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In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a Directed Acyclic Graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that somewhere in the DAG, a bug was introduced, which persists in all of its subsequent versions. It is possible to query a vertex to check whether the corresponding version carries the bug. Given a DAG and a bugged vertex, the Regression Search Problem consists in finding the first vertex containing the bug in a minimum number of queries in the worst-case scenario. This problem is known to be NP-hard. We study the algorithm used in git to address this problem, known as git bisect. We prove that in a general setting, git bisect can use an exponentially larger number of queries than an optimal algorithm. We also consider the restriction where all vertices have indegree at most 2 (i.e. where merges are made between at most two branches at a time in the VCS), and prove that in this case, git bisect is a 1 log 2 (3/2)approximation algorithm, and that this bound is tight. We also provide a better approximation algorithm for this case.

Introduction

In the context of software development, it is essential to resort to Version Control Systems (VCS, in short), like git or mercurial. VCS enable many developers to work concurrently on the same system of files. Notably, all the versions of the project (that is to say the different states of the project over time) are saved by the VCS, as well as the different changes between versions.

Furthermore, many VCS offer the possibility of creating branches (i.e. parallel lines of development) and merging them, so that individuals can work on their own part of the project, with no risk of interfering with other developers work. Thereby the overall structure can be seen as a Directed Acyclic Graph (DAG), where the vertices are the versions, also named in this context commits, and the arcs model the changes between two versions.

The current paper deals with a problem often occurring in projects of large size: searching the origin of a so-called regression. Even with intensive testing techniques, it seems unavoidable to find out long-standing bugs which have been lying undetected for some time. Conveniently, one tries to fix this bug by finding the commit in which the bug appeared for the first time. The idea is that there should be few differences between the code source of the commit that introduced the bug, and the one from a previous bug-free commit, which makes it easier to find and fix the bug.

The identification of the faulty commit is possible by performing queries on existing commits. A query allows to figure out the status of the commit: whether it is bugged or it is clean. A single query can be very time-consuming: it may require running tests, manual checks, or the compilation of an entire source code. In some large projects, performing a query on a single commit can take up to a full day (for example, the Linux kernel project [START_REF] Couder | Fighting regressions with git bisect[END_REF]). This is why it is essential to find the commit that introduced the bug with as few queries as possible.

The problem of finding an optimal solution in terms of number of queries, known as the Regression Search Problem, was proved to be NP-complete by Carmo, Donadelli, Kohayakawa and Laber in [START_REF] Carmo | Searching in random partially ordered sets[END_REF]. However, whenever the DAG is a tree (oriented from the leaves to the root), the Regression Search Problem is polynomial [START_REF] Ben-Asher | Optimal search in trees[END_REF][START_REF] Onak | Generalization of binary search: Searching in trees and forest-like partial orders[END_REF], and even linear [START_REF] Mozes | Finding an optimal tree searching strategy in linear time[END_REF].

To our knowledge, very few papers in the literature deal with the Regression Search Problem in the worst-case scenario, as such. The Decision Tree problem, which is known to be NP-complete [START_REF] Hyafil | Constructing optimal binary decision trees is N P -complete[END_REF] as well as its approximation version [START_REF] Laber | On the hardness of the minimum height decision tree problem[END_REF], somehow generalises the Regression Search Problem, with this difference that the Decision Tree problem aims to minimise the average number of queries instead of the worst-case number of queries.

Many variations of the Regression Search problem exist:

the costs of the queries may vary [START_REF] Dereniowski | Approximation strategies for generalized binary search in weighted trees[END_REF][START_REF] Emamjomeh-Zadeh | Deterministic and probabilistic binary search in graphs[END_REF]; the queries return the wrong result (say it is clean while the vertex is bugged or the converse) with a certain probability [START_REF] Emamjomeh-Zadeh | Deterministic and probabilistic binary search in graphs[END_REF]; one can just try to find a bugged vertex with at least one clean parent [START_REF] Bendík | Finding regressions in projects under version control systems[END_REF].

The most popular VCS today, namely git, proposes a tool for this problem: an algorithm named git bisect. It is a heuristic inspired by binary search that narrows down at each query the range of the possible faulty commits. This algorithm is widely used and shows excellent experimental results, though to our knowledge, no mathematical study of its performance have been carried out up to now.

In this paper, we fill this gap by providing a careful analysis on the number of queries that git bisect uses compared to an optimal strategy. This paper does not aim to find new approaches for the Regression Search Problem.

First, we show in Section 2 that in the general case, git bisect may be as bad as possible, testing about half the commits where an optimal logarithmic number of commits can be used to identify exactly the faulty vertex. But in all the cases where such bad performance occurs, there are large merges between more than two branches, 1 also named octopus merges. However, such merges are highly uncommon and inadvisable, so we carry out the study of git bisect performances with the assumption that the DAG does not contain any octopus 1 According to https://www.destroyallsoftware.com/blog/2017/the-biggest-andweirdest-commits-in-linux-kernel-git-history, a merge of 66 branches happened in the Linux kernel repository.

merge, that is every vertex has indegree at most two. Under such an assumption, we are able to prove in Section 3 that git bisect is an approximation algorithm for the problem, never using more than 1 log 2 (3/2) ≈ 1.71 times the optimal number of queries for large enough repositories. We also provide a family of DAGs for which the number of queries used by git bisect tends to 1 log 2 (3/2) times the optimal number of queries.

This paper also describes in Section 4 a new algorithm, which is a refinement of git bisect. This new algorithm, which we call golden bisect, offers a mathematical guaranteed ratio of is the golden ratio. The search of new efficient algorithms for the Regression Search Problem seems to be crucial in software engineering (as evidenced by [START_REF] Bendík | Finding regressions in projects under version control systems[END_REF]); golden bisect is an example of progress in this direction.

Formal definitions

Throughout the paper, we refer to VCS repositories as graphs, and more precisely as Directed Acyclic Graphs (DAG), i.e. directed graphs with no cycle. The set V of vertices corresponds to the versions of the software. An arc goes from a vertex p to another vertex v if v is obtained by a modification from p. We then say that p is a parent of v. A vertex may have multiple parents in the case of a merge. An ancestor of v is v itself or an ancestor of a parent of v. 2 Equivalently, a vertex is an ancestor of v if and only if it is co-accessible from v (i.e. there exists a path from this vertex to v).

We use the convention to write vertices in bold (for example v), and the number of ancestors of a vertex with the number letter between two vertical bars (for example |v|).

In our DAGs, we consider that a bug has been introduced at some vertex, named the faulty commit. This vertex is unique, and its position is unknown. The faulty commit is supposed to transmit the bug to each of its descendants (that is its children, its grand-children, and so on). Thus, vertices have two possible statuses: bugged or clean. A vertex is bugged if and only if it has the faulty commit as an ancestor. Other vertices are clean. This is illustrated by Figure 1.

We consider the problem of identifying the faulty commit in a DAG D, where a bugged vertex b is identified. Usually, since the faulty commit is necessarily an ancestor of b, only the induced subgraph on b's ancestors is considered, and thus b is a sink (i.e. a vertex with no outgoing edge) accessible from all vertices in the DAG. When the bugged vertex is not specified, it is assumed to be the only unique sink of the DAG.

The problem is addressed by performing queries on vertices of the graph. Each query states whether the vertex is bugged or clean, and thus whether or not the faulty commit belongs to its ancestors or not. Once we find a bugged vertex whose parents are all clean, it is the faulty commit. The aim of the Regression Search Problem is to design a strategy for finding the faulty commit in a minimal number of queries.

Formally, a strategy for a DAG D is a binary tree S where the nodes are labelled by the vertices of D. Inner nodes of S represent queries. The root of S is the first performed query. If the queried vertex is bugged, then the following strategy is given by the left subtree. If it is clean, the strategy continues on the right subtree. At each query, there are fewer candidates for the faulty commit. Whenever a single candidate remains, the subtree is reduced to a leaf whose label is the only possible faulty commit.

For example, Figure 2 shows a strategy tree for a directed path of size 5. Suppose that the faulty commit is 4. In this strategy, we query in first 2. Since it is clean, we query next 4, which appears to be bugged. We finally query 3: since it is clean, we infer that the faulty commit is 4. We have found the faulty commit with 3 queries. Remark that if the faulty commit was 1, 2 or 5, the strategy would use only 2 queries.

The Regression Search Problem is formally defined as follows.

Definition 1. Regression Search Problem. Input. A DAG D with a marked vertex b, known to be bugged. Output. A strategy which uses the least number of queries in the worst-case scenario.

In terms of binary trees, the least number of queries in the worst-case scenario of a strategy corresponds to the height of the tree. For example, if the input DAG is a directed path of size n, we know that there exists a strategy with log 2 (n) queries in the worst-case scenario. Indeed, a simple binary search enables to remove half of the vertices at each query. A second interesting example is what we refer to as an octopus. In this digraph, there is a single sink and all other vertices are parent of the sink (see Figure 2). When the faulty commit is the sink, we must query all other vertices to make sure that the sink is faulty, regardless of the strategy. Thus, every strategy is equivalent for the Regression Search Problem on the n-vertices octopus, and uses n -1 queries in the worst case.

These two examples actually constitute extreme cases for the Regression Search Problem, as shown by the following proposition.

Proposition 1. For any DAG D with n vertices, any strategy that finds the faulty commit uses at least log 2 (n) queries, and at most n -1 queries.

Proof. Remember that a strategy is a binary tree with at least n leaves, and the number of queries in the worst-case scenario corresponds to the height of the tree. But the height of such a binary tree is necessarily at least log 2 (n) , which proves the lower bound.

As for the upper bound, it is quite obvious because one can query at most n -1 vertices in the Regression Search Problem.

From a complexity point of view, the Regression Search Problem is hard: Carmo, Donadelli, Kohayakawa and Laber proved in [START_REF] Carmo | Searching in random partially ordered sets[END_REF] that computing the least number of queries for the Regression Search Problem is NP-complete. 3

Description of git bisect

As said in the introduction, some VCS have implemented a tool for the Regression Search Problem. The most known one is git bisect, but it has its equivalent in mercurial (hg bisect [START_REF] Boissinot | hg bisect mercurial manpage[END_REF]).

The algorithm git bisect is a greedy algorithm based on the classical binary search. The local optimal choice consists in querying the vertices that split the digraph in the most balanced way. To be more precise, let us define the notion of score.

Definition 2 (Score). Given a DAG with n vertices, the score of a vertex x is

min(|x|, n -|x|),
where |x| is the number of ancestors of x (recall that x is an ancestor of itself ).

If vertex x is queried and appears to be bugged, then there remain |x| candidates for the faulty commit: the ancestors of x. If the query of x reveals on the contrary that it is clean, then the number of candidates for the faulty commit is n -|x|, which is the number of non-ancestors. This is why the score of x can be interpreted as the least number of vertices to be eliminated from the set of possible candidates for the faulty commit, when x is queried. For a DAG, each vertex has a score and the maximum score is the score with the maximum value among all.

For example, let us refer to Figure 1: vertex 6 has 5 ancestors (1, 2, 4, 5 and 6). Its score is so min(5, 21 -5) = 5.

We give now a detailed description of git bisect. Take for example the DAG from Figure 1. Vertex 18 has the maximum score (8) so constitutes the first vertex to be queried. If we assume that the faulty commit is 6, then the query reveals that 18 is clean. So all ancestors of 18 are removed (that are 1, 2, 4, 5, 8, 9, 10, 18). Vertex 14 is then queried because it has the new maximum score 6, and so on.

The whole git bisect strategy tree is shown in Figure 3. Notice that for this DAG, the git bisect algorithm is optimal since in the worst-case scenario it uses 5 queries and by Proposition 4, we know that any strategy uses at least log 2 (21) = 5 queries. The greedy idea behind git bisect (choosing the query which partitions the commits as evenly as possible) is quite widespread in the literature. For example, it was used to find a (log(n) + 1)-approximation for the Decision Tree Problem [START_REF] Adler | Approximating optimal binary decision trees[END_REF], in particular within the framework of geometric models [START_REF] Arkin | Decision trees for geometric models[END_REF]. 

Worst-case number of queries

This section addresses the complexity analysis of git bisect in the worst-case scenario.

The comb construction

We describe in this subsection a way to enhance any DAG in such a way the Regression Search Problem can always be solved in a logarithmic number of queries.

Definition 3 (Comb addition). Let D be a Directed Acyclic Graph with n vertices. Let v 1 < v 2 < . . . < v n be a topological ordering of D, that is a linear ordering of the vertices such that if v i v j is an arc, then v i < v j .

We say that we add a comb to D if we add to D:

n new vertices u 1 , . . . , u n ; the arcs v i u i for i ∈ {1, . . . , n}; the arcs u i u i+1 for i ∈ {1, . . . , n -1}.

The resulting graph is denoted comb(D). The new identified bugged vertex of comb(D) is u n .

Examples of comb addition are shown by Figure 4. The comb addition depends on the initial topological ordering, but the latter will not have any impact on the following results. This is why we take the liberty of writing comb(D) without any mention to the topological ordering.

Theorem 2. Let D be a Directed Acyclic Graph with n vertices and such that the number of queries used by the git bisect algorithm is x. If we add a comb to D, then the resulting DAG comb(D) is such that:

the optimal strategy uses only log 2 (2n) queries; when n is odd, the git bisect algorithm uses x + 1 queries. 14/0 If the initial number of vertices n is even, there is no guarantee that git bisect will perform x + 1 queries on comb(D) -it will depend on whether the first queried vertex is v n or u n/2 .

D graph v 1 1/13 v 2 1/13 v 3 3/11
v 1 v 2 v 3 v 4 v 5 v 6 v 7 u 1 u 2 u 3 u 4 u 5 u 6 u 7
Moreover, remark that the comb construction shows that the worst-case number of queries required for searching the faulty commit can be lower in D than in a subgraph of D. Indeed, adding a comb to any digraph induces a logarithmic number of queries, even though the initial digraph uses more queries.

Theorem 2 is proved in Appendix A.1.

A pathological example for git bisect

The following corollary shows the existence of digraphs for which the git bisect algorithm totally fails. The optimal number of queries is linear, while the git bisect algorithm effectively uses an exponential number of queries.

Theorem 3. For any integer k > 2, there exists a DAG such that the optimal number of queries is k, while the git bisect algorithm always uses 2 k-1 -1 queries.

Proof. Choose D as an octopus with 2 k-1 -1 vertices. The number of git bisect queries is 2 k-1 -2 (like every other strategy). The wanted digraph is then comb(D) (see Figure 4 right for an illustration). Indeed, by Theorem 2, the git bisect algorithm uses 2 k-1 -1 git bisect queries to find the faulty commit in comb(D), while an optimal strategy uses log

2 2 k -2 = k queries.
This also shows that the git bisect algorithm is not a C-approximation algorithm for the Regression Search Problem, for any constant C.

Approximation ratio for binary DAGs

The pathological input for the git bisect algorithm has a very particular shape (see Figure 4 right): it involves a vertex with a gigantic indegree. However, in the context of VCS, this structure is quite rare. It means that many branches have been merged at the same time (the famous octopus merge). Such an operation is strongly discouraged, in addition to the fact that we just showed that git bisect becomes inefficient in this situation.

This motivates to define a new family of DAGs, closer to reality:

Definition 4 (Binary digraph). A digraph is binary if each vertex has indegree (that is the number of ingoing edges) at most equal to 2. Figure 5 illustrates this definition. If we restrict the DAG to be binary, git bisect proves to be efficient. Theorem 4. On any binary DAG with n vertices, the number of queries of the git bisect algorithm is at most

log 2 (n) log 2 ( 3
While the whole proof of Theorem 4 is displayed in Appendix A.2, the key ingredient of the proof lies in the next lemma, which exhibits a core property of the binary DAGs. It states that if the DAG is binary, there must be a vertex with a "good" score. Lemma 1. In every binary DAG with n vertices, there exists a vertex v such that |v|, its number of ancestors, satisfies n-1 3 < |v| ≤ 2n+1 3 . By this lemma, we infer that git bisect removes at least approximately one third of the remaining vertices at each query. The overall number of queries is then equal to log 3/2 (n).

This lemma is also proved in Appendix A.2. The idea, in a few words, is to consider the vertex whose number of ancestors exceeds the number of nonancestors by the narrowest of margins. If this vertex does not satisfy Lemma 1, then it must have two parents, and at least one of them satisfies the lemma.

The upper bound of Theorem 4 is asymptotically sharp, as stated by the following proposition, which we show in Appendix A.3. Proposition 2. For any integer k, there exists a binary DAG J k such that the number of git bisect queries on comb(J k ) is k + log 2 (k) + 3; an optimal strategy for comb(J k ) uses at most log 2 ( 32 ) k + log 2 (3k + 6) + 2 queries.

(Remember that the comb operation is described by Definition 3.)

Figure 6 shows what J k looks like for k = 3. The reader can check that the number of queries for git bisect in the worst-case scenario is 7 (which occurs for example when c is bugged). By Proposition 2, the approximation ratio 1/ log 2 (3/2) is considered to be optimal for git bisect.

Corollary 2. For any ε > 0, the git bisect algorithm is not a 1 log 2 (3/2) -ε approximation algorithm for binary DAGs.

We, the authors, have made the choice to only present the binary case in the main part of this paper, even if all these results can be easily generalised to DAGs whose indegree is bounded by an arbitrary integer ∆. Indeed, we reckon binary DAGS to be more natural in practice, while there is no interest to see the proofs in all generality except for some technicalities. The curious reader may check Appendix B to have the precise statements for DAGs with maximum indegree ∆.

A new algorithm with a better approximation ratio for binary DAGs

In this section, we describe a new algorithm improving the number of queries in the worst-case scenario compared to git bisect -theoretically at least.

Description of golden bisect

We design a new algorithm for the Regression Search Problem, which we name golden bisect, which is a slight modification of git bisect. It is so called because it is based on the golden ratio, which is defined as φ = 1+ √ 5

2 . The difference of golden bisect with respect to git bisect is that it does not query a vertex with the maximum score if the maximum score is too "low". Under these circumstances, it queries a vertex with a guarantee on the size of the remaining subgraph after two queries. Precisely, starting from a graph with n vertices, either the subgraph remaining after one query is of size at most n φ , or the subgraph obtained after two queries is of size at most n φ 2 . Let us give some preliminary definitions.

Definition 5 (Subsets B ≥ and B < ). Let D be a DAG. We define V ≥ as the set of vertices which have more ancestors than non-ancestors. Let B ≥ (for "Best" or "Boundary") denote the subset of vertices v of V ≥ such that no parent of v belongs to V ≥ and B < be the set of parents of vertices of B ≥ .

The reader can look at Figure 7 

2 ), query a vertex with the maximum score. (The differences with git bisect are displayed in bold.)

For example, consider the digraph from Figure 7. We have 21/φ 2 ≈ 8.02. The maximum score 8 is smaller than this number, so we run Step 5 instead of Step 4. Thus as its first query, golden bisect chooses indifferently 7 or 14, which respectively belong to B < and B ≥ , and which have score 7. It diverges from git bisect, which picked 18 (score 8) instead.

For a full example, the reader can refer to the strategy tree in Figure 8. Note that, even if it is different from git bisect, the golden bisect strategy uses 5 queries in the worst-case scenario.

Results for golden bisect on binary DAGs

This subsection lists the main results about the complexity analysis of golden bisect. First, note that Theorem 3 also holds for golden bisect, so the general case (i.e whenever the DAGs are not necessarily binary) is as bad as git bisect.

As for binary DAGs, we establish that the golden bisect algorithm has a better upper bound for the number of queries, in comparison with git bisect. Theorem 6. On any binary DAG with n vertices, the number of golden bisect queries is at most log φ (n) + 1 = log 2 (n) log 2 (φ) + 1, where φ is the golden ratio. Fig. 8: The golden bisect strategy tree for the digraph of Figure 7. In case of equality of score, the vertex with the smallest label is chosen.

As first corollary, since no power of φ is an integer, the number of golden bisect queries for a binary DAG of size n is also at most log φ (n) = log 2 (n) log 2 (φ) . We can also deduce that it is a better approximation algorithm than git bisect (in the binary case): Corollary 3. For every ε > 0, golden bisect is a 1 log 2 (φ) + ε -approximation algorithm on binary DAGs with a sufficiently large size.

Finally, this also gives an upper bound for the optimal number of queries in the worst-case scenario, given a binary DAG of size n.

Corollary 4. For any binary DAG D with n vertices, the optimal number opt of queries for the Regression Search Problem satisfies

log 2 (n) ≤ opt ≤ log φ (n) .
Note that the latter corollary is an analogue of Proposition 1, but for binary DAGs. The lower bound is satisfied for a large variety of DAGs, the most obvious ones being the directed paths.

Theorem 6 is fully proved in Appendix A.4. Moreover, in Appendix A.5, we exhibit a family of graphs whose ratio "number of golden bisect queries" / "optimal number of queries" tends to 1/ log 2 (φ), which was the approximation constant of Corollary 3.

Conclusion

In summary, this paper has established that git bisect can be very inefficient on very particular digraphs, but under the reasonable hypothesis that merges must not concern more than 2 branches each, it is proved to be a good approximation algorithm. This study has also developed a new algorithm, golden bisect, which displays better theoretical results than git bisect.

The natural next step will be to conduct experimental studies. The authors are currently implementing git bisect and golden bisect, and are going to put them to the test on benchmarks.

Notably, some open questions remain, and hopefully answers will be found through the experiments. Here is a list of such open questions:

-Even if golden bisect is a better approximation algorithm than the git bisect algorithm, it does not mean that golden bisect is overall better than git bisect. Does there exist some instance of binary DAG for which golden bisect is worst than the git bisect algorithm? -In git bisect and in golden bisect, one never queries vertices which were eliminated from the set of candidates for the faulty commit. However, we could speed up the procedure by never removing any vertex after queries. For example, consider the DAG from Figure 4. If we choose v 7 as first query and it is bugged, then we remove all u i (the non-ancestors of v 7 ). However, querying the vertices u i in the comb would be more efficient. Could we improve git bisect by authorising such queries? -When we restrict the DAGs to be binary, is the Regression Search Problem still NP-complete? -If we restrict the DAGs to be trees (oriented from the leaves to the root), is git bisect a good approximation algorithm? We conjecture that git bisect is a 2-approximation algorithm for trees. (We have found examples where the ratio is 2.)

Finally we envisage studying the number of queries in the worst-case scenario, but whenever the input DAG is taken at random. Indeed, most of the examples described in this paper are not very likely to exist in reality. The notion of randomness for a digraph emanating from a VCS is therefore quite interesting and deserves to be developed. We could for example define a theoretical probabilistic model based on existing workflows. It will be also quite useful to use random samplers for VCS repositories in order to constitute benchmarks on demand.

Let us prove this claim for every digraph D by induction on the number n of vertices of D.

The case n = 1 is obvious: if D has only 1 vertex, we query v 1 to know whether u 1 or v 1 is the faulty commit. The number of queries is then log 2 (2 × 1) = 1. Now fix n > 1 and let us assume that the claim holds for every digraph D of size < n. We choose as the first query the vertex u i where i = n 2 . Depending on whether u i is bugged or clean, the digraph after this query is either comb

(D)[u 1 , . . . , u i , v 1 , . . . , v i ] or comb(D)[u i+1 , . . . , u n , v i+1 , . . . , v n ].
(We use the notation G[t 1 , . . . , t ] to denote the subgraph of G induced by the vertices t 1 , . . . , t .)

Notice that in any case, the resulting digraph is of the form comb(D ). Indeed, we just have to choose The overall number of queries for comb(D) with this strategy is then at most 1+ log 2 2 n 2 , which is equal to log 2 (2n) whenever n ≥ 1. By Proposition 1 strategy with this number of queries must be optimal. Vertex v n is the only one to have a maximal score. Indeed, on the one hand, any vertex of the form v i with i < n has fewer than n ancestors. On the other hand, u i having 2i ancestors, its score must be even, and therefore cannot be maximal if n is odd.

D := D[v 1 , . . . , v i ] or D := D[v i+1 , . . . , v n ],
Thus the git bisect algorithm is going to choose v n as first query. If this vertex turns out to be clean, it remains a directed path of length n, inducing log 2 (n) git bisect queries. If v n is bugged, then the resulting graph is D, for which the worst-case number of git bisect queries is x. Therefore, since x ≥ log 2 (n) by Proposition 1, the number of git bisect queries for comb(D) in the worst-case scenario is x + 1.

A.2 Proof of Theorem 4

We begin by the proof of Lemma 1.

Proof (Lemma 1). The lemma is obvious whenever n ≤ 3 (one chooses a vertex with no parent).

Let us consider V ≥ the set of vertices whose number of ancestors is greater or equal than its number of non-ancestors, and B ≥ the subset of V ≥ whose vertices have no parent in V ≥ .

Let us choose v in B ≥ . Since the graph is binary, v has 1 or 2 parents. Let us study both cases separately.

Vertex v has only one parent p. Thus, p has exactly |v| -1 ancestors and n -|v| + 1 non-ancestors. Since p is not in V ≥ , |v| - . But aside itself, every ancestor of v must be an ancestor of x or y. Hence

n -1 3 < n 2 ≤ |v| ≤ |x| + |y| + 1 ≤ n -1 3 + n -1 3 + 1 = 2n + 1 3 .
Vertex v thus satisfies the lemma.

This lemma is sufficient to prove the logarithmic upper bound for the number of git bisect queries.

Proof (Theorem 4).

Let D be a DAG with n vertices, and D k the digraph obtained from D after k git bisect queries. We denote by n k the number of vertices in D k . After each query, the git bisect algorithm chooses the vertex v given by Lemma 1 or a vertex with a better score. In any case, the score of the chosen vertex in D k is greater or equal than n k -1 3 . This is why

n k+1 ≤ 2n k + 1 3 . (1) 
We can then show by induction that

n k ≤ 1 + 2 3 k (n -1). ( 2 
)
Let x be the number of queries for git bisect so that x is the first number such that n x = 1. If n ∈ {2, 3, 4, 5, 6, 7}, one can check with (1) that n k is necessary smaller than 2 after log 2 (n)/ log 2 (3/2) steps. So without lost of generality, one can assume that n > 7.

If x ≤ 4, then the proposition holds since n > 7 implies 4 < log 3/2 (n). After each query, we eliminate at least one vertex, so n x-3 ≥ 4. Plugging k = x -4 in (1), one obtains n x-4 ≥ 3nx-3-1 2 ≥ 5.5, hence n x-4 ≥ 6. Similarly, we have n x-5 ≥ 9.

Notice when setting k = log 3/2 n- 1 8 in the right member of (2), one obtains 9. So x -5 must be less than log 3/2 n-1 8

. Thus

x < 5 + log 3 2 n -1 8 < log 3 2 (n -1) + 5 -log 3 2 (8) < log 3 2 (n -1)
since log 3/2 (8) 5.13 . . .

A.3 Proof of Proposition 2

In this appendix section we explain how to construct the J k graphs, defined in Proposition 2. We start by defining J 0 k , the backbone of J k . It is formed by taking three directed paths on k + 1 vertices

x 1 → x 2 → • • • → x k+1 , y 1 → • • • → y k+1 and z 0 → • • • → z k
and merging the three vertices x k+1 , y k+1 and z 0 into a vertex c (see Figure 10a for an example with k = 3).

We construct our final graph J k from its backbone through k + 1 successive digraphs: J 0 k , J 1 k , . . . , J k k . For each d starting from 1 to k, let us define We wish the number of vertices in the final graph J k to be odd in order to use Theorem 2. If J k k has an odd number of vertices, then we keep the digraph as such. If this number turns to be even, we just replace k by k + 1 in the last step, which increases the number of vertices by 3, and so makes it odd. We denote by J k the resulting digraph.

d =      n d-1 + 2 6 if n d-1 is even, n d-1 + 5 6 if n d-1 is
The construction for k = 3 is shown in Figure 10.

Why is d always an integer? Notice that n d ≡ 1 modulo 3, for each d. Indeed, it holds for the backbone J 0 k since it has 3k + 1 vertices and, each step, we add 3 d vertices. Thus, n d is congruent to 1 (resp. 4) modulo 6 if n d is odd (resp. even). Equivalently, n d + 5 is a multiple of 6 whenever n d is odd, like n d + 2 whenever n d is even. This is why d is always an integer.

Number of vertices in the final digraph. For each d > 1, the number of vertices n d satisfies the inequality A quick induction shows that

n d = n d-1 + 3 d ≤ 3 2 n d-1 + 5 2 . 
n d ≤ 3 2 d (3k + 6) -5.
Remember that, if n k was even, we had added 3 vertices in the final digraph. In any case, the number of vertices in J k is bounded by 3 2 d (3k + 6).

Claim A.3.01 When c is the faulty commit, the git bisect algorithm uses k + log 2 (k) + 2 queries on J k .

We are going to show that the resulting digraph just after the i-th step of the git bisect algorithm is J k-i k , for i ∈ {0, . . . , k}. In other words, after k git bisect queries, we will end up with the backbone J 0 k . After we show this fact, the claim is easily proved. Indeed, two extra queries from J 0 k lead to a binary search on a directed path with k vertices, for which git bisect uses log 2 (k) queries to find the faulty commit. This explains why the number of git bisect queries is k + 2 + log 2 (k) .

To do so, we prove by induction on d some construction invariants: As for the score of x k , we just proved that it is equal to the number of ancestors of x k . So, by induction, the score of x k in J d k is smaller than

n d-1 3 + d = n d-1 + 3 d 3 = n d 3 ,
which concludes the induction. Now, let us suppose that the digraph just before the i-th step is J m k , where m = k -i+1 and let us show that after the i-th step, the digraph becomes J m-1 k .

To do so, we have to investigate the scores of all vertices in J m k . By construction, each vertex is either an ancestor of x k , an ancestor of y k , a descendant of c, or an ancestor of a z j with j ∈ {1, . . . , m}. The vertex x k having less ancestors than non-ancestors, the ancestors of x k different from x k have a worst score than x k . Thus the git bisect algorithm never queries an ancestor of x k different from x k . Similarly, we can eliminate every other vertex, excepted x k , y k , c and z j with j ∈ {1, . . . , m}.

We already saw that the scores of x k , y k and c are the same and bounded by nm 3 . As for the vertex z j , its score is equal to 3 j . Since j is strictly increasing, we can eliminate every vertex z j for j < m. It remains to compute the score of z m . Remark that 6 d > n d-1 by the definition of d . We deduce that

n m = n m-1 + 3 m < 9 m .
But the score of z m is equal to its number of ancestors, which is 3 m , which is bigger than n m 3 by the above inequality.

So z m is the only vertex with a maximal score; the git bisect algorithm will query this vertex. Since c is not an ancestor of z m , git bisect will remove every ancestor of z m : we recover

J m-1 k . Claim A.3.02 Proposition 2 is satisfied by comb(J k ).
It is a direct application of Theorem 2. Recall that the number of vertices in J k is odd and is bounded by 3 2 d (3k + 6).

A.4 Proof of Theorem 6

We prove here the upper bound for the number of queries used by golden bisect in the framework of binary graphs.

Lemma 2. Given any DAG with n vertices, there exists a vertex v ∈ B + ∪ B - such that the score of v is at least n -1 3 .

Proof. Exactly the same proof as Lemma 1 (see Appendix A.2).

Recall

that φ = 1 + √ 5 2
is the golden ratio. We also have 1 + φ -φ 2 = 0, and thus n -n φ = n φ 2 .

Lemma 3. For any binary DAG with n ≥ 14 vertices, (i) either the golden bisect reduces the searching area to at most n φ in one query, (ii) or it reduces the searching area to at most n φ 2 in two queries.

Note that the lemma does not hold for n = 13, as shown by Figure 11. Here, the digraph after 1 golden bisect step has 9 vertices, which is larger than 13 φ ≈ 8.03, and after 2 golden bisect steps, it has 5 vertices, which is larger than 13 φ 2 ≈ 4.96. Proof. If the maximum score of a vertex in D is at least n φ 2 , then item (i) holds since there will remain at most n -n φ 2 = n φ vertices. Let us suppose then that all vertices have score less than n φ 2 and show that (ii) is satisfied.

Then let z be the first vertex queried by golden bisect, and |z| be its number of ancestors. In this case, z belongs to B ≥ or B < .

Figure 12 sketches all the cases in this proof.

Case 1: z ∈ B + . Since z ∈ V + by hypothesis, its score corresponds to the number of non-ancestors, which is n -|z|. Thus, if z is clean, then after one step of golden bisect, one only keeps as many vertices as the score of z, which is less than n φ 2 , and (ii) holds. Suppose now that z carries a bug. Vertex z must have 2 parents. Indeed, if it has only one parent, then by the same reasoning as in the proof of Lemma 1, the score of z is an integer greater than n 2 -1, which is greater than n φ 2 for n ≥ 4. This contradicts the hypothesis on the score of z.

Let us denote by D the DAG obtained from D after querying z. The new marked sink is z. Let us call x and y the parents of z, and assume that |x| and |y|, the respective numbers of ancestors of these vertices, satisfy |x| ≥ |y|. 

= |z| φ + |z| φ 2 - n φ 2 = |z| φ 2 + |z| -n φ φ > |z| φ 2 .
Thus golden bisect will query x or a vertex with a better score. But querying x will keep |x| vertices if x is bugged, and |z| -|x| otherwise. So the number of remaining vertices after the second query is at most |x| < n φ 2 , and (ii) is true.

Case 2: z ∈ B -. Since z belongs to B < , it has a child in B ≥ . Denote it c, and |c| its number of ancestors. As above, we can assume that c has more than 1 parent, because otherwise the score of c would be better than n 2 -1. Let z be the other parent of c (also in B < ) and |z | its number of ancestors.

If z is bugged, then there remain at most |z| < n φ 2 vertices, which makes (i) true. So assume that the queried vertex z is clean, and after one step of golden bisect, we end up with a new DAG D , obtained from D by removing all ancestors of z. Note that D has n -|z| vertices.

Let us show first the following claim, which is going to be helpful for the two last subcases (2b and 2c). Proof. Let #a and #na be respectively the number of ancestors and nonancestors of v in D so that #a ≤ n φ 2 and #na ≤ n φ 2 . First notice that the score of v in D is the minimum between #a and #na. So, if we show that both #a and #na are no less than n-|z| φ 2 , the claim is proved. Since there are n -|z| vertices in D , we have

#a + #na = n -|z|. So #a = n -|z| -#na ≥ n -|z| - n φ 2 = n -|z| φ 2 + 1 φ n φ 2 -|z|
(the last equality can be derived after some calculations from the identity 1 = We can now establish the upper bound for the overall number of golden bisect queries. 

2 F 1 (c) F3 F 3 F 2 (d) F4 F 4 F 3 (e) F5 F 5 F 4 (f) F6
Fig. 13: First Fibonacci trees vertex as first query. The worst-case scenario is whenever this vertex is bugged, and so whenever the graph after the first query is F i-1 . We then proceed to an induction and see there remain at this point i -3 queries.

Claim A.5.02 If T is a tree strictly containing as disjoint copies the Fibonacci trees F k and F k+1 (cf Figure 14 top), then, for any strategy searching for the faulty commit in T , there exists a vertex v in T such that this strategy uses at least k queries to find v as the faulty commit.

Proof. We prove this claim by induction on k. It is clear for k = 1, since if T strictly includes F 2 , which is a single vertex, as a copy, then we need at least 1 query to know whether this single vertex carries a bug or not. Now suppose the claim statement true for an integer k -1, and consider a strategy for the Regression Search Problem on a tree T strictly containing F k+1 and F k . Let z be the first query of this strategy. Let us investigate every possibility for z (the reader can refer to Figure 14 for an illustration):

1. The root of the subtree F k+1 is an ancestor of z. Then we force the faulty commit v to be an ancestor of z (i.e. z is bugged). Then after querying

Fk Fk

Fk-1

Fk Fk

Fk-1 z, there remains all ancestors of z, which contains F k+1 , which, by definition of Fibonacci trees, strictly contains F k and F k-1 . By induction hypothesis, we need to query k -1 extra vertices to find the faulty commit. 2. The root of the subtree F k+1 is not an ancestor of z and z is not in the subtree F k+1 . Here v will be a non-ancestor of z (i.e. z is not bugged). Like in the previous case, the remaining digraph will include F k+1 , hence copies of F k and F k-1 . We then use the induction hypothesis. 3. z is in the subtree F k+1 , but it is not its root. We set z to be clean so that v will be among the non-ancestors of z. The subtree F k+1 contains two disjoint copies of F k-1 , so at least a whole copy of F k-1 is included at the same time in the non-ancestors of z and in F k+1 . By hypothesis, T included also another copy of F k . So the query of z leads to a tree containing F k and F k-1 : the induction hypothesis indicates that we need k -1 other queries.

For each of these 3 possibilities, the strategy uses in total k queries, which concludes the induction.

Conclusion of the proof of Theorem 7. The Fibonacci tree F i contains disjoint copies of F i-1 and F i-2 . By Claim A.5.02, any strategy, in particular an optimal one, uses at least i -2 queries to find the faulty commit in F i in the worstcase scenario. The optimal number of queries is then exactly i -2, because by Claim A.5.01, git bisect and golden bisect use that many queries (and so are optimal).

The first consequence of Theorem 7 is that the upper bound log φ (n) from Corollary 4 is asymptotically sharp: The previous corollary demonstrates that the Fibonacci trees are inherently flawed for the Regression Search Problem. They are the less pathological analogues of octopuses, but in the context of binary DAGs.

Finally, we show that 1 log 2 (φ) is the good approximation ratio for golden bisect. Corollary 6. For ε > 0, golden bisect is not a 1 log 2 (φ) -ε approximation algorithm.

Proof. The idea is to add a comb (see Definition 3) to the i-th Fibonacci tree F i to approach the 1 log 2 (φ) ratio. Theorem 2 indeed works similarly if we use golden bisect instead of git bisect. Thus, comb(F i ) is a binary DAG for which:

the number of golden bisect queries is log φ (|F i |) -1 (see Corollary 5), the optimal number of queries is log 2 (|F i |) + 1.

The ratio of these two numbers makes a number tending to 1 log 2 (φ) , whenever i goes to +∞. This is why golden bisect cannot be a 1 log 2 (φ) -ε approximation algorithm, for any ε > 0.

B Generalisation for ∆-ary DAGs

For any ∆ ≥ 1, a DAG is said to be ∆-ary if each of its vertices has indegree at most equal to ∆. It is worth noting that the results for binary DAGs can be naturally extended to ∆-ary DAGs.

1 log 2

 12 (φ) ≈ 1.44 for DAGs with indegree at most 2 where φ = 1+ √ 5 2

Fig. 1 :

 1 Fig. 1: An example of a DAG. The bugged vertices are colored. The crossed vertex (6) is the faulty commit. The notation a/b along each vertex indicates that a is the number of ancestors of the vertex, and b is the number of non-ancestors. The score (see Definition 2) is displayed in black.

Fig. 2 :

 2 Fig. 2: Left. A directed path on 5 vertices. Center. A possible strategy for the Regression Search Problem on the path on 5 vertices. Right. An octopus of size 6.

Fig. 3 :

 3 Fig.3: The git bisect strategy corresponding to the graph of Figure1. In case of score equality, the convention we choose consists in querying the vertex with the smallest label.

Fig. 4 :

 4 Fig. 4: Left. Illustration of the comb addition. The initial digraph is highlighted in pink. Right. Comb(D) graph where D is an octopus of size 7.

Fig. 5 :

 5 Fig. 5: Left. A binary DAG. Right. A non-binary DAG.

Fig. 6 :

 6 Fig. 6: Binary DAG J 3 which satisfies Proposition 2 for k = 3.

1 .

 1 for an illustrative example. Now, let us describe the golden bisect algorithm. Algorithm 5 (golden bisect) Input. A DAG D and a bugged vertex b. Output. The faulty commit of D. Steps: Remove from D all non-ancestors of b. 2. If D has only one vertex, return this vertex. 3. Compute the score for each vertex of D. 4. If the maximum score is at least n φ 2 ≈ 38.2% × n (where φ = 1+ √

Fig. 7 :

 7 Fig. 7: A binary DAG with the 3 sets of vertices V ≥ , B ≥ and B < .

  and keep the same topological ordering. Now we can use the induction hypothesis on comb(D ), which has at most n 2 vertices: we can find a strategy in at most log 2 (2 n 2 ) queries to find the faulty commit in comb(D ).

Claim A. 1 .

 1 03 If n is odd, the git bisect algorithm necessarily uses x + 1 queries. By Claim A.1.01, v n has n ancestors, and digraph comb(D) has 2n vertices. So the score of v n is n (hence maximal).

1 k.

 1 odd, where n d-1 stands for the number of vertices in J d-Add a directed path on d vertices towards each backbone vertex at distance d from c, namely x k+1-d , y k+1-d , and z d . Then, add edges from the new parents of x k+1-d and of y k+1-d to the first vertex of the path newly attached to z d . Also, the new parent of z d is denoted by z d . The reader can refer to Figure 9 for a better understanding of the notation.

Fig. 9 :

 9 Fig. 9: the d-th step in the construction of J k .

Fig. 10 :

 10 Fig. 10: Construction of J 3 .

4 Fig. 11 :

 411 Fig. 11: First two steps of golden bisect for a DAG of size 13

Fig. 12 :

 12 Fig. 12: Subcases of the proof in Lemma 3.

Claim A. 4 .

 4 01 If there exists a vertex v of D which have ≤ n φ 2 ancestors in D and ≤ n φ 2 non-ancestors in D , then the score of v in D is greater or equal than n-|z| φ 2 . Thus golden bisect will query a vertex with the maximum score, as stated by Step 4.

  Case 2c: in D , the number of ancestors of z is equal to the number of nonancestors of c. Note that every vertex of D is either an ancestor of z (number: |z|), a non-ancestor of c (number: n -|c|), an ancestor of z in D (number by hypothesis: n -|c|), or c (number: 1), hence n = 2(n -|c|) + |z| + 1. But we have n -|c| ≤ |z| since the score of c in D is no more than the score of z. Therefore n ≥ 3(n -|c|) + 1 and (n -|c|) + 1 ≤ n-1 3 + 1, which is less than n φ 2 whenever n ≥ 14. Thus c (like z ) satisfies the hypotheses of Claim A.4.01 and by the same reasoning as the previous cases, (ii) is satisfied.

F

  

Fig. 14 :

 14 Fig. 14: Illustration of the proof of Claim A.5.02

Corollary 5 .

 5 Any strategy solving the Regression Search Problem for any Fibonacci tree of size n ≥ 7 uses log φ (n) -2 queries.The authors do not know if there exist an infinity of graphs for which solving the Regression Search Problem requires exactly log φ (n) queries.Proof (Proof of Corollary 5). Let |F i | be the number of vertices of the i-th Fibonacci tree F i . By construction, we have|F i | = |F i-1 | + |F i-2 | + 1, |F 1 | = 0 and |F 2 | = 1.This recurrence has for solution |Fi | = f ib i+1 -1, where f ib i is the i-th Fibonacci number. Using that f ib i+1 = φ i+1 -(-φ) -i-1 / √ 5, we get log φ (|F i |) = i + 1 -log φ ( √ 5) + ε i ,whereε i = log φ 1 -√ 5 φ i+1 -1 (-φ 2 ) i+1which tends to 0 and is in absolute value smaller than 0.3 (a bit less than 2-log φ ( √5)) whenever i ≥ 5. If i ≥ 5, we have log φ (|F i |) = i+1-log φ ( √ 5)+ 0.3 = i. We conclude by Theorem 7.

  1 < n -|v| + 1, and thus |v| < n 2 + 1. Also, since v ∈ V + , |v| ≥ n -|v| and thus, |v| ≥ n 2 . Thus n 2 ≤ |v| < n 2 + 1 which satisfies the lemma whenever n ≥ 4.Vertex v has two parents x and y, respectively having |x| and |y| ancestors. For the same reasons as above, x and y are not in V ≥ so |x| <

	If any of x or y has more than or y.	n -1 3	n 2 ancestors, then the lemma holds for x and |y| < n . 2
	Let us assume the contrary, that is |x| ≤	n -1 3	and |y| ≤	n -1 3

  Case 1b: |x| ≥ |y| + 1 or the vertices x and y have the same number of ancestors and share a common ancestor. Both cases in the assumption give |y| + 1 -|xy| ≤ |x|, where |xy| stands for the number of common ancestors of x and y. Since |z| = 1 + |x| + |y| -|xy|, we have that in both cases, |z| -|x| is no more than |x|. Thus the score of x in D is |z| -|x|.We wish to show that in D , golden bisect selects a query according to Step 4. In other words, we want to prove that a vertex has a score in D no less than |z| φ 2 , more precisely that vertex x satisfies this condition. First observe that in D, the score |x| of x and the score n -|z| of z are by hypothesis less than n φ 2 . Thus, we have

	|x| <	n φ 2	and |z| > n -	n φ 2 =	n φ	.
	Therefore the score |z| -|x| of x in D satisfies	
	|z| -|x| > |z| -	n φ 2			
	1 3 + 1. Since n-1 3 + 1 < n φ 2 for n ≥ 14, this case is proved.

  Case 2a: in D , the number of ancestors of z is greater than the number of non-ancestors of c. In D , the number of ancestors of z is |z | or less. But |z | was the score of z in D and did not exceed n φ 2 in D. Moreover, the number of non-ancestors of z in D is equal to the number of non-ancestors of c plus one, which is by hypothesis less than or equal to the number of ancestors of z . Thus, the number of ancestors and the number of non-ancestors of z in D are no more than n φ 2 . So by Claim A.4.01, golden bisect will query z or a vertex with a better score. But if z is queried, the resulting graph would have at most |z | vertices, which is less than n φ 2 . Therefore (ii) holds. So c satisfies the assumptions of Claim A.4.01, which shows, that the second query is about c or a vertex with a better score. It yields a DAG with at most n -|c| vertices, which is less than n φ 2 . Here again (ii) holds.

	1 φ + 1 φ 2 ). But the score |z| of z in D is by hypothesis less than n φ 2 . We then
	deduce that	#a ≥	n -|z| φ 2 .
	The numbers #a and #na play symmetric roles in this claim, so we can similarly
	infer that #na ≥ n-|z| φ 2 . Thereby we have finally proved that the score of v is
	≥ n-|z| φ 2 .		
	Let us resume the proof of Lemma 3.

Case 2b: in D , the number of ancestors of z is less than the number of nonancestors of c. The number of ancestors of c in D is the number of ancestors of z in D plus one, which is less than or equal to n -|c| , the number of nonancestors of c. Moreover, n -|c| was also the score of c in D, which is less than n φ 2 by hypothesis.

Usually, v is not considered an ancestor of itself. Though for simplifying the terminology, we use this special convention here.

In reality, the problem they studied has an extra restriction: a query cannot be performed on a vertex which was eliminated from the set of candidates for the faulty commit (which occurs for example when an ancestor is known to be bugged). However, the widget they used in the proof of NP-completeness also works for our problem where we do not necessarily forbid such queries.

) . Corollary 1. The algorithm git bisect is a 1 log2(3/2) ≈ 1.71 approximation algorithm on binary DAGs.

A Proofs

A.1 Proof of Theorem 2

We keep the same notation as Definition 3. For a DAG D and a subset of vertices X ⊆ V , the induced subgraph of D on X, denoted D[X], is the digraph with vertex set X, and with an arc from vertex u to vertex v if and only if the corresponding arc is in D.

Claim A.1.01 For all i, u i has 2i ancestors, which are all the vertices u j and v j with j ≤ i. The ancestors of v i do not change.

Observe first that no v i is the head of an arc added in comb(D). Inductively, we infer that the ancestors of v i do not change.

As for u i , we prove the claim by induction. Indeed, vertex u i has two parents which are u i-1 and v i . By induction hypothesis, we can see that all the vertices u j and v j with j < i are ancestors of u i since they are the ancestors of u i-1 . Moreover all ancestors v j of v i satisfy j ≤ i (by topological ordering). Consequently u i has 2i ancestors: itself, v i and all the ancestors of u i-1 .

Claim A.1.02 The optimal number of queries is log 2 (2n) for comb(D).

Proof (Proof of Theorem 6).

We prove by induction on n that for any binary DAG with n vertices, the number of golden bisect queries is at most log φ (n) + 1.

The base case is a bit tedious since we need to prove it for n ≤ 13. The idea is to use Lemma 2 to show that golden bisect eliminates at least n-1 3 vertices at the first step. So the maximal number of queries for size n is bounded by one plus the maximal number of queries for size n -n- We remark that the second row is bounded by the last row. So the property holds for n ≤ 13.

As for n ≥ 14, the induction is straightforward by Lemma 3. Indeed, if (i) is satisfied, then the number of golden bisect queries is bounded by 1 +

A.5 Fibonacci trees

In order to prove the sharpness of the constant 1 log 2 (φ) from Corollary 3, we define a new family of digraphs: Fibonacci trees. Definition 6 (Fibonacci trees). For i ≥ 0, the i-th Fibonacci tree F 1 is defined as followed.

F 1 is an empty tree, F 2 is a single vertex, and for i ≥ 3, F i+1 is a sink with two parents, one being the sink of a tree F i and the other the sink of a tree F i-1 .

Figure 13 shows the 6 first Fibonacci trees. We can establish an optimal strategy for the Fibonacci trees. Theorem 7. For any i ≥ 2, the optimal strategy for the i-th Fibonacci tree F i uses i -2 queries in the worst-case scenario.

Proof. We decompose this proof in two claims.

Claim A.5.01 The git bisect algorithm and the golden bisect algorithm both use i -2 queries to find the faulty commit in F i in the worst-case scenario.

Proof. The maximum score in F i is only achieved for the root of the subtree F i-1 , and it is equal to the size of F i-1 (which is f ib i -1, where f ib i is the i-th Fibonacci number). So both git bisect and golden bisect will choose this Indeed, Lemma 1, which is of paramount importance to understand the structure of binary DAGs, can be generalised as follows.

Lemma 4. In every ∆-ary DAG with n vertices, there exists a vertex v such that |v|, its number of ancestors, satisfies n-1 ∆+1 < |v| ≤ ∆n+1 ∆+1 .

This leads to the following theorem.

Theorem 8. On any ∆-ary DAG with n vertices, the number of queries of the git bisect algorithm is at most log 2 (n) log 2 ( ∆+1 ∆ ) . Consequently, the git bisect algorithm is a 1 log 2 ( ∆+1 ∆ ) -approximation algorithm on ∆-ary DAGs.