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Abstract

Deep neural networks (DNNs) have recently achieved a great success in computer
vision and several related fields. Despite such progress, current neural architectures still
suffer from catastrophic interference (a.k.a. forgetting) which obstructs DNNs to learn
continually. While several state-of-the-art methods have been proposed to mitigate for-
getting, these existing solutions are either highly rigid (as regularization) or time/memory
demanding (as replay). An intermediate class of methods, based on dynamic networks,
has been proposed in the literature and provides a reasonable balance between task mem-
orization and computational footprint.
In this paper, we devise a dynamic network architecture for continual learning based
on a novel forgetting-free neural block (FFNB). Training FFNB features on new tasks
is achieved using a novel procedure that constrains the underlying parameters in the
null-space of the previous tasks, while training classifier parameters equates to Fisher
discriminant analysis. The latter provides an effective incremental process which is also
optimal from a Bayesian perspective. The trained features and classifiers are further
enhanced using an incremental “end-to-end” fine-tuning. Extensive experiments, con-
ducted on different challenging classification problems, show the high effectiveness of
the proposed method.

1 Introduction
Deep learning is currently witnessing a major success in different computer vision tasks
including image and video classification [15]. The purpose of deep learning is to train con-
volutional or recurrent neural networks that map raw data into suitable representations prior
to their classification [30, 31]. However, the success of these networks is highly dependent
on the availability of large collections of labeled training data that capture the distribution of
the learned categories. In many practical scenarios, mainly those involving streams of data,
large collections covering the inherent variability of the learned categories are neither avail-
able nor can be holistically processed. Hence, training deep networks should be achieved as
a part of a lifelong process, a.k.a. continual or incremental learning [37, 43, 49, 50].

The traditional mainstream design of deep networks is based on back propagation and
stochastic gradient descent. The latter collects gradients through mini-batches and updates
network parameters in order to learn different categories. However, in lifelong learning,
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tasks involve only parts of data/categories, and this potentially leads to catastrophic for-
getting (CF) defined as the inability of a learning model to “memorize” previous tasks when
handling new ones. In cognitive science, CF is considered as an extreme case of the stability-
plasticity dilemma [1, 32] where excessive plasticity causes an easy fit to new knowledge and
less on previous ones. This is also related to concept (or distribution) drift [9] that may hap-
pen when a learning model keeps ingesting data [14, 44].

Whereas in most of the learning models (especially shallow ones [6, 34, 41, 51, 52]),
CF could be overcome, its handling in deep networks is still a major challenge and existing
solutions can only mitigate its effect. Indeed, CF results from the high non-linearity and
entanglement of gradients when achieving back-propagation in deep networks (in contrast to
shallow ones). Existing straightforward solutions bypass this effect by storing huge collec-
tions of data and replaying the learning process using all these collections; whereas replay
is highly effective, it is known to be time and memory demanding and may result into re-
source saturation even on sophisticated hardware devices. Other solutions, with less time and
memory footprint (e.g., regularization) can only mitigate the effect of CF. Another category
of methods, based on dynamic networks provides a suitable balance between resource con-
sumption and task memorization, and gathers the advantage of the two aforementioned cate-
gories of methods (namely replay and regularization) while discarding their inconveniences
at some extent. Our proposed solution, in this work, is also built upon dynamic networks
and allows mitigating CF with a reasonable growth in the number of training parameters.

2 Related work
Early work in continual learning mitigates CF by constraining model parameters to keep pre-
vious knowledge while learning new tasks. These techniques include regularization, replay
and dynamic networks. Elastic weight consolidation [21] is one of the early regulariza-
tion methods based on the Fisher information (see also [27, 38]). Other criteria, including
synaptic intelligence [59], regularize parameters according to their impact on the training
loss using gating mechanisms [46] and weight pruning [29]. Knowledge distillation [11] has
also been investigated to build cumulative networks that merge previous tasks with current
ones [26]. These methods include Incremental Moment Matching [23] which merges net-
works by minimizing a weighted Kullback–Leibler divergence and Learning without Mem-
orizing [4] that relies on attention mechanisms [45]. Gradient episodic memory [28] relies
on a memory budget but proceeds differently by regularizing and projecting the gradient of
the current task onto the gradients of the previous ones. A variant in [3] extends further this
regularization by averaging gradients through all the visited tasks while the method in [2]
combines limited representative memory with distillation. Other models seek to leverage
extra knowledge including unlabeled data [22, 60] (which are independent from the targeted
tasks) or biases (due to imbalanced distributions) between previous and current tasks to fur-
ther enhance generalization [12, 53].

The second category of methods (namely replay) consists in leveraging original or gen-
erated pseudo data as exemplars for continual learning. ICaRL [36] is one of these methods
which extracts image exemplars for each observed class depending on a predefined memory
budget. Pseudo-replay models [19] including deep generative networks [10, 18, 20, 39, 47]
have also been investigated in the literature as alternative solutions that prevent storing ex-
emplars. The particular method in [24] combines an explicit and an implicit memory where
the former captures features from observed tasks and the latter corresponds to a discrimina-
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tor and a generator similarly to deep generative replay. Other continual learning approaches
employ coresets [33] to characterize the key information from different tasks.

Closely related to our contribution, dynamic networks proceed by adapting the topol-
ogy of the trained architectures either at a macroscopic or microscopic level [56]. Macro-
scopically, progressive networks [40] define parallel cascaded architectures where each sub-
network characterizes a specific task. Each layer propagates its output not only in the same
sub-network but also through all the sub-networks of the subsequent tasks. PathNet [7]
extends the topology of progressive networks, using evolutionary algorithms, to learn new
connections between previous and current tasks. Random path selection networks [35] push
this concept further by learning potential skip-connections among parallel sub-networks us-
ing random search. Microscopically, existing methods dynamically expand networks using
thresholds on loss functions over new tasks and retrain the selected weights to prevent se-
mantic drift [57]. Reinforced continual learning [55] employs a controller to define a strategy
that expands the architecture of a given network while the learn-to-grow model [25] relies
on neural architecture search [62] to define optimal architectures on new tasks. Other mod-
els [5], inspired by the process of adult neurogenesis in the hippocampus, combine archi-
tecture expansion with pseudo-rehearsal using auto-encoders. Our contribution in this paper
proceeds differently compared to the aforementioned related work: tasks are incrementally
handled by learning the parameters of a particular sub-network (referred to as FFNB) in the
null-space of the previous tasks leading to stable representations on previously visited cate-
gories and discriminating representations both on previous and current categories. A bound
is also provided that models the loss due to CF; this bound vanishes under particular set-
tings of the null-space, activations and weight decay regularization. All these statements are
corroborated through extensive experiments on different classification problems.

3 Problem formulation
Considering X as the union of input data (images, etc.) and Y their class labels drawn
from an existing but unknown probability distribution P(X ,Y ). The general goal is to train
a network f : X → Y that assigns a label f (X) to a given sample X while minimizing a
generalization risk R( f ) = P( f (X) 6=Y ). The design of f is usually achieved by minimizing
an objective function (or loss) on a fixed set T = {(xi,yi)}i including all the training data and
their labels; this scheme is known as multi-task learning [16, 17]. In contrast, we consider in
this work a different setting which learns f incrementally, i.e., only a subset of T (denoted
Tt ) is available at a given cycle t (see for instance algorithm 1 in supplementary material). In
what follows Tt will be referred to as task.

Let {T1, . . . ,TT} be a collection of tasks; this set is not necessarily a partition of T , and
each Tt may include one or multiple classes. Learning f incrementally may lead to CF;
the latter is defined as the inability of f to remember (or correctly classify) previously seen
tasks either due to a distribution-shift (i.e., when tasks correspond to the same classes but
drawn from different distributions) or to a class-shift (i.e., when tasks correspond to disjoint
classes). We consider only the latter while the former (closely related to domain adaptation)
is out of the scope of this paper.

3.1 Dynamic networks and catastrophic forgetting
Without a loss of generality, we consider T as an overestimated (maximum) number of
tasks visited during a continual learning process. We also consider f as a convolutional
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network whose fully connected (FC) layers are dynamically updated. This FC sub-network
of f , also referred to as FFNB (see Table. 7), corresponds to feature maps and classifi-
cation layers whose widths {d`}` (or dimensionalities) are dynamically expanded as tasks
evolve. This dimensionality expansion makes data, belonging to the current and the previous
tasks, increasingly separable. Let Xt ∈ Rd0×nt denote the data matrix of a given task t (with
nt = |Tt |), the maps of these FC layers are recursively defined as ψ`(Xt) = g

(
W` ψ`−1(Xt)

)
with ψ`(.) ∈ Rd` , ` ∈ {1, . . . ,L} and ψ0(Xt) = Xt . Here W` ∈ Rd`×d`−1 is a matrix of train-
ing parameters and g a nonlinear activation. Considering this dynamic network, a band of
parameters is assigned to each new task and trained “end-to-end” by back-propagating the
gradient of a task-wise loss. These parameters are afterwards updated while those assigned
to the previous tasks remain unchanged; see again algorithm 1 in supp material.

As data belonging to the previous tasks are dismissed, this straightforward “end-to-end”
learning of the current task’s parameters relies only on data in Tt , and thereby the underlying
classifier may suffer from insufficient generalization. Moreover, as no updates are allowed
on the parameters of T1, . . . ,Tt−1, it follows that neither generalization nor CF are appro-
priately handled on the previous tasks; indeed, as the parameters {W`,t}` of a given task t
evolve, there is no guarantee that the outputs {ψ`}` remain unchanged on data of the previ-
ous tasks, leading to changes in the underlying classification output ψL+1 and thereby to CF
(see later experiments). One may consider the statistics of the previous tasks (e.g., means
and covariances of the data across different FC layer maps) and discriminatively learn the
parameters associated to the current task (see later section 3.2.3). Nevertheless, prior to this
step, one should be cautious in the way learning is achieved with those statistics, as the lat-
ter should remain stable as tasks evolve. Indeed, even when those statistics are available,
one cannot update the parameters of the previous tasks as the latter disrupt in turn those
statistics and no data are available in order to re-estimate them on the previous tasks. Hence,
before making updates on the network parameters, feature maps should be stabilized on the
previous tasks as introduced subsequently.

3.2 Proposed method

We introduce in this section an alternative solution which sill relies on dynamic networks
but considers different FC layers and training procedure. Our framework incrementally
learns the parameters {W`,t}` of the current task Tt in the null-space of the previous tasks
T1, . . . ,Tt−1 while maintaining the dynamic outputs {ψ`}` of all the FC/FFNB layers almost
unchanged (or at least stable) on T1, . . . ,Tt−1. This approach, as described subsequently,
learns new tasks incrementally and mitigates CF on previous ones while maintaining high
generalization on both.

3.2.1 FFNB features

Learning the parameters of the current task should guarantee: (i) the consistency of the net-
work predictions w.r.t. the underlying ground-truth, and (ii) the stability of the feature maps
of the FC layers on the previous tasks. The first constraint is implemented by minimizing
a hinge loss criterion while the second one is guaranteed by constraining the parameters
of a new task to lie in the null-space NS(ψ`(XP)) of previous tasks data; in this notation,
P = {1, . . . , t − 1} and XP refers to the matrix of data in T1, . . . ,Tt−1. As shown subse-
quently, stability is implemented by learning the parameters of a new task in a residual
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subspace spanned by the axes of principal component analysis (PCA)1 applied to ψ`(XP).
Let Φ`,t be the matrix of eigenvectors (principal axes of PCA) associated to data in

ψ`(XP); in what follows, unless stated otherwise, we write Φ`,t simply as Φ. Assuming these
data centered, the principal axes are obtained by diagonalizing a covariance matrix incremen-
tally defined as ∑

t−2
r=1 ψ`(Xr)ψ`(Xr)

>+ψ`(Xt−1)ψ`(Xt−1)
>. The eigenvectors {Φd}d in Φ

constitute an orthonormal basis sorted following a decreasing order of the underlying eigen-
values. Let p be the smallest number of dimensions which concentrate most of the statistical
variance. The vector of parameters associated to the current task t in NS(ψ`(XP)) is

W`,t :=
d`−1

∑
d=p+1

α
d
`,tΦ

>
d , (1)

and training the latter equates to optimizing α`,t = (α p+1
`,t , . . . ,α

d`−1
`,t )>. Let E denote a loss

function associated to our classification task; considering the aforementioned reparametriza-
tion of W`,t , the gradient of the loss is now updated using the chain rule as ∂E

∂α`,t
= ∂E

∂W`,t

∂W`,t
∂α`,t

being ∂E
∂W`,t

the original gradient obtained using back-propagation as provided with standard

deep learning frameworks (including PyTorch and TensorFlow) and ∂W`,t
∂α`,t

being a Jacobian
matrix. The latter — set with the (d`−1− p) residual PCA eigenvectors — is used to maintain
W`,t in the feasible set, i.e., NS(ψ`(XP)). Considering this update scheme, the following
proposition shows the consistency of the training process when handling CF.

Proposition 1 Let g : R→ R be a L-Lipschitz continuous activation (with L ≤ 1). Any η-
step update of W`,t in NS(ψ`(XP)) using (1) satisfies ∀r ∈ P∥∥ψ

η−1
` (Xr)−ψ0

` (Xr)
∥∥2

F ≤ B

with B =
η−1

∑
τ=1

`−1

∑
k=0

(∥∥α
τ
`−k,t

∥∥2
F .
∥∥β

τ
`−k−1,r

∥∥2
F +

∥∥α
τ−1
`−k,t

∥∥2
F .
∥∥β

τ−1
`−k−1,r

∥∥2
F

)
.

k−1

∏
k′=0

∥∥Wτ
`−k′,P

∥∥2
F ,

(2)

being ψ0
` (Xr) (resp. ψ

η−1
` (Xr)) the map before the start (resp. the end) of the iterative

update (gradient descent on current task Tt ), β τ
`,r the projection of ψτ

` (Xr) ontoNS(ψ`(XP))

at any iteration τ , {Wτ
`,r}` the network parameters at τ , and ‖.‖F the Frobenius norm.

Details of the proof are omitted and can be found in the supplementary material. More
importantly, the bound in Eq. 2 suggests that FFNB layers endowed with L-Lipschitzian
activations (e.g., ReLU) and low statistical variance in NS(ψ`(XP)) make CF contained.
Eq. 2 also suggests that one may use weight decay (on {α`,t}) to regularize the parameters
{W`,t}t,` leading to a tighter bound B, and again contained CF. Note that Eq. 2 is an in-
creasing function of `, so shallow FC layers suffer less from CF compared to deeper ones.
However, controlling the norm of {W`,t}t,` (and p in Eq. 1) effectively mitigates the effect
of CF (due to the depth) and maintains generalization. As a result, all the statistics (mean
and covariance matrices) used to estimate the eigenvectors of PCA and also to update the
classifier parameters (in section 3.2.3) remain stable. In short, Eq. 1 provides an effective
way to “memorize” the previous tasks2.

1with the smallest statistical variance.
2Note that Eq. 1 leads to almost orthogonal parameters through successive tasks (with shared residual components), and this

provides an effective way to leverage both “shared multi-task” and “complementary” informations despite learning incrementally.
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3.2.2 Initialization

We introduce a suitable initialization of the feature map parameters {α`,t}`,t which turns out
to be effective during optimization (fine-tuning). We cast the problem of setting {α`,t}`,t (or
equivalently {W`,t}`,t ; see Eq. 1) as a solution of the following regression problem

min
α`,t

γ

2

∥∥α`,t
∥∥2

F +
1
2

∥∥C`,t −α
>
`,t Φ

>
ψ`(Xt)

∥∥2
F , (3)

here C`,t ∈ Rd`×n (with n = ∑r≤t |Tr|) is a predefined coding matrix whose entries are set to
+1 iff data belong to current task t and 0 otherwise. One may show that optimality conditions
(related to the gradient of Eq. 3) lead to the following solution

α`,t =
(
γI+Φ ψ`(Xt) ψ`(Xt)

>
Φ
>)−1

Φ ψ`(Xt) C>`,t . (4)

As the setting of α`,t relies only on current (mono) task data, it is clearly sub-optimal and
may affect the discrimination power of the learned feature maps. In contrast to the above
initialization, we consider another (more effective multi-task) setting using all {Tr}r∈A (with
A= P ∪{t}), and without storing all the underlying data. Similarly to Eq. (4), we derive

α`,t =
(
γI+Φ ∑

r∈A
[ψ`(Xr) ψ`(Xr)

>] Φ
>)−1

Φ ∑
r∈A

[ψ`(Xr) C>`,r]. (5)

This equation can still be evaluated incrementally (without forgetting) while leveraging mul-
tiple tasks T1, . . . ,Tt , and without explicitly storing the whole data in {ψ`(Xr)}r and {C`,r}r.

3.2.3 FFNB classifiers

The aforementioned scheme is applied in order to learn the parameters of the feature maps
while those of the classifiers are designed differently. The setting of these parameters is
based on Fisher discriminant analysis (FDA) which has the advantage of being achievable
incrementally by storing only the means and the covariance matrices associated to each task.
Given current and previous tasks (resp. Tt and Tr), FDA approaches the problem by modeling
the separable FFNB features (as designed earlier) as gaussians with means and covariances
(µL−1

t ,Σ
L−1
t ), (µL−1

r ,Σ
L−1
r ) respectively. Following this assumption, the Bayes optimal de-

cision function corresponds to the log likelihood ratio test. One may show that its underlying
separating hyperplane (WL,(t,r),b) maximizes the following objective function

maxWL,(t,r)

(
W>L,(t,r)

(
µ

L−1
t −µL−1

r

))2

W>L,(t,r)
(
Σ

L−1
t +Σ

L−1
r

)
WL,(t,r)

, (6)

with its shrinkage estimator solution being

WL,(t,r) =
(
Σ

L−1
t +Σ

L−1
r + εI

)−1(
µ

L−1
t −µL−1

r
)

b = −W>
L,(t,r)(µ

L−1
t +µL−1

r
)
.

(7)

Under heteroscedasticity (i.e., Σ
L−1
t 6= Σ

L−1
r ), these covariance matrices allow normalizing

the scales of classes leading to better performances as shown later in experiments. Consider-
ing the pairwise class parameters {WL,(t,r)}r∈P , one may incrementally derive the underlying
pairwise classifiers as

ψ
(t,r)
L (.) = tanh

(
WL,(t,r) ψL−1(.)

)
, (8)
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and the output of the final classifier ψ t
L+1(.) (see again Table. 7) is obtained by pooling all

the pairwise scores {ψ(t,r)
L (.)}t,r through r ∈ P resulting into

ψ
t
L+1(.) = ∑

r∈P
ψ

(t,r)
L (.). (9)

As shown later in experiments (see supp material), these incremental aggregated “one-vs-
one” classifiers outperform the usual “one-vs-all” softmax while mitigating CF. This also
follows the learned separable FFNB features which make these classifiers highly effective.

3.2.4 “End-to-end” fine-tuning

End-to-end fine-tuning of the whole network involves only the parameters of the feature map
and the classification layers associated to the current task, as the other parameters cannot
be updated without knowing explicitly the data. Note that the convolutional layers are kept
fixed: on the one hand, these layers capture low-level features, which are common to multiple
tasks and can therefore be pre-trained offline. On the other hand, retraining the convolutional
layers may disrupt the outputs of the feature maps and hence the classifiers. Details of the
whole “end-to-end” incremental learning are described in algorithm 2 in supp material.

4 Experimental validation
We evaluate the performance of our continual learning framework on the challenging task of
action recognition, using the SBU and FPHA datasets [8, 58]. SBU is an interaction dataset
acquired (under relatively well controlled conditions) using the Microsoft Kinect sensor; it
includes in total 282 moving skeleton sequences (performed by two interacting individu-
als) belonging to 8 categories. Each pair of interacting individuals corresponds to two 15
joint skeletons and each joint is encoded with a sequence of its 3D coordinates across video
frames [31]. The FPHA dataset includes 1175 skeletons belonging to 45 action categories
which are performed by 6 different individuals in 3 scenarios. Action categories are highly
variable with inter and intra subject variability including style, speed, scale and viewpoint.
Each skeleton includes 21 hand joints and each joint is again encoded with a sequence of its
3D coordinates across video frames [31]. In all these experiments, we use the same evalua-
tion protocol as the one suggested in [8, 58] (i.e., train-test split3) and we report the average
accuracy over all the visited classes of actions4.

4.1 Setting and performances
The whole network architecture is composed of a spatial graph convolutional block similar
to [54] appended to FFNB. The former includes an aggregation layer and a dot product
layer while the latter consists of our feature map and classification layers [42]. During
incremental learning, all the parameters are fixed excepting those of the current task (in
FFNB) which are allowed to vary. For each task, we train the network parameters (FC layers)
as described earlier for 250 epochs per task with a batch size equal to 50, a momentum of
0.9 and a learning rate (denoted as ν(t)) inversely proportional to the speed of change of

3excepting that training data belonging to different classes are visited incrementally.
4Due to space limitation, extra experiments and comparisons can be found in the supplementary material.
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hhhhhhhhhhhhhhhhhPCA dim

Tasks (1 class / Tt ) T1(1) T2(2) T3(3) T4(4) T5(5) T6(6) T7(7) T8(8)

p = 15 100.00 100.00 96.42 97.36 95.34 87.50 84.48 81.53
p = 25 100.00 100.00 100.00 97.36 95.34 85.41 82.75 83.07
p = 35 100.00 100.00 96.42 97.36 95.34 85.41 82.75 81.53
p = 45 100.00 100.00 100.00 100.00 97.67 89.58 89.65 84.61
p = 50 100.00 100.00 96.42 97.36 93.02 85.41 81.03 73.84
p = 55 100.00 100.00 100.00 97.36 90.69 87.50 75.86 69.23

Incremental (FFNB, algorithm 1) 100.00 50.00 28.57 26.31 18.60 16.66 13.79 12.30
Multi-task (all, upper bound) — — — — — — — 90.76

Network size (# of param) 2165 2372 2619 2924 3305 3780 4367 5084
Average training time per epoch (in seconds) 0.1326 0.1369 0.1411 0.1475 0.1519 0.1651 0.1629 0.1737

Table 1: Impact of retained PCA dimension on the performances of incremental learning (the max nbr of dimensions is 60); for
each column (task Tt ), performances are reported on the union of all the visited classes (i.e., [1− t]).

XXXXXXXXXXXXXPCA dim

Tasks
(5 classes/Tt ) T1 T2 T3 T4 T5 T6 T7 T8 T9

[1−5] [6−10] [11−15] [16−20] [21−25] [26−30] [31−35] [36−40] [41−45]
p = 15 65.07 57.14 55.44 57.52 58.51 56.07 59.42 62.10 62.26
p = 30 65.07 55.55 56.99 57.52 56.96 56.84 59.42 60.74 61.39
p = 45 68.25 57.14 60.10 58.30 56.03 55.03 60.97 62.30 62.60
p = 60 68.25 55.55 62.17 60.61 63.15 62.53 65.41 64.84 66.08
p = 75 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47
p = 90 69.84 61.90 67.87 62.93 60.06 59.94 61.41 63.28 62.78
p = 105 65.07 62.69 68.39 63.32 58.51 58.65 60.97 62.50 62.43
p = 120 61.90 60.31 65.80 62.54 57.27 51.93 56.54 55.27 56.86

Incremental (FFNB, algo 1) 19.04 9.52 6.21 4.63 3.71 3.10 2.66 2.34 2.08
Multi-task (all, upper bound) — — — — — — — — 84.17

Network size (# of param) 5549 8784 14819 25904 44289 72224 111959 165744 235829
Avg. training time per epoch (in s) 2.0373 2.0241 2.0686 2.1463 2.2393 2.3318 2.3992 2.5082 2.5755

Table 2: Impact of retained PCA dimension on the performances of incremental learning (the max nbr of dimensions is 168);
for each column (task Tt ), performances are reported on the union of all the visited classes (i.e., [1−5t]).

the current task loss; when this speed increases (resp. decreases), ν(t) decreases as ν(t)←
ν(t−1)×0.99 (resp. increases as ν(t)← ν(t−1)/0.99). All these experiments are run on a
GeForce GTX 1070 GPU device (with 8 GB memory) and no data augmentation is achieved.
Tables. 1 and 2 show the behavior of our continual learning model w.r.t. p the number of

dimensions kept in PCA. From these results, it becomes clear that 45 dimensions on SBU (75
on FPHA) capture most of the statistical variance of the previous tasks (� 95% in practice)
and enough dimensions are hence reserved to the current task. These dimensions make
the learned FFNB stable on the previous tasks while also being effective on the current one.
These tables also show a comparison of incremental and multi-task learning baselines (which
learn the convolutional block and FFNB “end-to-end” using the whole ambient space). Note
that multi-task learning performances are available only at the final task as this baseline
requires all the tasks. From these tables, it is clear that the multi-task baseline obtains the best
performance, however, our proposed method reaches a high accuracy as well in spite of being
incremental while the second (incremental) baseline behaves almost as a random classifier.
Tables 1, 2 also show network size and training time as tasks evolve while tables 8, 9, 10, 11
(in the supp material) show extra-tuning w.r.t. respectively the number of layers and band-
sizes; the latter correspond to the number of added neurons per layer and per task.

4.2 Ablation study and comparison
We also study the impact of each component of our continual learning model on the perfor-
mances when taken separately and jointly. From the results in tables 3 and 4, the use of the
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Null-space Heteroscedasticity Init T1(1) T2(2) T3(3) T4(4) T5(5) T6(6) T7(7) T8(8)
7 7 rand 100.00 85.00 67.85 55.26 44.18 37.50 34.48 29.23
7 7 mono 100.00 90.00 53.57 36.84 27.90 22.91 25.86 26.15
7 7 multi 100.00 90.00 71.42 68.42 51.16 45.83 46.55 43.07
7 3 rand 100.00 100.00 96.42 86.84 51.16 54.16 63.79 56.92
7 3 mono 100.00 50.00 53.57 26.31 11.62 12.50 20.68 10.76
7 3 multi 100.00 100.00 100.00 47.36 53.48 39.58 44.82 44.61
3 7 rand 100.00 90.00 53.57 44.73 37.20 31.25 31.03 30.76
3 7 mono 100.00 95.00 92.85 94.73 81.39 68.75 60.34 50.76
3 7 multi 100.00 100.00 100.00 97.36 90.69 87.50 82.75 75.38
3 3 rand 100.00 50.00 57.14 50.00 25.58 29.16 34.48 30.76
3 3 mono 100.00 100.00 96.42 94.73 72.09 54.16 50.00 55.38
3 3 multi 100.00 100.00 100.00 100.00 97.67 89.58 89.65 84.61

Table 3: Ablation study (with pretraining and fine-tuning, here p = 45); for each column (task Tt ), performances are reported
on the union of all the visited classes (i.e., [1− t]).

Null-space Heteroscedast. Multi T1 T2 T3 T4 T5 T6 T7 T8 T9
[1−5] [6−10] [11−15] [16−20] [21−25] [26−30] [31−35] [36−40] [41−45]

7 7 7 19.04 11.11 9.32 5.79 7.43 5.68 6.43 5.85 6.08
7 7 3 71.42 65.07 59.06 59.84 62.84 60.72 59.86 58.20 56.52
7 3 7 19.04 11.11 6.21 5.40 4.02 3.10 3.32 2.73 2.08
7 3 3 69.84 56.34 54.92 54.44 57.89 60.46 64.07 64.84 65.39
3 7 7 77.77 67.46 66.83 63.32 60.99 58.39 58.98 57.42 56.00
3 7 3 76.19 67.46 64.76 62.93 62.84 61.24 59.42 58.00 54.95
3 3 7 71.42 71.42 62.69 54.05 54.48 47.80 47.45 45.50 45.56
3 3 3 68.25 58.73 64.76 63.70 62.84 61.24 64.96 66.01 67.47

Table 4: Ablation study (with pretraining and fine-tuning, here p = 75); for each column (task Tt ), performances are reported
on the union of all the visited classes (i.e., [1−5t]).

null-space (in Eq. 1) provides a significant gain in performances and the impact of FDA co-
variance normalization (i.e., heteroscedasticity in Eq. 7) is also globally positive. This results
from the learned features, in FFNB, which are designed to be separable without necessarily
being class-wise homogeneous, and thereby their normalization provides an extra gain (as
again shown through these performances)5. We also observe the positive impact of multi-
task initialization w.r.t. mono-task and random initializations (Eq. 5 vs. 4). Finally, tables 12
and 13 (in supp material) show the impact of network pre-training and “end-to-end” fine-
tuning on the performances (see again section 3.2.4). As observed, the best performances
are obtained when both pre-training and fine-tuning are used.

4.3 Extra experiments: CIFAR100
We also evaluate the accuracy of our FFNB on the challenging CIFAR100 dataset which
includes 60k images belonging to 100 categories; 50k images are used for training and 10k
for testing. We use EfficientNet [48] as our CNN backbone. In all the results in table 5,
“null-space + heteroscedasticity + multi-task initialization” settings are used, and the band-
size is set to 1, number of layers in the feature map block to 2, size of minibatch to 32, the
learning rate fixed to 10e-3 and neither weight decay nor momentum are used. Performances
are measured using the standard “Average Incremental Acc” which is proposed in iCaRL
[36], and defined as the average accuracy across all the visited tasks. Similarly to the stan-
dard evaluation protocol in iCaRL [36], the first 50 classes ([1-50]) are used to pretrain the

5It’s worth noticing that our normalization is different from the usual batch-normalization, as the latter allows obtaining ho-
mogeneous features through neurons belonging to the same layer while our normalization makes features homogeneous through
classes/tasks (see also empirical evidences in tables 22 and 23 of the supp material).
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XXXXXXXXXXTest classes

Tasks T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Average

[1−50] [51−55] [56−60] [61−65] [66−70] [71−75] [76−80] [81−85] [86−90] [91−95] [96−100] Incremental Acc.
Top-50 classes 83.66 80.98 78.02 73.90 71.32 68.20 64.82 61.42 57.52 52.60 49.42 67.44
50 – 55

–

79.20 71.60 70.40 65.80 58.00 56.60 43.80 43.60 34.00 26.00 54.90
55 – 60

–

89.40 84.00 74.20 71.40 68.60 63.80 61.80 60.20 57.00 70.04
60 – 65

–

62.80 58.00 56.40 46.00 43.40 35.20 31.00 24.20 44.63
65 – 70

–

73.60 73.20 66.40 62.80 55.40 50.80 43.00 60.74
70 – 75

–

80.60 76.40 68.00 59.40 47.80 41.60 62.30
75 – 80

–

80.80 80.20 71.20 67.60 62.40 72.44
80 – 85

–

87.40 73.00 62.80 57.20 70.10
85 – 90

–
85.00 83.40 79.00 82.47

90 – 95 – 82.60 74.60 78.60
95 – 100 – 80.40 80.40
Average Task Acc. 83.66 80.82 78.43 73.55 70.34 68.11 65.19 62.56 58.88 55.06 51.98 68.05

Table 5: Results on CIFAR100-B50-S10. Here B50 stands for the 50 pretraining classes and S10 for tasks T1, . . . ,T10 which are
learned incrementally (here T1, . . . ,T10 correspond to classes [51-100] while T0 is the pretraining task involving classes [1-50]). In
this table, the symbol “–” stands for “accuracy not available” as classes are incrementally visited so training+test data, belonging to
the subsequent tasks, are obviously not available beforehand.

Methods #Params (M) Avg. Acc.
Upper Bound [56] 11.2 79.91
iCaRL [36, 56] 11.2 58.59
UCIR [12, 56] 11.2 59.92
BiC [53, 56] 11.2 60.25
WA [56, 61] 11.2 57.86
PoDNet [56] 11.2 64.04 (63.19)
DDE (UCIR R20) [13] 11.2 62.36
DDE (PoDNet R20) [13] 11.2 64.12
DER(w/o P) [56] 67.2 72.81
DER(P) [56] 8.79 72.45
Ours 5.8 68.05

Table 6: Results on CIFAR100-B50 (modified
from Table 2 in DER [56] where numbers in blue
refer to the results tested by the re-implementation
in DER [56] and numbers in parentheses refer to the
results reported in the original papers).

Convolutional block FFNB (classifier block)FFNB (feature map block)

ψ1(Xt)

ψL+1(Xt)

W1,t

WL−1,tW2,t

ψ
0(

X
t)
=

X
t

WL,(t,r)

WL+1,t = 1

ψL−1(Xt)

ψL(Xt)

Table 7: This figure shows the whole architecture including
a convolutional backbone and FFNB. For each new task Tt (one
or multiple new classes), bands of neurons (shown in red) are ap-
pended to the dynamic layers ψ1(.), . . . ,ψL−1(.) of the feature map
block, and only the underlying parameters (hatched) are trained in
the null-space of the previous tasks. The classifier block includes
two layers: in the first layer, bands of neurons (in red) are ap-
pended to ψL(.) in order to model all the “one-vs-one” classifiers
involving the new classes and all the (previously and newly) vis-
ited classes so far. Finally, a band of neurons (again in red) is
appended to the second classification layer ψL+1(.) in order to ag-
gregate the scores of the “one-vs-one” classifiers (see again 3.2.3).

“EfficientNet” backbone, while the remaining 50 classes ([51-100]) are used for incremental
task learning. Comparisons are shown in tables 5 and 6 w.r.t. different tasks and related
work. These results show that our proposed method provides a reasonable balance between
accuracy and the maximum number of training parameters w.r.t. these related methods.

5 Conclusion
We introduce in this work a novel continual learning approach based on dynamic networks.
The strength of the proposed method resides in its ability to learn discriminating represen-
tations and classifiers incrementally while providing stable behaviors on the previous tasks.
The proposed method is based on FFNBs whose parameters are learned in the null-space of
the previous tasks, leading to stable representations and classifications on these tasks. Ag-
gregated classifiers are also learned incrementally using Fisher discriminant analysis which
also exhibits optimal behavior especially when the feature maps are appropriately learned
and separable. Conducted experiments show the positive impact of each of the proposed
components of our model. As a future work, we are currently investigating multiple aspects
including replay-based methods that allow fine-tuning the networks using not only current
task data but also previous ones sampled from a generative network.
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