distorted

radial function, the comparison of cGTO results with those obtained by numerical integration

of the original distorted continuum wave, leads to the same conclusion. The results from the

two continuum models, Coulomb wave vs distorted wave, are expectedly different, illustrating

the strong sensitivity of the results to the physical model used to describe the outgoing

electron wavefunction. Besides, the observed gauge dependence should not surprise since

both initial and final states are not exact eigenfunctions of the Hamiltonian. The important

point here is that, from a methodological point of view, the Gaussian approach is validated

in both cases, and in both gauges. In other words, using cGTOs does not jeopardize the

quality of photoionization parameters within the limits of the selected model.

To put our results in perspective with respect to the literature, Fig. 3, 4 and 5 show the

partial cross-sections and asymmetry parameters for ionization from orbitals having the low-

est ionization energies, i.e. from orbitals 3a1, 1e and 2a1, respectively. Results are compared

with other theoretical results, some of them using more sophisticated models,14,55 and with

experimental points.56,57 Note that experimental results are typically associated with uncer-
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Figure 2: Partial cross-section σ(ke) (top panel) and asymmetry parameter β(ke) (bottom

panel) as a function of the photon energy (in eV), for the outer valence orbital 3a1 of NH3.

Results using cGTOs integrals (cG) are compared with results from exact integrals (th) in

the Coulomb wave case and with results from numerical integrals (num) in the distorted

wave case. Calculations are performed in both length (L) and velocity (V) gauges.
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tainties of about 3− 5% (not shown in the figures). We get an overall reasonable agreement

for the partial cross-sections, given the simplicity of the monocentric model. The difference

between length and velocity gauge results is sometimes quite large but the experimental

cross-sections are always framed between the two results. A meaningful comparison with

other theoretical cross-sections should be done within the same gauge, i.e. in velocity gauge

for ref. 14, while in length gauge for ref. 55. Results for the asymmetry parameter, which is

related to the photoelectron angular distribution and thus is a more sensitive quantity, are

good for the outer valence orbital 3a1 but larger deviations are visible in the 1e case. For the

2a1 orbital, the model yields less satisfactory results. We thus observe two general trends:

(i) our results for outer orbitals give an overall better agreement with experiments and other

calculations, for both the cross section and the asymmetry parameter and (ii) cross section

results are in general better than the asymmetry results. We think that these variations are

mainly due to the simplicity of the static-exchange potential (used in the one-active-electron

model for the description of the final state) which is not sufficiently realistic for more internal

target orbitals. Moccia’s wavefunctions describing the initial bound orbitals could also be

suspected to be responsible for such variations. However, this can be ruled out by the fact

that the results of ref. 14, using a similar level of approximation (a single-center Hartree-Fock

wavefunction) for the initial state but a different model for the final state, differ from ours.

Once again, the aim of the present study is not to defeat previous results from the literature

in terms of physical description but rather to prove the feasibility of fast cGTO calculations

in the context of molecular photoionization processes. In this respect, the present results are

fully satisfactory.

2.2 H2O photoionization parameters

We now turn to the results for water. The ground state electronic structure of H2O is

1a21 2a21 1b22 3a21 1b21
1A1. An internal comparison between the partial cross-section and

asymmetry parameter (for the outer valence orbital 1b1) obtained using the original functions

or their cGTO representation, is shown in Fig. 6. As previously observed for ammonia, the

agreement between cGTO calculations and results from either theoretical integrals (in the

Coulomb wave approximation) or numerical integrals (in the distorted wave case) is very
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Figure 3: Partial cross-section σ(ke) (top panel) and asymmetry parameter β(ke) (bottom

panel) as a function of the photon energy (in eV), for orbital 3a1 of NH3. Present results using

cGTOs integrals (cG) with a distorted continuum wave are compared with results from other

theoretical methods (TD-DFT by Stener et al 55 and single-center method of Novikovskiy

et al 14), and experimental points (Brion et al 56 and Banna et al 57). Our calculations are

performed in both length (L) and velocity (V) gauges.
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good. And this holds true in both length and velocity gauges.
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Figure 6: Partial cross-section σ(ke) (top panel) and asymmetry parameter β(ke) (bottom

panel) as a function of the photon energy (in eV), for the outer valence orbital 1b1 of H2O.

Results using cGTOs integrals (cG) are compared with results from exact integrals (th) in

the Coulomb wave case and with results from numerical integrals (num) in the distorted

wave case. Calculations are performed in both length (L) and velocity (V) gauges.

Results for orbitals 1b1, 3a1, 1b2 and 2a1 are shown in Figs. 7, 8, 9 and 10, respectively,

together with other theoretical results3,14,55 and experimental points.58–60 Note that once

again experimental uncertainties in the literature are typically of the order of 5% (not shown

in the figures). The photoionization parameters for outer valence orbitals 1b1 and 3a1 are

well reproduced. The velocity gauge results present an overall better agreement with ex-

perimental measurements (again, the length gauge results are shown here for fairness and

completeness). Difficulties appears when looking at orbital 1b2, where the difference between

the two gauges is more clearly visible and the results for β(ke) show larger deviations with

respect to other calculations and experimental results. For orbital 2a1, the cGTO results

are still reasonable, considering the disagreement observed between the two experimental
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and two theoretical sets of data plotted in the figure. The two general trends observed for

ammonia are also featured for water: agreement for cross sections is generally better than

for the more sensitive asymmetry parameter, and results are of relatively lower quality for

inner versus outer orbitals.
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Figure 7: Partial cross-section σ(ke) (top panel) and asymmetry parameter β(ke) (bottom

panel) as a function of the photon energy (in eV), for orbital 1b1 of H2O. Present results

using cGTOs integrals (cG) with a distorted continuum wave are compared with results from

other theoretical methods (TD-DFT by Stener et al 55, single-center method of Novikovskiy et

al 14 and EOM-CCSD Dyson/B-spline DFT calculations of Moitra et al 3), and experimental

points (Banna et al 60, Truesdale et al 59 and Tan et al 58). Our calculations are performed

in both length (L) and velocity (V) gauges.

3 CONCLUSION

Studying molecular photoionization processes requires a good description of the outgoing

electron. At first sight, Gaussian representations do not seem very appropriate for highly
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Figure 8: Same as Fig. 7 for orbital 3a1 of H2O.
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Figure 10: Same as Fig. 7 for orbital 2a1 of H2O.

oscillating wavefunctions. However we have shown that it is possible to use cGTO repre-

sentations of the continuum functions in the context of photoionization calculations, while

keeping the same level of accuracy for partial cross-sections and asymmetry parameters.

Formulas have been here derived within the framework of the monocentric approximation.

Transition integrals involving cGTOs have been written in closed form which can be easily

evaluated at little numerical cost. The preliminary optimization giving optimal exponents

for the Gaussian sets within a given energy range is costly but it had only to be performed

once for each orbital quantum number. We have provided a table of such exponents that

can be used for other applications involving continuum Coulomb or distorted states with

energy up to 45 eV; the linear coefficients can be easily obtained through linear optimiza-

tion. Our complex Gaussian approach has been validated here by studying photoionization

of two molecules of type AHn, namely ammonia and water. Practically no difference is seen

between a conventional calculation and a closed form approach through the proposed cGTO

representation.

A similar conclusion may be reached by studying the photodetachment of anions. In this
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case, the Coulomb wave with charge z = 1 are to be replaced by plane waves, and the cGTO

exponents have to be calculated for a set of spherical Bessel functions of first kind instead

of the regular Coulomb functions,54 i.e. formula (11) with z = 0.

The present investigation focused on a cGTO representation of the continuum states. For

the initial bound state φi(r) we took a single center expansion over Slater-type orbitals. In

the case where GTO were used instead, the involved matrix elements are also all analytical.

Actually, in such an all Gaussian approach, the radial integrals turn out to be even simpler

because the integrands involves only Gaussian type exponentials and powers of the radial

coordinate. The resulting closed form expressions have been presented in ref. 26, and have

been numerically validated with an rGTO representation of the exact states of the hydrogen

atom26 and of approximate states of small atoms.54

We are currently working on the natural extension of the proposed complex Gaussian

strategy to represent continuum states in two directions. The first one is to use cGTO to

deal with other applications such as (e, 2e) molecular ionization under electron impact, and

the study of High Harmonic Generation.61–64 The second direction, even more interesting, is

related to the well-known Gaussian product theorem leading to drastic simplifications in the

calculation of multicentric Gaussian integrals. This well-known property remains valid in

the presence of complex exponents65,66 and this motivates us to develop a generalization of

the cGTO transition integrals, considered here in the monocentric approximation, to a more

realistic multicentric model. This should be made by taking into account the multicentric

nature of the molecular target, in both initial (bound) and final (continuum) states. In a

preliminary investigation,54,67 we have already been able to show that the analytical character

of the calculations, which is related to using cGTO representations of the continuum, holds

with a multicentric test-case initial state of Gaussian type. Whether the latter is described

in spherical or cartesian coordinates, the matrix elements evaluation involves more laborious

mathematics. Remains to apply the formulation to photoionization of a realistic molecular

model. As a second step, a similar multicentric modification in the final state should be

considered. This would ultimately drastically speed up numerical calculation for processes

implying electronic continua in larger molecules.
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i {αi}l=0 {αi}l=1 {αi}l=2 {αi}l=3 {αi}l=4

1 0.00035555 + 0.00901614ı 0.0001000 + 0.0151526ı 0.00100000 + 0.00845442ı 0.00014763 + 0.00587055ı 0.00039019− 0.01494676ı

2 0.00053211 + 0.02065728ı 0.0001418− 0.0171753ı 0.00121886 + 0.01803494ı 0.00109586 + 0.02784779ı 0.00262171− 0.03255562ı

3 0.00080009− 0.01912061ı 0.0013875− 0.0021493ı 0.00148684 + 0.01813637ı 0.00148998− 0.01168882ı 0.00339622 + 0.01408910ı

4 0.00117085− 0.01123799ı 0.0019035 + 0.0216135ı 0.00181381 + 0.02949728ı 0.00205346 + 0.01943320ı 0.00443045− 0.02409112ı

5 0.00171276 + 0.02161259ı 0.0025827 + 0.0298661ı 0.00220490 + 0.02447032ı 0.00280227 + 0.03734991ı 0.00574632 + 0.02828016ı

6 0.00249700 + 0.03158584ı 0.0034908− 0.0241050ı 0.00267806− 0.01024824ı 0.00358933 + 0.01238024ı 0.00744649 + 0.02342353ı

7 0.00351122− 0.03766107ı 0.0046754− 0.0338441ı 0.00325391− 0.01961417ı 0.00459090− 0.02321602ı 0.00970895 + 0.03880653ı

8 0.00494586− 0.02649727ı 0.0061876 + 0.0378398ı 0.00395324− 0.02477460ı 0.00588757− 0.02219062ı 0.01223182 + 0.02067056ı

9 0.00695348− 0.02692584ı 0.0156781 + 0.0504851ı 0.00480634− 0.01801510ı 0.00757308− 0.03698798ı 0.01537803− 0.03985771ı

10 0.00974499− 0.04400129ı 0.0196315− 0.0395359ı 0.00585038− 0.02149702ı 0.00967950− 0.02915329ı 0.01953215− 0.03489981ı

11 0.01341500 + 0.03611724ı 0.0246020− 0.0352098ı 0.00712456− 0.02735801ı 0.01239829 + 0.04894840ı 0.02499666 + 0.05443031ı

12 0.01853987 + 0.04014546ı 0.0308382− 0.0302620ı 0.00867609− 0.03810200ı 0.01699053− 0.05180981ı 0.03507324− 0.05430569ı

13 0.02554489− 0.05549019ı 0.0386508− 0.0436192ı 0.01058491 + 0.03742598ı 0.03292671 + 0.06650370ı 0.04435803− 0.02396048ı

14 0.03437502 + 0.04391841ı 0.0484105 + 0.0624525ı 0.01305188 + 0.03757777ı 0.04217102− 0.07408910ı 0.05617605 + 0.02052618ı

15 0.04626602 + 0.05104620ı 0.0618203 + 0.0513264ı 0.01646720− 0.05003223ı 0.06196807 + 0.03814310ı 0.07128007 + 0.02106443ı

16 0.06218273− 0.06475675ı 0.0816826− 0.0552154ı 0.02076651 + 0.05258585ı 0.19225626 + 0.03964722ı 0.16136565 + 0.02940124ı

17 0.08554072− 0.02426909ı 0.1936246 + 0.0097332ı 0.03514922− 0.06965770ı 0.30147472 + 0.00811515ı 0.39894781 + 0.02631795ı

18 0.11861245 + 0.07471136ı 0.2915597 + 0.0024838ı 0.04424413 + 0.07302765ı 0.51617609 + 0.04399335ı 0.55207468 + 0.07285449ı

19 0.16691697 + 0.08944899ı 0.4971406− 0.0113366ı 0.09707468− 0.10000000ı 0.82002155 + 0.05919349ı 0.86945734− 0.01791204ı

20 0.23869247− 0.09999999ı 0.8532849 + 0.0200975ı 0.12043971 + 0.08910818ı 1.19395577 + 0.01279526ı 1.12048249 + 0.08602790ı

21 1.19614463− 0.02970423ı 1.3797714 + 0.0062079ı 2.10573048− 0.03921720ı 1.48783709 + 0.02469442ı 1.41353953 + 0.04522398ı

22 5.33188880− 0.01441299ı 2.1958583− 0.0311758ı 3.94194435 + 0.02888234ı 2.19692967− 0.08785385ı 2.14872735− 0.01352875ı

23 7.71182758− 0.09811990ı 3.5672935− 0.0087858ı 6.10200559− 0.01548483ı 3.54466390 + 0.02398460ı 3.60699097− 0.03483872ı

24 10.9962323− 0.09305650ı 5.7419028 + 0.0012293ı 9.14648581− 0.00307356ı 5.54622769 + 0.00914500ı 5.64732513 + 0.01125528ı

25 15.5241861− 0.09730549ı 9.2535835− 0.0212019ı 13.7297058− 0.03200391ı 9.24463017− 0.00535522ı 9.19300771 + 0.04174570ı

26 21.7519013− 0.09157168ı 14.868739− 0.0267870ı 20.4351559− 0.00138094ı 14.8708853− 0.02233793ı 14.8869767− 0.03464065ı

27 30.2989535− 0.07925670ı 23.954872− 0.0406721ı 30.3651118 + 0.02650005ı 23.9508076 + 0.08258257ı 23.9066166 + 0.00726798ı

28 42.0163884− 0.09927635ı 38.575864 + 0.0168896ı 45.2156191− 0.00722570ı 38.5477254 + 0.09948084ı 38.5167312− 0.01803004ı

29 58.1483705− 0.08991001ı 62.088037− 0.0059998ı 67.2295184 + 0.01284461ı 62.0907276− 0.03652093ı 62.0736229− 0.06204804ı

30 80.7346781− 0.08528403ı 99.986651 + 0.0164035ı 99.9856251− 0.06227840ı 100.021625 + 0.00412096ı 99.9767615− 0.03846239ı

Table 1: Optimal cGTO exponents {αi}l obtained after fitting the sets of Coulomb functions

as defined in eq. (16), for l = 0, 1, 2, 3, 4. The optimal exponents for l = 1 have been already

published in ref. 26 and were obtained with slightly different numerical parameters in the

optimization code.
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