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n 1 be a sequence of independent and identically distributed random elements of the general linear group GL d (R), with law µ. Consider the random walk Gn := gn . . . g1. Denote respectively by Gn and ρ(Gn) the operator norm and the spectral radius of Gn. For log Gn and log ρ(Gn), we prove moderate deviation principles under exponential moment and strong irreducibility conditions on µ; we also establish moderate deviation expansions in the normal range [0, o(n 1/6 )] and Berry-Esseen bounds under the additional proximality condition on µ. Similar results are found for the couples (X x n , log Gn ) and (X x n , log ρ(Gn)) with target functions, where X x n := Gn • x is a Markov chain and x is a starting point on the projective space P(R d ).

We equip the vector space R d with the canonical Euclidean norm | • |. Let P(R d ) be the projective space in R d , which is defined as the set of elements x = Rv, where v ∈ R d \ {0}. For any g ∈ G and v ∈ R d , let gv be the multiplication of g by v. The action of a matrix g ∈ G on the direction x = Rv ∈ P(R d ) of a vector v ∈ R d \ {0} is defined by g • x = Rgv. For g ∈ G, denote by g = sup v∈R d-1 \{0} |gv| |v| its operator norm, and by ρ(g) = lim k→∞ g k 1/k its spectral radius. Let (g n ) n 1 be a sequence of independent and identically distributed (i.i.d.) random matrices with law µ on the group G. Consider the left random walk G n = g n . . . g 1 on G, and, for any starting point X x 0 = x ∈ P(R d ), the Markov chain X x n := G n • x on P(R d ), where n 1. The goal of this paper is to investigate Berry-Esseen type bounds and moderate deviation asymptotics for the operator norm G n and the spectral radius ρ(G n ), and more generally, for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on X x n . Let Γ µ be the smallest closed subsemigroup of G generated by the support of µ. Denote N (g) = max{ g , g -1 }, where g -1 is the inverse matrix of g ∈ G. Consider the following conditions.

A1 (Exponential moments).

There exists δ > 0 such that E[N (g 1 ) δ ] < ∞. A2 (Strong irreducibility). The support of µ acts strongly irreducibly on R d , i.e., no proper finite union of subspaces of R d is invariant with respect to all elements of Γ µ .

A3 (Proximality). Γ µ contains at least one matrix with a unique eigenvalue of maximal modulus.

Let us recall some basic results for the product G n . Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF] first established the strong law of large numbers for the operator norm G n : under the assumption that E[max{0, log g 1 }] < ∞, it holds that 1 n log G n → λ almost surely as n → ∞, where λ is a constant called top Lyapunov exponent of µ. This result turns out to be a consequence of Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF] established later. The central limit theorem for G n is due to Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] (see also Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]): if conditions A1, A2 and A3 hold, then log Gn -nλ σ √ n converges in law to the standard normal distribution, where σ 2 > 0 is the asymptotic variance of the random walk (G n ) n 1 . Recently, using Gordin's martingale approximation method, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] have relaxed the exponential moment condition A1 to the optimal second moment condition E[log 2 N (g 1 )] < ∞.

Similar law of large numbers and central limit theorem have been known for the spectral radius ρ(G n ). Using the Hölder regularity of the invariant measure ν (see [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF]), Guivarc'h [START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF] has established the strong law of large numbers for ρ(G n ): under conditions A1, A2 and A3, 1 n log ρ(G n ) → λ almost surely as n → ∞. Recently, under the same conditions, Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 14.22] established the central limit theorem for ρ(G n ):

log ρ(Gn)-nλ σ √ n
converges in law to the standard normal distribution. Further improvements have been done very recently: Aoun and Sert [START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF] proved the strong law of large numbers for ρ(G n ) assuming only the second moment condition E[log 2 N (g 1 )] < ∞, while Aoun [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF] proved the central limit theorem for ρ(G n ) under the second moment condition, the strong irreducibility condition A2 and the unboundedness assumption of the semigroup Γ µ .

Very little has been known about the Berry-Esseen bounds and moderate and large deviations, for the operator norm G n and the spectral radius ρ(G n ). For Berry-Esseen type bounds, Cuny, Dedecker and Jan [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF] (see also Cuny, Dedecker and Merlevède [START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF] in a more general setting) have recently established the following result about the rate of convergence in the central limit theorem for G n : assuming E[log 3 N (g 1 )] < ∞, conditions A2 and A3, there exists a constant C > 0 such that for any n 2,

sup y∈R P log G n -nλ σ √ n y -Φ(y) C √ log n n 1/4 , (1.1)
where Φ is the standard normal distribution function on R. It is expected that the rate of convergence should be of the order 1 √ n , however, this is still an open problem even under stronger moment assumptions. The same question is also open for the spectral radius ρ(G n ).

Moderate deviations have not yet been studied neither for G n nor for ρ(G n ), to the best of our knowledge. For large deviations, the upper tail large deviation principle for G n has been established by Sert [START_REF] Sert | Large deviation principle for random matrix products[END_REF] and [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF] under different conditions; it is conjectured in [START_REF] Sert | Large deviation principle for random matrix products[END_REF] that the usual large deviation principle would hold for ρ(G n ).

1.2. Objectives. In this paper, we shall establish Berry-Esseen type bounds and moderate deviation results for both the operator norm G n and the spectral radius ρ(G n ). Such kinds of results are important in applications because they give the rate of convergence in the central limit theorem and in the law of large numbers.

Our first objective is to establish the following Berry-Esseen type bound concerning the rate of convergence in the central limit theorem for the operator norm and for the spectral radius. We shall only give the results for the operator norm, since the results for the spectral radius are similar. Under conditions A1, A2 and A3, for any Hölder continuous function

ϕ on P(R d ), sup x∈P(R d ) sup y∈R E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n , (1.2)
where ν is the unique invariant probability measure of the Markov chain (X x n ) n 0 . Under the stronger moment condition A1, our result improves on the bound (1.1) in two aspects. Firstly, we sharpen the rate of convergence by showing the rate log n √ n . Secondly, we extend the validity of the bound for the couple (X x n , log G n ) with a target function on X x n . Our second objective is to establish moderate deviation principles for log G n and log ρ(G n ). We first deal with the couple (X x n , log G n ) under conditions A1, A2 and A3. Namely, for any non-negative Hölder continuous function ϕ on P(R d ) satisfying ν(ϕ) > 0, any Borel set B ⊆ R and any sequence (b n ) n 1 of positive numbers satisfying bn

√ n → ∞ and bn n → 0, uniformly in x ∈ P(R d ), -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B lim sup n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B -inf y∈ B y 2 2σ 2 , (1.3)
where B • and B are respectively the interior and the closure of B. It is also interesting to investigate the case when the proximality condition A3 fails.

It turns out that we are still able to prove the moderate deviation principle for G n . We show (see Theorem 2.4) that there exists a constant σ 0 > 0 such that

-inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log G n -nλ b n ∈ B lim sup n→∞ n b 2 n log P log G n -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 . (1.4)
While the proximality condition A3 ensures that the Markov chain (X x n ) n 0 has a unique invariant probability measure ν on the projective space P(R d ), in the opposite case there is no unique invariant probability measure. In this case a completely different approach is required; this is developed in Section 4.2. It is rather interesting to compare the moderate deviation result (1.4) with the large deviation asymptotic: when the proximality condition A3 fails, the rate function in the large deviation principle is not known, moreover we do not even know whether the large deviation principle holds. We refer to Breuillard [START_REF] Breuillard | A non concentration estimate for random matrix products[END_REF] and He, Lakrec and Lindenstrauss [START_REF] He | Affine random walks on the torus[END_REF] for large deviation bounds for the operator norm. For the spectral radius we establish results similar to (1.3) and (1.4) under the same conditions. Very recent progress was made by Boulanger, Mathieu, Sert and Sisto [START_REF] Boulanger | Large deviations for random walks on hyperbolic spaces[END_REF], where the large deviation principle for the spectral radius has been established for the special case of simple linear algebraic groups of rank 1.

Our third objective is to establish a moderate deviation expansion. For the couple (X x n , log G n ) we show that under conditions A1, A2 and A3, for any Hölder continuous function ϕ on P(R d ), uniformly in

x ∈ P(R d ) and y ∈ [0, o(n 1/6 )], E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = ν(ϕ) + o(1). (1.5)
The expansion (1.5) is new even when ϕ = 1. A similar result is obtained for the spectral radius. These results are interesting since they give a precise asymptotic of moderate deviation probabilities in terms of the normal tail 1 -Φ(y) in the range y ∈ [0, o(n 1/6 )], which is known to be optimal.

1.3. Proof outline. In [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF][START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF], the proof of (1.1) consists of establishing the central limit theorem with rate of convergence in Wasserstein's distance utilising the martingale approximation method developed in [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. With this approach, even if we obtain the best rate of convergence [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], and on the following precise comparison between G n and |G n v| established in [START_REF] Benoist | Random walks on reductive groups[END_REF]: for any a > 0, there exist c > 0 and k 0 ∈ N such that for all n k k 0 and v ∈ R d \ {0},

P log G n G k -log |G n v| |G k v| e -ak > 1 -e -ck .
(1.7)

The basic idea to utilize this powerful inequality consists in carefully choosing certain integer k, taking the conditional expectation with respect to the σ-algebra σ{g 1 , . . . , g k } and using the large deviation bounds for log G k . This technique, in conjugation with limit theorems for the norm cocycle σ(G n-k , x), makes it possible to prove corresponding results for log G n ; see [START_REF] Benoist | Random walks on reductive groups[END_REF] where a local limit theorem for log G n has been established by taking k = log 2 n , where a denotes the integral part of a. In this paper, the proof of (1.2) is carried out by choosing k = C 1 log n with a sufficiently large constant C 1 > 0 and by using the Berry-Esseen bound for the couple (X x n , σ(G n , x)) with a target function ϕ on X x n . In the same spirit, the moderate deviation principle (1.3) for the couple (X x n , log G n ) is established using the moderate deviation principle for the couple (X x n , σ(G n , x)) proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], together with the inequality (1.7) with k = C 1 b 2 n n , where C 1 > 0 is a sufficiently large constant and the sequence (b n ) n 1 is given in (1.3).

As to the moderate deviation principle (1.4) for log G n without assuming the proximality condition A3, its proof is more technical and delicate than that of (1.3). Indeed, when condition A3 fails, the transfer operator of the Markov chain (X x n ) n 0 has no spectral gap in general and it may happen that (X x n ) n 0 possesses several invariant measures on the projective space P(R d ). In this case, it becomes hopeless to prove a general form of (1.4) when a target function ϕ on X x n is taken into account. Nevertheless, the proof of (1.4) can be carried out by following the approach of Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] (first announced in [START_REF] Bougerol | Stabilité en probabilité des équations différentielles stochastiques linéaires et convergence de produits de matrices aléatoires[END_REF]), where central limit theorems and exponential large deviation bounds for log G n and σ(G n , x) were established without giving the rate function. Specifically, employing this approach consists in finding the proximal dimension p of the semigroup Γ µ generated by the matrix law µ and then applying Chevaley's algebraic irreducible representation [START_REF] Chevalley | Théorie des groupes de Lie[END_REF] of the exterior powers ∧ p R d , to show that the action of the semigroup Γ µ is strongly irreducible and proximal on ∧ p R d . Using this strategy together with (1.3) for ϕ = 1, we are able to establish (1.4).

For the proof of the Cramér type moderate deviation expansion (1.5) in the normal range [0, o(n 1/6 )], when y ∈ [0, 1 2

√

log n], we deduce the desired result from the Berry-Esseen type bound (1.2); when y ∈ [ 1 2

√

log n, o(n 1/6 )], we make use of the moderate deviation expansion for the couple (X x n , σ(G n , x)) recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] and the inequality (1.7) with k = C 1 y 2 , where C 1 > 0 is a sufficiently large constant.

All of the aforementioned results (1.2), (1.3), (1.4) and (1.5) for the operator norm G n turn out to be essential to establish analogous Berry-Esseen type bounds and moderate deviation results for the spectral radius ρ(G n ). Another important ingredient in our proof is the precise comparison between ρ(G n ) and G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF]; see Lemma 3.2 below.

Main results

Let C(P(R d )) be the space of continuous complex-valued functions on the projective space P(R d ) and 1 be the constant function with value 1 on P(R d ). We equip the projective space P(R d ) with the distance d defined by d(x, x ) = |v∧v | |v||v | for x = Rv ∈ P(R d ) and x = Rv ∈ P(R d ), where v ∧ v denotes the exterior product of v and v in R d . We assume that γ > 0 is a fixed small enough constant. Consider the Banach space B γ := {ϕ ∈ C(P(R d )) : ϕ γ < +∞}, where

ϕ γ := ϕ ∞ + sup x =y |ϕ(x) -ϕ(y)| d γ (x, y) with ϕ ∞ := sup x∈P(R d ) |ϕ(x)|.
Recall that g • x denotes the action of the matrix g ∈ G on the element x = Rv in the projective space P(R d ), namely g • x = Rgv. For any starting point

x ∈ P(R d ), the sequence (X x n ) n 0 defined by X x 0 = x, X x n = G n • x, n 1,
constitutes a Markov chain on the projective space P(R d ). Under conditions A1, A2 and A3, the chain (X x n ) n 0 possesses a unique invariant probability measure ν on P(R d ) such that µ * ν = ν (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), where µ * ν denotes the convolution of µ and ν. It is worth mentioning that if the proximality condition A3 fails, then the invariant measure ν may not be unique (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]). By [5, Proposition 14.17], the asymptotic variance σ 2 of the random walk (G n ) n 1 can be given by

σ 2 = lim n→∞ 1 n E (log G n -nλ) 2 .
Throughout the paper, we denote by Φ the standard normal distribution function on R. We write c, C for positive constants whose values may change from line to line.

2.1. Berry-Esseen type bounds. In this subsection, we present Berry-Esseen type bounds for the couples (X

x n , log G n ) and (X x n , log ρ(G n )) with target functions on X x n .
Recall that by Gelfand's formula, it holds that ρ(g) = lim k→∞ g k 1/k for any g ∈ G.

Theorem 2.1. Assume conditions A1, A2 and A3. Then there exists a constant C > 0 such that for all n 2,

x ∈ P(R d ), y ∈ R and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ , (2.1) E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ . (2.2)
Using the fact that all matrix norms are equivalent, one can verify that in (2.1), the operator norm • can be replaced by any matrix norm.

Under the exponential moment condition A1, the Berry-Esseen type bound (2.1) with ϕ = 1 improves (1.1), which has been established recently by Cuny, Dedecker and Jan [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF] (see also Cuny, Dedecker and Merlevède [START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF] in a more general setting) under the weaker third-order moment condition

E[log 3 N (g 1 )] < ∞.
The result with a general target function ϕ is worth some comments. On the one hand, it concerns the joint distribution of the couples (X x n , log G n ) and (X x n , log ρ(G n )), which give more information and can lead to interesting applications. On the other hand, the extension from the case ϕ = 1 to a general function ϕ is not trivial, for which a significant difficulty appears. The difficulty will be overcome by using the Berry-Esseen bound for the couple (X x n , σ(G n , x)). It is natural to make the conjecture that the optimal rate of convergence on the right hand sides of (2.1) and ( 2

.2) should be C √ n instead of C log n √ n .
For positive matrices, these optimal bounds have been proved in [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF]. However, the proofs of the conjecture for invertible matrices seem to be rather delicate, for which new ideas and techniques are required. Nevertheless, we can prove the optimal bound C √ n for large values of |y|, see the remark below. Remark 2.2. Under the same conditions as in Theorem 2.1, if we consider

|y| > √ 3 log log n instead of y ∈ R, then the bound C log n √ n in (2.1) and (2.2) can be improved to be C √ n .
The proof of this remark will be given in the proof of Theorem 2.1.

Moderate deviation principles.

We first state moderate deviation principles for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on the Markov chain (X x n ) n 0 .

Theorem 2.3. Assume conditions A1, A2 and A3. Then, for any nonnegative function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any sequence

(b n ) n 1 of positive numbers satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in x ∈ P(R d ), -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B lim sup n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn ∈B -inf y∈ B y 2 2σ 2 , (2.3) and -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn ∈B lim sup n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn ∈B -inf y∈ B y 2 2σ 2 , (2.4)
where B • and B are respectively the interior and the closure of B.

Note that the target function ϕ in (2.3) and (2.4) is not necessarily strictly positive on P(R d ). The moderate deviation principles (2.3) and (2.4) are new, even for ϕ = 1.

If we only consider the operator norm G n or the spectral radius ρ(G n ), instead of the couples (X x n , log G n ) and (X x n , log ρ(G n )), we are still able to establish moderate deviation principles without assuming the proximality condition A3: Theorem 2.4. Assume conditions A1, A2 and σ 2 > 0. Then, there exists a constant σ 0 > 0 such that for any Borel set B ⊆ R and any sequence

(b n ) n 1 of positive numbers satisfying bn √ n → ∞ and bn n → 0, we have, -inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log G n -nλ b n ∈ B lim sup n→∞ n b 2 n log P log G n -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 , (2.5) and -inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B lim sup n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 , (2.6)
where B • and B are respectively the interior and the closure of B.

Remark 2.5. Assume conditions A1 and A2. Let

Γ µ,1 = {| det(g)| -1/d g : g ∈ Γ µ }
be the set of elements of Γ µ normalized to have determinant 1.

(1) If Γ µ,1 is not contained in a compact subgroup of G, then σ > 0, as will be seen in the proof of Theorem 2.4 .

(2) If Γ µ,1 is contained in a compact subgroup of G, then c 1 = inf{ g : g ∈ Γ µ,1 } > 0 and c 2 = sup{ g : g ∈ Γ µ,1 } < ∞, so that c d 1 | det(g)| g d c d 2 | det(g)| ∀g ∈ Γ µ . (2.7) Since log | det(G n )| = n i=1 log | det(g i )| is a sum of i.i.d. real-valued random variables, from (2.7) (applied to g = G n ) it follows di- rectly that the moderate deviation principle (2.5) holds with λ = 1 d E log | det(g 1 )| and σ 2 0 = E[( 1 d log | det(g 1 )| -λ) 2 ]
(which coincide with their original definitions), provided that | det(g 1 )| is not a.s. a constant (which is equivalent to σ 2 0 > 0). 2.3. Moderate deviation expansions. In this subsection we formulate the Cramér type moderate deviation expansions in the normal range for the operator norm G n and the spectral radius ρ(G n ). Our first result concerns the operator norm G n . Theorem 2.6. Assume conditions A1, A2 and A3. Then, we have, uniformly in

x ∈ P(R d ), y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 log Gn -nλ √ nσy 1 -Φ(y) = ν(ϕ) + ϕ γ o(1), (2.8) E ϕ(X x n )1 log Gn -nλ - √ nσy Φ(-y) = ν(ϕ) + ϕ γ o(1).
(2.9)

When ϕ = 1, the expansions (2.8) and (2.9) are also new. The proof of Theorem 2.6 is based on the Cramér type moderate deviation expansion for the couple (X x n , σ(G n , x)) proved recently in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], and on a fine comparison between the logarithm of the operator norm log G n and the norm cocycle σ(G n , x) established in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 3.1 below). Note that Theorem 2.6 covers the special case where ν(ϕ) = 0; in this case the exact comparison with the normal tail remains open.

Our second result concerns the moderate deviation expansion for the spectral radius ρ(G n ), also in the normal range.

Theorem 2.7. Assume conditions A1, A2 and A3. Then, we have, uniformly in

x ∈ P(R d ), y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 log ρ(Gn)-nλ √ nσy 1 -Φ(y) = ν(ϕ) + ϕ γ o(1), (2.10) E ϕ(X x n )1 log ρ(Gn)-nλ - √ nσy Φ(-y) = ν(ϕ) + ϕ γ o(1). (2.11)
The proof of Theorem 2.7 relies on Theorem 2.6 and on an estimate of the difference between spectral radius ρ(G n ) and the operator norm G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 3.2).

Like in Theorem 2.6, when ϕ = 1, the expansions (2.10) and (2.11) are also new; Theorem 2.7 also covers the case where ν(ϕ) = 0, for which the exact comparaison with the normal tail is not known.

Berry-Esseen type bounds

The goal of this section is to prove Theorem 2.1 about Berry-Esseen type bounds for the operator norm G n and for the spectral radius ρ(G n ).

We shall use the following result which is an interesting comparison theorem for log G n and σ(G n , x). Lemma 3.1. [START_REF] Benoist | Random walks on reductive groups[END_REF]Lemma 17.8] Assume conditions A1, A2 and A3. Then, for any a > 0, there exist c > 0 and k 0 ∈ N such that for all n k k 0 and v ∈ R d \ {0},

P log G n G k -log |G n v| |G k v| e -ak > 1 -e -ck .
Proof of (2.1) of Theorem 2.1. Without loss of generality, we assume that the target function ϕ is non-negative (otherwise we can consider the positive and negative parts of ϕ). On the one hand, using the Berry-Esseen bound for the norm cocycle σ(G n , x) established in [26, Theorem 2.1] and the fact that log G n σ(G n , x), we get the following upper bound: there exists a constant C > 0 such that for all n 1, x ∈ P(R d ), y ∈ R and ϕ ∈ B γ ,

I n := E ϕ(X x n )1 log Gn -nλ σ √ n y ν(ϕ)Φ(y) + C √ n ϕ γ . (3.1)
On the other hand, applying Lemma 3.1, we deduce that for any a > 0, there exist c > 0 and k 0 ∈ N such that for all n k k 0 , it holds uniformly in ϕ ∈ B γ and

x = Rv ∈ P(R d ) with v ∈ R d \ {0}, I n E ϕ(X x n )1 log Gn -nλ σ √ n y 1 log Gn -log |Gnv| |G k v| -log G k e -ak E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak σ √ n y -e -ck ϕ ∞ . (3.2)
For brevity, for any n > k 1, we write

G n = G n,k G k with G n,k = g n . . . g k+1 , G k = g k . . . g 1 .
From the large deviation bounds for log G k (see [START_REF] Benoist | Random walks on reductive groups[END_REF] or [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]), we have that for any q > λ, there exist constants c, C > 0 such that for any k 1,

P(log G k > kq) Ce -ck . (3.3)
Denote the σ-algebra F k = σ(g 1 , . . . , g k ). From (3.2), taking the conditional expectation with respect to the filtration F k , we derive that for any q > λ,

I n E E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak σ √ n y F k -e -ck ϕ ∞ E E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak σ √ n y 1 {log G k kq} F k -e -ck ϕ ∞ E E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+kq-nλ+e -ak σ √ n y F k -Ce -c 1 k ϕ ∞ ,
where in the last step we use the large deviation bound (3.3) and the constant c 1 > 0 is taken to be small enough. Since, for

x = Rv ∈ P(R d ) with v ∈ R d \ {0}, X x n = G n • x = G n,k • X x k and σ(G n , x) -σ(G k , x) = σ(G n,k , X x k ), (3.4) it follows that I n E E ϕ(G n,k • X x k )1 σ(G n,k ,X x k )+kq-nλ+e -ak σ √ n y F k -Ce -c 1 k ϕ ∞ .
Using the Berry-Esseen bound for the norm cocycle σ(G n , x) (cf. [26, Theorem 2.1]), we obtain

I n ν(ϕ)Φ(y 1 ) - C √ n -k ϕ γ -Ce -c 1 k ϕ ∞ ,
where

y 1 = √ n √ n -k y - k(q -λ) + e -ak σ √ n -k . Taking k = C 1 log n with C 1 = 1 2c 1 , we get that there exists a constant C > 0 such that 1 √ n-k C √ n and e -c 1 k C √ n . Note that Φ(y 1 ) = Φ(y) - 1 √ 2π y y 1 e -t 2 2 dt.
By elementary calculations, there exists a constant C 2 > 0 such that

|y -y 1 | C 2 log n n |y| + log n √ n ,
and for n > k 0 large enough,

e - y 2 1 2 exp - 1 2 n n -k y 2 + √ n k(q -λ) + e -ak σ(n -k) y exp - 1 2 y 2 + C 2 log n √ n |y| .
Thus, there exists a constant C > 0 such that

y y 1 e -t 2 2 dt |y -y 1 | max e -y 2 2 , e - y 2 1 2 C 2 log n n |y| + log n √ n exp - 1 2 y 2 + C 2 log n √ n |y|    C log n √ n ∀y ∈ R, C 1 √ n if |y| > √ 3 log log n.
Consequently, we get the following lower bound for I n : there exists a constant C > 0 such that for all x ∈ P(R d ) and ϕ ∈ B γ ,

I n    ν(ϕ)Φ(y) -C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y) -C √ n ϕ γ if |y| > √ 3 log log n.
Together with the upper bound (3.1), this concludes the proof of (2.1) of Theorem 2.1 and the corresponding results in Remark 2.2.

We now proceed to prove the Berry-Esseen type bound (2.2) for the spectral radius ρ(G n ). The proof relies on the following comparison lemma between the operator norm G n and the spectral radius ρ(G n ). Lemma 3.2. [START_REF] Benoist | Random walks on reductive groups[END_REF]Lemma 14.13] Assume conditions A1 and A2. Then, for any ε > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 ,

P 1 ρ(G n ) G n > e -εk 1 -e -ck .
Proof of (2.2) of Theorem 2.1. Without loss of generality, we assume that the target function ϕ is non-negative.

The lower bound is a direct consequence of (2.1) together with Remark 2.2 on it, and the inequality log ρ(G n ) log G n , from which we get that, uniformly in x ∈ P(R d ), y ∈ R and ϕ ∈ B γ ,

I n := E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y    ν(ϕ)Φ(y) -C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y) -C √ n ϕ γ if |y| > √ 3 log log n.
The upper bound is a consequence of (2.1) together with Remark 2.2 on it and Lemma 3.2. In fact, applying Lemma 3.2, we deduce that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 ,

I n E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y 1 log ρ(Gn)-log Gn >-εk + e -c 1 k ϕ ∞ E ϕ(X x n )1 log Gn -εk-nλ σ √ n y + e -c 1 k ϕ ∞ . Taking k = C 1 log n with C 1 = 1 2c 1 , we have e -c 1 k C √
n for some constant C > 0. Using the bound (2.1) with y replaced by y 1 := y + εk σ √ n , we obtain the following upper bound for I n : there exists a constant C > 0 such that for all x ∈ P(R d ), y ∈ R, ϕ ∈ B γ , and n k 0 with k 0 large enough,

I n    ν(ϕ)Φ(y 1 ) + C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y 1 ) + C √ n ϕ γ if |y| > √ 3 log log n. (Notice that |y| > √ 3 log log n implies |y 1 | > √ 3 log log n for n large enough.
) By an argument similar to that used in the proof of (2.1), it can be seen that Φ(y 1 )

   Φ(y) + C log n √ n ∀y ∈ R, Φ(y) + C √ n if |y| > √ 3 log log n.
This concludes the proof of (2.2) and Remark 2.2 on it.

Moderate deviation principles

The goal of this section is to establish Theorems 2.3 and 2.4 about moderate deviation principles for the operator norm G n and the spectral radius ρ(G n ). Notice that in the first theorem, we need the proximality condition, while in the second, we do not need it.

Proof of Theorem 2.3.

Proof of (2.3) of Theorem 2.3. Since the rate function I(y) := y 2 2σ 2 , y ∈ R, is strictly increasing on [0, ∞) and strictly decreasing on (-∞, 0] with I(0) = 0, by Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], it suffices to prove the following moderate deviation asymptotics: for any y > 0, uniformly in

x ∈ P(R d ), lim n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn y = - y 2 2σ 2 , (4.1) lim n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y = - y 2 2σ 2 . (4.2)
We first prove (4.1). For the lower bound, using the moderate deviation principle [26, (2.10)] for the norm cocycle σ(G n , x), and the fact that σ(G n , x) log G n , we get that for any y > 0, uniformly in

x ∈ P(R d ), lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn y - y 2 2σ 2 .
We now prove the upper bound. Denote by (e i ) 1 i d the standard orthonormal basis of R d . Since all matrix norms on R d are equivalent, and both g → g and g → max 1 i d |ge i | are matrix norms, there exists a positive constant c 1 such that log G n max 1 i d log |G n e i | + c 1 . From this inequality, we derive that

E ϕ(X x n )1 log Gn -nλ bn y d i=1 E ϕ(X x n )1 log |Gne i |-nλ+c 1 bn y .
Since b n → ∞ as n → ∞, we have that for any ε > 0, it holds that c 1 bn < ε for large enough n. Thus, using again the moderate deviation principle [26, (2.10)] for σ(G n , x), we obtain that for any y > 0, lim sup

n→∞ n b 2 n log E ϕ(X x n )1 log |Gne i |-nλ+c 1 bn y lim sup n→∞ n b 2 n log E ϕ(X x n )1 log |Gne i |-nλ bn y-ε = - (y -ε) 2 2σ 2 .
Since ε > 0 can be arbitrary small, we get the desired upper bound. This concludes the proof of (4.1).

We next prove (4.2). The upper bound is straightforward: using again the moderate deviation principle [26, (2.10)] for σ(G n , x), and the fact that σ(G n , x) log G n , we get that for any y > 0, uniformly in

x ∈ P(R d ), lim sup n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y - y 2 2σ 2 . (4.3)
For the lower bound we need to use Lemma 3.1. For any n k and v ∈ R d \ {0}, consider the event

A n,k = log G n -log |G n v| |G k v| -log G k e -ak ,
and denote by A c n,k its complement. By Lemma 3.1, for any a > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 and x ∈ P(R d ),

P(A c n,k ) e -c 1 k . (4.4)
By (4.4), we see that

I n : = E ϕ(X x n )1 log Gn -nλ bn -y E ϕ(X x n )1 log Gn -nλ bn -y 1 A n,k E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak bn -y 1 A n,k E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak bn -y -e -c 1 k ϕ ∞ . (4.5)
As in the proof of (2.1), for any n k k 0 , we write G n = G n,k G k with G n,k = g n . . . g k+1 and G k = g k . . . g 1 . Taking the conditional expectation with respect to the filtration F k = σ(g 1 , . . . , g k ), and using (3.3), we derive that for any q > λ, there exist constants c 2 , C > 0 such that for any x ∈ P(R d ),

I n E E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak bn -y 1 {log G k kq} F k -e -c 1 k ϕ ∞ E E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+kq-nλ+e -ak bn -y F k -Ce -c 2 k ϕ ∞ =: J n -Ce -c 2 k ϕ ∞ . (4.6)
Using the moderate deviation principle [26, (2.10)] for σ(G n , x), we have that for any y > 0, > 0 and sufficiently large n, uniformly in k(q -λ) + e -ak y , then, using (3.4), the term J n defined in (4.6) can be rewritten as

x ∈ P(R d ), e -b 2 n n y 2 2σ 2 + E ϕ(X x n )1 σ(Gn,x)-nλ bn -y e -b 2
J n = E E ϕ(G n,k • X x k )1 {σ(Gn,k,X x k )-(n-k)λ -yb n } F k . Since b n √ n → ∞ and b n n → 0 as n → ∞, applying (4.7)
with n replaced by n -k, and with b n replaced by b n , we obtain that for any fixed y > 0 and > 0 and for n large enough, uniformly in

x ∈ P(R d ), e -(b n ) 2 n-k y 2 2σ 2 + J n e -(b n ) 2 n-k y 2 2σ 2 -. (4.8)
From (4.6) and (4.8), there exists a constant

c 3 > 0 such that lim inf n→∞ n b 2 n log I n lim inf n→∞ n b 2 n log e -(b n ) 2 n-k y 2 2σ 2 + -Ce -c 2 k lim inf n→∞ n b 2 n log e -(b n ) 2 n-k y 2 2σ 2 + (1 -Ce -c 3 k ) ,
where the last inequality holds due to the fact that as n → ∞,

(b n ) 2 k(n -k) y 2 2σ 2 + → 1 C 1 y 2 2σ 2 + < c 2 by choosing C 1 > y 2 2σ 2 + /c 2 . Recalling that k = C 1 b 2 n n → ∞, we get lim n→∞ n b 2 n log(1 -Ce -c 3 k ) = 0 and lim n→∞ n b 2 n log e -(b n ) 2 n-k y 2 2σ 2 + = - y 2 2σ 2 + .
Taking → 0, we get that for any y > 0, uniformly in

x ∈ P(R d ), lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y - y 2 2σ 2 .
Combining this with the upper bound (4.3), we obtain (4.2) and thus conclude the proof of (2.3).

Using (2.3) and Lemma 3.2, we are now in a position to establish the moderate deviation principle (2.4) for the couple (X x n , log ρ(G n )).

Proof of (2.4) of Theorem 2.3. As explained in the proof of (2.3), it suffices to prove that, for any y > 0, uniformly in x ∈ P(R d ),

lim n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn y = - y 2 2σ 2 , (4.9) lim n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn -y = - y 2 2σ 2 . (4.10)
We first prove (4.9). On the one hand, since the function ϕ is nonnegative, using (2.3) and the fact that ρ(G n )

G n , we get the upper bound: for any y > 0, uniformly in

x ∈ P(R d ), lim sup n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn y - y 2 2σ 2 . (4.11)
On the other hand, by Lemma 3.2, we obtain that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 ,

I n : = E ϕ(X x n )1 log ρ(Gn)-nλ bn y E ϕ(X x n )1 {log Gn -nλ ybn+εk} 1 {log ρ(Gn)-log Gn -εk} E ϕ(X x n )1 {log Gn -nλ ybn+εk} -e -c 1 k ϕ ∞ . (4.12)
As in the proof of (2.3), we take

k = C 1 b 2 n n
, where C 1 > 0 is a constant which will be chosen sufficiently large. By (2.3), for any y > 0 and η > 0, there exists n 0 ∈ N such that for all n n 0 , E ϕ(X 

∈ P(R d ), E ϕ(X x n )1 {log Gn -nλ ybn+εk} e -(b n ) 2 n y 2 2σ 2 +η .
Implementing this bound into (4.12), we obtain

I n e -(b n ) 2 n y 2 2σ 2 +η 1 -e -c 1 k+ (b n ) 2 n y 2 2σ 2 +η ϕ ∞ . Choosing C 1 > 1 c 1 y 2 2σ 2 + η , we have, as n → ∞, (b n ) 2 kn y 2 2σ 2 + η → 1 C 1 y 2 2σ 2 + η < c 1 .
Hence we get for some constant c 2 > 0,

I n e -(b n ) 2 n y 2 2σ 2 +η 1 -e -c 2 k ϕ ∞ .
Therefore, using the fact

that k = C 1 b 2 n n → ∞, we obtain lim inf n→∞ n b 2 n log I n - y 2 2σ 2 + η .
Taking η → 0, we obtain that for any y > 0, uniformly in

x ∈ P(R d ), lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn y - y 2 2σ 2 .
Together with the upper bound (4.11), this concludes the proof of (4.9).

We next prove (4.10). Using (4.2) and the fact that ρ(G n ) G n , we get the desired lower bound: for any y > 0, uniformly in

x ∈ P(R d ), lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn -y - y 2 2σ 2 . (4.14)
For the upper bound, as before,

set k = C 2 b 2 n n
, where C 2 > 0 is a constant to be chosen larger enough. By Lemma 3.2, for any ε > 0, there exist c 3 > 0 and k 0 ∈ N such that for all n k k 0 ,

J n : = E ϕ(X x n )1 log ρ(Gn)-nλ bn -y E ϕ(X x n )1 log Gn -nλ -ybn+εk + e -c 3 k ϕ ∞ .
By (4.2), for any η > 0, there exists n 0 ∈ N such that for any n n 0 , [START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF], it follows that uniformly in x ∈ P(R d ),

E ϕ(X x n )1 log Gn -nλ bn -y e -b 2 n n y 2 2σ 2 -η . (4.15) Let b n = b n -εk y . We see that b n √ n → ∞ and b n n → 0, as n → ∞. From (4.
J n e -(b n ) 2 n y 2 2σ 2 -η + e -c 3 k ϕ ∞ . (4.16) Since b n = b n -εk y and k = C 1 b 2 n n , it holds that as n → ∞, b n bn → 1 and (b n ) 2 kn y 2 2σ 2 -η → 1 C 1 y 2 2σ 2 -η < c 3 , by choosing C 1 > 1 c 3 y 2 2σ 2 -η . Thus, lim sup n→∞ n b 2 n log J n -lim n→∞ b n b n 2 y 2 2σ 2 -η = - y 2 2σ 2 -η .
Since η > 0 is arbitrary, we get the upper bound for J n . Combining this with the lower bound (4.14), we conclude the proof of (4.10).

Putting together (4.9) and (4.10), we obtain (2.4).

4.2. Proof of Theorem 2.4. We now come to the proof of moderate deviation principles without assuming the proximality condition A3; see Theorem 2.4. The proof is based on Theorem 2.3 applied to ∧ p G n . In [7, Theorem V. 6.2], this approach is used to establish large deviation bounds for σ(G n , x) and log G n ; it allows to relax the proximality condition A3 for an exponential large deviation bound, but fails to give the rate function in the large deviation principle. For moderate deviations, the situation is different: with this approach we are able to get the rate function explicitly. We need to introduce some additional notation. For any integer 1 p d, the p-th exterior power ∧ p (R d ) is a d p -dimensional vector space with basis

e i 1 ∧ e i 2 ∧ • • • ∧ e ip , 1 i 1 < i 2 < • • • < i p d ,
where (e i ) 1 i d is the standard orthonormal basis of R d ; it is endowed with the standard norm still denoted by | • | as in the case of R d (there should be no confusion in the context). For any

v 1 , . . . , v p ∈ R d , the vector v 1 ∧ • • • ∧ v p is nonzero if and only if v 1 , . . . , v p are linearly independent in R d . We write ∧ p g for the image of g ∈ G = GL d (R) under the representation ∧ p (R d ); for any v 1 , . . . , v p ∈ R d , the action of the matrix ∧ p g on the vector v 1 ∧ • • • ∧ v p is defined as follows: ∧ p g(v 1 ∧ • • • ∧ v p ) = gv 1 ∧ • • • ∧ gv p .
The associated operator norm of ∧ p g is defined by

∧ p g = sup |(∧ p g)v| : v ∈ ∧ p (R d ), |v| = 1 .
Since ∧ p (gg ) = (∧ p g)(∧ p g ) for any g, g ∈ G, the submultiplicative property holds: ∧ p (gg ) ∧ p g ∧ p g . If the singular values of a matrix g ∈ G is given by a 11 , . . . , a dd (arranged in decreasing order), then it holds that ∧ p g = a 11 . . . a pp .

(4.17)

As a consequence, we have ∧ p g g p and ∧ p g ∧ p+2 g ∧ p+1 g 2 .

Let V be a subspace of

∧ p (R d ). A set S ⊂ ∧ p (G) := {∧ p g : g ∈ G} is said to be irreducible on V if there is no proper subspace V 1 of V such that gV 1 = V 1 for all g ∈ S. A set S ⊂ ∧ p (G) is said to be strongly irreducible on V if there are no finite number of subspaces V 1 , . . . , V m of V such that g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m for all g ∈ S.
In particular, the strong irreducibility condition A2 means that the Γ µ (the smallest closed subsemigroup of G generated by the support of µ) is strongly irreducible on R d . Denote by G µ the smallest closed subgroup of G generated by the support of µ. Then, condition A2 is equivalent to saying that G µ is strongly irreducible on R d . Indeed, the set

S = {g ∈ G : g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m } is a subgroup of G, so that Γ µ ⊂ S if and only if G µ ⊂ S, which means that V 1 ∪ . . . ∪ V m is Γ µ -invariant if and only if V 1 ∪ . . . ∪ V m is G µ -invariant.
We refer to [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] for more details.

The following purely algebraic result is due to Chevalley [START_REF] Chevalley | Théorie des groupes de Lie[END_REF]; see also Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Lemma 4.1. Let G be an irreducible subgroup of GL d (R). Then, for any integer 1 p d, there exists a direct-sum decomposition of the p-th exterior power:

∧ p (R d ) = V 1 ⊕ . . . ⊕ V k such that (∧ p g)V j = V j for any g ∈ G and 1 j k. Moreover, ∧ p (G) := {∧ p g : g ∈ G} is irreducible on each subspace V j , j = 1, • • • , k.
We say that an integer 1 p d is the proximal dimension of the semigroup Γ µ , if p is the smallest integer with the following property: there exists a sequence of matrices {M n } n 1 ⊂ Γ µ such that Mn Mn converges to a matrix with rank p. By definition, the proximality condition A3 implies that the proximal dimension of Γ µ is 1. The converse is also true if we assume that Γ µ is irreducible, see [START_REF] Benoist | Random walks on reductive groups[END_REF] for the proof. Under the first moment condition E(log N (g 1 )) < ∞, by Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF], the Lyapunov exponents (λ p ) 1 p d of µ are defined recursively by

λ 1 + . . . + λ p = lim n→∞ 1 n E(log ∧ p G n ) = lim n→∞ 1 n log ∧ p G n , a.s..
This formula, together with the fact that

∧ p-1 G n ∧ p+1 G n ∧ p G n 2 , yields that λ 1 λ 2 . . . λ d .
The following fundamental result is due to Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] and gives a sufficient condition for ensuring that two successive Lyapunov exponents are distinct. It can also be found in [ (b) If the set Γ µ,1 is contained in a compact subgroup of G, then there exists a scalar product on R d for which all the matrices in Γ µ,1 are orthogonal.

In this case, log G n can be written as a sum of i.i.d. real-valued random variables. Now we are equipped to prove the moderate deviation principle (2.5) for the operator norm G n without assuming the proximality condition A3.

Proof of (2.5) of Theorem 2.4. We assume that Γ µ,1 is not contained in a compact subgroup of G; the opposite case was already proved in Remark 2.5 [START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF]. Note that λ = λ 1 . Without loss of generality, we assume that λ 1 = 0 since otherwise we can replace each matrix g ∈ Γ µ by e -λ 1 g. As mentioned before, to prove (2.5), it is sufficient to show that for any y > 0,

lim n→∞ n b 2 n log P log G n b n y = - y 2 2σ 2 0 , (4.18) lim n→∞ n b 2 n log P log G n b n -y = - y 2 2σ 2 0 . (4.19)
We first give a proof of (4.18). Let p be the proximal dimension of the semigroup Γ µ . Since the set Γ µ,1 is not contained in a compact subgroup of G, by Lemma 4.4 (a), we have 1 p d-1. By Lemma 4.2, under condition A2, this implies that the Lyapunov exponents (λ p ) 1 p d of µ satisfy

λ 1 = . . . = λ p = 0 > λ p+1 .
It follows that the two largest Lyapunov exponents of ∧ p G n are given by λ 1 +• • •+λ p = 0 and λ 2 +• • •+λ p+1 = λ p+1 < 0 (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Proposition III. 1,[START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF]). Applying Lemma 4.1 to G = G µ (the smallest closed subgroup of G generated by the support of µ), we get the following direct-sum decomposition of the p-th exterior power ∧ p (R d ):

∧ p (R d ) = V 1 ⊕ V 2 ⊕ . . . ⊕ V k ,
where V j are subspaces of ∧ p (R d ) such that (∧ p g)V j = V j for any g ∈ G µ and 1 j k, i.e. each V j is invariant under ∧ p (G µ ) := {∧ p g : g ∈ G µ }. Moreover, ∧ p (G µ ) is irreducible on each subspace V j . Note that the set of all Lyapunov exponents of ∧ p G n on the space ∧ p (R d ) coincides with the union of all the Lyapunov exponents of (∧ p G n ) restricted to each subspace V j , 1 j k. Hence we can choose V 1 in such a way that the restrictions of ∧ p G n to V 1 and V 2 ⊕ . . . ⊕ V k , denoted respectively by G n and G n (as usual we identify the linear transform with the corresponding matrice), satisfy: where σ 2 1 > 0 is the asymptotic variance of the sequence (G n ) n 1 given by 

lim n→∞ 1 n log G n = λ 1 + • • • + λ p = 0 a.s., (4.20) 
lim n→∞ 1 n log G n = λ 2 + • • • + λ p+1 = λ p+1 < 0 a.s., (4.21) 
∧ p G n = max{ G n , G n }. ( 4 
σ 2 1 = lim n→∞ 1 n E (log G n ) 2 . ( 4 
G n = [G n (G km ) -1 ] [G km (G (k-1)m ) -1 ] . . . [G 2m (G m ) -1 ] G m , and hence log G n log G n (G km ) -1 + log G km (G (k-1)m ) -1 + . . . + log G m . ( 4.27) 
For fixed integer m 1, we denote u m := -E(log G m ) > 0. Then,

P(log G n 0) P log G n (G km ) -1 k u m 2 + P log G km (G (k-1)m ) -1 + • • • + log G m + ku m k u m 2 . (4.28)
Using (4.22) and the fact that ∧ p g g p for any g ∈ Γ µ , we get that for constant c > 0 small enough,

E( G n (G km ) -1 c ) = E( G r c ) E( ∧ p G r c ) E( G r cp ) E( g 1 cp ) r ,
To prove the lower bound, observe that from (4.22) we have

P log ∧ p G n -yb n = P log G n -yb n , log G n -yb n P log G n -yb n -P(log G n > -yb n ).
Similarly to (4.30), with fixed integer m 1 and u m = -E(log G m ) > 0, taking into account (4.27), we write

P(log G n > -yb n ) P log G n (G km ) -1 > k u m 2 -yb n + P log G km (G (k-1)m ) -1 + • • • + log G m + ku m > k u m 2 .
In an analogous way as in the proof of ( 

Moderate deviation expansions

This section is devoted to proving Theorems 2.6 and 2.7 about Cramér type moderate deviation expansions in the normal range, for the operator norm G n and the spectral radius ρ(G n ).

Proof of Theorem 2.6. By (2.1), there exists a constant C > 0 such that for all n 1, x ∈ P(R d ), y > 0 and ϕ ∈ B γ , 

E ϕ(X x n )1 {log Gn -nλ - √ nσy} Φ(-y) -ν(ϕ) C log n √ nΦ(-y) ϕ γ . ( 5 
I n := E ϕ(X x n )1 log Gn -nλ - √ nσy .
Using the moderate deviation expansion ([26, Theorem 2.3]) for the norm cocycle σ(G n , x), and the fact that σ(G n , x) log G n , the upper bound of I n follows: there exists a constant C > 0 such that for all n 1,

x ∈ P(R d ), y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , I n Φ(-y) ν(ϕ) + C ϕ γ y + 1 √ n . ( 5.3) 
For the lower bound of I n , we shall use Lemma 3.1. For any a > 0, n > k 1 and v ∈ R d \ {0}, consider the event

A n,k = log G n -log |G n v| |G k v| -log G k e -ak ,
and we write A c n,k for its complement. By Lemma 3.1, for any a > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 , uniformly in x ∈ P(R d ),

I n E ϕ(X x n )1 log Gn -nλ - √ nσy 1 A n,k E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak - √ nσy 1 A n,k E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak - √ nσy -e -c 1 k ϕ ∞ =: J n -e -c 1 k ϕ ∞ . (5.4)
As before, for any n > k 1, we write

G n = G n,k G k with G n,k = g n . . . g k+1 and G k = g k . . . g 1 .
We take the conditional expectation with respect to the filtration F k = σ(g 1 , . . . , g k ) and use (3.3) to obtain that, for any q > λ, there exists a constant c 2 > 0 such that for any x ∈ P(R d ),

J n E E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+log G k -nλ+e -ak - √ nσy 1 {log G k kq} F k E E ϕ(X x n )1 σ(Gn,x)-σ(G k ,x)+kq-nλ+e -ak - √ nσy F k -e -c 2 k ϕ ∞ =: J n -e -c 2 k ϕ ∞ . ( 5.5) 
For brevity, we set

y 1 = y n n -k - k(q -λ) σ √ n -k - e -ak σ √ n -k , ( 5.6) 
then J n can be rewritten as

J n = E E ϕ(G n,k • X x k )1 σ(G n,k ,X x k )-(n-k)λ - √ n-kσy 1 F k . For any y ∈ [ 1 2 √ log n, o(n 1/6
)], we take k = C 1 y 2 , where C 1 > 0 is a constant to be chosen large enough. From (5.6), we see that y ∼ y 1 = o(n 1/6 ) as n → ∞. Hence, using the moderate deviation expansion ([26, Theorem 2.3]) for the norm cocycle σ(G n , x), we obtain that as n → ∞, uniformly in

x ∈ P(R d ), y ∈ [ 1 2 √
log n, o(n 1/6 )] and ϕ ∈ B γ , Combining this with the upper bound (5.3) ends the proof of (2.9).

J n Φ(-y 1 ) = ν(ϕ) + ϕ γ O y 1 + 1 √ n . ( 5 
We proceed to establish Theorem 2.7 based on Theorem 2.6, Lemma 3.2 and the Berry-Esseen type bound (2.2).

Proof of Theorem 2.7. We only prove the first expansion (2.10) since the proof of the second one (2.11) can be carried out in an analogous way.

We first remark that for the range of small values y ∈ [0, 1 2 √ log n], the moderate deviation expansion (2.10) is a direct consequence of the Berry-Esseen type bound (2.2). Indeed, from (2.2) and the fact that |Eϕ(X x n )ν(ϕ)| Ce -cn ϕ γ , we derive that uniformly in y > 0,

E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} 1 -Φ(y) -ν(ϕ) C log n √ n(1 -Φ(y)) ϕ γ .
Using the inequality (5.2), Using the inequality (5.2), one can verify that 

√

log n, o(n 1/6 )],

I n := E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} .
The proof consists of establishing upper and lower bounds.

For the upper bound, we use (2.8) and the inequlility ρ(G n ) G n , to get that, as n → ∞, uniformly in y ∈ [ 1 2

√

log n, o(n 1/6 )],

I n 1 -Φ(y) ν(ϕ) + ϕ γ o(1).

(5.8)

For the lower bound, we shall apply Lemma 3.2 for a precise comparison between ρ(G n ) and G n . For any ε > 0 and n > k 1, we denote

A n,k = log ρ(G n ) -log G n > -εk .
From Lemma 3.2 we know that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 , we have P(A n,k ) > 1 -e -c 1 k . Thus, Hence, substituting the above estimates into (5.10), we get

I n E ϕ(X x n )1 log ρ(Gn)-nλ √ nσy 1 A n,k E ϕ(X x n )1 log Gn -nλ √ nσy+εk -e -c 1 k ϕ ∞ . ( 5 
E ϕ(X x n )1 log Gn -nλ √ nσy+εk 1 -Φ(y) ν(ϕ) + ϕ γ o(1).
This, together with (5.9), implies the lower bound for I n : uniformly in x ∈ P(R d ), y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ ,

I n 1 -Φ(y) ν(ϕ) + ϕ γ o(1) - e -c 1 k 1 -Φ(y)
ϕ ∞ ν(ϕ) + ϕ γ o(1), (5.11) where in the last inequality we take C 1 > 1 2c 1 and use (5.2). Combining (5.11) with (5.8) finishes the proof of Theorem 2.7.
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 111 Background and previous results. For any integer d 2, denote by G = GL d (R) the general linear group of real invertible d × d matrices.

7 ) 1 b 2 nn

 712 In the sequel, we take k = C , where C 1 > 0 is a constant to be chosen sufficiently large. If we denote b n = b n +

13 )

 13 Set b n = b n + εk y . Since b n√ n → ∞ and b n n → 0 as n → ∞, using (4.13), we get that uniformly in x
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 4243 Assume condition A2. If E log N (g 1 ) < ∞ and the proximal dimension of the semigroup Γ µ is p, then λ 1 = λ 2 = . . . = λ p > λ p+1 .The following result is from[START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] Lemma III. 1.4]. Assume condition A2. If E log N (g 1 ) < ∞ and the proximal dimension of the semigroup Γ µ is p, then there exists a constant c > 0 such that c g p ∧ p g g p for any g ∈ Γ µ .The following lemma was proved in [7, Proposition III. 1.7 and Remark III.1.8]. Recall that Γ µ,1 = {| det(g)| -1/d g : g ∈ Γ µ }.
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 44 (a) If the set Γ µ,1 is not contained in a compact subgroup of G, then the proximal dimension p of the semigroup Γ µ satisfies 1 p d -1.

. 25 )From ( 4 .

 254 [START_REF] Kingman | Subadditive ergodic theory[END_REF]) and (4.23), we get the lower bound for ∧ p G n : for any y > 0, hand, since the upper Lyapunov exponent of the sequence (G n ) n 1 is strictly less than 0 (see (4.21)), we have E(log G m ) < 0 for sufficiently large integer m 1. If we write n = km + r with k 1 and 0 r < m, then we have the identity

. 7 ) 2 √ 2 √-y 2 2 + y 2 1 2 2 √ 2 √

 7222122 Using the asymptotic expansion √ 2πΦ(-y) = 1 y e -y 2 2 [1 + O( 1 y 2 )] as y → ∞ (cf. (5.2)), we get that as n → ∞, uniformly in y ∈ [ 1 log n, o(n 1/6 )o(1)).Taking into account(5.6) and the definition of k, one can find that, as n → ∞, uniformly in y ∈ [ 1 log n, o(n 1/6 )], we have y 1 y = 1 + o(1) and e = 1 + o(1). Consequently, substituting the above estimates into (5.7), we get that, as n → ∞, uniformly inx ∈ P(R d ), y ∈ [ 1 log n, o(n 1/6 )] and ϕ ∈ B γ , J n Φ(-y) = ν(ϕ) + ϕ γ o(1).This, together with (5.5), implies thatI n Φ(-y) ν(ϕ) + ϕ γ o(1) -ϕ ∞ 2e -c 3 C 1 y 2 Φ(-y) .Using (5.2) and taking C 1 > 1 c 3 , it follows that, uniformly in x ∈ P(R d ), y ∈ [ 1 log n, o(n 1/6 )] and ϕ ∈ B γ , I n Φ(-y) ν(ϕ) + ϕ γ o(1) -4 ϕ ∞ ye -c 3 C 1 y 2 + y 2 2 = ν(ϕ) + ϕ γ o(1).

2 √ 2 √ 2 √

 222 Φ(y)) → 0, as n → ∞, uniformly in y ∈ [0, 1 log n]. Hence the expansion (2.10) holds uniformly in y ∈ [0, 1 log n]. Now we prove that (2.10) holds uniformly in y ∈ [ 1 log n, o(n 1/6 )]. Without loss of generality, we assume that the target function ϕ is non-negative. For brevity, we denote for y ∈ [ 1 2

  .22) Here, G n and G n are products of i.i.d. invertible matrices of the formG n = g n • • • g 1 and G n = g n • • • g 1 .We denote by µ 1 the law of the random matrix g 1 , by d 1 the dimension of the vector space V 1 , and by Γ µ 1 the smallest closed subsemigroup of GL d 1 (R) generated by the support of µ 1 . Then, following the same argument used in the proof of the central limit theorem for G n (see [7, Theorem V.5.4]), one can verify, under condition A2 on µ, that the semigroup Γ µ 1 is strongly irreducible and proximal on R d 1 . Therefore, µ 1 satisfies conditions A2 and A3, so that we can apply the moderate deviation principle (2.3) with ϕ = 1 and G n replaced by G n , to get the following moderate deviation asymptotics: for any y > 0,

	lim n→∞	n b 2 n	log P	log G n b n	y = -	y 2 1 2σ 2	,	(4.23)
	lim n→∞	n b 2 n	log P	log G n b n	-y = -	y 2 1 2σ 2	,	(4.24)

  4.29), by Markov's inequality and the fact that k = O(n) and b n = o(n), the first term on the right hand side of the above inequality is bounded by Ce -ck . It has been shown in the proof of (4.30) that the second term is also bounded by Ce -ck . Therefore, taking into account k n/(m + 1), we getP(log G n > -yb n ) Ce -cn .

	Combining this bound with (4.24), we obtain		
	lim inf n→∞	n b 2 n	log P	log ∧ p G n b n	-y	-	y 2 1 2σ 2	.
	By Lemma 4.3, this implies				
	lim inf n→∞	n b 2 n	log P	log G n b n	-y	-	y 2 0 2σ 2	,	(4.34)
	where σ 2 0 = (σ 2 1 )/p 2 > 0. Putting together (4.33) and (4.34), we conclude
	the proof of (4.19).								
	Proof of (2.6) of Theorem 2.4. Using Lemma 3.2, we can obtain (2.6) from
	(2.5) just as we obtained (2.4) from (2.3). The details are omitted.

  )]. We only give a proof of (2.9), since (2.8) can be established in a similar way. Without loss of generality we assume that the function ϕ is non-negative. For x ∈ P(R d ) and y ∈ [ 1

	Using the elementary inequality					
	1 √ 2π	1 y	-	1 y 3 e -y 2 2	Φ(-y)	1 2πy √	e -y 2 2	for y > 0,	(5.2)
	it is easy to see that log n √ nΦ(-y) = O(n -3/8 (log n) 3/2 ) → 0, as n → ∞, uni-formly in y ∈ [0, 1 2 √ log n]. Therefore, from (5.1) we see that the expansion (2.9) holds uniformly in y ∈ [0, 1 √ log n]. In the same way, using (2.1) to-2 gether with the fact that |Eϕ(X x n ) -ν(ϕ)| Ce -cn ϕ γ , one can also verify that the expansion (2.8) also holds uniformly in y ∈ [0, 1 2 √ log n].
	It remains to prove that the expansions (2.8) and (2.9) hold uniformly in y ∈ [ 1 2 √ log n, o(n 1/6
									.1)

2

√

log n, o(n 1/6 )], denote

  .9) By Theorem 2.6, we have, uniformly inx ∈ P(R d ), y ∈ [ 1 )], we take k = C 1 y 2 , where C 1 > 0 is a constant to be chosen large enough. Since ∞ y e -t 2 2 dt = 1 y e -y 2 2 [1 + O( 1 y 2 )] as y → ∞, we infer that as n → ∞, uniformly in y ∈ [ 1

									2	√ log n, o(n 1/6 )]
	and ϕ ∈ B γ ,					
	E ϕ(X x n )1 1 -Φ(y + εk log Gn -nλ √ nσ ) √	nσy+εk	= ν(ϕ) + ϕ γ o(1).	(5.10)
	For y ∈ [ 1 2	√	log n, o(n 1/6 2	√	log n, o(n 1/6 )],
	1 -Φ(y + εk √ nσ ) 1 -Φ(y) 2nσ y = y y + εk √ nσ exp -y εk √ nσ ε 2 k 2 -y + εk √ nσ = 1 -εk √ nσ y + εk √ nσ 1 -εk y √ nσ = 1 -ε C 1 y 2 y √ nσ	= 1 + o(1),
	and							
	exp -y	εk √ nσ	-	ε 2 k 2 2nσ 2 = exp -y	ε C 1 y 2 √ nσ	-	ε 2 C 1 y 2 2 2nσ 2	= 1 + o(1).

2 

(1 + o(

1

)).

Since y ∈ [ 1 2 √ log n, o(n 1/6 )], taking into account that k = C 1 y 2 , we get
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which is finite by condition A1. By Markov's inequality and the fact that u m > 0 is a constant, it follows that there exist constants c, C > 0 such that