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Abstract—The development of vehicular technologies and in-
frastructures leads to development in mobility handling for wire-
less communications. Improving connectivity establishment and
reliability becomes an issue, especially for vehicles that may move
out of antenna coverage during connection establishment. The
focus of this paper is made on improving LoRaWAN connectivity
for roaming devices by combining a machine learning predictor
and DNS prefetching to gather information necessary for con-
nection establishment before the device comes under coverage,
thus reducing the overall latency for connection establishment.
Other aspects are also studied such as comparison with other
solutions and antennas memory occupation. 1 2
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I. INTRODUCTION

The evolution of vehicular network generations led to new
challenges in the different communication models such as
V2V, V2I, V2P and V2X where the connected vehicles can
provide services like data caching or tasks offloading for
other vehicles, and also for users devices. Besides, the high
mobility of vehicles is an important issue because it is related
directly to the communication channel where the stability of
the connection enhances the quality of service, particularly
latency and delay.

The DNS is a key component on the Internet that might
incur additional latency and hinder device connectivity. From
a user’s point of view, it is important that access is provided
as smoothly as possible, without additional cost, to develop
the technology’s adoption. And in roaming scenarios, serving
all users as soon as possible would decrease the impact from
other networks on their own gateways. From an operator’s
point of view, an increase in latency might incur congestion
or gateway overload which would decrease the Quality of
Service for IoT solutions. Thus, reducing the impact from DNS
requests when a device is joining becomes a key connectivity
concern. It is particularly challenging in mobile environments.

1This work is a contribution to the Energy4Climate Interdisciplinary Center
(E4C) of IP Paris and Ecole des Ponts ParisTech, supported by 3rd Programme
d’Investissements d’Avenir [ANR-18-EUR-0006-02].

2This work was partly financed by the French National Research Agency
through the CIFRE program [2018/0668]

Also, the issue behind storing and sharing DNS data, or
where to locate a DNS cache, how long to keep information
cached and when to access it as an operator, is crucial
to improve network for backend mechanisms. Prefetching
information is a common strategy to reduce latency within
networks. Web browsers make use of such techniques to obtain
IP addresses for domains within a web page, predicting that
the user may click on a link, thus sparing the DNS requests
when a user clicks by performing the request beforehand.

In this paper, we analyze two different DNS prefetching
strategies in an urban scenario. We evaluate their impacts on
both the user and operator’s quality of service. We consider
mobile vehicles in Roma for which we wish to provide
LoRaWAN connectivity. In a LoRaWAN scenario, DNS is
involved in the roaming procedure. We assume that we can
exploit DNS prefetching to query DNS servers based on device
mobility to resolve device-specific information between the
gateway and a DNS server. The prefetching can be as simple
as requesting that nearby gateways prefetch the information
(our scenario 2 below) but could also rely on recent mo-
bility models based on Machine Learning (ML) predictions
(our scenario 3). This article studies the consequences of
prefetching DNS information on antennas with regards to
device mobility. In particular, we check if the information
is prefetched adequately with respect to the actual vehicle
location, by observing the DNS query success ratio. We also
studies antennas occupation based on mobility scenarios
to further understand the possible impact of prefetching on
antenna cache filling. Actually, different prefetching strategies
lead to more or less cache occupations for the antennas.

The presented use case focuses on provisioning DNS con-
nectivity data necessary for the join exchange in a LoRaWAN
connection establishment procedure, but this method is appli-
cable to other DNS data querying. It is even more general since
the strategies we propose to provision information in antennas
for a vehicular networks may be used for many other user
data.

In the next part, we review the related works. Section
III presents our studied scenarios. Section IV presents our
results, in which IV-A reflects on DNS cache results and IV-B
describes antenna occupation within the studied perimeter.



Finally, our conclusions are sum up in V.

II. RELATED WORKS

A. Improving communications using predictors in Vehicular
Networks

In this part, we present existing works that resolve the
communication failure problem caused by mobility in ve-
hicular networks. Some of these solutions exploit machine
learning techniques to predict devices movement and improve
communication efficiency.

Vinod et al. [1] proposed a mechanism of link life prediction
that creates an alternative link before it breaks. A vehicles
mobility in a highway is used as a scenario to validate the
results; besides, they used the microscopic or macroscopic
(traffic flow, traffic density) approach to generate the vehicles’
movements. The proposed algorithm uses the velocity and the
location of vehicles to predict the route break.

Shelly et al. [2] proposed a statistic method for link lifetime
in Vanet networks by using an analytical model. They studied
the impact of vehicle density, vehicle mobility, and the trans-
mission range and analyzed the statistics of the communication
link. Besides, they studied a case of two vehicles (A) and (B),
where VA, VB and Vr are velocities of vehicle A, vehicle B
and the relative velocities of pair of vehicles respectively.

Work in [3] proposed a link duration prediction via Ad-
aBoost algorithm [4]. The proposed steps consist of aggregate
the existing link metrics to generate many predictors; each
predictor predicts if the link duration is under or over a
threshold with high accuracy using the set of link metrics.
In the next step, the algorithm determines the duration of the
link using all the knowledge collected from these predictors.

Wang et al. [5] proposed a prediction model called extended
link duration prediction (ELDP), which allows the vehicle to
estimate the link duration with the other vehicles. Simulations
in a city and highway show that the speed of vehicles has an
impact on the link duration prediction in Vanet networks. In
this work, a normal distribution needs to be used for vehicles
speed.

Das et al. [6] proposed a network formation game called
NGOMA algorithm for MAC-level re-transmission. It selects
one node from the intermediate node, and in the case of a link
failure, the formation game is used to select the relay node to
re-transmit a packet from the source node to the destination
node. The proposed algorithm reduces the delay and enhances
the packet delivery ratio.

Similarly, Bhoi et al. [7] used a data forwarding technique to
predict the link failure where a link existence diagram (LED)
is generated to know the existing vehicles links. The proposed
techniques prove their efficiency in terms of end-to-end delay.
Nevertheless, the GPS can’t detect obstacles and require huge
resources.

Authors in [8] proposed a route prediction in Vanet networks
to resolve the problem of the communication link failure; they
proposed to use machine learning algorithms for prediction
and then studied the efficiency of the proposed solution.

Simulation results proved the efficiency of machine learning
in route prediction compared to real vehicles mobility.

Each proposed solution improved the QoS in vehicular
networks, especially solving the problem behind link failure
during communications. Nevertheless, it is difficult to prove
the efficiency of these solutions in dense networks with a
huge number of vehicles. In addition, the impact of different
obstacles is not studied in these works. Some of these solu-
tions exploit machine learning capabilities to predict devices
movements. Using artificial intelligence to support and predict
device mobility can improve link quality and is more suitable
for large-scale vehicular networks.

B. DNS performance, caching and prefetching

DNS prefetching relies on a prediction mechanism; the user
could click on the link, so its browser performs the DNS
query beforehand for all domains that appear within a web
page. This simple prediction mechanism can be applied to any
circumstances. [9] analyzed DNS traffic with the increase of
IPv6 technologies in web hosting and put it in perspective with
network traffic increase in Japan, and offered a prefetching-
based solution to increase cache hit rate and reduce response
times on web browsers. [10] proposes to study DNS queries
in the context of web navigation (DNS over UDP requests)
by studying when DNS queries are performed and when the
information is needed. Their conclusion regarding prefetching
is that no supplementary DNS cost apply thanks to prefetch-
ing. A good tutorial on prefetching and its consequences is
provided by the Chromium project [11].

Fetching data using DNS comes with a short delay. [12]
studied DNS responses with overall results outlining a 200ms
response for 70% of their queries, and 90% of queries are
realized within 1s. More recent analysis, such as [13] or
[14] outline better results by combining anycast technologies
and Content Delivery Networks for DNS. [13] studies re-
sponses from top resolvers which answer 90% of their requests
within 100ms. Moreover, [14] provides additional information
regarding DNS over TLS (DoT) resolution in which they
outline failure rates with responses between 130ms and 230ms
from top resolvers. Overall, the time inflation from additional
security can be outlined around these values.

DNS over HTTPS (DoH) would add another supplementary
cost up to 150ms as outlined by [13] measurements on
public resolvers. Overall, sending two complete DNS requests
completed with DNSSEC integrity check and secured with
DoH would cumulate up to 1.1s of queries done within the
first exchange between the ED and the RG. Our problem is as
such: "Would it be possible to reduce that delay in a mobility
context to reduce the impact from DNS querying on channel
establishment?"

This is the reason why exploiting DNS to prefetch in-
formation is useful, as the information is queried anyway;
doing it beforehand if possible reduces the overall latency.
Prediction algorithms help us determine where to provide the
DNS information. This paper aims to analyze how we could



reduce the overhead of DNS querying in mobility solutions
for vehicular applications studying various scenarios.

III. USE CASE AND SOLUTIONS

The LoRaWAN join procedure introduces two DNS queries
for channel establishment between gateway and backend (cf.
3). This work provides a few insights on possible solutions
based on Machine-Leaning-based mobility predictions and
information prefetching from DNS servers.

We consider mobility traces from devices moving within
the city of Roma; Figure 1 shows part of the studied traces
traced as a function of latitude and longitude. Each vehicle is
located with ten points, each separated from the next one by a
1-minute delay. For these simulations, we considered all DNS
entries to be kept in cache for a duration of 5 minutes. Note
that DNS cache congestion will not be studied here.

Figure 1: Vehicle mobility around Roma

We simulate antenna placement within the movement
perimeter; regularly placed antennas provide independent cov-
erage for our vehicles. Figure 2 shows a vehicular trace with
the antenna disposition within its sector. Our test antenna
positioning algorithm places the antennas regularly in squares;
thus, each antenna has 8 immediate neighbors for all scenarios.

Figure 2: Vehicle and antennas for a single trace

In our simulated fog LoRaWAN deployment, each antenna
would act independently and provide access to its devices. To
cover a city the size of our perimeter (200 km x 170km), a reg-
ular deployment will need around 520 independent antennas
to be deployed. With a regular antenna placement and about
8 km between two antennas at most, the vehicle-to-antenna
distance will always be bounded between 0 and 4 km.

We assume that each independent antenna will provide
roaming access to devices within its reach. As described on
figure 3, this means that the antenna will request the device’s
key from its HN and establish its connection to the ED thanks
to them.

Figure 3: Usual LoRaWAN devices activation message flow

We separated our study into three scenarios. In the first
scenario, no prefetching is realized, and the device uses the
standard DNS query mechanism. It is a reference scenario.
In the second scenario, we improve the mechanism with a
basic prefetching mechanism realized by nearby antennas:
any antenna, in the neighborhood of the antenna under which
the device is, is prefetched. Finally, in the third scenario,
we run mobility predictions, using ML, for our devices, plan
their possible future location and prefetch the information
based on the predictions.

A. Prediction algorithm

We propose to use long short-term memory (LSTM) algo-
rithm to predict vehicles mobility inside the city [15]. The
LSTM model is trained using real vehicles mobility dataset
[16] in Rome city, Italy. The data represents the real-time
vehicles mobility for one month. The data is classified as
follows: vehicle ID (is an integer), date, time, and the position
of vehicles (latitude, longitude).

B. First Scenario

For this first scenario, we studied the movements of 6992
devices within the Roma metropolis. Each vehicle is tied to 10
successive locations. We survey the closest antenna for each
location and check if the device’s information is available on
the antenna’s cache or should be queried. Actually, depending



on the vehicle movements, DNS configuration (number of
entries in cache, TTL...) or antenna placement, it may come
under the coverage of an antenna where it has already been
before. The first location of the device is put on the side as
"First DNS Query" for consistency with the other scenarios
as we would not prefetch information for the first point of the
time series.

C. Second Scenario

For the second scenario, we studied the movements of the
same 6992 devices; each vehicle is still tied to 10 successive
locations. We survey the nearest antenna for each location and
check if the device’s information is available on the antenna’s
cache or should be queried.

Our test antenna positioning algorithm places the antennas
regularly in squares; thus, each antenna has 8 immediate neigh-
bors. In this scenario, we prefetch the information on these 8
closest antennas to anticipate possible device movements. As
mentioned above, the first DNS query for each vehicle is put
on the side as "First DNS Query" as these DNS queries cannot
be anticipated.

The consequences of DNS prefetching on message flow is
described on Figure 4, the information necessary to support
the devices’ connectivity is recovered before the device’s Join
Request; thus, the time corresponding to the various queries
is saved from the first transmission and realized beforehand.

Figure 4: LoRaWAN evices activation message flow with our DNS
prefetching mechanism

D. Third Scenario

In this third scenario, we predict car mobility using deep
learning algorithms and identify antennas candidate for device
coverage. Based on these predictions, the DNS (or its cache) is
queried once by the antenna corresponding to the device’s po-
sition for each given point within the device’s movement. Then
for the four following predicted positions, the corresponding
antenna will perform DNS prefetching as described on Figure
4 to heat its cache for a possible change of coverage from the
device.

Figure 5 provides a rundown on interactions between an-
tennas and DNS Servers in the third use case.

Figure 5: Possible solicited antennas in Scenario 3

For a given position A, we consider the 25 possible antennas
(B to Z) from the previous predictions and actual positions of
the vehicle:

• Antennas B to E are antennas corresponding to the
prediction of position A in previous moments in time{
fT−i(T + i), i ∈ [[1, 4]]

}
). If antenna A corresponds to

one of these antennas, our prediction is successful, and
we hit the cache of our gateway as the information was
prefetched in previous moments in time.

• Antennas F to O correspond to the predictions for previ-
ous positions of the device (

{
fT−i(T+j), i ∈ [[1, 5]], j ∈

[[1, 4]], i − j > 0
}

). If antenna A corresponds to one of
these antennas, but not antennas B to E, our prediction
was a failure, but the information is still present in the
gateway’s cache, and despite the prediction failure for
this exact timestamp, we hit our gateway’s cache as the
information was not purged yet.

• Antennas P to S are a similar case (
{
fT−i(T + j), i ∈

[[1, 5]], j ∈ [[1, 4]], i − j < 0
}

), our prediction was a
failure, but the information is still present in the gateway’s
cache, and despite the prediction failure for this exact
timestamp, we hit our gateway’s cache as the information
was not purged yet.

• Finally, antennas V to Z are the actual antennas so-
licited for the device in previous moments in time
(
{
fT−i(T ), i ∈ [[1, 5]]

}
). In this case, the prediction is a

failure and so is the prefetching as the other prefetched
information expired, but the information corresponding
to these antennas are still present in the DNS cache from
previous requests, we labelled this result "DNS Cache"

• In the case where antenna A (
{
fT (T )

}
) does not corre-

spond to any antenna between B and Z, prefetching was
a failure, and a new antenna was solicited; thus, it must
realize a DNS request (labelled "DNS Query")

• Additionally, we separated from these DNS queries the
DNS query for the first device’s location as antenna B to
Z constitute an empty ensemble for this given location.



IV. RESULTS

A. Cache hit analysis

Figure 6 presents our global results for all three scenarios.

Figure 6: Cache Hit Rate repartition between queries - All cases

On Figure 6, the "No prefetching case" describes our results
for the first scenario. For the 10 locations of our 6992 vehicles,
the antenna either queries the DNS as part of the vehicle’s first
localization, queries the DNS as part of an antenna change
for the device or queries its own cache since the device was
already known.

Our studied traces are not heavily mobile for now as we
study an urban scenario, and additional studies would be
necessary to study possible other equilibriums between DNS
caching and DNS querying for mobile devices. That explains
that our first insight into these results would be that devices
are moderately mobile, switching antennas once within the 10
points of their movements, moving around 35km per hour. We
observe the 6992 initial DNS requests and around 8 thousand
additional DNS queries, consistent with a 2.1 mean antenna
per vehicle. The remaining DNS queries are prevented as the
request hits the DNS cache within the antenna.

The "Nearby prefetching case" data from Figure 6 describes
our results for Scenario 2. As above, for the 10 locations
of our 6992 vehicles, the antenna either queries the DNS
as part of the vehicle’s first localization, queries the DNS
as part of an antenna change for the device or queries its
own cache as the device was already known through low
mobility or prefetching. The simulations show that prefetching
permits us to prevent on-the-fly DNS querying. The DNS is
still queried but at a time when the information is not yet
necessary. The DNS cache handles all queries necessary for
device communication, preventing additional DNS query times
during handshakes. Nearby prefetching permits us to attain an
important hit rate on our cache, whether filled by our first
classic DNS query, DNS refresh or prefetched DNS query. A
similar situation would be as described in the introduction of
section II-B, where prefetching every DNS zone encountered

within web page URLs allows to quicken load time by pre-
filling the DNS cache with prefetched DNS queries.

Finally, the "Predictor prefetching case" from figure 6
combines the results from our vehicle location based on the
scenario breakdown from figure 5. Results are, satisfying
compared to the first scenario. Putting aside the first DNS
queries, successful prediction leads to hitting an antenna linked
to a correctly predicted position in 70.4% of cases. Cache
hit rate linked to predictions, whether correct predictions or
incorrect predictions by lateness or earliness, would add up
to 86% of requests. The remaining 14% are divided between
DNS cache after prediction error (11.4%) and actual DNS
queries (2.5%).

B. Antenna occupation
Another important subject to study is antenna occupation.

As part of our study, antennas prefetch information based on
the possibility that the associated device will pass under its
coverage:

• We placed 520 virtual antennas around the city
• Out of them, the first scenario activates 301 antennas.

That means that our 6992 vehicles pass near these 301
antennas and that 301 is our minimum number of active
antennas as a whole.

• The second scenario activates as whole 393 antennas, a
bit over twice more antennas than in the first scenario.
The ’nearby case’ shows excellent results but would
probably create congestion within the network should
these results confirm at a larger scale.

• Finally, the third scenario activates 380 antennas, globally
around the same amount as the antennas solicited as part
of the second scenario, figure 7 gives us more insight on
the distribution of these antennas.

Obviously, the absolute number of activated antennas de-
pends on the spatial distribution of the vehicles. Another
important criteria is the number of activated antennas per
vehicle. Figure 7 shows the comparison of the number of
activated antennas per vehicle for all scenarios.

The mean amount of antennas, described on 8 activated is
as follows:

• Scenario 1 leads to activating 2.1 antennas per moving
vehicle on average.

• Scenario 2 leads to activating 12.3 antennas per moving
vehicle on average.

• Scenario 3 leads to activating 9.7 antennas per moving
vehicle on average.

Figure 8 provides additional insight on these values, Sce-
nario 1 has at least 50% of its values between 1 and 3,
Scenario 2 between 9 and 14 and Scenario 3 between 7 and 12.
This result fits with the moderate mobility from our values as
devices that move within 3 antennas would activate around 15
antennas through their movement in Scenario 2. The predictor
performs better than the simple nearby prefetching, with more
than 75% of its values under the median for Scenario 2. Also,
Scenario 2 has many outliers with over 21 antennas solicited
per device on highly mobile roads.



Figure 7: Vehicle sample from activated antennas in all scenarios

Figure 8: Activated antennas distribution for each scenario

V. CONCLUSION

DNS prefetching is an efficient tool to reduce the delay
added by on-the-fly DNS queries necessary for device
communication. It is a way to prepare the information for
the moment when the vehicle will be under the umbrella of
the gateway where the information is provisionned. Prefetch-
ing the information on nearby antennas, like in our second
scenario, can completely prevent DNS queries by performing
them in advance around the closest ones, but at a cost as
more antennas are prefetched than with our third scenario,
especially in a highly mobile environment. By exploiting
recent ML capabilities for traffic prediction, like in our third
scenario, we could provide a solution that heats the cache
for 86% of requests, and that leads to a cache hit for 97% of
them. Overall, the ML system would outperform its nearby-
activation counterpart in terms of antennas solicitation since
only the most likely future gateways are provisioned: scenario
2 activates around 27% more gateways than scenario 3. Also,
additional simulations with different antenna location patterns
would help improving this score.

Another interesting further study would be the observation
of possible antennas overload, such as the overload from
DNS cache for which we consider 5-minutes caching. The
actual implementation keeps 4096 entries within the cache,
each with a variable duration. It would be interesting to study
cache congestion against the number of vehicles within the
perimeter, considering this 4096 entry limit and the caching
duration. Also, considering that our traces amount for taxis
which represent around 1% of actual cars circulating around
a country, studying actual overload within the network by
increasing the number of vehicles by a 100-factor then de-
creasing it considering the number of cars that would actually
transit within the system would be feasible.
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