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Theoretical analysis of git bisect

Julien Courtiel, Paul Dorbec, and Romain Lecoq

Normandie University, UNICAEN, ENSICAEN, CNRS, GREYC.

Abstract. In this paper, we consider the problem of finding a regression
in a version control system (VCS), such as git. The set of versions is
modelled by a Directed Acyclic Graph (DAG) where vertices represent
versions of the software, and arcs are the changes between different ver-
sions. We assume that somewhere in the DAG, a bug was introduced,
which persists in all of its subsequent versions. It is possible to query a
vertex to check whether the corresponding version carries the bug. Given
a DAG and a bugged vertex, the Regression Search Problem consists
in finding the first vertex containing the bug in a minimum number of
queries in the worst-case scenario. This problem is known to be NP-hard.
We study the algorithm used in git to address this problem, known as
git bisect. We prove that in a general setting, git bisect can use an
exponentially larger number of queries than an optimal algorithm. We
also consider the restriction where all vertices have indegree at most 2
(i.e. where merges are made between at most two branches at a time
in the VCS), and prove that in this case, git bisect is a 1

log2(3/2)
-

approximation algorithm, and that this bound is tight. We also provide
a better approximation algorithm for this case.

1 Introduction

In the context of software development, it is essential to resort to Version Control
Systems (VCS, in short), like git or mercurial. VCS enable many developers
to work concurrently on the same system of files. Notably, all the versions of the
project (that is to say the different states of the project over time) are saved by
the VCS, as well as the different changes between versions.

Furthermore, many VCS offer the possibility of creating branches (i.e. parallel
lines of development) and merging them, so that individuals can work on their
own part of the project, with no risk of interfering with other developers work.
Thereby the overall structure can be seen as a Directed Acyclic Graph (DAG),
where the vertices are the versions, also named in this context commits, and the
arcs model the changes between two versions.

The current paper deals with a problem often occurring in projects of large
size: searching the origin of a so-called regression. Even with intensive testing
techniques, it seems unavoidable to find out long-standing bugs which have been
lying undetected for some time. Conveniently, one tries to fix this bug by finding
the commit in which the bug appeared for the first time. The idea is that there
should be few differences between the code source of the commit that introduced
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the bug, and the one from a previous bug-free commit, which makes it easier to
find and fix the bug.

The identification of the faulty commit is possible by performing queries on
existing commits. A query allows to figure out the status of the commit: whether
it is bugged or it is clean. A single query can be very time-consuming: it may
require running tests, manual checks, or the compilation of an entire source code.
In some large projects, performing a query on a single commit can take up to a
full day (for example, the Linux kernel project [7]). This is why it is essential to
find the commit that introduced the bug with as few queries as possible.

The problem of finding an optimal solution in terms of number of queries,
known as the Regression Search Problem, was proved to be NP-complete by
Carmo, Donadelli, Kohayakawa and Laber in [6]. However, whenever the DAG
is a tree (oriented from the leaves to the root), the Regression Search Problem
is polynomial [3,13], and even linear [12].

To our knowledge, very few papers in the literature deal with the Regression
Search Problem in the worst-case scenario, as such. The Decision Tree problem,
which is known to be NP-complete [10] as well as its approximation version
[11], somehow generalises the Regression Search Problem, with this difference
that the Decision Tree problem aims to minimise the average number of queries
instead of the worst-case number of queries.

Many variations of the Regression Search problem exist:

– the costs of the queries may vary [8,9];
– the queries return the wrong result (say it is clean while the vertex is bugged

or the converse) with a certain probability [9];
– one can just try to find a bugged vertex with at least one clean parent [4].

The most popular VCS today, namely git, proposes a tool for this problem:
an algorithm named git bisect. It is a heuristic inspired by binary search
that narrows down at each query the range of the possible faulty commits. This
algorithm is widely used and shows excellent experimental results, though to our
knowledge, no mathematical study of its performance have been carried out up
to now.

In this paper, we fill this gap by providing a careful analysis on the number
of queries that git bisect uses compared to an optimal strategy. This paper
does not aim to find new approaches for the Regression Search Problem.

First, we show in Section 2 that in the general case, git bisect may be as
bad as possible, testing about half the commits where an optimal logarithmic
number of commits can be used to identify exactly the faulty vertex. But in all
the cases where such bad performance occurs, there are large merges between
more than two branches,1 also named octopus merges. However, such merges are
highly uncommon and inadvisable, so we carry out the study of git bisect

performances with the assumption that the DAG does not contain any octopus

1 According to https://www.destroyallsoftware.com/blog/2017/the-biggest-and-
weirdest-commits-in-linux-kernel-git-history, a merge of 66 branches happened in
the Linux kernel repository.
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merge, that is every vertex has indegree at most two. Under such an assumption,
we are able to prove in Section 3 that git bisect is an approximation algorithm
for the problem, never using more than 1

log2(3/2)
≈ 1.71 times the optimal number

of queries for large enough repositories. We also provide a family of DAGs for
which the number of queries used by git bisect tends to 1

log2(3/2)
times the

optimal number of queries.
This paper also describes in Section 4 a new algorithm, which is a refine-

ment of git bisect. This new algorithm, which we call golden bisect, offers
a mathematical guaranteed ratio of 1

log2(φ)
≈ 1.44 for DAGs with indegree at

most 2 where φ = 1+
√
5

2 is the golden ratio. The search of new efficient algorithms
for the Regression Search Problem seems to be crucial in software engineering
(as evidenced by [4]); golden bisect is an example of progress in this direction.

1.1 Formal definitions

Throughout the paper, we refer to VCS repositories as graphs, and more precisely
as Directed Acyclic Graphs (DAG), i.e. directed graphs with no cycle. The set
V of vertices corresponds to the versions of the software. An arc goes from a
vertex p to another vertex v if v is obtained by a modification from p. We then
say that p is a parent of v. A vertex may have multiple parents in the case of a
merge. An ancestor of v is v itself or an ancestor of a parent of v.2 Equivalently,
a vertex is an ancestor of v if and only if it is co-accessible from v (i.e. there
exists a path from this vertex to v).

We use the convention to write vertices in bold (for example v), and the
number of ancestors of a vertex with the number letter between two vertical
bars (for example |v|).

In our DAGs, we consider that a bug has been introduced at some vertex,
named the faulty commit. This vertex is unique, and its position is unknown. The
faulty commit is supposed to transmit the bug to each of its descendants (that
is its children, its grand-children, and so on). Thus, vertices have two possible
statuses: bugged or clean. A vertex is bugged if and only if it has the faulty
commit as an ancestor. Other vertices are clean. This is illustrated by Figure 1.

We consider the problem of identifying the faulty commit in a DAG D, where
a bugged vertex b is identified. Usually, since the faulty commit is necessarily
an ancestor of b, only the induced subgraph on b’s ancestors is considered, and
thus b is a sink (i.e. a vertex with no outgoing edge) accessible from all vertices
in the DAG. When the bugged vertex is not specified, it is assumed to be the
only unique sink of the DAG.

The problem is addressed by performing queries on vertices of the graph.
Each query states whether the vertex is bugged or clean, and thus whether or
not the faulty commit belongs to its ancestors or not. Once we find a bugged
vertex whose parents are all clean, it is the faulty commit.

2 Usually, v is not considered an ancestor of itself. Though for simplifying the termi-
nology, we use this special convention here.
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Fig. 1: An example of a DAG. The bugged vertices are colored. The crossed vertex
(6) is the faulty commit. The notation a/b along each vertex indicates that a
is the number of ancestors of the vertex, and b is the number of non-ancestors.
The score (see Definition 2) is displayed in black.

The aim of the Regression Search Problem is to design a strategy for finding
the faulty commit in a minimal number of queries.

Formally, a strategy for a DAG D is a binary tree S where the nodes are
labelled by the vertices of D. Inner nodes of S represent queries. The root of S
is the first performed query. If the queried vertex is bugged, then the following
strategy is given by the left subtree. If it is clean, the strategy continues on the
right subtree. At each query, there are fewer candidates for the faulty commit.
Whenever a single candidate remains, the subtree is reduced to a leaf whose
label is the only possible faulty commit.

For example, Figure 2 shows a strategy tree for a directed path of size 5.
Suppose that the faulty commit is 4. In this strategy, we query in first 2. Since
it is clean, we query next 4, which appears to be bugged. We finally query 3:
since it is clean, we infer that the faulty commit is 4. We have found the faulty
commit with 3 queries. Remark that if the faulty commit was 1, 2 or 5, the
strategy would use only 2 queries.

The Regression Search Problem is formally defined as follows.

Definition 1. Regression Search Problem.
Input. A DAG D with a marked vertex b, known to be bugged.
Output. A strategy which uses the least number of queries in the worst-case
scenario.

In terms of binary trees, the least number of queries in the worst-case scenario
of a strategy corresponds to the height of the tree. For example, if the input DAG
is a directed path of size n, we know that there exists a strategy with dlog2(n)e
queries in the worst-case scenario. Indeed, a simple binary search enables to
remove half of the vertices at each query.
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Fig. 2: Left. A directed path on 5 vertices. Center. A possible strategy for the
Regression Search Problem on the path on 5 vertices. Right. An octopus of size
6.

A second interesting example is what we refer to as an octopus. In this di-
graph, there is a single sink and all other vertices are parent of the sink (see
Figure 2). When the faulty commit is the sink, we must query all other vertices
to make sure that the sink is faulty, regardless of the strategy. Thus, every strat-
egy is equivalent for the Regression Search Problem on the n-vertices octopus,
and uses n− 1 queries in the worst case.

These two examples actually constitute extreme cases for the Regression
Search Problem, as shown by the following proposition.

Proposition 1. For any DAG D with n vertices, any strategy that finds the
faulty commit uses at least dlog2(n)e queries, and at most n− 1 queries.

Proof. Remember that a strategy is a binary tree with at least n leaves, and the
number of queries in the worst-case scenario corresponds to the height of the
tree. But the height of such a binary tree is necessarily at least dlog2(n)e, which
proves the lower bound.

As for the upper bound, it is quite obvious because one can query at most
n− 1 vertices in the Regression Search Problem.

From a complexity point of view, the Regression Search Problem is hard:
Carmo, Donadelli, Kohayakawa and Laber proved in [6] that computing the
least number of queries for the Regression Search Problem is NP-complete.3

1.2 Description of git bisect

As said in the introduction, some VCS have implemented a tool for the Re-
gression Search Problem. The most known one is git bisect, but it has its
equivalent in mercurial (hg bisect [5]).

The algorithm git bisect is a greedy algorithm based on the classical binary
search. The local optimal choice consists in querying the vertices that split the

3 In reality, the problem they studied has an extra restriction: a query cannot be
performed on a vertex which was eliminated from the set of candidates for the
faulty commit (which occurs for example when an ancestor is known to be bugged).
However, the widget they used in the proof of NP-completeness also works for our
problem where we do not necessarily forbid such queries.
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digraph in the most balanced way. To be more precise, let us define the notion
of score.

Definition 2 (Score). Given a DAG with n vertices, the score of a vertex x is

min(|x|, n− |x|),

where |x| is the number of ancestors of x (recall that x is an ancestor of itself).

If vertex x is queried and appears to be bugged, then there remain |x| candi-
dates for the faulty commit: the ancestors of x. If the query of x reveals on the
contrary that it is clean, then the number of candidates for the faulty commit
is n− |x|, which is the number of non-ancestors. This is why the score of x can
be interpreted as the least number of vertices to be eliminated from the set of
possible candidates for the faulty commit, when x is queried. For a DAG, each
vertex has a score and the maximum score is the score with the maximum value
among all.

For example, let us refer to Figure 1: vertex 6 has 5 ancestors (1, 2, 4, 5 and
6). Its score is so min(5, 21− 5) = 5.

We give now a detailed description of git bisect.

Algorithm 1 (git bisect)
Input. A DAG D and a bugged vertex b.
Output. The faulty commit of D.
Steps:

1. Remove from D all non-ancestors of b.
2. If D has only one vertex, return this vertex.
3. Compute the score for each vertex of D.
4. Query the vertex with the maximum score. If there are several vertices which

have the maximum score, select any one then query it.
5. If the queried vertex is bugged, remove from D all non-ancestors of the

queried vertex. Otherwise, remove from D all ancestors of the queried vertex.
6. Go to Step 2.

Take for example the DAG from Figure 1. Vertex 18 has the maximum score
(8) so constitutes the first vertex to be queried. If we assume that the faulty
commit is 6, then the query reveals that 18 is clean. So all ancestors of 18 are
removed (that are 1,2,4,5,8,9,10,18). Vertex 14 is then queried because it
has the new maximum score 6, and so on.

The whole git bisect strategy tree is shown in Figure 3. Notice that for
this DAG, the git bisect algorithm is optimal since in the worst-case scenario
it uses 5 queries and by Proposition 4, we know that any strategy uses at least
dlog2(21)e = 5 queries.

The greedy idea behind git bisect (choosing the query which partitions the
commits as evenly as possible) is quite widespread in the literature. For example,
it was used to find a (log(n) + 1)-approximation for the Decision Tree Problem
[1], in particular within the framework of geometric models [2].
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Fig. 3: The git bisect strategy corresponding to the graph of Figure 1. In case
of score equality, the convention we choose consists in querying the vertex with
the smallest label.

2 Worst-case number of queries

This section addresses the complexity analysis of git bisect in the worst-case
scenario.

2.1 The comb construction

We describe in this subsection a way to enhance any DAG in such a way the
Regression Search Problem can always be solved in a logarithmic number of
queries.

Definition 3 (Comb addition). Let D be a Directed Acyclic Graph with n
vertices. Let v1 < v2 < . . . < vn be a topological ordering of D, that is a linear
ordering of the vertices such that if vivj is an arc, then vi < vj .

We say that we add a comb to D if we add to D:

– n new vertices u1, . . . ,un;
– the arcs viui for i ∈ {1, . . . , n};
– the arcs uiui+1 for i ∈ {1, . . . , n− 1}.

The resulting graph is denoted comb(D). The new identified bugged vertex of
comb(D) is un.

Examples of comb addition are shown by Figure 4.
The comb addition depends on the initial topological ordering, but the latter

will not have any impact on the following results. This is why we take the liberty
of writing comb(D) without any mention to the topological ordering.

Theorem 2. Let D be a Directed Acyclic Graph with n vertices and such that
the number of queries used by the git bisect algorithm is x. If we add a comb
to D, then the resulting DAG comb(D) is such that:

– the optimal strategy uses only dlog2(2n)e queries;
– when n is odd, the git bisect algorithm uses x+ 1 queries.
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Fig. 4: Left. Illustration of the comb addition. The initial digraph is highlighted
in pink. Right. Comb(D) graph where D is an octopus of size 7.

If the initial number of vertices n is even, there is no guarantee that git

bisect will perform x+ 1 queries on comb(D) – it will depend on whether the
first queried vertex is vn or un/2.

Moreover, remark that the comb construction shows that the worst-case num-
ber of queries required for searching the faulty commit can be lower in D than
in a subgraph of D. Indeed, adding a comb to any digraph induces a logarithmic
number of queries, even though the initial digraph uses more queries.

Theorem 2 is proved in Appendix A.1.

2.2 A pathological example for git bisect

The following corollary shows the existence of digraphs for which the git bisect

algorithm totally fails. The optimal number of queries is linear, while the git

bisect algorithm effectively uses an exponential number of queries.

Theorem 3. For any integer k > 2, there exists a DAG such that the optimal
number of queries is k, while the git bisect algorithm always uses 2k−1 − 1
queries.

Proof. Choose D as an octopus with 2k−1 − 1 vertices. The number of git

bisect queries is 2k−1 − 2 (like every other strategy). The wanted digraph is
then comb(D) (see Figure 4 right for an illustration). Indeed, by Theorem 2,
the git bisect algorithm uses 2k−1 − 1 git bisect queries to find the faulty
commit in comb(D), while an optimal strategy uses

⌈
log2

(
2k − 2

)⌉
= k queries.

This also shows that the git bisect algorithm is not a C-approximation
algorithm for the Regression Search Problem, for any constant C.

3 Approximation ratio for binary DAGs

The pathological input for the git bisect algorithm has a very particular shape
(see Figure 4 right): it involves a vertex with a gigantic indegree. However, in the
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context of VCS, this structure is quite rare. It means that many branches have
been merged at the same time (the famous octopus merge). Such an operation
is strongly discouraged, in addition to the fact that we just showed that git

bisect becomes inefficient in this situation.
This motivates to define a new family of DAGs, closer to reality:

Definition 4 (Binary digraph). A digraph is binary if each vertex has inde-
gree (that is the number of ingoing edges) at most equal to 2.

Fig. 5: Left. A binary DAG. Right. A non-binary DAG.

Figure 5 illustrates this definition. If we restrict the DAG to be binary, git
bisect proves to be efficient.

Theorem 4. On any binary DAG with n vertices, the number of queries of the

git bisect algorithm is at most log2(n)

log2(
3
2 )

.

Corollary 1. The algorithm git bisect is a 1
log2(3/2)

≈ 1.71 approximation

algorithm on binary DAGs.

While the whole proof of Theorem 4 is displayed in Appendix A.2, the key
ingredient of the proof lies in the next lemma, which exhibits a core property
of the binary DAGs. It states that if the DAG is binary, there must be a vertex
with a “good” score.

Lemma 1. In every binary DAG with n vertices, there exists a vertex v such
that |v|, its number of ancestors, satisfies n−1

3 < |v| ≤ 2n+1
3 .

By this lemma, we infer that git bisect removes at least approximately
one third of the remaining vertices at each query. The overall number of queries
is then equal to log3/2(n).

This lemma is also proved in Appendix A.2. The idea, in a few words, is
to consider the vertex whose number of ancestors exceeds the number of non-
ancestors by the narrowest of margins. If this vertex does not satisfy Lemma 1,
then it must have two parents, and at least one of them satisfies the lemma.

The upper bound of Theorem 4 is asymptotically sharp, as stated by the
following proposition, which we show in Appendix A.3.

Proposition 2. For any integer k, there exists a binary DAG Jk such that
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– the number of git bisect queries on comb(Jk) is k + dlog2(k)e+ 3;
– an optimal strategy for comb(Jk) uses at most log2( 3

2 ) k + log2(3k + 6) + 2
queries.

(Remember that the comb operation is described by Definition 3.)

Figure 6 shows what Jk looks like for k = 3. The reader can check that the
number of queries for git bisect in the worst-case scenario is 7 (which occurs
for example when c is bugged).
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13/27
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27/13
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z′2 9/31

z′3 15/25

Fig. 6: Binary DAG J3 which satisfies Proposition 2 for k = 3.

By Proposition 2, the approximation ratio 1/ log2(3/2) is considered to be
optimal for git bisect.

Corollary 2. For any ε > 0, the git bisect algorithm is not a
(

1
log2(3/2)

− ε
)

approximation algorithm for binary DAGs.



Theoretical analysis of git bisect 11

We, the authors, have made the choice to only present the binary case in
the main part of this paper, even if all these results can be easily generalised to
DAGs whose indegree is bounded by an arbitrary integer ∆. Indeed, we reckon
binary DAGS to be more natural in practice, while there is no interest to see
the proofs in all generality except for some technicalities. The curious reader
may check Appendix B to have the precise statements for DAGs with maximum
indegree ∆.

4 A new algorithm with a better approximation ratio for
binary DAGs

In this section, we describe a new algorithm improving the number of queries in
the worst-case scenario compared to git bisect – theoretically at least.

4.1 Description of golden bisect

We design a new algorithm for the Regression Search Problem, which we name
golden bisect, which is a slight modification of git bisect. It is so called

because it is based on the golden ratio, which is defined as φ = 1+
√
5

2 .
The difference of golden bisect with respect to git bisect is that it does

not query a vertex with the maximum score if the maximum score is too “low”.
Under these circumstances, it queries a vertex with a guarantee on the size of
the remaining subgraph after two queries. Precisely, starting from a graph with
n vertices, either the subgraph remaining after one query is of size at most n

φ ,
or the subgraph obtained after two queries is of size at most n

φ2 .
Let us give some preliminary definitions.

Definition 5 (Subsets B≥ and B<). Let D be a DAG. We define V ≥ as
the set of vertices which have more ancestors than non-ancestors. Let B≥ (for
“Best” or “Boundary”) denote the subset of vertices v of V ≥ such that no parent
of v belongs to V ≥ and B< be the set of parents of vertices of B≥.

The reader can look at Figure 7 for an illustrative example.
Now, let us describe the golden bisect algorithm.

Algorithm 5 (golden bisect)
Input. A DAG D and a bugged vertex b.
Output. The faulty commit of D.
Steps:

1. Remove from D all non-ancestors of b.
2. If D has only one vertex, return this vertex.
3. Compute the score for each vertex of D.

4. If the maximum score is at least n
φ2 ≈ 38.2%× n (where φ = 1+

√
5

2 ),
query a vertex with the maximum score.
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Fig. 7: A binary DAG with the 3 sets of vertices V ≥, B≥ and B<.

5. Otherwise, query a vertex of B≥ ∪ B< which has the maximum
score among vertices of B≥ ∪B<, even though it is not the overall
maximum score.

6. If the queried vertex is bugged, remove from D all non-ancestors of the
queried vertex. Otherwise, remove from D all ancestors of the queried vertex.

7. Go to Step 2.

(The differences with git bisect are displayed in bold.)

For example, consider the digraph from Figure 7. We have 21/φ2 ≈ 8.02.
The maximum score 8 is smaller than this number, so we run Step 5 instead
of Step 4. Thus as its first query, golden bisect chooses indifferently 7 or 14,
which respectively belong to B< and B≥, and which have score 7. It diverges
from git bisect, which picked 18 (score 8) instead.

For a full example, the reader can refer to the strategy tree in Figure 8. Note
that, even if it is different from git bisect, the golden bisect strategy uses
5 queries in the worst-case scenario.

4.2 Results for golden bisect on binary DAGs

This subsection lists the main results about the complexity analysis of golden

bisect. First, note that Theorem 3 also holds for golden bisect, so the general
case (i.e whenever the DAGs are not necessarily binary) is as bad as git bisect.

As for binary DAGs, we establish that the golden bisect algorithm has a
better upper bound for the number of queries, in comparison with git bisect.

Theorem 6. On any binary DAG with n vertices, the number of golden bisect

queries is at most logφ(n) + 1 = log2(n)
log2(φ)

+ 1, where φ is the golden ratio.
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Fig. 8: The golden bisect strategy tree for the digraph of Figure 7. In case of
equality of score, the vertex with the smallest label is chosen.

As first corollary, since no power of φ is an integer, the number of golden

bisect queries for a binary DAG of size n is also at most dlogφ(n)e =
⌈
log2(n)
log2(φ)

⌉
.

We can also deduce that it is a better approximation algorithm than git bisect

(in the binary case):

Corollary 3. For every ε > 0, golden bisect is a
(

1
log2(φ)

+ ε
)

-approximation

algorithm on binary DAGs with a sufficiently large size.

Finally, this also gives an upper bound for the optimal number of queries in
the worst-case scenario, given a binary DAG of size n.

Corollary 4. For any binary DAG D with n vertices, the optimal number opt
of queries for the Regression Search Problem satisfies

dlog2(n)e ≤ opt ≤ dlogφ(n)e.

Note that the latter corollary is an analogue of Proposition 1, but for binary
DAGs. The lower bound is satisfied for a large variety of DAGs, the most obvious
ones being the directed paths.

Theorem 6 is fully proved in Appendix A.4. Moreover, in Appendix A.5, we
exhibit a family of graphs whose ratio “number of golden bisect queries” /
“optimal number of queries” tends to 1/ log2(φ), which was the approximation
constant of Corollary 3.

5 Conclusion

In summary, this paper has established that git bisect can be very inefficient
on very particular digraphs, but under the reasonable hypothesis that merges
must not concern more than 2 branches each, it is proved to be a good ap-
proximation algorithm. This study has also developed a new algorithm, golden
bisect, which displays better theoretical results than git bisect.

The natural next step will be to conduct experimental studies. The authors
are currently implementing git bisect and golden bisect, and are going to
put them to the test on benchmarks.
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Notably, some open questions remain, and hopefully answers will be found
through the experiments. Here is a list of such open questions:

– Even if golden bisect is a better approximation algorithm than the git

bisect algorithm, it does not mean that golden bisect is overall better
than git bisect. Does there exist some instance of binary DAG for which
golden bisect is worst than the git bisect algorithm?

– In git bisect and in golden bisect, one never queries vertices which were
eliminated from the set of candidates for the faulty commit. However, we
could speed up the procedure by never removing any vertex after queries.
For example, consider the DAG from Figure 4. If we choose v7 as first query
and it is bugged, then we remove all ui (the non-ancestors of v7). However,
querying the vertices ui in the comb would be more efficient. Could we
improve git bisect by authorising such queries?

– When we restrict the DAGs to be binary, is the Regression Search Problem
still NP-complete?

– If we restrict the DAGs to be trees (oriented from the leaves to the root),
is git bisect a good approximation algorithm? We conjecture that git

bisect is a 2−approximation algorithm for trees. (We have found examples
where the ratio is 2.)

Finally we envisage studying the number of queries in the worst-case scenario,
but whenever the input DAG is taken at random. Indeed, most of the examples
described in this paper are not very likely to exist in reality. The notion of ran-
domness for a digraph emanating from a VCS is therefore quite interesting and
deserves to be developed. We could for example define a theoretical probabilistic
model based on existing workflows. It will be also quite useful to use random
samplers for VCS repositories in order to constitute benchmarks on demand.
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Let us prove this claim for every digraph D by induction on the number n
of vertices of D.

The case n = 1 is obvious: if D has only 1 vertex, we query v1 to know
whether u1 or v1 is the faulty commit. The number of queries is then dlog2(2×
1)e = 1.

Now fix n > 1 and let us assume that the claim holds for every digraph D of
size < n. We choose as the first query the vertex ui where i = dn2 e.

Depending on whether ui is bugged or clean, the digraph after this query is
either comb(D)[u1, . . . ,ui,v1, . . . ,vi] or comb(D)[ui+1, . . . ,un,vi+1, . . . ,vn].
(We use the notation G[t1, . . . , t`] to denote the subgraph of G induced by the
vertices t1, . . . , t`.)

Notice that in any case, the resulting digraph is of the form comb(D′). Indeed,
we just have to choose D′ := D[v1, . . . ,vi] or D′ := D[vi+1, . . . ,vn], and keep
the same topological ordering.

Now we can use the induction hypothesis on comb(D′), which has at most⌈
n
2

⌉
vertices: we can find a strategy in at most dlog2(2

⌈
n
2

⌉
)e queries to find the

faulty commit in comb(D′).
The overall number of queries for comb(D) with this strategy is then at most

1+
⌈
log2

(
2dn2 e

)⌉
, which is equal to dlog2(2n)e whenever n ≥ 1. By Proposition 1

strategy with this number of queries must be optimal.

Claim A.1.03 If n is odd, the git bisect algorithm necessarily uses x + 1
queries.

By Claim A.1.01, vn has n ancestors, and digraph comb(D) has 2n vertices.
So the score of vn is n (hence maximal).

Vertex vn is the only one to have a maximal score. Indeed, on the one hand,
any vertex of the form vi with i < n has fewer than n ancestors. On the other
hand, ui having 2i ancestors, its score must be even, and therefore cannot be
maximal if n is odd.

Thus the git bisect algorithm is going to choose vn as first query. If this
vertex turns out to be clean, it remains a directed path of length n, inducing
dlog2(n)e git bisect queries. If vn is bugged, then the resulting graph is D,
for which the worst-case number of git bisect queries is x. Therefore, since
x ≥ dlog2(n)e by Proposition 1, the number of git bisect queries for comb(D)
in the worst-case scenario is x+ 1.

A.2 Proof of Theorem 4

We begin by the proof of Lemma 1.

Proof (Lemma 1). The lemma is obvious whenever n ≤ 3 (one chooses a vertex
with no parent).

Let us consider V ≥ the set of vertices whose number of ancestors is greater or
equal than its number of non-ancestors, and B≥ the subset of V ≥ whose vertices
have no parent in V ≥.

Let us choose v in B≥. Since the graph is binary, v has 1 or 2 parents. Let
us study both cases separately.
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Vertex v has only one parent p. Thus, p has exactly |v| − 1 ancestors and
n − |v| + 1 non-ancestors. Since p is not in V ≥, |v| − 1 < n − |v| + 1, and thus
|v| < n

2 + 1.

Also, since v ∈ V +, |v| ≥ n − |v| and thus, |v| ≥ n
2 . Thus n

2 ≤ |v| <
n
2 + 1

which satisfies the lemma whenever n ≥ 4.

Vertex v has two parents x and y, respectively having |x| and |y| ancestors.

For the same reasons as above, x and y are not in V ≥ so |x| < n

2
and |y| < n

2
.

If any of x or y has more than
n− 1

3
ancestors, then the lemma holds for x

or y.

Let us assume the contrary, that is |x| ≤ n− 1

3
and |y| ≤ n− 1

3
. But aside

itself, every ancestor of v must be an ancestor of x or y. Hence

n− 1

3
<
n

2
≤ |v| ≤ |x|+ |y|+ 1 ≤ n− 1

3
+
n− 1

3
+ 1 =

2n+ 1

3
.

Vertex v thus satisfies the lemma.

This lemma is sufficient to prove the logarithmic upper bound for the number
of git bisect queries.

Proof (Theorem 4).

Let D be a DAG with n vertices, and Dk the digraph obtained from D after
k git bisect queries. We denote by nk the number of vertices in Dk. After each
query, the git bisect algorithm chooses the vertex v given by Lemma 1 or a
vertex with a better score. In any case, the score of the chosen vertex in Dk is

greater or equal than
nk − 1

3
. This is why

nk+1 ≤
2nk + 1

3
. (1)

We can then show by induction that

nk ≤ 1 +

(
2

3

)k
(n− 1). (2)

Let x be the number of queries for git bisect so that x is the first num-
ber such that nx = 1. If n ∈ {2, 3, 4, 5, 6, 7}, one can check with (1) that nk
is necessary smaller than 2 after blog2(n)/ log2(3/2)c steps. So without lost of
generality, one can assume that n > 7.

If x ≤ 4, then the proposition holds since n > 7 implies 4 < log3/2(n). After
each query, we eliminate at least one vertex, so nx−3 ≥ 4. Plugging k = x − 4
in (1), one obtains nx−4 ≥ 3nx−3−1

2 ≥ 5.5, hence nx−4 ≥ 6. Similarly, we have
nx−5 ≥ 9.
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Notice when setting k = log3/2

(
n−1
8

)
in the right member of (2), one obtains

9. So x− 5 must be less than log3/2

(
n−1
8

)
. Thus

x < 5 + log 3
2

(
n− 1

8

)
< log 3

2
(n− 1) +

(
5− log 3

2
(8)
)
< log 3

2
(n− 1)

since log3/2 (8) ' 5.13 . . .

A.3 Proof of Proposition 2

In this appendix section we explain how to construct the Jk graphs, defined in
Proposition 2.

We start by defining J0
k , the backbone of Jk. It is formed by taking three

directed paths on k+ 1 vertices x1 → x2 → · · · → xk+1, y1 → · · · → yk+1 and
z0 → · · · → zk and merging the three vertices xk+1, yk+1 and z0 into a vertex
c (see Figure 10a for an example with k = 3).

We construct our final graph Jk from its backbone through k + 1 successive
digraphs: J0

k , J
1
k , . . . , J

k
k . For each d starting from 1 to k, let us define

`d =


nd−1 + 2

6
if nd−1 is even,

nd−1 + 5

6
if nd−1 is odd,

where nd−1 stands for the number of vertices in Jd−1k . Add a directed path on
`d vertices towards each backbone vertex at distance d from c, namely xk+1−d,
yk+1−d, and zd. Then, add edges from the new parents of xk+1−d and of
yk+1−d to the first vertex of the path newly attached to zd. Also, the new
parent of zd is denoted by z′d. The reader can refer to Figure 9 for a better
understanding of the notation.

We wish the number of vertices in the final graph Jk to be odd in order to
use Theorem 2. If Jkk has an odd number of vertices, then we keep the digraph
as such. If this number turns to be even, we just replace `k by `k + 1 in the
last step, which increases the number of vertices by 3, and so makes it odd. We
denote by Jk the resulting digraph.

The construction for k = 3 is shown in Figure 10.

Why is `d always an integer? Notice that nd ≡ 1 modulo 3, for each d. Indeed,
it holds for the backbone J0

k since it has 3k + 1 vertices and, each step, we add
3`d vertices. Thus, nd is congruent to 1 (resp. 4) modulo 6 if nd is odd (resp.
even). Equivalently, nd + 5 is a multiple of 6 whenever nd is odd, like nd + 2
whenever nd is even. This is why `d is always an integer.

Number of vertices in the final digraph. For each d > 1, the number of vertices
nd satisfies the inequality

nd = nd−1 + 3`d ≤
3

2
nd−1 +

5

2
.
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x1 xk−d xk+1−d xk

y1 yk−d yk+1−d yk

c z1 zd zd+1 zk

z′1 z′d

d

d

`d

`d

`d

Fig. 9: the d-th step in the construction of Jk.

A quick induction shows that

nd ≤
(

3

2

)d
(3k + 6)− 5.

Remember that, if nk was even, we had added 3 vertices in the final digraph. In

any case, the number of vertices in Jk is bounded by

(
3

2

)d
(3k + 6).

Claim A.3.01 When c is the faulty commit, the git bisect algorithm uses
k + dlog2(k)e+ 2 queries on Jk.

We are going to show that the resulting digraph just after the i-th step of
the git bisect algorithm is Jk−ik , for i ∈ {0, . . . , k}. In other words, after k git

bisect queries, we will end up with the backbone J0
k . After we show this fact,

the claim is easily proved. Indeed, two extra queries from J0
k lead to a binary

search on a directed path with k vertices, for which git bisect uses dlog2(k)e
queries to find the faulty commit. This explains why the number of git bisect

queries is k + 2 + dlog2(k)e.
To do so, we prove by induction on d some construction invariants:
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x1 x2 x3

y1 y2 y3

c z1 z2 z3

(a) Step 0: J0
3

x1 x2 x3

y1 y2 y3

c z1 z2 z3

z′1

(b) Step 1: J1
3

x1 x2 x3

y1 y2 y3

c z1 z2 z3

z′1

z′2

(c) Step 2: J2
3

x1

6/34

x2

10/30

x3

13/27

y1

6/34

y2

10/30

y3

13/27

c

27/13

z1 z2 z3

z′1 6/34

z′2 9/31

z′3 15/25

(d) Step 3: J3
3 = J3

Fig. 10: Construction of J3.
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– In Jdk , vertices xk and yk have less ancestors than non-ancestors, while it is
the inverse for c.

– The scores of xk, yk and c are the same in Jdk .

– In Jdk , the score of xk is smaller than nd/3.

All these properties clearly hold for d = 0.

Let us assume now the induction hypotheses true for d− 1. By construction,
the number of ancestors of xk in Jdk increases by `d in comparison with its
number in Jd−1k , while its number of non-ancestors increases by 2`d. It is the
same thing for yk. As for c, its number of ancestors increases by 2`d, while its
number of non-ancestors increases by `d. From these observations, we inductively
infer the first two invariants.

As for the score of xk, we just proved that it is equal to the number of
ancestors of xk. So, by induction, the score of xk in Jdk is smaller than

nd−1
3

+ `d =
nd−1 + 3`d

3
=
nd
3
,

which concludes the induction.

Now, let us suppose that the digraph just before the i-th step is Jmk , where
m = k−i+1 and let us show that after the i-th step, the digraph becomes Jm−1k .
To do so, we have to investigate the scores of all vertices in Jmk . By construction,
each vertex is either an ancestor of xk, an ancestor of yk, a descendant of c, or an
ancestor of a z′j with j ∈ {1, . . . ,m}. The vertex xk having less ancestors than
non-ancestors, the ancestors of xk different from xk have a worst score than xk.
Thus the git bisect algorithm never queries an ancestor of xk different from
xk. Similarly, we can eliminate every other vertex, excepted xk, yk, c and z′j
with j ∈ {1, . . . ,m}.

We already saw that the scores of xk, yk and c are the same and bounded by
nm
3 . As for the vertex z′j , its score is equal to 3`j . Since `j is strictly increasing,

we can eliminate every vertex z′j for j < m. It remains to compute the score of
z′m. Remark that 6`d > nd−1 by the definition of `d. We deduce that

nm = nm−1 + 3`m < 9`m.

But the score of z′m is equal to its number of ancestors, which is 3`m, which is

bigger than
nm
3

by the above inequality.

So z′m is the only vertex with a maximal score; the git bisect algorithm
will query this vertex. Since c is not an ancestor of z′m, git bisect will remove
every ancestor of z′m: we recover Jm−1k .

Claim A.3.02 Proposition 2 is satisfied by comb(Jk).

It is a direct application of Theorem 2. Recall that the number of vertices in

Jk is odd and is bounded by

(
3

2

)d
(3k + 6).
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A.4 Proof of Theorem 6

We prove here the upper bound for the number of queries used by golden

bisect in the framework of binary graphs.

Lemma 2. Given any DAG with n vertices, there exists a vertex v ∈ B+ ∪B−

such that the score of v is at least
n− 1

3
.

Proof. Exactly the same proof as Lemma 1 (see Appendix A.2).

Recall that φ =
1 +
√

5

2
is the golden ratio. We also have 1 +φ−φ2 = 0, and

thus n− n
φ = n

φ2 .

Lemma 3. For any binary DAG with n ≥ 14 vertices,

(i) either the golden bisect reduces the searching area to at most n
φ in one

query,

(ii) or it reduces the searching area to at most n
φ2 in two queries.

Note that the lemma does not hold for n = 13, as shown by Figure 11. Here,
the digraph after 1 golden bisect step has 9 vertices, which is larger than
13
φ ≈ 8.03, and after 2 golden bisect steps, it has 5 vertices, which is larger

than 13
φ2 ≈ 4.96.

1

1/12

2

2/11

3

3/10

4

4/9

5

1/12

6

2/11

7

3/10

8

4/9

9

9/4

10

10/3

11

11/2

12

12/1

13

13/0

(a) Initial digraph

1

1/8

2

2/7

3

3/6

4

4/5

5

1/8

6

2/7

7

3/6

8

4/5

9

9/0

(b) After querying 9

5 6 7 8

9

(c) After querying 4

Fig. 11: First two steps of golden bisect for a DAG of size 13

Proof. If the maximum score of a vertex in D is at least n
φ2 , then item (i) holds

since there will remain at most n− n
φ2 = n

φ vertices.

Let us suppose then that all vertices have score less than n
φ2 and show that

(ii) is satisfied.

Then let z be the first vertex queried by golden bisect, and |z| be its
number of ancestors. In this case, z belongs to B≥ or B<.

Figure 12 sketches all the cases in this proof.
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Case 1: z ∈ B+. Since z ∈ V + by hypothesis, its score corresponds to the
number of non-ancestors, which is n−|z|. Thus, if z is clean, then after one step
of golden bisect, one only keeps as many vertices as the score of z, which is
less than n

φ2 , and (ii) holds.
Suppose now that z carries a bug. Vertex z must have 2 parents. Indeed, if it

has only one parent, then by the same reasoning as in the proof of Lemma 1, the
score of z is an integer greater than n

2 − 1, which is greater than n
φ2 for n ≥ 4.

This contradicts the hypothesis on the score of z.
Let us denote by D′ the DAG obtained from D after querying z. The new

marked sink is z. Let us call x and y the parents of z, and assume that |x| and
|y|, the respective numbers of ancestors of these vertices, satisfy |x| ≥ |y|.

z

x

y

(a) Case 1a: |x| = |y| and
x and y does not have any
common ancestor.

z

x

y

z

x

y

or

(b) Case 1b: |x| ≥ |y|+1 or the vertices x and y have the
same number of ancestors and share a common ancestor.

c

z

z′

(c) Case 2a: in D′, num-
ber of ancestors of z′ >
number of non-ancestors
of c

c

z

z′

(d) Case 2b: in D′, num-
ber of ancestors of z′ <
number of non-ancestors
of c

c

z

z′

(e) Case 2c: in D′, num-
ber of ancestors of z′ =
number of non-ancestors
of c

Fig. 12: Subcases of the proof in Lemma 3.

We study two complementary cases:

Case 1a: |x| = |y| and x and y do not have any common ancestor. In this case,
|z| = |x|+ |y|+ 1 = 2|x|+ 1, and golden bisect will indifferently choose x or
y as second query, which leaves |x|+ 1 vertices.

Since z has been preferred to x in D (and x ∈ B−), the score |x| of x is
no more than the score n − |z| of z. This translates by |x| ≤ n − (2|x| + 1) or
|x|+ 1 ≤ n−1

3 + 1. Since n−1
3 + 1 < n

φ2 for n ≥ 14, this case is proved.

Case 1b: |x| ≥ |y|+1 or the vertices x and y have the same number of ancestors
and share a common ancestor. Both cases in the assumption give |y|+1−|xy| ≤
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|x|, where |xy| stands for the number of common ancestors of x and y. Since
|z| = 1 + |x| + |y| − |xy|, we have that in both cases, |z| − |x| is no more than
|x|. Thus the score of x in D′ is |z| − |x|.

We wish to show that in D′, golden bisect selects a query according to
Step 4. In other words, we want to prove that a vertex has a score in D′ no less

than
|z|
φ2

, more precisely that vertex x satisfies this condition.

First observe that in D, the score |x| of x and the score n − |z| of z are by
hypothesis less than n

φ2 . Thus, we have

|x| < n

φ2
and |z| > n− n

φ2
=
n

φ
.

Therefore the score |z| − |x| of x in D′ satisfies

|z| − |x| > |z| − n

φ2
=
|z|
φ

+
|z|
φ2
− n

φ2
=
|z|
φ2

+
|z| − n

φ

φ
>
|z|
φ2
.

Thus golden bisect will query x or a vertex with a better score. But query-
ing x will keep |x| vertices if x is bugged, and |z|− |x| otherwise. So the number
of remaining vertices after the second query is at most |x| < n

φ2 , and (ii) is true.

Case 2: z ∈ B−. Since z belongs to B<, it has a child in B≥. Denote it c, and
|c| its number of ancestors. As above, we can assume that c has more than 1
parent, because otherwise the score of c would be better than n

2 − 1. Let z′ be
the other parent of c (also in B<) and |z′| its number of ancestors.

If z is bugged, then there remain at most |z| < n
φ2 vertices, which makes

(i) true. So assume that the queried vertex z is clean, and after one step of
golden bisect, we end up with a new DAG D′, obtained from D by removing
all ancestors of z. Note that D′ has n− |z| vertices.

Let us show first the following claim, which is going to be helpful for the two
last subcases (2b and 2c).

Claim A.4.01 If there exists a vertex v of D′ which have ≤ n
φ2 ancestors in

D′ and ≤ n
φ2 non-ancestors in D′, then the score of v in D′ is greater or equal

than n−|z|
φ2 . Thus golden bisect will query a vertex with the maximum score,

as stated by Step 4.

Proof. Let #a and #na be respectively the number of ancestors and non-
ancestors of v in D′ so that #a ≤ n

φ2 and #na ≤ n
φ2 .

First notice that the score of v in D′ is the minimum between #a and #na.

So, if we show that both #a and #na are no less than n−|z|
φ2 , the claim is proved.

Since there are n− |z| vertices in D′, we have

#a+ #na = n− |z|.
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So

#a = n− |z| −#na ≥ n− |z| − n

φ2
=
n− |z|
φ2

+
1

φ

(
n

φ2
− |z|

)
(the last equality can be derived after some calculations from the identity 1 =
1
φ + 1

φ2 ). But the score |z| of z in D is by hypothesis less than n
φ2 . We then

deduce that

#a ≥ n− |z|
φ2

.

The numbers #a and #na play symmetric roles in this claim, so we can similarly

infer that #na ≥ n−|z|
φ2 . Thereby we have finally proved that the score of v is

≥ n−|z|
φ2 .

Let us resume the proof of Lemma 3.

Case 2a: in D′, the number of ancestors of z′ is greater than the number of
non-ancestors of c. In D′, the number of ancestors of z′ is |z′| or less. But |z′|
was the score of z′ in D and did not exceed n

φ2 in D. Moreover, the number

of non-ancestors of z′ in D′ is equal to the number of non-ancestors of c plus
one, which is by hypothesis less than or equal to the number of ancestors of z′.
Thus, the number of ancestors and the number of non-ancestors of z′ in D′ are
no more than n

φ2 .

So by Claim A.4.01, golden bisect will query z′ or a vertex with a better
score. But if z′ is queried, the resulting graph would have at most |z′| vertices,
which is less than n

φ2 . Therefore (ii) holds.

Case 2b: in D′, the number of ancestors of z′ is less than the number of non-
ancestors of c. The number of ancestors of c in D′ is the number of ancestors
of z′ in D′ plus one, which is less than or equal to n− |c| , the number of non-
ancestors of c. Moreover, n− |c| was also the score of c in D, which is less than
n
φ2 by hypothesis.

So c satisfies the assumptions of Claim A.4.01, which shows, that the second
query is about c or a vertex with a better score. It yields a DAG with at most
n− |c| vertices, which is less than n

φ2 . Here again (ii) holds.

Case 2c: in D′, the number of ancestors of z′ is equal to the number of non-
ancestors of c. Note that every vertex of D is either an ancestor of z (number:
|z|), a non-ancestor of c (number: n − |c|), an ancestor of z′ in D′ (number by
hypothesis: n− |c|), or c (number: 1), hence n = 2(n− |c|) + |z|+ 1.

But we have n− |c| ≤ |z| since the score of c in D is no more than the score
of z. Therefore n ≥ 3(n− |c|) + 1 and (n− |c|) + 1 ≤ n−1

3 + 1, which is less than
n
φ2 whenever n ≥ 14. Thus c (like z′) satisfies the hypotheses of Claim A.4.01

and by the same reasoning as the previous cases, (ii) is satisfied.

We can now establish the upper bound for the overall number of golden

bisect queries.
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Proof (Proof of Theorem 6).
We prove by induction on n that for any binary DAG with n vertices, the

number of golden bisect queries is at most logφ(n) + 1.
The base case is a bit tedious since we need to prove it for n ≤ 13. The idea

is to use Lemma 2 to show that golden bisect eliminates at least n−1
3 vertices

at the first step. So the maximal number of queries for size n is bounded by one
plus the maximal number of queries for size n−

⌈
n−1
3

⌉
. The first values give the

following array:
n 1 2 3 4 5 6 7 8 9 10 11 12 13

Bound for
golden bisect 0 1 2 3 3 4 4 4 5 5 5 5 6

Approximation
for logφ(n) + 1 1 2.44 3.28 3.88 4.34 4.72 5.04 5.32 5.56 5.78 5.98 6.16 6.33

We remark that the second row is bounded by the last row. So the property
holds for n ≤ 13.

As for n ≥ 14, the induction is straightforward by Lemma 3. Indeed, if
(i) is satisfied, then the number of golden bisect queries is bounded by 1 +(

logφ

(
n
φ

)
+ 1
)

= 1 + logφ(n). If (ii) is satisfied, then it is also bounded by

2 +
(

logφ

(
n
φ2

)
+ 1
)

= 1 + logφ(n).

A.5 Fibonacci trees

In order to prove the sharpness of the constant 1
log2(φ)

from Corollary 3, we

define a new family of digraphs: Fibonacci trees.

Definition 6 (Fibonacci trees). For i ≥ 0, the i-th Fibonacci tree F1 is de-
fined as followed.

F1 is an empty tree, F2 is a single vertex, and for i ≥ 3, Fi+1 is a sink with
two parents, one being the sink of a tree Fi and the other the sink of a tree Fi−1.

Figure 13 shows the 6 first Fibonacci trees. We can establish an optimal
strategy for the Fibonacci trees.

Theorem 7. For any i ≥ 2, the optimal strategy for the i-th Fibonacci tree Fi
uses i− 2 queries in the worst-case scenario.

Proof. We decompose this proof in two claims.

Claim A.5.01 The git bisect algorithm and the golden bisect algorithm
both use i− 2 queries to find the faulty commit in Fi in the worst-case scenario.

Proof. The maximum score in Fi is only achieved for the root of the subtree
Fi−1, and it is equal to the size of Fi−1 (which is fibi − 1, where fibi is the i-th
Fibonacci number). So both git bisect and golden bisect will choose this
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Fig. 13: First Fibonacci trees

vertex as first query. The worst-case scenario is whenever this vertex is bugged,
and so whenever the graph after the first query is Fi−1. We then proceed to an
induction and see there remain at this point i− 3 queries.

Claim A.5.02 If T is a tree strictly containing as disjoint copies the Fibonacci
trees Fk and Fk+1 (cf Figure 14 top), then, for any strategy searching for the
faulty commit in T , there exists a vertex v in T such that this strategy uses at
least k queries to find v as the faulty commit.

Proof. We prove this claim by induction on k. It is clear for k = 1, since if T
strictly includes F2, which is a single vertex, as a copy, then we need at least 1
query to know whether this single vertex carries a bug or not.

Now suppose the claim statement true for an integer k − 1, and consider
a strategy for the Regression Search Problem on a tree T strictly containing
Fk+1 and Fk. Let z be the first query of this strategy. Let us investigate every
possibility for z (the reader can refer to Figure 14 for an illustration):

1. The root of the subtree Fk+1 is an ancestor of z. Then we force the
faulty commit v to be an ancestor of z (i.e. z is bugged). Then after querying
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Fig. 14: Illustration of the proof of Claim A.5.02

z, there remains all ancestors of z, which contains Fk+1, which, by definition
of Fibonacci trees, strictly contains Fk and Fk−1. By induction hypothesis,
we need to query k − 1 extra vertices to find the faulty commit.

2. The root of the subtree Fk+1 is not an ancestor of z and z is not in
the subtree Fk+1. Here v will be a non-ancestor of z (i.e. z is not bugged).
Like in the previous case, the remaining digraph will include Fk+1, hence
copies of Fk and Fk−1. We then use the induction hypothesis.

3. z is in the subtree Fk+1, but it is not its root. We set z to be clean so
that v will be among the non-ancestors of z. The subtree Fk+1 contains two
disjoint copies of Fk−1, so at least a whole copy of Fk−1 is included at the
same time in the non-ancestors of z and in Fk+1. By hypothesis, T included
also another copy of Fk. So the query of z leads to a tree containing Fk and
Fk−1: the induction hypothesis indicates that we need k − 1 other queries.

For each of these 3 possibilities, the strategy uses in total k queries, which
concludes the induction.

Conclusion of the proof of Theorem 7. The Fibonacci tree Fi contains disjoint
copies of Fi−1 and Fi−2. By Claim A.5.02, any strategy, in particular an optimal
one, uses at least i − 2 queries to find the faulty commit in Fi in the worst-
case scenario. The optimal number of queries is then exactly i − 2, because by
Claim A.5.01, git bisect and golden bisect use that many queries (and so
are optimal).

The first consequence of Theorem 7 is that the upper bound dlogφ(n)e from
Corollary 4 is asymptotically sharp:

Corollary 5. Any strategy solving the Regression Search Problem for any Fi-
bonacci tree of size n ≥ 7 uses dlogφ(n)e − 2 queries.
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The authors do not know if there exist an infinity of graphs for which solving
the Regression Search Problem requires exactly dlogφ(n)e queries.

Proof (Proof of Corollary 5). Let |Fi| be the number of vertices of the i-th
Fibonacci tree Fi. By construction, we have

|Fi| = |Fi−1|+ |Fi−2|+ 1, |F1| = 0 and |F2| = 1.

This recurrence has for solution |Fi| = fibi+1−1, where fibi is the i-th Fibonacci
number. Using that fibi+1 =

(
φi+1 − (−φ)−i−1

)
/
√

5, we get

logφ(|Fi|) = i+ 1− logφ(
√

5) + εi,

where

εi = logφ

(
1−

√
5

φi+1
− 1

(−φ2)i+1

)
which tends to 0 and is in absolute value smaller than 0.3 (a bit less than
2− logφ(

√
5)) whenever i ≥ 5. If i ≥ 5, we have dlogφ(|Fi|)e = i+1−blogφ(

√
5)+

0.3c = i. We conclude by Theorem 7.

The previous corollary demonstrates that the Fibonacci trees are inherently
flawed for the Regression Search Problem. They are the less pathological ana-
logues of octopuses, but in the context of binary DAGs.

Finally, we show that 1
log2(φ)

is the good approximation ratio for golden

bisect.

Corollary 6. For ε > 0, golden bisect is not a

(
1

log2(φ)
− ε
)

approximation

algorithm.

Proof. The idea is to add a comb (see Definition 3) to the i-th Fibonacci tree
Fi to approach the 1

log2(φ)
ratio.

Theorem 2 indeed works similarly if we use golden bisect instead of git

bisect. Thus, comb(Fi) is a binary DAG for which:

– the number of golden bisect queries is dlogφ(|Fi|)e − 1 (see Corollary 5),
– the optimal number of queries is dlog2(|Fi|)e+ 1.

The ratio of these two numbers makes a number tending to 1
log2(φ)

, whenever i

goes to +∞. This is why golden bisect cannot be a
(

1
log2(φ)

− ε
)

approxima-

tion algorithm, for any ε > 0.

B Generalisation for ∆-ary DAGs

For any ∆ ≥ 1, a DAG is said to be ∆-ary if each of its vertices has indegree
at most equal to ∆. It is worth noting that the results for binary DAGs can be
naturally extended to ∆-ary DAGs.
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Indeed, Lemma 1, which is of paramount importance to understand the struc-
ture of binary DAGs, can be generalised as follows.

Lemma 4. In every ∆-ary DAG with n vertices, there exists a vertex v such
that |v|, its number of ancestors, satisfies n−1

∆+1 < |v| ≤
∆n+1
∆+1 .

This leads to the following theorem.

Theorem 8. On any ∆-ary DAG with n vertices, the number of queries of the

git bisect algorithm is at most log2(n)

log2(
∆+1
∆ )

.

Consequently, the git bisect algorithm is a 1
log2(

∆+1
∆ )

-approximation algo-

rithm on ∆-ary DAGs.
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