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BERRY-ESSEEN BOUND AND PRECISE MODERATE
DEVIATIONS FOR PRODUCTS OF RANDOM MATRICES

HUI XIAO, ION GRAMA, AND QUANSHENG LIU

Abstract. Let (gn)n>1 be a sequence of independent and identically
distributed (i.i.d.) d × d real random matrices. For n > 1 set Gn =
gn . . . g1. Given any starting point x = Rv ∈ Pd−1, consider the Markov
chain Xx

n = RGnv on the projective space Pd−1 and the norm cocycle
σ(Gn, x) = log |Gnv|

|v| , for an arbitrary norm | · | on Rd. Under suitable
conditions we prove a Berry-Esseen type theorem and an Edgeworth
expansion for the couple (Xx

n , σ(Gn, x)). These results are established
using a brand new smoothing inequality on complex plane, the saddle
point method and additional spectral gap properties of the transfer oper-
ator related to the Markov chain Xx

n . Cramér type moderate deviation
expansions as well as a local limit theorem with moderate deviations
are proved for the couple (Xx

n , σ(Gn, x)) with a target function ϕ on the
Markov chain Xx

n .

1. Introduction

1.1. Background and objectives. For any integer d > 2, denote by
GL(d,R) the general linear group of d × d invertible matrices. Equip Rd

with any norm | · | and let ‖g‖ = supv∈Rd\{0}
|gv|
|v| be the operator norm for

g ∈ GL(d,R). Denote by Pd−1 the projective space of Rd. Let (gn)n>1
be a sequence of i.i.d. d × d real random matrices of the same law µ on
GL(d,R). For any n > 1, consider the product Gn = gn . . . g1 and the pro-
cess Xx

n = RGnv ∈ Pd−1, with the starting point x = Rv ∈ Pd−1. The norm
cocycle is defined by σ(Gn, x) = log |Gnv||v| , where x = Rv ∈ Pd−1.

The study of the asymptotic properties of the Markov chain (Xx
n)n>1

and of the product (Gn)n>1 has attracted a good deal of attention since
the groundwork of Furstenberg and Kesten [19], where the strong law of
large numbers (LLN) for the operator norm ‖Gn‖ has been established. In
the same context, Furstenberg [20] proved the LLN for the norm cocycle
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σ(Gn, x): for any x ∈ Pd−1,

lim
n→∞

σ(Gn, x)
n

= lim
n→∞

Eσ(Gn, x)
n

= λ P-a.s.,

where λ is a real number called upper Lyapunov exponent associated with
the product Gn. Another cornerstone result is the central limit theorem
(CLT) for the couple (Xx

n , σ(Gn, x)), established under contracting type
assumptions by Le Page [39]: for any fixed y ∈ R and any Hölder continuous
function ϕ : Pd−1 7→ R, it holds uniformly in x ∈ Pd−1 that

lim
n→∞

E
[
ϕ(Xx

n)1{σ(Gn,x)−nλ
σ
√
n

6y
}] = ν(ϕ)Φ(y),

where ν is the unique stationary probability measure of the Markov chain
Xx
n on Pd−1, σ2 = limn→∞

1
nE
[
(σ(Gn, x)− nλ)2] is the asymptotic variance

independent of x, and Φ is the standard normal distribution function. The
optimal conditions for the CLT to hold true have been established recently
by Benoist and Quint [3].

The next step in these studies is to know how precise are the approxi-
mations in the LLN and the CLT. The asymptotic of the large deviation
probabilities describes the rate of convergence in the LLN, and the Berry-
Esseen bound characterizes that in the CLT. For sums of independent ran-
dom variables these topics have been extensively studied over many decades,
and have been proved to play the key role for many problems in probability
theory and mathematical statistics. For deep and optimal results in this di-
rection we refer to the pioneering works of Cramér [13], Esseen [17], Bahadur
and Rao [1], Petrov [41] and to the monographs of Petrov [42], Stroock [46],
Varadhan [47], Dembo and Zeitouni [16] and Borovkov and Borovkov [6].

For products of random matrices the known results about the rate of
convergence in the LLN and the CLT are far from being optimal, although
there are already important studies on the topic. The main goal of the
present paper is to fill in this gap by proving large deviation asymptotics
and Berry-Esseen type bounds which are close to definitive. Precise large
deviation asymptotics originate from the work of Le Page [39] and more
recently have been considered e.g. by Guivarc’h [25], Benoist and Quint
[5], Buraczewski and Mentemeier [11], Sert [45], Xiao, Grama and Liu [49].
For moderate deviations, very little results are known. Benoist and Quint
[5] have recently established the moderate deviation principle for reductive
groups, which in our setting reads as follows: for any interval B ⊆ R, and
positive sequence (bn)n>1 satisfying bn

n → 0 and bn√
n
→∞, it holds uniformly

in x ∈ Pd−1 that

lim
n→∞

n

b2n
logP

(
σ(Gn, x)− nλ

bn
∈ B

)
= − inf

y∈B

y2

2σ2 . (1.1)
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A functional moderate deviation principle has been established by Cuny,
Dedecker and Jan [12].

The first objective of our paper is to improve on the result (1.1) by estab-
lishing a Cramér type moderate deviation expansion for σ(Gn, x): we prove
that uniformly in x ∈ Pd−1 and y ∈ [0, o(

√
n)],

P
(
σ(Gn, x)− nλ >

√
nσy

)
1− Φ(y) = e

y3
√
n
ζ( y√

n
)
[
1 +O

(
y + 1√
n

)]
, (1.2)

where t 7→ ζ(t) is the Cramér series of the logarithm of the eigenfunction
related to the transfer operator of the Markov walk associated to the product
of random matrices (see Section 2.3).

In many important models it is useful to extend the moderate deviation
expantion (1.2) for the couple (Xx

n , σ(Gn, x)) which describes completely the
random walk (Gnv)n>1. We prove that, for any Hölder continuous function
ϕ on Pd−1, uniformly in x ∈ Pd−1 and y ∈ [0, o(

√
n)],

E
[
ϕ(Xx

n)1{σ(Gn,x)−nλ>
√
nσy}

]
1− Φ(y) = e

y3
√
n
ζ( y√

n
)
[
ν(ϕ) +O

(
y + 1√
n

)]
, (1.3)

see Theorem 2.3 for a slightly stronger statement.
Our second objective, which is also the key point in proving (1.3), is a

Berry-Esseen bound for the couple (Xx
n , σ(Gn, x)): for any Hölder continu-

ous function ϕ on Pd−1,

sup
x∈Pd−1, y∈R

∣∣∣∣E [ϕ(Xx
n)1{σ(Gn,x)−nλ

σ
√
n

6y
}]− ν(ϕ)Φ(y)

∣∣∣∣ = O
( 1√

n

)
, (1.4)

see Theorem 2.1. This extends the result of Le Page [39] established for the
particular target function ϕ = 1 (see also Jan [36]). We further upgrade
(1.4) to an Edgeworth expansion under a non-arithmeticity condition, see
Theorem 2.2, which is new even for ϕ = 1.

Our third objective is to establish the following local limit theorem with
moderate deviations: for any real numbers −∞ < a1 < a2 < ∞, we have,
uniformly in x ∈ Pd−1 and |y| = o(

√
n),

E
[
ϕ(Xx

n)1{σ(Gn,x)−nλ∈[a1,a2]+
√
nσy}

]
∼ ν(ϕ)a2 − a1

σ
√

2πn
e
− y

2
2 + y3

√
n
ζ( y√

n
)
. (1.5)

For a more general version of (1.5), see Theorem 2.4, where a target function
ψ on σ(Gn, x) is considered. When |y| = o(n1/6), the term y3

√
n
ζ( y√

n
) tends

to 0 and can be removed in (1.5). In this case, (1.5) improves the local
limit theorem of [5, Theorem 17.10] established for |y| = O(

√
logn). Local

limit theorems with moderate deviations of type (1.5) are used for instance
in [2] for studying dynamics of group actions on finite volume homogeneous
spaces. As an important application of (1.5) we establish a new local limit
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theorem with moderate deviations for the operator norm ‖Gn‖, see Theorem
2.5.

All the results stated above concern invertible matrices, but we also es-
tablish analogous theorems for positive matrices. Some limit theorems for
σ(Gn, x) in case of positive matrices such as central limit theorem and Berry-
Esseen theorem have been established earlier by Furstenberg and Kesten
[19], Hennion [29], and Hennion and Hervé [31]. Here, we extend the Berry-
Esseen theorem of [31] to the couple (Xx

n , σ(Gn, x)) with a target function
ϕ on the Markov chain Xx

n . We also complement the results in [19, 29, 31]
by giving a Cramér type moderate deviation expansion and a local limit
theorem with moderate deviations.

The results of the paper can be useful in number of models of growing
interest in probability and statistics. In particular, our study has been mo-
tivated by applications to branching random walks and multitype branching
processes in random environment; we refer to [8, 9, 23, 24] where large de-
viation asymptotics have been obtained in these settings using the results
of this paper. For an application to moderate deviations for the operator
norm and the spectral radius of products of random matrices we refer to
[50]. Other fields of application include the financial mathematics, among
them multidimensional stochastic recursions and perpetuity sequences.

On the other hand with the approach developed in the paper, one can
also study limit theorems for Markov chains, dynamical systems, random
walks on hyperbolic groups and homogeneous spaces; for these topics we
refer to Hennion and Hervé [30], Parry and Pollicott [40], Gouëzel [21],
Guivarc’h [25], Benoist and Quint [4]. For example, combining our approach
with the techniques from Guivarc’h and Hardy [26], it is possible to obtain
extensions of our results to the setting of Anosov’s diffeomorphisms and
more general dynamical systems allowing a coding by mixing sub-shifts. As
another example, one can establish the analogs of the results of the paper
for Markov chains with compact state spaces. These aspects will be not
considered here because of the limitation of the length of the paper.

1.2. Key ideas of the approach. For the moderate deviation expansions
(1.2) and (1.3), our proof is different from those in [5] and [12]: in [5] the
moderate deviation principle (1.1) is obtained by following the strategy of
Kolmogorov [38] suited to show the law of iterated logarithm (see also de
Acosta [15] and Wittman [48]); in [12] the proof of the functional moder-
ate deviation principle is based on the martingale approximation method
developed in [3].

In order to prove (1.3) we have to rework the spectral gap theory for the
transfer operators Pz and Rs,z, by considering the case when s can take
values in the interval (−η, η) with η > 0 small, and z belongs to a small
complex ball centered at the origin, see Section 3. This allows to define the
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change of measure Qx
s and to extend the Berry-Esseen bound (1.4) for the

changed measure Qx
s , see Theorem 5.1. The moderate deviation expansion

(1.3) is established by adapting the techniques from Petrov [42].
It is surprising that the proof of the Berry-Esseen bound and of the Edge-

worth expansion with a non-trivial target function ϕ 6= 1 is way more dif-
ficult than the analogous results with ϕ = 1. This can be seen from the
sketch of the proof which we give below.

For simplicity, we assume that σ = 1. Introduce the transfer operator Pz:
for any Hölder continuous function ϕ on Pd−1 and z ∈ C,

Pzϕ(x) = E
[
ezσ(g1,x)ϕ(Xx

1 )
]
, x ∈ Pd−1. (1.6)

Let F be the distribution function of σ(Gn,x)−nλ√
n

and f be its Fourier trans-
form: f(t) = eit

√
nλ(Pn−it/√n1)(x), t ∈ R. The Berry-Esseen bound (1.4)

with target function ϕ = 1 is usually proved using Esseen’s smoothing in-
equality: there exists a constant C > 0 such that for all T > 0,

sup
y∈R
|F (y)− Φ(y)| 6 1

π

∫ T

−T

∣∣∣∣∣f(t)− e−t2/2

t

∣∣∣∣∣ dt+ C

T
. (1.7)

Inserting the spectral gap decomposition

Pnz = κn(z)Mz + Lnz (n > 1) (1.8)

into (1.7) allows us to obtain the Berry-Esseen bound (1.4) with ϕ = 1:
after some straightforward calculations, it reduces to showing that, with
T = c

√
n, ∫ T

−T

∣∣(Ln−it/√n1)(x)
∣∣/|t|dt <∞. (1.9)

The bound (1.9) is proved using Taylor’s expansion Lnz1 = Ln0 1+z d
dz (Lnz1)+

o(z) with z = −it/
√
n, and the fact that Ln0 1 = 0. However, when we replace

the unit function 1 by a target function ϕ for which in general Ln0ϕ 6= 0,
instead of (1.9), we have∫ T

−T
|Ln−it/√nϕ(x)|/|t|dt =∞, (1.10)

even though |Ln0ϕ(x)| decays exponentially fast to 0 as n → ∞. To over-
come this difficulty, we have elaborated a new approach based on smoothing
inequality on complex contours and on the saddle point method, see Propo-
sition 4.1. More precisely, we formulate our smoothing inequality as follows:
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there exists a constant C > 0 such that for any T > r > 0,

sup
y∈R
|F (y)− Φ(y)|

6
1
π

sup
y60

∣∣∣∣∫
C−r
f(z)eizye−ib

z
T dz

∣∣∣∣+ 1
π

sup
y>0

∣∣∣∣∫
C+
r

f(z)eizye−ib
z
T dz

∣∣∣∣
+ 1
π

sup
y60

∣∣∣∣∫
C−r
f(z)eizyeib

z
T dz

∣∣∣∣+ 1
π

sup
y>0

∣∣∣∣∫
C+
r

f(z)eizyeib
z
T dz

∣∣∣∣
+ 1
π

∫
r6|t|6T

∣∣∣f(t)
∣∣∣ dt+ 2

πT

∫ T

−T

∣∣∣tf(t)
∣∣∣ dt+ C

T
, (1.11)

where f(z) = f(z)−e−z2/2
z , b > 0 is a fixed constant, C−r and C+

r are semicircles
in the complex plane given by

C−r = {z ∈ C : |z| = r,=z < 0}, C+
r = {z ∈ C : |z| = r,=z > 0}.

Using the new smoothing inequality, together with the spectral gap property
(1.8), leads to the estimation of the following integrals:∫

C+
r ∪ C−r

κn(z)Mzϕ(x)− e−z2/2

z
eizye±ib

z
T dz, (1.12)∫

C+
r ∪ C−r

Lnzϕ(x)
z

eizye±ib
z
T dz. (1.13)

The integral (1.12) is handled by using the saddle point method choosing
a suitable path for the integration in Section 5.2, which is one of the chal-
lenging parts of the proof. For the integral (1.13) we use the facts that
|Lnzϕ(x)| decays exponentially fast as n→∞ and that | eizyz | 6

1
r for z ∈ C−r ,

y 6 0 and r = c
√
n. In contrast to (1.10), the intergral (1.13) is bounded by

Ce−cn uniformly in y. The case y > 0 is treated similarly, which allows us
to establish (1.4). Note that the non-arithmeticity condition is not needed
for the validity of (1.4). Under the non-arithmeticity condition, in Theorem
2.2 we obtain an Edgeworth expansion for (Xx

n , σ(Gn, x)) with the target
function ϕ on Xx

n , which is of independent interest.

2. Main results

2.1. Notation and conditions. Let N = {0, 1, 2, . . .} and N∗ = N\{0}.
The real part, imaginary part and the conjugate of a complex number z are
denoted by <z, =z and z respectively. For y ∈ R, we write φ(y) = 1√

2πe
−y2/2

and Φ(y) =
∫ y
−∞ φ(t)dt. For any η > 0, set Bη(0) = {z ∈ C : |z| < η} for

the ball with center 0 and radius η in the complex plane C. We denote by
c, C, positive constants whose values may change from line to line. By cα,
Cα we mean positive constants depending only on the index α. We write 1A
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for the indicator function of an event A. For a measure ν and a function ϕ
we denote ν(ϕ) =

∫
ϕdν.

For d > 2, let M(d,R) be the set of d× d matrices with entries in R. We
shall work with products of invertible or non-negative matrices. Denote by
G = GL(d,R) the group of invertible matrices of M(d,R). A non-negative
matrix g ∈M(d,R) is said to be allowable, if every row and every column of
g has a strictly positive entry. Denote by G+ the multiplicative semigroup
of allowable non-negative matrices of M(d,R), which will be called simply
positive. We write G ◦+ for the subsemigroup of G+ with strictly positive
entries.

The space Rd is equipped with any given norm | · |. Let Pd−1 = {x =
Rv : v ∈ Rd \ {0}} be the projective space of Rd. Let Rd+ be the positive
quadrant of Rd, and Pd−1

+ = {x = Rv : v ∈ Rd+ \{0}} be the set of directions
corresponding to nonzero vectors in Rd+. To unify the exposition, we use the
symbol S to denote Pd−1 in case of invertible matrices and Pd−1

+ in case of
positive matrices. For any matrix g in G or G+ and x = Rv ∈ S, we write
g ·x = Rgv for the projective action of g on S. The space S is endowed with
the metric d: for invertible matrices, d is the angular distance, i.e., for any
x, y ∈ Pd−1, d(x, y) = | sin θ(x, y)|, where θ(x, y) is the angle between x and
y; for positive matrices, d is the Hilbert cross-ratio metric, i.e., for any x =
Rv ∈ Pd−1

+ and y = Ru ∈ Pd−1
+ with |v| = |u| = 1, d(x, y) = 1−m(v,u)m(u,v)

1+m(v,u)m(u,v) ,
where m(v, u) = sup{α > 0 : αui 6 vi,∀i = 1, . . . , d}. In both cases, there
exists a constant C > 0 such that

|v − u| 6 Cd(x, y), for any x = Rv, y = Ru ∈ S, |v| = |u| = 1. (2.1)

We refer to [27] and [29] for more details of the metric d.
Let C(S) be the space of continuous complex-valued functions on S and

1 be the constant function with value 1. Let γ > 0. For any ϕ ∈ C(S), set

‖ϕ‖γ := ‖ϕ‖∞ + [ϕ]γ , ‖ϕ‖∞ := sup
x∈S
|ϕ(x)|, [ϕ]γ := sup

x,y∈S

|ϕ(x)− ϕ(y)|
dγ(x, y) .

Introduce the Banach space Bγ := {ϕ ∈ C(S) : ‖ϕ‖γ < +∞}.
Assume that on some probability space (Ω,F ,P) we are given a sequence

of i.i.d. random matrices (gn)n>1 of the same law µ on G or G+. Set Gn =
gn . . . g1, n > 1, then for any starting point x ∈ S, the process

Xx
0 = x, Xx

n = Gn ·x, n > 1

forms a Markov chain on S. Let σ(g, x) = log |gv||v| be the norm cocycle,
where g ∈ G and x = Rv ∈ Pd−1 or g ∈ G+ and x = Rv ∈ Pd−1

+ . The goal
of the present paper is to establish a Berry-Esseen bound and a Cramér
type moderate deviation expansion for the couple (Xx

n , σ(Gn, x)) with a
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target function ϕ on the Markov chain (Xx
n), for both invertible matrices

and positive matrices.
For any g ∈M(d,R), set ‖g‖ = supv∈Rd\{0}

|gv|
|v| and ι(g) = infv∈Rd\{0}

|gv|
|v| ,

where ι(g) > 0 for both g ∈ G and g ∈ G+. In the following we use
the notation N(g) = max{‖g‖, ι(g)−1}. From the Cartan decomposition it
follows that the norm ‖g‖ coincides with the largest singular value of g, i.e.
‖g‖ is the square root of the largest eigenvalue of gTg, where gT denotes the
transpose of g. For an invertible matrix g ∈ G , ι(g) = ‖g−1‖−1, hence ι(g)
is the smallest singular value of g and N(g) = max{‖g‖, ‖g−1‖}. We need
the two-sided exponential moment condition:

A1. There exists a constant η0 ∈ (0, 1) such that E[N(g1)η0 ] < +∞.

We denote by Γµ := [suppµ] the smallest closed subsemigroup ofM(d,R)
generated by suppµ, the support of the measure µ.

For invertible matrices, we need the strong irreducibility and proximal-
ity conditions. Recall that a matrix g is said to be proximal if g has an
eigenvalue λg satisfying |λg| > |λ′g| for all other eigenvalues λ′g of g. The
normalized eigenvector vg (|vg| = 1) corresponding to the eigenvalue λg is
called the dominant eigenvector. It is easy to verify that λg ∈ R.

A2. (i)(Strong irreducibility) No finite union of proper subspaces of Rd is
Γµ-invariant.

(ii)(Proximality) Γµ contains at least one proximal matrix.

For positive matrices, we use the allowability and positivity conditions:

A3. (i) (Allowability) Every g ∈ Γµ is allowable.
(ii) (Positivity) Γµ contains at least one matrix belonging to G ◦+.

It follows from the Perron-Frobenius theorem that every g ∈ G ◦+ has a
dominant eigenvalue λg > 0, with the corresponding eigenvector vg ∈ Sd−1

+ .
Under conditions A1 and A2 for invertible matrices, or conditions A1

and A3 for positive matrices, there exists a unique µ-stationary probability
measure ν on S ([27, 10]): for any ϕ ∈ C(S),

(µ ∗ ν)(ϕ) =
∫
S

∫
Γµ
ϕ(g1 ·x)µ(dg1)ν(dx) =

∫
S
ϕ(x)ν(dx) = ν(ϕ). (2.2)

Moreover, for invertible matrices, supp ν (the support of ν) is given by

V (Γµ) = {vg ∈ Pd−1 : g ∈ Γµ, g is proximal}; (2.3)
for positive matrices, supp ν is given by

V (Γµ) = {vg ∈ Pd−1
+ : g ∈ Γµ ∩ G ◦+}. (2.4)

In addition, for both cases, V (Γµ) is the unique minimal Γµ-invariant subset
(see [27] and [10]).
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For positive matrices, it will be shown in Proposition 3.15 that under
conditions A1 and A3, the asymptotic variance

σ2 = lim
n→∞

1
n
E
[
(σ(Gn, x)− nλ)2

]
exists with value in [0,∞). To establish the Berry-Esseen theorem and the
moderate deviation expansion, we need the following condition:

A4. The asymptotic variance σ2 satisfies σ2 > 0.

We say that the measure µ is arithmetic, if there exist t > 0, β ∈ [0, 2π)
and a function ϑ : S → R such that exp[itσ(g, x)− iβ+ iϑ(g·x)− iϑ(x)] = 1
for any g ∈ Γµ and x ∈ V (Γµ). To establish the Edgeworth expansion for
positive matrices, we impose the following condition:

A5. (Non-arithmeticity) The measure µ is non-arithmetic.

A simple sufficient condition introduced in [37] for the measure µ to be
non-arithmetic is that the additive subgroup of R generated by the set
{log λg : g ∈ Γµ ∩ G ◦+} is dense in R, see [11, Lemma 2.7].

We end this subsection by giving some implications among the above
conditions. For invertible matrices, it was proved in [28] that condition A2
implies condition A5. For positive matrices, conditions A1, A3 and A5
imply condition A4, see Proposition 3.15.

2.2. Berry-Esseen bound and Edgeworth expansion. In this subsec-
tion we formulate the Berry-Esseen theorem and the Edgeworth expansion
for the couple (Xx

n , σ(Gn, x)). We first state the Berry-Esseen theorem with
a target function on Xx

n . Through the rest of the paper we assume that
γ > 0 is a fixed small enough constant so that the spectral properties stated
in Proposition 3.1 hold true.

Theorem 2.1. Assume either conditions A1 and A2 for invertible matri-
ces, or conditions A1, A3 and A4 for positive matrices. Then, there exists
a constant C > 0 such that for all n > 1, x ∈ S, y ∈ R and ϕ ∈ Bγ,∣∣∣∣E [ϕ(Xx

n)1{σ(Gn,x)−nλ
σ
√
n

6y
}]− ν(ϕ)Φ(y)

∣∣∣∣ 6 C√
n
‖ϕ‖γ . (2.5)

The proof of this theorem follows the same line as the proof of the Edge-
worth expansion in Theorem 2.2 formulated below, and will be sketched at
the end of Section 5. The presence of the target function in Theorem 2.1
turns out to be crucial in the study of the asymptotic of moderate deviations
of the logarithm of the coefficients log |〈f,Gnv〉| with f ∈ (Rd)∗ and v ∈ Rd,
which will be done in a forthcoming paper.

Theorem 2.1 extends the Berry-Esseen bounds from [39, 36] for invertible
matrices, and [31] for positive matrices to versions with target functions on
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Xx
n . Note that the results in [36, 31] have been established under some poly-

nomial moment conditions. However, proving (2.5) with the target function
ϕ 6= 1 under the polynomial moments is still an open problem.

The next result gives an Edgeworth expansion for σ(Gn, x) with a target
function ϕ on Xx

n . To formulate it, we introduce the necessary notation.
Consider the following transfer operator: for any s ∈ (−η, η) with η > 0
small, and ϕ ∈ C(S),

Psϕ(x) = E
[
esσ(g1,x)ϕ(g1 ·x)

]
, x ∈ S.

It will be shown in Proposition 3.1 that there exists a unique Hölder con-
tinuous function rs on S such that

Psrs = κ(s)rs, (2.6)

where κ(s) is the unique dominant eigenvalue of Ps. Set Λ(s) = log κ(s).
We shall show in Lemma 3.11 that for any ϕ ∈ Bγ , the function

bϕ(x) = lim
n→∞

E
[
(σ(Gn, x)− nλ)ϕ(Xx

n)
]
, x ∈ S (2.7)

is well defined, belongs to Bγ and has an equivalent expression (3.39) in
terms of derivative of the projection operator Π0,z, see Proposition 3.8.

Theorem 2.2. Assume either conditions A1 and A2 for invertible matri-
ces, or conditions A1, A3 and A5 for positive matrices. Then, as n→∞,
uniformly in x ∈ S, y ∈ R and ϕ ∈ Bγ,∣∣∣∣E[ϕ(Xx

n)1{σ(Gn,x)−nλ
σ
√
n

6y
}] (2.8)

− ν(ϕ)
[
Φ(y) + Λ′′′(0)

6σ3√n
(1− y2)φ(y)

]
+ bϕ(x)
σ
√
n
φ(y)

∣∣∣∣ = ‖ϕ‖γo
( 1√

n

)
.

The proof of this theorem is postponed to Section 5 and is based on a
new smoothing inequality (Proposition 4.1) and the saddle point method.
Even for ϕ = 1, Theorem 2.2 is new.

2.3. Moderate deviation expansions. Denote γk = Λ(k)(0), k > 1,
where Λ = log κ with the function κ defined in (2.6). In particular, γ1 = λ
and γ2 = σ2, see Propositions 3.13 and 3.15, where we also give an expres-
sion for γ3. Throughout the paper, we write ζ for the Cramér series of Λ
(see [13] and [42]):

ζ(t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + · · · , (2.9)

which converges for |t| small enough.
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Now we formulate a Cramér type moderate deviation expansion for the
couple (Xx

n , σ(Gn, x)) with target function on Xx
n , for both invertible ma-

trices and positive matrices.

Theorem 2.3. Assume either conditions A1 and A2 for invertible matri-
ces, or conditions A1, A3 and A4 for positive matrices. Then, uniformly
in x ∈ S, y ∈ [0, o(

√
n)] and ϕ ∈ Bγ, as n→∞,

E
[
ϕ(Xx

n)1{σ(Gn,x)−nλ>
√
nσy}

]
1− Φ(y) = e

y3
√
n
ζ( y√

n
)
[
ν(ϕ) + ‖ϕ‖γO

(
y + 1√
n

)]
,

E
[
ϕ(Xx

n)1{σ(Gn,x)−nλ6−
√
nσy}

]
Φ(−y) = e

− y3
√
n
ζ(− y√

n
)
[
ν(ϕ) + ‖ϕ‖γO

(
y + 1√
n

)]
.

Note that the above asymptotic expansions remain valid even when ν(ϕ) =
0. In this case, for example, the first expansion becomes

E
[
ϕ(Xx

n)1{σ(Gn,x)−nλ>
√
nσy}

]
=
[
1− Φ(y)

]
e
y3
√
n
ζ( y√

n
)‖ϕ‖γO

(
y + 1√
n

)
.

It is an open question to extend the results of Theorem 2.3 to higher order
expansions under the additional condition of non-arithmeticity. We refer
to Saulis [44] and Rozovsky [43] for relevant results in the i.i.d. real-valued
case. In the case of products of random matrices this problem seems to us
interesting because of the presence of the derivatives in s of the eigenfunction
rs and of the linear functional νs in the higher order terms.

In particular, under conditions of Theorem 2.3, with ϕ = 1 we obtain:

P
(
σ(Gn,x)−nλ

σ
√
n

> y
)

1− Φ(y) = e
y3
√
n
ζ( y√

n
)
[
1 +O

(
y + 1√
n

)]
,

P
(
σ(Gn,x)−nλ

σ
√
n

6 −y
)

Φ(−y) = e
− y3
√
n
ζ(− y√

n
)
[
1 +O

(
y + 1√
n

)]
.

When ϕ ∈ Bγ is a real-valued function satisfying ν(ϕ) > 0, Theorem 2.3
clearly implies the following moderate deviation principle for σ(Gn, x) with
target function on Xx

n : for any Borel set B ⊆ R, and positive sequence
(bn)n>1 satisfying bn

n → 0 and bn√
n
→∞, uniformly in x ∈ S,

− inf
y∈B◦

y2

2σ2 6 lim inf
n→∞

n

b2n
logE

[
ϕ(Xx

n)1{σ(Gn,x)−nλ
bn

∈B
}] (2.10)

6 lim sup
n→∞

n

b2n
logE

[
ϕ(Xx

n)1{σ(Gn,x)−nλ
bn

∈B
}] 6 − inf

y∈B̄

y2

2σ2 ,

whereB◦ and B̄ are respectively the interior and the closure ofB. In fact it is
enough to show (2.10) only for the case where B is an interval, the result for
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general B can be established using Lemma 4.4 of Huang and Liu [34]. With
ϕ = 1, (2.10) implies the moderate deviation principle (1.1) established in [5,
Proposition 12.12] for invertible matrices. The moderate deviation principle
(2.10) with target function on Xx

n is new for both invertible matrices and
positive matrices; (1.1) is new for positive matrices. Note that in (2.10) the
function ϕ is not necessarily strictly positive.

2.4. Local limit theorem with moderate deviations. In this subsec-
tion we state a local limit theorem with moderate deviations for σ(Gn, x),
which is of independent interest and can not be deduced directly from The-
orem 2.3.

Theorem 2.4. Assume either conditions A1 and A2 for invertible ma-
trices, or conditions A1, A3 and A4 for positive matrices. Then, for any
ϕ ∈ Bγ and any directly Riemann integrable function ψ with compact support
on R, we have, as n→∞, uniformly in x ∈ S and |y| = o(

√
n),

E
[
ϕ(Xx

n)ψ
(
σ(Gn, x)− nλ−

√
nσy

)]
= e

− y
2
2 + y3

√
n
ζ( y√

n
)

σ
√

2πn

[
ν(ϕ)

∫
R
ψ(u)du+ o(1)

]
.

In particular, for any ϕ ∈ Bγ and real numbers −∞ < a1 < a2 < ∞, we
have, as n→∞, uniformly in x ∈ S and |y| = o(

√
n),

E
[
ϕ(Xx

n)1{σ(Gn,x)−nλ∈[a1,a2]+
√
nσy}

]
= e
− y

2
2 + y3

√
n
ζ( y√

n
)

σ
√

2πn

[
(a2 − a1)ν(ϕ)+o(1)

]
.

With ϕ = 1, we have, as n→∞, uniformly in x ∈ S and |y| = o(
√
n),

P
(
σ(Gn, x)− nλ ∈ [a1, a2] +

√
nσy

)
= e

− y
2
2 + y3

√
n
ζ( y√

n
)

σ
√

2πn

[
a2 − a1 + o(1)

]
.

In the case of invertible matrices, a similar local limit theorem has been
established in [5] in a more general setting and plays an important role in
studying dynamics of group actions on finite volume homogeneous spaces,
see [2, Proposition 4.7]. Specifically, from [5, Theorem 17.10], by simple
calculations we deduce that for any a1 < a2, it holds uniformly in x ∈ Pd−1

and |y| = O(
√

logn) that, as n→∞,

P
(
σ(Gn, x)− nλ ∈ [a1, a2] +

√
nσy

)
= e−

y2
2

σ
√

2πn

[
a2 − a1 + o(1)

]
. (2.11)

Theorem 2.4 extends the range of y in (2.11) beyond O(
√

logn) and more-
over, allows a target function ϕ on the Markov chain Xx

n . Note also that in



LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES 13

[5] the group SL(d,R) is considered instead of GL(d,R), and the proximal-
ity condition A2(ii) is replaced by the condition that the semigroup Γµ is
unbounded. For positive matrices, Theorem 2.4 and its consequence (2.11)
are new.

As an application of Theorem 2.4, we can establish a local limit theo-
rem with moderate deviations for the operator norm ‖Gn‖ in the case of
invertible matrices.

Theorem 2.5. Assume conditions A1 and A2 for invertible matrices. Let
−∞ < a1 < a2 < ∞ be real numbers. Then, for any ϕ ∈ Bγ, we have, as
n→∞, uniformly in x ∈ Pd−1 and |y| = o(n1/6),

E
[
ϕ(Xx

n)1{log ‖Gn‖−nλ∈[a1,a2]+
√
nσy}

]
= e−

y2
2

σ
√

2πn

[
(a2 − a1)ν(ϕ) + o(1)

]
.

With ϕ = 1, we have, as n→∞, uniformly in x ∈ Pd−1 and |y| = o(n1/6),

P
(

log ‖Gn‖ − nλ ∈ [a1, a2] +
√
nσy

)
= e−

y2
2

σ
√

2πn

[
a2 − a1 + o(1)

]
. (2.12)

In the smaller range |y| = O(
√

logn), the result (2.12) has been estab-
lished for the general framework of semisimple real Lie groups in [5, Theorem
17.7], under some assumptions which reduce to ours for the general linear
group GL(d,R). Thus Theorem 2.5 extends the results in [5] to the wider
range |y| = o(n1/6), and to the couple (Xx

n , log ‖Gn‖) with a target function
ϕ on the Markov chain Xx

n . Note that it is an open question to establish
local limit theorem with moderate deviation for log ‖Gn‖ in the whole range
|y| = o(

√
n).

3. Spectral gap theory

This section is devoted to investigating the spectral gap properties of
some linear operators to be introduced below: the transfer operator Pz, its
normalization Qs which is a Markov operator, and the perturbed operator
Rs,z, for real-valued s and complex-valued z. The properties for these op-
erators have been studied in recent years, for instance in [39, 10, 27, 11, 5],
where various results have been established under different restrictions on s
and z, which are not enough for obtaining the results of the paper. We shall
complete these results by investigating the case when s ∈ (−η, η) with η > 0
small, and z belongs to a small ball of the complex plane centered at the
origin. The case of s < 0 turns out to be more difficult than the case s > 0
and requires a deeper analysis. We also complement the previous results
with some new properties to be used in the proofs of the main results of the
paper.
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3.1. Properties of the transfer operator Pz. Recall that the Banach
space Bγ consists of all the γ-Hölder continuous complex-valued functions
on S. We write B′γ for the topological dual of Bγ endowed with the norm
‖ν‖B′γ = supϕ∈Bγ :‖ϕ‖γ=1 |ν(ϕ)|, for any linear functional ν ∈ B′γ . Let L(Bγ ,Bγ)
be the set of all bounded linear operators from Bγ to Bγ equipped with the
operator norm ‖·‖Bγ→Bγ . Denote by %(Q) the spectral radius of an operator
Q ∈ L(Bγ ,Bγ), and by Q|E its restriction to the subspace E ⊆ Bγ .

For any z ∈ C with |z| < η0, where η0 is given in condition A1, define
the transfer operator Pz as follows: for any ϕ ∈ C(S),

Pzϕ(x) = E
[
ezσ(g1,x)ϕ(g1 ·x)

]
, x ∈ S. (3.1)

The transfer operator Pz acts from C(S) to the space of bounded functions
on S. The proposition stated below gives the spectral gap properties of the
operator Pz for z in a small enough neighborhood of 0 in the complex plane.
In the sequel, even if it is not stated explicitly, we assume that γ > 0 is a
sufficiently small constant.

Proposition 3.1. Assume that µ satisfies either conditions A1 and A2 for
invertible matrices, or conditions A1 and A3 for positive matrices. Then,
Pz ∈ L(Bγ ,Bγ) for any z ∈ B η0

2
(0), and the mapping z 7→ Pz : B η0

2
(0) →

L(Bγ ,Bγ) is analytic for γ > 0 small enough, where η0 > 0 is given in
condition A1. Moreover, there exists a constant η > 0 such that for any
z ∈ Bη(0) and n > 1, we have the decomposition

Pnz = κn(z)Mz + Lnz , (3.2)

where the operator Mz := νz ⊗ rz is a rank one projection on Bγ defined by
Mzϕ = νz(ϕ)

νz(rz)rz for any ϕ ∈ Bγ, and the mappings on Bη(0)

z 7→ κ(z) ∈ C, z 7→ rz ∈ Bγ , z 7→ νz ∈ B′γ , z 7→ Lz ∈ L(Bγ ,Bγ)

are unique under the normalization conditions ν(rz) = 1 and νz(1) = 1,
where ν is defined in (2.2); all these mappings are analytic in Bη(0), and
possess the following properties:

(a) for any z ∈ Bη(0), it holds that MzLz = LzMz = 0;
(b) for any z ∈ Bη(0), Pzrz = κ(z)rz and νzPz = κ(z)νz;
(c) κ(0) = 1, r0 = 1, ν0 = ν, and κ(s) and rs are real-valued and satisfy

κ(s) > 0 and rs(x) > 0 for any s ∈ (−η, η) and x ∈ S;
(d) for any k ∈ N, there exist constants Ck > 0 and 0 < a1 < a2 < 1

such that |κ(z)| > 1 − a1 and ‖ dk
dzk

Lnz ‖Bγ→Bγ 6 Ck(1 − a2)n for all
z ∈ Bη(0).

Let us point out the differences between Proposition 3.1 and the previous
results in [39, 10, 5]. Firstly, we complement the results in [39, 5] by giving



LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES 15

the explicit formula Mzϕ = νz(ϕ)
νz(rz)rz in (3.2), for z ∈ Bη(0), which is one

of the crucial points in the proofs of the results of the paper. Basically, it
permits us to deduce the spectral gap properties of the Markov operator Qs
and as well as the perturbed operator Rs,z from those of Pz. In particular,
this will enable us to obtain an explicit formula for the operators Ns and
Ns,z in Propositions 3.4 and 3.8, and the uniformity of the bounds (3.36)
and (3.37). Secondly, for positive matrices, some points of Proposition 3.1
have been obtained in [10] only for real z > 0. The difficulty here is the case
when z ∈ R is negative and when z is not real, so Proposition 3.1 is new for
positive matrices when |z| 6 η. Thirdly, we show that κ(z) and rz take real
positive values when z is real, which allows to define the change of measure
Qx
s for real s, for both invertible matrices and positive matrices. Previously

it was shown in [5] that κ(z) is real-valued for real z ∈ (−η, η) for invertible
matrices.

Remark 3.2. Define the conjugate transfer operator P ∗z by

P ∗z ϕ(x) = E
[
ezσ(gT

1 ,x)ϕ(gT
1 · x)

]
, x ∈ S∗,

where S∗ is the dual projective space of S, z ∈ C with <z ∈ (−η0, η0), and
gT

1 denotes the transpose of the matrix g1. One can verify that P ∗z satisfies
all the properties of Proposition 3.1: under conditions of Proposition 3.1,
we have the decomposition

P ∗nz = κ∗n(z)ν∗z ⊗ r∗z + L∗nz , z ∈ Bη(0), n > 1, (3.3)

and all the assertions in Proposition 3.1 hold for P ∗z , κ∗(z), ν∗z , r∗z , L∗z instead
of Pz, κ(z), νz, rz, Lz.

Proof of Proposition 3.1. We split the proof into three steps. In steps 1
and 2 we concentrate on the case of positive matrices, since for invertible
matrices the results of these steps have been proved in [39, 5]. In step 1
we follow the same lines as in [39, 5]. In step 2 we follow [32] to prove
the spectral gap property of the operator P0 and we use the perturbation
theory to extend it to Pz. In step 3 the proof is new and is provided for both
invertible and positive matrices by complementing the results in [39, 10, 5].

Step 1. We only need to consider the case of positive matrices. We will
show that there exists γ ∈ (0, η0

6 ) such that Pz ∈ L(Bγ ,Bγ), and that the
mapping z 7→ Pz is analytic on B η0

2
(0). For any m > 0, z ∈ B η0

2
(0) and

ϕ ∈ Bγ , let

P (m)
z ϕ(x) = E

[
(σ(g1, x))mezσ(g1,x)ϕ(g1 ·x)

]
, x ∈ Sd−1

+ .
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It suffices to show that for any z ∈ B η0
2

(0) and θ ∈ B η0
6

(0),

Pz+θ =
∞∑
m=0

θm

m!P
(m)
z , (3.4)

and that there exists a constant C > 0 not depending on θ and z such that
∞∑
m=0

|θ|m

m! ‖P
(m)
z ϕ‖γ 6 C‖ϕ‖γ . (3.5)

From (3.5) we deduce that P (0)
z = Pz ∈ L(Bγ ,Bγ). Moreover, the bound

(3.5) ensures the validity of (3.4) which implies the analyticity of the map-
ping z 7→ Pz on B η0

2
(0).

It remains to prove (3.5). We first give a control of ‖P (m)
z ϕ‖∞. Since

|σ(g, x)| 6 logN(g) for any g ∈ Γµ and x ∈ Sd−1
+ , we get

∞∑
m=0

|θ|m

m! ‖P
(m)
z ϕ‖∞ 6 ‖ϕ‖∞E

[
e(|θ|+|<z|) logN(g1)

]
6 C‖ϕ‖∞. (3.6)

To control [P (m)
z ϕ]γ , note that for any ϕ ∈ Bγ ,

[P (m)
z ϕ]γ 6 sup

x,y∈Pd−1
+ ,x 6=y

∣∣∣∣E [(σ(g1, x))m − (σ(g1, y))m

dγ(x, y) ezσ(g1,x)ϕ(g1 ·x)
]∣∣∣∣

+ sup
x,y∈Pd−1

+ ,x 6=y

∣∣∣∣∣E
[
(σ(g1, y))m e

zσ(g1,x) − ezσ(g1,y)

dγ(x, y) ϕ(g1 ·x)
]∣∣∣∣∣

+ sup
x,y∈Pd−1

+ ,x 6=y

∣∣∣∣E [(σ(g1, y))mezσ(g1,y)ϕ(g1 ·x)− ϕ(g1 ·y)
dγ(x, y)

]∣∣∣∣
=: I1,m + I2,m + I3,m. (3.7)

We then control each of the three terms I1,m, I2,m, I3,m.
Control of I1,m. Since for any a, b ∈ C, m ∈ N and 0 < γ < 1,

|am − bm| 6 2mmax{|a|m−γ , |b|m−γ}|a− b|γ , (3.8)

we get

I1,m 6 2m‖ϕ‖∞ sup
x,y∈Pd−1

+ ,x 6=y
E
[

(logN(g1))m−γN(g1)|<z|

dγ(x, y) |σ(g1, x)− σ(g1, y)|γ
]
.

Using (2.1), we deduce that for any g ∈ Γµ,

|σ(g, x)− σ(g, y)| 6 C‖g‖ι(g)−1d(x, y), (3.9)
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and hence
∞∑
m=0

|θ|m

m! I1,m 6 2‖ϕ‖∞E
[
(logN(g1))1−γe(|θ|+|<z|+2γ) logN(g1)

]
. (3.10)

Control of I2,m. Using (3.8), we deduce that for any z1, z2 ∈ C,

|ez1 − ez2 | 6 2 max{|z1|1−γ , |z2|1−γ}max{e<z1 , e<z2}|z1 − z2|γ . (3.11)
By this inequality, we find that for any g ∈ Γµ,∣∣∣ezσ(g,x) − ezσ(g,y)

∣∣∣ 6 2(logN(g))1−γe|<z| logN(g)|σ(g, x)− σ(g, y)|γ .

Combining this with (3.9) implies that
∞∑
m=0

|θ|m

m! I2,m 6 2‖ϕ‖∞E
[
(logN(g1))1−γe(|θ|+|<z|+2γ) logN(g1)

]
. (3.12)

Control of I3,m. Since ϕ ∈ Bγ and d(g ·x, g ·y) 6 d(x, y) for any g ∈ Γµ,
we get

∞∑
m=0

|θ|m

m! I3,m 6 ‖ϕ‖γE
[
e(|θ|+|<z|+2γ) logN(g1)

]
.

Combining this with (3.6), (3.7), (3.10) and (3.12), we obtain (3.5).
Step 2. Again we only need to consider the case of positive matrices.

We will prove the decomposition formula (3.2) together with parts (a), (b)
and (d). Our proof follows closely [32]. Define the operator M on Bγ by
Mϕ = ν(ϕ)1, ϕ ∈ Bγ . Set E = kerM ∩Bγ . We first show that ‖ϕ‖∞ 6 [ϕ]γ
for any ϕ ∈ E. Since ν(ϕ) = 0 for any ϕ ∈ E, there exist x1, x2 ∈ Pd−1

+ such
that <ϕ(x1) = =ϕ(x2) = 0. Since d(x, y) ∈ [0, 1], it follows that
‖ϕ‖∞6 sup

x∈Pd−1
+

|<ϕ(x)−<ϕ(x1)|+ sup
x∈Pd−1

+

|=ϕ(x)−=ϕ(x2)| 6 2[ϕ]γ . (3.13)

We next show that %(P |E) < 1, where P = P0 (see (3.1)). For any x, y ∈
Pd−1

+ , x 6= y, and ϕ ∈ Bγ , there exists a ∈ (0, 1) such that for large n > 1,
|Pnϕ(x)− Pnϕ(y)|

dγ(x, y) 6 ‖ϕ‖γE
[dγ(Gn ·x,Gn ·y)

dγ(x, y)

]
6 ‖ϕ‖γan,

where for the last inequality we use [29, Lemma 3.2]. Observe that for any
ϕ ∈ Bγ , we have ϕ −Mϕ ∈ E, thus Pn(ϕ −Mϕ) ∈ E for any n > 1 since
νP = ν. Combining this with (3.13) and the above inequality, we get

‖Pn(ϕ−Mϕ)‖γ 6 2[Pn(ϕ−Mϕ)]γ 6 2an[ϕ]γ 6 2an‖ϕ‖γ ,
which implies %(P |E) < 1. This, together with the definition of E and the
fact that P1 = 1, shows that 1 is the isolated dominant eigenvalue of the
operator P . Using this and the analyticity of Pz ∈ L(Bγ ,Bγ) shown in
step 1, and applying the perturbation theorem (see [30, Theorem III.8]), we
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obtain the decomposition formula (3.2) with Mz(ϕ) = c1νz(ϕ)rz for some
constant c1 6= 0, as well as parts (a), (b) and (d). Using Pzrz = κ(z)rz, we
get c1 = 1/νz(rz) and thus Mzϕ = νz(ϕ)

νz(rz)rz for any ϕ ∈ Bγ .
Step 3. We prove part (c) for both invertible matrices and positive ma-

trices. From P1 = 1, we see that κ(0) = 1 and r0 = 1. Letting z = 0
in νzPz = κ(z)νz, we get ν0P = ν0 and thus ν0 = ν since ν is the unique
µ-stationary probability measure. Now we fix z ∈ (−η, η) and we show
that κ(z) and rz are real-valued. Taking the conjugate in the equality
Pzrz = κ(z)rz, we get Pzrz = κ(z)rz, so that κ(z) is an eigenvalue of the op-
erator Pz. By the uniqueness of the dominant eigenvalue of Pz, it follows that
κ(z) = κ(z), showing that κ(z) is real-valued for z ∈ (−η, η). We now prove
that rz is real-valued. Write rz in the form rz = uz + ivz, where uz and vz
are real-valued functions on S. From the normalization condition ν(rz) = 1,
we get ν(uz) = 1 and ν(vz) = 0. From the equation Pzrz = κ(z)rz and the
fact that κ(z) is real-valued, we get that Pzuz = κ(z)uz and Pzvz = κ(z)vz.
By part (a), the space of eigenvectors corresponding to the eigenvalue κ(z)
is one dimensional. Therefore, we have either uz = cvz for some constant
c ∈ R, or vz = 0. However, the equality uz = cvz is impossible because we
have seen that ν(uz) = 1 and ν(vz) = 0. Hence vz = 0 and rz is real-valued
for z ∈ (−η, η). The positivity of κ(z) and rz then follows from κ(0) = 1,
r0 = 1 and the analyticity of the mappings z 7→ κ(z) and z 7→ rz. This ends
the proof of part (c), as well as the proof of Proposition 3.1. �

3.2. Definition of the change of measure Qx
s . Proposition 3.1 allows

us to perform a change of measure. Note that this change of measure for
positive s has been studied in [10, 11, 27]; however, for negative s it is new.
For any s ∈ (−η, η), x ∈ S and g ∈ Γµ, denote

qsn(x, g) = esσ(g,x)

κn(s)
rs(g · x)
rs(x) , n > 1. (3.14)

Then (qsn) satisfies the cocycle property: for any n,m > 1 and g1, g2 ∈ Γµ,

qsn(x, g1)qsm(g1 ·x, g2) = qsn+m(x, g2g1). (3.15)

Since κ(s) and rs are strictly positive, qsn(x,Gn)µ(dg1)...µ(dgn), n > 1,
is a sequence of probability measures, and forms a projective system on
M(d,R)N∗ . By the Kolmogorov extension theorem, there is a unique prob-
ability measure Qx

s on M(d,R)N∗ with marginals qsn(x,Gn)µ(dg1)...µ(dgn).
Denote by EQxs the corresponding expectation. For any n ∈ N and any
bounded measurable function h on (S×R)n, it holds that for any s ∈ (−η, η)
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and x ∈ S,
1

κn(s)rs(x)E
[
rs(Xx

n)esσ(Gn,x)h
(
Xx

1 , σ(G1, x), .. ., Xx
n , σ(Gn, x)

)]
= EQxs

[
h
(
Xx

1 , σ(G1, x), .. ., Xx
n , σ(Gn, x)

)]
. (3.16)

3.3. Properties of the Markov operator Qs. For any s ∈ (−η, η), define
the Markov operator Qs as follows: for any ϕ ∈ Bγ ,

Qsϕ(x) = 1
κ(s)rs(x)Ps(ϕrs)(x), x ∈ S.

Under the changed measure Qx
s , the process (Xx

n)n∈N is a Markov chain with
the transition operator given by Qs.

The next assertion will be useful to prove that the function κ is strictly
convex (see Lemma 3.16). Recall that V (Γµ) is the support of the measure
ν (cf.(2.3) and (2.4)).

Lemma 3.3. Assume the conditions of Proposition 3.1. Let s ∈ (−η, η),
where η > 0 is a small constant. If ϕ 6 Qsϕ for some real-valued function
ϕ ∈ C(S), then ϕ(x) = supy∈S ϕ(y) for any x ∈ V (Γµ).

Proof. We use the approach developed in [27]. Set M = supy∈S ϕ(y) and
S+ = {x ∈ S : ϕ(x) =M}. From the condition ϕ 6 Qsϕ and the fact that∫

Γµ q
s
1(x, g)µ(dg) = 1, we get that if x ∈ S+, then g ·x ∈ S+ for any g ∈ Γµ,

so that ΓµS+ ⊆ S+. Since V (Γµ) is the unique minimal Γµ-invariant set
(see [27] and [10]), we obtain V (Γµ) ⊆ S+ and the claim follows. �

We state the spectral gap property of the Markov operator Qs, whose
proof is postponed to Section 3.5.

Proposition 3.4. Assume the conditions of Proposition 3.1. Then there
exists η > 0 such that for any s ∈ (−η, η) and n > 1, we have

Qns = Πs +Nn
s ,

where the mappings s 7→ Πs, s 7→ Ns ∈ L(Bγ ,Bγ) are analytic on (−η, η)
and satisfy the following properties:

(a) with πs(ϕ) := νs(ϕrs)
νs(rs) , we have for any ϕ ∈ Bγ,

Πs(ϕ)(x) = πs(ϕ)1, Nn
s (ϕ)(x) = 1

κn(s)
Lns (ϕrs)(x)

rs(x) , x ∈ S,

where νs, rs, Ls are given in Proposition 3.1;
(b) ΠsNs = NsΠs = 0, and for each k ∈ N, there exist constants Ck > 0

and a ∈ (0, 1) such that

sup
s∈(−η,η)

∥∥∥ dk
dsk

Nn
s

∥∥∥
Bγ→Bγ

6 Cka
n. (3.17)
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3.4. Quasi-compactness of the operator Qs+it. For any s ∈ (−η, η) and
t ∈ R, define the operator Qs+it as follows: for any ϕ ∈ Bγ ,

Qs+itϕ(x) = 1
κ(s)rs(x)Ps+it(ϕrs)(x)

= 1
κ(s)rs(x)E

[
e(s+it)σ(g1,x)ϕ(g1 ·x)rs(g1 ·x)

]
, x ∈ S.

The spectral gap properties of the operator Qs+it for |t| small enough can
be deduced from Proposition 3.1. However, this approach does not work for
large |t|. In order to investigate the spectral gap properties of the operator
Qs+it for t ∈ R, we first prove the Doeblin-Fortet inequality and then we
apply the theorem of Ionescu-Tulcea and Marinescu [35] to establish the
quasi-compactness of the operator Qs+it. Using this property, we shall apply
the non-arithmeticicty condition A5 to prove that the spectral radius of
Qs+it is strictly less than 1 when t is different from 0.

The following is the Doeblin-Fortet inequality for the operator Qs+it:

Lemma 3.5. Assume the conditions of Proposition 3.1. Then, there exist
constants 0 < a < 1, and η > 0 small enough, such that for any s ∈ (−η, η),
t ∈ R, n > 1 and ϕ ∈ Bγ, we have

[Qns+itϕ]γ 6 Cs,t,n‖ϕ‖∞ + Csa
n[ϕ]γ . (3.18)

For positive-valued s, analogous results can be found in [27] for invert-
ible matrices and in [11] for positive matrices. The proofs in [27, 11] rely
essentially on the Hölder continuity of the mapping x 7→ qsn(x, g) defined in
(3.14). However, this property does not hold any more in the case when s is
negative. Our proof of Lemma 3.5 is carried out using the Hölder inequality
and the spectral gap properties of the operator Ps established in Proposition
3.1.

Proof of Lemma 3.5. Using the definition of Qs+it and the cocycle property
(3.15), we get that for any n > 1,

Qns+itϕ(x) = 1
κn(s)rs(x)P

n
s+it(ϕrs)(x), x ∈ S.

It follows that

sup
x,y∈S,x 6=y

|Qns+itϕ(x)−Qns+itϕ(y)|
dγ(x, y) 6 J1(n) + J2(n), (3.19)

where

J1(n) = sup
x,y∈S,x 6=y

1
dγ(x, y)κn(s)

∣∣∣ 1
rs(x) −

1
rs(y)

∣∣∣ ∣∣Pns+it(ϕrs)(x)
∣∣ ,

J2(n) = sup
x,y∈S,x 6=y

1
rs(y)dγ(x, y)κn(s)

∣∣Pns+it(ϕrs)(x)− Pns+it(ϕrs)(y)
∣∣ .
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Note that by Proposition 3.1, for any s ∈ (−η, η), we have minx∈S rs(x) > 0,
maxx∈S rs(x) <∞ and κ(s) > 0.

Control of J1(n). Observe that uniformly in x ∈ S,

|Pns+it(ϕrs)(x)| 6 Pns (|ϕ|rs)(x) 6 ‖ϕ‖∞κn(s)‖rs‖∞ 6 Cs‖ϕ‖∞κn(s).

Since rs ∈ Bγ , this implies that for any s ∈ (−η, η) and t ∈ R,

J1(n) 6 Cs‖ϕ‖∞. (3.20)

Control of J2(n). Using the definition of Ps+it and taking into account
that rs is strictly positive and bounded on S, we have

J2(n) 6 Cs(J21(n) + J22(n) + J23(n)), (3.21)

where

J21(n) = sup
x,y∈S,x 6=y

1
dγ(x, y)κn(s)

∣∣∣E[(e(s+it)σ(Gn,x) − e(s+it)σ(Gn,y))ϕ(Xx
n)
]∣∣∣,

J22(n) = sup
x,y∈S,x 6=y

1
dγ(x, y)κn(s)

∣∣∣E[e(s+it)σ(Gn,y)(ϕ(Xx
n)− ϕ(Xy

n))
]∣∣∣,

J23(n) = sup
x,y∈S,x 6=y

1
dγ(x, y)κn(s)

∣∣∣E{e(s+it)σ(Gn,y)ϕ(Xy
n)[rs(Xx

n)− rs(Xy
n)]
}∣∣∣.

Control of J21(n). Using (3.11) and the inequality log u 6 uε, u > 1, for
ε > 0 small enough, we obtain∣∣e(s+it)σ(Gn,x) − e(s+it)σ(Gn,y)∣∣ 6 2(N(Gn))|s|+ε

∣∣σ(Gn, x)− σ(Gn, y)
∣∣γ .
(3.22)

From the inequality (2.1), by arguing as in the estimate of (3.9), we get∣∣σ(Gn, x)− σ(Gn, y)
∣∣γ 6 C‖Gn‖γι(Gn)−γdγ(x, y).

Using first (3.22) and then the last bound, we deduce that

J21(n) 6 C‖ϕ‖∞
κn(s)

{
E
[
(N(g1))|s|+ε‖g1‖γι(g1)−γ

]}n
6 Cs,t,n‖ϕ‖∞, (3.23)

where the last inequality holds by condition A1.
Control of J22(n). Since ϕ ∈ Bγ , applying the Hölder inequality leads to

J22(n) 6 Cs[ϕ]γ
κn(s) sup

x,y∈S,x 6=y
E
[
esσ(Gn,y) dγ(Xx

n , X
y
n)

dγ(x, y)

]

6 Cs[ϕ]γ sup
x,y∈S,x 6=y

{
E
[
e2sσ(Gn,y)

]}1/2

κn(s)

[
E

d2γ(Xx
n , X

y
n)

d2γ(x, y)

]1/2

. (3.24)
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Since γ > 0 is small enough, by [39, Theorem 1] for invertible matrices and
[29, Lemma 3.2] for positive matrices, there exists a constant a0 ∈ (0, 1)
such that for sufficiently large n > 1,

sup
x,y∈S,x 6=y

[
E

d2γ(Xx
n , X

y
n)

d2γ(x, y)

]1/2

6 an0 . (3.25)

In view of Proposition 3.1, we have

E
[
e2sσ(Gn,y)

]
= κn(2s)(M2s1)(y) + Ln2s1(y), y ∈ S.

Since, by Proposition 3.1(d), ‖M2s1‖∞ is bounded by some constant Cs,
and ‖Ln2s1‖∞ is bounded by Csκn(2s) uniformly in n > 1, it follows that

sup
n>1

sup
y∈S

E[e2sσ(Gn,y)]
κn(2s) 6 Cs. (3.26)

As κ is continuous in the neighborhood of 0 and κ(0) = 1, one can choose η >
0 small enough and a constant α ∈ (0, 1/a0) such that κn/2(2s)/κn(s) 6 αn,
uniformly in s ∈ (−η, η). Substituting this inequality together with (3.25)
and (3.26) into (3.24), we obtain that for any s ∈ (−η, η) with η > 0 small,
there exists 0 < a < 1 such that uniformly in n > 1,

J22(n) 6 Csan[ϕ]γ . (3.27)

Control of J23(n). Using (3.26) and the fact that rs ∈ Bγ , and applying
similar techniques as in the control of J22(n), one can verify that there exists
a constant 0 < a < 1 such that uniformly in n > 1,

J23(n) 6 Csan‖ϕ‖∞[rs]γ 6 Csan‖ϕ‖∞. (3.28)

Inserting (3.23), (3.27) and (3.28) into (3.21), we conclude that

J2(n) 6 Cs,t,n‖ϕ‖∞ + Csa
n[ϕ]γ .

Combining this with (3.20) and (3.19), we obtain the inequality (3.18). �

From Lemma 3.5 and the fact that ‖Qs+itϕ‖∞ 6 Cs‖ϕ‖∞ for any s ∈
(−η, η) and t ∈ R, we can deduce that Qs+it ∈ L(Bγ ,Bγ). We next
prove that the operator Qs+it is quasi-compact. Recall that an operator
Q ∈ L(Bγ ,Bγ) is called quasi-compact if Bγ can be decomposed into two Q
invariant closed subspaces Bγ = E⊕F such that dimE <∞, each eigenvalue
of Q|E has modulus %(Q), and %(Q|F ) < %(Q) (see [30] for more details).

Proposition 3.6. Assume the conditions of Proposition 3.1. Then, there
exists η > 0 such that for any s ∈ (−η, η) and t ∈ R, the operator Qs+it is
quasi-compact.
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Proof. The proof consists of verifying the conditions of the theorem of Ionescu-
Tulcea and Marinescu [35]. We follow the formulation in [30, Theorem II.5].

Firstly, by the definition of Qs+it, there exists a constant Cs > 0 such
that ‖Qs+itϕ‖∞ 6 Cs‖ϕ‖∞ for any s ∈ (−η, η), t ∈ R and ϕ ∈ Bγ .

Secondly, by Lemma 3.5, the Doeblin-Fortet inequality (3.18) holds for
the operator Qs+it.

Thirdly, denoting K = {Qs+itϕ : ‖ϕ‖γ 6 1}, we claim that for any s ∈
(−η, η) and t ∈ R, the set K is conditionally compact in (Bγ , ‖ · ‖∞). Since
‖Qs+itϕ‖∞ 6 Cs‖ϕ‖∞ for any ϕ ∈ Bγ , we conclude that K is uniformly
bounded in (Bγ , ‖ · ‖∞). Moreover, by taking n = 1 in (3.18), we get that
uniformly in ϕ ∈ Bγ with ‖ϕ‖γ 6 1,

|Qs+itϕ(x)−Qs+itϕ(y)| 6 Cs,tdγ(x, y).

This shows that K is equicontinuous in (Bγ , ‖ · ‖∞). Therefore, we obtain
the claim by the Arzelà-Ascoli theorem.

The assertion of the proposition now follows from the theorem of Ionescu-
Tulcea and Marinescu. �

The proposition below shows that the spectral radius of the operatorQs+it
is strictly less than 1 when t is different from 0. The proof which relies on
the non-arithmeticity condition A5, follows the standard pattern in [27, 11];
it is included for the commodity of the reader.

Proposition 3.7. Assume either conditions A1 and A2 for invertible ma-
trices, or conditions A1, A3 and A5 for positive matrices. Then, there ex-
ists η > 0 such that for any s ∈ (−η, η) and t ∈ R\{0}, we have %(Qs+it) < 1.

Proof. By the definition of Qs+it, we have %(Qs+it) 6 %(Qs) = 1. Suppose
that %(Qs+it) = 1 for some t 6= 0. Then, applying Proposition 3.6, there exist
ϕ ∈ Bγ and β ∈ R such that Qs+itϕ = eiβϕ. From this equation, we deduce
that |ϕ| 6 Qs|ϕ|. Using Lemma 3.3, this implies that |ϕ(x)| = supy∈S |ϕ(y)|
for any x ∈ V (Γµ), so that ϕ(x) = ceiϑ(x), where c 6= 0 is a constant and ϑ is
a real-valued continuous function on S. Substituting this into the equation
Qs+itϕ = eiβϕ gives that for any x ∈ V (Γµ),

EQxs exp
[
itσ(g1, x)− iβ + iϑ(g1 ·x)− iϑ(x)

]
= 1.

Since ϑ is real-valued, this implies exp[itσ(g, x) − iβ + iϑ(g · x) − iϑ(x)] =
1 for any x ∈ V (Γµ) and µ-a.e. g ∈ Γµ, which contradicts to condition
A5. Therefore, %(Qs+it) < 1 for any t 6= 0. Recalling that condition A2
implies condition A5 for invertible matrices, the proof of Proposition 3.7 is
complete. �
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3.5. Spectral gap properties of the perturbed operator Rs,z. For any
s ∈ (−η, η) and z ∈ C such that s + <z ∈ (−η0, η0), define the perturbed
operator Rs,z as follows: for any ϕ ∈ Bγ ,

Rs,zϕ(x) = EQxs

[
ez(σ(g1,x)−Λ′(s))ϕ(Xx

1 )
]
, x ∈ S. (3.29)

With some calculations using (3.15), it follows that for any n > 1,

Rns,zϕ(x) = EQxs

[
ez(σ(Gn,x)−nΛ′(s))ϕ(Xx

n)
]
, x ∈ S. (3.30)

The following formula relates the operator Rns,z to the operator Pns+z and is
of independent interest: for any ϕ ∈ Bγ , n > 1, s ∈ (−η, η) and z ∈ Bη(0),

Rns,z(ϕ) = e−nzΛ
′(s)P

n
s+z(ϕrs)
κn(s)rs

. (3.31)

The identity (3.31) is obtained by the definitions of Rs,z and Pz using the
change of measure (3.16).

There are two ways to establish spectral gap properties of the operator
Rs,z: one is to use the perturbation theory of operators [30, Theorem III.8],
another is based on the Ionescu-Tulcea and Marinescu theorem [35] about
the quasi-compactness of operators. The representation (3.31) allows us to
deduce the spectral gap properties of Rs,z directly from the properties of
the operator Pz. This has some advantages: it ensures the uniformity in
s ∈ (−η, η), allows to deal with negative-vaued s and provides an explicit
formula for the projection operator Πs,z and the remainder operator Nn

s,z

defined below.
Recall that Λ = log κ, where κ is defined in (2.6).

Proposition 3.8. Assume the conditions of Proposition 3.1. Then, there
exist η > 0 and δ ∈ (0, η) such that for any s ∈ (−η, η) and z ∈ Bδ(0),

Rns,z = λns,zΠs,z +Nn
s,z, n > 1, (3.32)

λs,z = eΛ(s+z)−Λ(s)−Λ′(s)z (3.33)
and for ϕ ∈ Bγ,

Πs,z(ϕ) = νs+z(ϕrs)
νs+z(rs+z)

rs+z
rs

, (3.34)

Nn
s,z(ϕ) = e−n[Λ(s)+Λ′(s)z]L

n
s+z(ϕrs)
rs

, (3.35)

where rz, νz and Lz are given in Proposition 3.1. In addition, we have:
(a) for fixed s, the mappings z 7→ Πs,z : Bδ(0) → L(Bγ ,Bγ), z 7→ Ns,z :

Bδ(0)→ L(Bγ ,Bγ) and z 7→ λs,z : Bδ(0)→ C are analytic,
(b) for fixed s and z, Πs,z is a rank-one projection with Πs,0(ϕ)(x) =

πs(ϕ) for any ϕ ∈ Bγ and x ∈ S, and Πs,zNs,z = Ns,zΠs,z = 0,
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(c) for any k ∈ N, there exist constants Ck > 0 and 0 < a < 1 such that

sup
s∈(−η,η)

sup
z∈Bδ(0)

∥∥∥ dk
dzk

Πs,z

∥∥∥
Bγ→Bγ

6 Ck, (3.36)

sup
s∈(−η,η)

sup
z∈Bδ(0)

∥∥∥ dk
dzk

Nn
s,z

∥∥∥
Bγ→Bγ

6 Cka
n. (3.37)

Note that, for s > 0, similar results have been obtained in [11]. The
novelty here is that s can account for negative values s ∈ (−η, 0] and that
the bounds (3.36) and (3.37) hold uniformly in s ∈ (−η, η). This plays a
crucial role in establishing Theorem 2.3.

Proof of Proposition 3.8. The proof is divided into three steps.
Step 1. By Proposition 3.1, we have

Pns+z(ϕrs) = κn(s+ z) νs+z(ϕrs)
νs+z(rs+z)

rs+z + Lns+z(ϕrs).

Substituting this into (3.31) shows (3.32), (3.33), (3.34) and (3.35).
Step 2. We prove parts (a) and (b). The assertion in part (a) follows

from the expressions (3.33), (3.34) and (3.35), and the analyticity of the
mappings z 7→ κ(z), z 7→ rz, z 7→ νz and z 7→ Lz defined in Proposition
3.1. To show part (b), by (3.34), we have that Πs,z is a rank-one projection
on the subspace

{
w rs+z

rs
: w ∈ C

}
. The identity Πs,0(ϕ)(x) = πs(ϕ) follows

from (3.34) and the fact that πs(ϕ) = νs(ϕrs)
νs(rs) . Using Proposition 3.1, we get

that Lzrz = 0 and νz(Lzϕ) = 0 for any ϕ ∈ Bγ . This, together with (3.34)
and (3.35), shows that Πs,zNs,z = Ns,zΠs,z = 0.

Step 3. We prove part (c). By Proposition 3.1, there exists a constant
η > 0 such that the mappings z 7→ κ(z), z 7→ rz, z 7→ νz are analytic
and uniformly bounded on B2η(0). Combining this with (3.34), we obtain
(3.36). We now prove (3.37). Since the function rs is strictly positive on the
compact set S, by Proposition 3.1(d), we deduce that there exists a constant
0 < a0 < 1 such that uniformly in ϕ ∈ Bγ ,

sup
s∈(−η,η)

sup
z∈Bη(0)

∥∥∥Lns+z(ϕrs)
rs

∥∥∥
γ
6 C‖ϕ‖γan0 . (3.38)

Using the fact that the function Λ is continuous and Λ(0) = 0, there exist a
small η > 0, δ ∈ (0, η) and a constant a1 <

1
a0

such that

sup
s∈(−η,η)

sup
z∈Bδ(0)

∣∣∣e−n[Λ(s)+Λ′(s)z]
∣∣∣ 6 Can1 .

Combining this with (3.38) proves (3.37) with k = 0. The proof of (3.37)
when k > 1 can be carried out in the same way as in the case of k = 0. �
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Proof of Proposition 3.4. The assertion is obtained from Proposition 3.8
taking z = 0. �

In order to establish the non-arithmeticity of the perturbed operator Rs,it,
we shall need the following lemma from [30, Lemma III.9]:

Lemma 3.9. Let s ∈ R, δ > 0 and Is,δ = (s − δ, s + δ). Assume that the
mapping t ∈ Is,δ 7→ P (t) ∈ L(Bγ ,Bγ) is continuous. Let r > %(P (s)). Then,
there exist constants ε = ε(s) and c = c(s) > 0 such that

sup
t∈(s−ε,s+ε)

‖Pn(t)‖Bγ→Bγ < crn.

Moreover, it holds that

lim sup
t→s

%(P (t)) 6 %(P (s)).

Proposition 3.10. Assume the conditions of Proposition 3.7. For any com-
pact set K ⊆ R\{0}, there exist constants CK > 0 and η > 0 such that for
any n > 1 and ϕ ∈ Bγ,

sup
s∈(−η,η)

sup
t∈K

sup
x∈S
|Rns,itϕ(x)| 6 e−nCK‖ϕ‖γ .

Proof. By Proposition 3.7, for any fixed s ∈ (−η, η) and t ∈ R\{0}, we have
%(Rs+it) = %(Qs+it) < 1. It follows that for any s ∈ (−η, η) and t ∈ R \ {0},
there exists a constant C(s, t) > 0 such that, for any n > 1 and ϕ ∈ Bγ ,

sup
x∈S
|Rns,itϕ(x)| 6 e−nC(s,t)‖ϕ‖γ .

From (3.31), we see that the operator Rs,it is continuous in s and t. By
Lemma 3.9, there exist constants ε(s) > 0 and δ(t) > 0 such that

sup
s′∈(s−ε(s),s+ε(s))

sup
t′∈(t−δ(t),t+δ(t))

sup
x∈S
|Rns′,it′ϕ(x)| 6 e−nC(s,t)‖ϕ‖γ .

Let I ⊂ (−η, η) and K ⊆ R\{0} be any compact sets. Since

σ(Gn, x)
⋃

(s,t)∈I×K

{(
s− ε(s), s+ ε(s)

)
×
(
t− δ(t), t+ δ(t)

)}
⊃ I ×K,

by Heine-Borel’s theorem, there exist an integer m0 > 1 and a sequence
{sm, tm}16m6m0 such that

m0⋃
m=1

{
(sm − εm, sm + εm)× (tm − δm, tm + δm)

}
⊃ I ×K,

where εm = ε(sm) and δm = δ(sm). This concludes the proof of Proposition
3.10 by taking CK = min16m6m0 C(sm, tm). �
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We now give some properties of the function bs,ϕ defined as follows: for
any s ∈ (−η, η) and ϕ ∈ Bγ ,

bs,ϕ(x) := lim
n→∞

EQxs
[
(σ(Gn, x)− nΛ′(s))ϕ(Xx

n)
]
, x ∈ S.

In particular, with s = 0, we have b0,ϕ = bϕ, which is defined in (2.7).
Lemma 3.11. Assume the conditions of Proposition 3.1. Then the function
bs,ϕ is well-defined, bs,ϕ ∈ Bγ and

bs,ϕ(x) = dΠs,z

dz

∣∣∣
z=0

ϕ(x), x ∈ S. (3.39)

Proof. In view of Proposition 3.8, we have that for any ϕ ∈ Bγ ,

EQxs

[
ez(σ(Gn,x)−nΛ′(s))ϕ(Xx

n)
]

= λns,zΠs,zϕ(x) +Nn
s,zϕ(x), x ∈ S.

From (3.33), we have λs,0 = 1 and dλs,z
dz |z=0 = 0. Differentiating both sides

of the above equation with respect to z at the point 0 gives that for any
x ∈ S,

EQxs
[
(σ(Gn, x)− nΛ′(s))ϕ(Xx

n)
]
= dΠs,z

dz

∣∣∣
z=0

ϕ(x) +
dNn

s,z

dz

∣∣∣
z=0

ϕ(x). (3.40)

Using the bounds (3.36) and (3.37), we find that the first term on the right-
hand side of (3.40) belongs to Bγ , and the second term converges to 0
exponentially fast as n → ∞. Hence, letting n → ∞ in (3.40), we obtain
(3.39). This shows that the function bs,ϕ is well-defined and bs,ϕ ∈ Bγ . �

For any s ∈ (−η, η) with η > 0 small, define Qs =
∫
S Qx

sπs(dx). The
following result will be used to prove the strong law of large numbers for
σ(Gn, x) under the changed measure Qs:
Lemma 3.12. Assume the conditions of Proposition 3.1. There exist η > 0
and c, C > 0 such that uniformly in s ∈ (−η, η), ϕ ∈ Bγ and n > 1,∣∣∣EQs

[
(σ(Gn, x)− nΛ′(s))ϕ(Xx

n)
]∣∣∣ 6 C‖ϕ‖γe−cn. (3.41)

Proof. We follow the proof of the previous lemma. Integrating both sides of
the identity (3.40) with respect to πs, we get, for any ϕ ∈ Bγ ,

EQs
[
(σ(Gn, x)− nΛ′(s))ϕ(Xx

n)
]

= πs

(
dΠs,z

dz

∣∣∣
z=0

ϕ

)
+ πs

(
dNn

s,z

dz

∣∣∣
z=0

ϕ

)
. (3.42)

Since Π2
s,zϕ = Πs,zϕ, we have 2Πs,0(dΠs,z

dz |z=0ϕ) = dΠs,z
dz |z=0ϕ. Integrating

both sides of this equation with respect to πs and using the fact that Πs,0 =
πs, we find that

πs

(
dΠs,z

dz

∣∣∣
z=0

ϕ

)
= 0. (3.43)
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It follows from (3.37) that uniformly in ϕ ∈ Bγ and s ∈ (−η, η), the second
term on the right-hand side of (3.42) is bounded by C‖ϕ‖γe−cn. Therefore,
from (3.42) and (3.43) we obtain (3.41). �

We now establish the strong laws of large numbers for σ(Gn, x) under the
measures Qx

s and Qs, which are of independent interest.

Proposition 3.13. Assume the conditions of Proposition 3.1. Then, there
exists η > 0 such that for any s ∈ (−η, η) and x ∈ S,

lim
n→∞

σ(Gn, x)
n

= Λ′(s), Qx
s -a.s..

Proof. By the Borel-Cantelli lemma, it suffices to show that for any ε > 0,
s ∈ (−η, η) and x ∈ S, we have

∞∑
n=1

Qx
s

(∣∣∣σ(Gn, x)− nΛ′(s)
∣∣∣ > nε) <∞. (3.44)

Now let us prove (3.44). By Markov’s inequality, we have for small δ > 0,

Qx
s

(∣∣∣σ(Gn, x)− nΛ′(s)
∣∣∣ > nε)

6 e−nδεEQxs

(
eδ(σ(Gn,x)−nΛ′(s))

)
+ e−nδεEQxs

(
e−δ(σ(Gn,x)−nΛ′(s))

)
.

From (3.30) and Proposition 3.8, we deduce that there exist positive con-
stants c, C independent of s, x, δ such that

EQxs

(
eδ(σ(Gn,x)−nΛ′(s))

)
+ EQxs

(
e−δ(σ(Gn,x)−nΛ′(s))

)
6 Cen[Λ(s+δ)−Λ(s)−Λ′(s)δ] + Cen[Λ(s−δ)−Λ(s)+Λ′(s)δ] + Ce−cn.

Using Taylor’s formula and taking δ > 0 small enough, we conclude that

Qx
s

(∣∣∣σ(Gn, x)− nΛ′(s)
∣∣∣ > nε) 6 Ce−n δ2 ε,

which implies the desired assertion (3.44). �

Proposition 3.14. Assume the conditions of Proposition 3.1. Then, there
exists η > 0 such that for any s ∈ (−η, η) and x ∈ S,

lim
n→∞

σ(Gn, x)
n

= Λ′(s), Qs-a.s..

Proof. Taking ϕ = 1 in (3.41) leads to

lim
n→∞

1
n
EQs

(
σ(Gn, x)

)
= Λ′(s). (3.45)

Let Ω = M(d,R)N∗ and Ω̂ = S ×Ω. Following [27, Theorem 3.10], we define
the shift operator θ̂ on Ω̂ by θ̂(x, ω) = (g1 ·x, θω), where ω ∈ Ω and θ is the
shift operator on Ω. For any x ∈ S and ω ∈ Ω, set h(x, ω) = σ(g1(ω), x).
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Then h is Qs-integrable. Since σ(Gn, x) =
∑n−1
k=0(h ◦ θ̂k)(x, ω) and Qs is

θ̂-ergodic, it follows from Birkhoff’s ergodic theorem that σ(Gn,x))
n converges

Qs-a.s. to some constant cs as n→∞. If we suppose that cs is different from
Λ′(s), then this contradicts to (3.45). Thus cs = Λ′(s) and the assertion of
the lemma follows. �

Now we give the third-order Taylor expansion of λs,z defined by (3.33),
with respect to z at the origin in the complex plane C.

Proposition 3.15. Assume the conditions of Proposition 3.1. Then, there
exist η > 0 and δ > 0 such that for any s ∈ (−η, η) and z ∈ Bδ(0),

λs,z = 1 + σ2
s

2 z
2 + Λ′′′(s)

6 z3 + o(|z|3) as |z| → 0, (3.46)

where
(a) σ2

s = Λ′′(s) > 0 and Λ′′′(s) ∈ R;
(b) for invertible matrices, σs > 0 under the stated conditions; for posi-

tive matrices, σs > 0 if additionally σ = σ0 > 0 or if the measure µ
is non-arithmetic;

(c) uniformly in s ∈ (−η, η) and x ∈ S,

σ2
s = lim

n→∞
1
n
EQxs

[
σ(Gn, x)− nΛ′(s)

]2
= lim

n→∞
1
n
EQs

[
σ(Gn, x)− nΛ′(s)

]2;

(d) uniformly in s ∈ (−η, η),

Λ′′′(s) = lim
n→∞

1
n
EQs

[
σ(Gn, x)− nΛ′(s)

]3
.

The proof of Proposition 3.15 is based on the following lemma:

Lemma 3.16. Assume the conditions of Proposition 3.1. Then the func-
tions Λ and κ are convex on (−η, η) for η > 0 small enough. Moreover, Λ
and κ are strictly convex for invertible matrices under the given conditions,
and for positive matrices under the additional condition A5.

Proof. The proof follows [27]. Since Λ = log κ, it suffices to prove Lemma
3.16 for the function Λ. For any t ∈ (0, 1), s1, s2 ∈ (−η, η), set s′ = ts1 +
(1− t)s2. Using Hölder’s inequality and the fact that Psrs = κ(s)rs,

Ps′(rts1r
1−t
s2 ) 6 κt(s1)κ1−t(s2)rts1r

1−t
s2 . (3.47)

Since κ(s′) is the dominant eigenvalue of the operator Ps′ , we obtain κ(s′) 6
κt(s1)κ1−t(s2) and thus the function Λ is convex.

To show that the function Λ is strictly convex, we suppose, by absurd, that
there exist s1 6= s2 and some t ∈ (0, 1) such that κ(s′) = κt(s1)κ1−t(s2). Us-
ing this equality, the definition of the Markov operator Qs and (3.47), we get
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Qs′(rts1r
1−t
s2 /rs′) 6 rts1r

1−t
s2 /rs′ . Applying Lemma 3.3 with ϕ = −rts1r

1−t
s2 /rs′ ,

this implies that rts1r
1−t
s2 = crs′ on V (Γµ) for some constant c > 0. Substitut-

ing this equality and the identity κ(s′) = κt(s1)κ1−t(s2) into (3.47), we see
that the Hölder inequality in (3.47) is actually an equality. This yields that
there exists a function c(x) > 0 such that for any g ∈ Γµ and x ∈ V (Γµ),

es1σ(g,x)rs1(g ·x) = c(x)es2σ(g,x)rs2(g ·x). (3.48)

Integrating both sides of the equation (3.48) with respect to µ gives c(x) =
κ(s1)rs1 (x)
κ(s2)rs2 (x) . Substituting this into (3.48) and noting that s1 6= s2, we find
that there exist a constant c1 > 0 and a real-valued function ϕ on S such
that eσ(g,x) = c1

ϕ(g·x)
ϕ(x) for any g ∈ Γµ and x ∈ V (Γµ). This contradicts to the

non-arithmetic condition A5. Recall that condition A2 implies condition
A5 for invertible matrices. Hence Λ is strictly convex for invertible matrices
under stated conditions. �

Proof of Proposition 3.15. The expansion (3.46) follows from the identity
(3.33) and Taylor’s formula.

For part (a), by Lemma 3.16, we have Λ′′(s) > 0 for any s ∈ (−η, η).
Since Λ = log κ and it is shown in Proposition 3.1 that the function κ is
real-valued and strictly positive on (−η, η), we get Λ′′′(s) ∈ R.

For part (b), recall that it was shown in [11] that σ0 > 0 for invertible
matrices under the stated conditions, and for positive matrices under the
additional condition of non-arithmeticity. Hence, using the continuity of the
function Λ′′, we obtain that σs > 0.

For part (c), by Proposition 3.8, we get that for |z| small,

EQxs

[
ez(σ(Gn,x)−nΛ′(s))

]
= λns,z(Πs,z1)(x) + (Nn

s,z1)(x). (3.49)

It follows from (3.46) that for |z| = o(n−1/3),

λns,z = 1 + nσ2
s

z2

2 + nΛ′′′(s)z
3

6 + o(n|z|3). (3.50)

Using Taylor’s formula, the bound (3.36) and the fact Πs,01 = 1, we obtain

(Πs,z1)(x) = 1 + cs,x,1z + cs,x,2z
2 + cs,x,3z

3 + o(|z|3), (3.51)

where the constants cs,x,1, cs,x,2, cs,x,3 ∈ C are bounded as functions of s and
x. Similarly, using the fact Ns,01 = 0 and the bound (3.37), there exist
constants Cs,x,n,1, Cs,x,n,2, Cs,x,n,3 ∈ C which are bounded as functions of
s, x and n such that

(Nn
s,z1)(x) = Cs,x,n,1z + Cs,x,n,2z

2 + Cs,x,n,3z
3 + o(|z|3). (3.52)
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Taking the second derivative on both sides of the equation (3.49) with re-
spect to z at 0, and using the expansions (3.50)-(3.52), we deduce that

EQxs
[
σ(Gn, x)− nΛ′(s)

]2 = nσ2
s + 2cs,x,2 + 2Cs,x,n,2. (3.53)

This, together with the definition of Qs and the fact that the constants cs,x,2,
Cs,x,n,2 are bounded as functions of s, x, n, concludes the proof of part (c).

For part (d), integrating both sides of the equations (3.49), (3.51) and
(3.52) with respect to πs, and using the property (3.43) with ϕ = 1 (thus
the second term on the right-hand side of (3.51) vanishes), in the same way
as in the proof of (3.53), we get

EQs
[
σ(Gn, x)− nΛ′(s)

]3 = nΛ′′′(s) + 6cs,3 + 6Cs,n,3.
This implies the desired assertion in part (d). �

Remark 3.17. Inspecting the proof of Proposition 3.15, it is easy to see that
the results in parts (c) and (d) can be reinforced to the following bounds:

sup
s∈(−η,η)

sup
x∈S

∣∣∣∣ 1nEQxs
[
σ(Gn, x)− nΛ′(s)

]2 − σ2
s

∣∣∣∣ 6 C

n
,

sup
s∈(−η,η)

∣∣∣∣ 1nEQs
[
σ(Gn, x)− nΛ′(s)

]3 − Λ′′′(s)
∣∣∣∣ 6 C

n
.

The first bound above also holds with the measure Qx
s replaced by Qs.

4. Smoothing inequality on the complex plane

In this section we aim to establish a new smoothing inequality, which plays
a crucial role in proving the Berry-Esseen bound and Edgeworth expansion
with a target function ϕ on Xx

n ; see Theorems 2.1, 2.2, 5.1 and 5.3.
From now on, for any integrable function h : R → C, denote its Fourier

transform by ĥ(t) =
∫
R e
−ityh(y)dy, t ∈ R. If ĥ is integrable on R, then

using the inverse Fourier transform gives h(y) = 1
2π
∫
R e

ityĥ(t)dt, for almost
all y ∈ R with respect to the Lebesgue measure on R. Denote by h1 ∗h2 the
convolution of the functions h1, h2 on the real line.

For any r > 0, denote
Dr = {z ∈ C : |z| < r},

D+
r = {z ∈ C : |z| < r,=z > 0} and D−r = {z ∈ C : |z| < r,=z < 0}.

We construct a density function ρT which plays an important role in estab-
lishing a new smoothing inequality. As in [42], we define a density function
ρ on the real line R by setting ρ(0) = 1/2π and

ρ(y) = 1
2π
(sin y

2
y
2

)2
, y ∈ R \ {0}.
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Then ρ is a non-negative function bounded by 1
2π and

∫
R ρ(y)dy = 1. Its

Fourier transform ρ̂ is given by

ρ̂(t) = 1− |t|, t ∈ [−1, 1],

and ρ̂(t) = 0 otherwise.
For any T > 0 and the fixed constant b > 0 satisfying

∫ b
−b ρ(y)dy = 3/4,

define the density function

ρT (y) = Tρ(Ty − b), y ∈ R,

whose Fourier transform ρ̂T is given by

ρ̂T (t) = e−ib
t
T

(
1− |t|

T

)
, t ∈ [−T, T ], (4.1)

and ρ̂T (t) = 0 otherwise. Note that the function ρ̂T is not smooth at the
point 0, so that it can not have an analytic extension in a small neighborhood
of 0 in the complex plane C.

Now we are ready to establish our new smoothing inequality. Its proof
is based on the properties of the density function ρT , Cauchy’s integral
theorem and some techniques from [17, 42].

Proposition 4.1. Assume that F is non-decreasing on R, and that H is
differentiable of bounded variation on R such that supy∈R |H ′(y)| <∞. Sup-
pose that F (−∞) = H(−∞) and F (∞) = H(∞). Let

f(t) =
∫
R
e−itydF (y) and h(t) =

∫
R
e−itydH(y), t ∈ R.

Suppose that r > 0 and that f and h have analytic extensions on Dr. Then,
for any T > r,

sup
y∈R
|F (y)−H(y)| 6 1

π
sup
y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣
+ 1
π

sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣
+ 1
π

sup
y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣
+ 1
π

sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣
+ 1
π

∫
r6|t|6T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt
+ 2
πT

∫ T

−T
|f(t)− h(t)|dt+ 3b

T
sup
y∈R
|H ′(y)|,
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where b > 0 is a fixed constant satisfying
∫ b
−b ρ(y)dy = 3/4, and C−r and C+

r

are semicircles given by

C−r = {z ∈ C : |z| = r,=z < 0}, C+
r = {z ∈ C : |z| = r,=z > 0}. (4.2)

Proof. Let T > r. From the definition of ρT and the choice of the constant
b, we have

∫ 2b/T
0 ρT (y)dy = 3/4. Since ρ 6 1

2π , the function ρT is bounded
by T/2π. The proof of Proposition 4.1 consists in establishing first an upper
bound and then a lower bound.

Upper bound. Since the function F is non-decreasing on R and ρT is a
density function on R, we find that for any y ∈ R,

F (y) 6 4
3

∫ y+ 2b
T

y
F (u)ρT (u− y)du

= H(y) + 4
3

∫ y+ 2b
T

y

[(
F (u)−H(u)

)
ρT (u− y) +

(
H(u)−H(y)

)
ρT (u− y)

]
du

6 H(y) + 4
3

∫ y+ 2b
T

y

(
F (u)−H(u)

)
ρT (u− y)du+ 2b

T
sup
y∈R
|H ′(y)|. (4.3)

Let F1(y) =
∫
R F (u)ρT (u− y)du, and H1(y) =

∫
RH(u)ρT (u− y)du, y ∈ R.

Elementary calculations lead to∫
R
e−itydF1(y) = f(t)ρ̂T (−t),

∫
R
e−itydH1(y) = h(t)ρ̂T (−t), t ∈ R.

Restricted on the real line, the function ρ̂T is supported on [−T, T ]. By the
Fourier inversion formula we get

F1(y)− F1(v) = 1
2π

∫ T

−T

eity − eitv

it
f(t)ρ̂T (−t)dt, y, v ∈ R,

H1(y)−H1(v) = 1
2π

∫ T

−T

eity − eitv

it
h(t)ρ̂T (−t)dt, y, v ∈ R.

By the definition of ρ̂T (cf. (4.1)), we get

F1(y)−H1(y)− (F1(v)−H1(v))

= 1
2π

∫ T

−T

f(t)− h(t)
it

eityeib
t
T dt− 1

2π

∫ T

−T

f(t)− h(t)
it

eitveib
t
T dt

− 1
2π

∫ T

−T

f(t)− h(t)
it

eityeib
t
T
|t|
T
dt+ 1

2π

∫ T

−T

f(t)− h(t)
it

eitveib
t
T
|t|
T
dt.
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It follows that for any y, v ∈ R,∣∣F1(y)−H1(y)− (F1(v)−H1(v))
∣∣

6
1

2π

∣∣∣∣∣
∫ T

−T

f(t)− h(t)
it

eityeib
t
T dt−

∫ T

−T

f(t)− h(t)
it

eitveib
t
T dt

∣∣∣∣∣
+ 1
πT

∫ T

−T
|f(t)− h(t)|dt. (4.4)

We shall use Cauchy’s integral theorem to change the integration path
[−T, T ] to a contour in the complex plane. In order to estimate the dif-
ference |F1(y)−H1(y)|, we are led to consider two cases: y 6 0 and y > 0.

Control of |F1(y) − H1(y)| when y 6 0. Let C− = Cr,T ∪ C−r , where
Cr,T = [−T,−r] ∪ [r, T ] and C−r is the lower semicircle given in (4.2). Since
F (−∞) = H(−∞) and F (∞) = H(∞), by the definition of f and h, we
see that f(0) = h(0). This, together with the condition that f and h have
analytic extensions on Dr, implies that z = 0 is a removable singular point
of the function z ∈ Dr 7→ f(z)−h(z)

z ∈ C. Hence, using the fact that the
function z 7→ eizyeib

z
T is analytic on the domain Dr, applying Cauchy’s

integral theorem, we obtain that for any y, v ∈ R,∫ T

−T

f(t)− h(t)
it

eityeib
t
T dt−

∫ T

−T

f(t)− h(t)
it

eitveib
t
T dt

=
∫
C−

f(z)− h(z)
iz

eizyeib
z
T dz −

∫
C−

f(z)− h(z)
iz

eizveib
z
T dz, (4.5)

where the integration is over the complex curve C− oriented from −T to
T . The second integral in (4.5) converges to 0 as v → −∞, by using the
Riemann-Lebesgue lemma on the real segment Cr,T and by applying the
Lebesgue convergence theorem on the semicircle C−r . Note that F1(−∞) =
H1(−∞) since F (−∞) = H(−∞). Consequently, letting v → −∞ in (4.5)
and substituting it into (4.4), we get

∣∣F1(y)−H1(y)
∣∣ 6 1

2π

∣∣∣∣∣
∫
C−

f(z)− h(z)
iz

eizyeib
z
T dz

∣∣∣∣∣+ 1
πT

∫ T

−T
|f(t)− h(t)|dt.

Therefore, recalling that C− = Cr,T ∪ C−r , it follows that

sup
y60
|F1(y)−H1(y)| 6 1

2π

∫
Cr,T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt
+ 1

2π sup
y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣+ 1
πT

∫ T

−T
|f(t)− h(t)|dt. (4.6)

Control of |F1(y) − H1(y)| when y > 0. Let C+ = Cr,T ∪ C+
r , where

Cr,T = [−T,−r] ∪ [r, T ] and C+
r is the upper semicircle given in (4.2). In an
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analogous way as in (4.5), applying Cauchy’s integral theorem we have∫ T

−T

f(t)− h(t)
it

eityeib
t
T dt−

∫ T

−T

f(t)− h(t)
it

eitveib
t
T dt

=
∫
C+

f(z)− h(z)
iz

eizyeib
z
T dz −

∫
C+

f(z)− h(z)
iz

eizveib
z
T dz, (4.7)

where the integration is over the complex curve C+ also oriented from −T to
T . The second integral in (4.7) converges to 0 as v → +∞, by using again
the Riemann-Lebesgue lemma on the real segment Cr,T and by applying
the Lebesgue convergence theorem on the upper semicircle C+

r . Note that
F1(∞) = H1(∞) since F (∞) = H(∞). Hence, letting v → +∞ in (4.7),
similarly to (4.6), we obtain

sup
y>0
|F1(y)−H1(y)| 6 1

2π

∫
Cr,T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt
+ 1

2π sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣+ 1
πT

∫ T

−T
|f(t)− h(t)|dt. (4.8)

Putting together (4.6) and (4.8) leads to

sup
y∈R
|F1(y)−H1(y)|

6
1

2π

∫
Cr,T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt+ 1
2π sup

y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣
+ 1

2π sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣+ 1
πT

∫ T

−T
|f(t)− h(t)|dt. (4.9)

Denote ∆ = supy∈R |F (y) −H(y)|. Then, taking into account that ρT is a
density function on R, using (4.9) and the fact that

∫ 2b/T
0 ρT (y)dy = 3/4,

we get that for any y ∈ R,∣∣∣∣∣
∫ y+ 2b

T

y

(
F (u)−H(u)

)
ρT (u− y)du

∣∣∣∣∣
6 |F1(y)−H1(y)|+ ∆

(
1−

∫ y+ 2b
T

y
ρT (u− y)du

)
6

1
2π

∫
Cr,T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt+ 1
2π sup

y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣
+ 1

2π sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣+ 1
πT

∫ T

−T
|f(t)− h(t)|dt+ ∆

4 .
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Substituting this inequality into (4.3), we obtain the following desired upper
bound: for any y ∈ R,

F (y)−H(y) 6 2
3π

∫
Cr,T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt
+ 2

3π sup
y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣
+ 2

3π sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣
+ 4

3πT

∫ T

−T
|f(t)− h(t)|dt+ ∆

3 + 2b
T

sup
y∈R
|H ′(y)|. (4.10)

Lower bound. Similarly to the upper bound (4.3), using the fact that F
is non-decreasing and ρT is a density function on R, we have for any y ∈ R,

F (y) > 4
3

∫ y

y− 2b
T

F (u)ρT (y − u)du

> H(y) + 4
3

∫ y

y− 2b
T

(
F (u)−H(u)

)
ρT (y − u)du− 2b

T
sup
y∈R
|H ′(y)|.

Let F2(y) = (F ∗ ρT )(y) and H2(y) = (H ∗ ρT )(y), y ∈ R. Then,∫
R
e−itydF2(y) = f(t)ρ̂T (t),

∫
R
e−itydH2(y) = h(t)ρ̂T (t), t ∈ R.

Proceeding in the same way as in the proof of (4.9), one has
sup
y∈R
|F2(y)−H2(y)|

6
1

2π

∫
Cr,T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt+ 1
2π sup

y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣
+ 1

2π sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣+ 1
πT

∫ T

−T
|f(t)− h(t)|dt.

Following the proof of (4.10), we obtain the lower bound: for any y ∈ R,

F (y)−H(y) > − 2
3π

∫
Cr,T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt
− 2

3π sup
y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣
− 2

3π sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣
− 4

3πT

∫ T

−T
|f(t)− h(t)|dt− ∆

3 −
2b
T

sup
y∈R
|H ′(y)|. (4.11)
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Combining (4.10) and (4.11), we conclude the proof of Proposition 4.1. �

5. Proofs of Berry-Esseen bound and Edgeworth expansion

5.1. Berry-Esseen bound and Edgeworth expansion under the changed
measure. We first present a Berry-Esseen bound under the changed mea-
sure Qx

s .

Theorem 5.1. Assume either conditions A1 and A2 for invertible matri-
ces, or conditions A1, A3 and A4 for positive matrices. Then there exist
constants η > 0 and C > 0 such that for all n > 1, s ∈ (−η, η), x ∈ S,
y ∈ R and ϕ ∈ Bγ,∣∣∣∣EQxs

[
ϕ(Xx

n)1{σ(Gn,x)−nΛ′(s)
σs
√
n

6y
}]− πs(ϕ)Φ(y)

∣∣∣∣ 6 C√
n
‖ϕ‖γ . (5.1)

The next result gives an Edgeworth expansion for (Xx
n , σ(Gn, x)) with

a target function ϕ on Xx
n under Qx

s . The function bs,ϕ(x), x ∈ S, which
will be used in the formulation of this result, is defined in Lemma 3.11 and
has an equivalent expression (3.39) in terms of derivative of the projection
operator Πs,z, see Proposition 3.8.

Theorem 5.2. Assume either conditions A1 and A2 for invertible matri-
ces, or conditions A1, A3 and A5 for positive matrices. Then there exists
η > 0 such that as n → ∞, uniformly in s ∈ (−η, η), x ∈ S, y ∈ R and
ϕ ∈ Bγ,∣∣∣∣∣EQxs

[
ϕ(Xx

n)1{σ(Gn,x)−nΛ′(s)
σs
√
n

6y
}]

− EQxs
[
ϕ(Xx

n)
] [

Φ(y) + Λ′′′(s)
6σ3

s

√
n

(1− y2)φ(y)
]

+ bs,ϕ(x)
σs
√
n
φ(y)

∣∣∣∣∣ = ‖ϕ‖γo
( 1√

n

)
.

The following asymptotic expansion is slightly different from that in The-
orem 5.2, with the term EQxs [ϕ(Xx

n)] replaced by πs(ϕ):

Theorem 5.3. Under the conditions of Theorem 5.2, there exists η > 0
such that, as n→∞, uniformly in s ∈ (−η, η), x ∈ S, y ∈ R and ϕ ∈ Bγ,∣∣∣∣∣EQxs

[
ϕ(Xx

n)1{σ(Gn,x)−nΛ′(s)
σs
√
n

6y
}] (5.2)

− πs(ϕ)
[
Φ(y) + Λ′′′(s)

6σ3
s

√
n

(1− y2)φ(y)
]

+ bs,ϕ(x)
σs
√
n
φ(y)

∣∣∣∣∣ = ‖ϕ‖γo
( 1√

n

)
.

With fixed s > 0 and ϕ = 1, the expansion (5.2) has been established
earlier in [11].
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The assertion of Theorem 5.3 follows from Theorem 5.2, since the bound
(3.17) implies that there exist constants c, C > 0 such that uniformly in
ϕ ∈ Bγ ,

sup
s∈(−η,η)

sup
x∈S

∣∣EQxs [ϕ(Xx
n)]− πs(ϕ)

∣∣ 6 Ce−cn‖ϕ‖γ . (5.3)

Theorems 2.1 and 2.2 follow from the above theorems taking s = 0 and
recalling the fact that Λ′(0) = λ, σ0 = σ and b0,ϕ = bϕ.

5.2. Proof of Theorem 5.2. Without loss of generality, we assume that
the target function ϕ is non-negative on S. For any x ∈ S, denote

F (y) = EQxs

[
ϕ(Xx

n)1{σ(Gn,x)−nΛ′(s)
σs
√
n

6y
}], y ∈ R,

H(y) = EQxs [ϕ(Xx
n)]
[
Φ(y) + Λ′′′(s)

6σ3
s

√
n

(1− y2)φ(y)
]
− bs,ϕ(x)

σs
√
n
φ(y), y ∈ R.

Define

f(t) =
∫
R
e−itydF (y), h(t) =

∫
R
e−itydH(y), t ∈ R.

By straightforward calculations we have that for any x ∈ S,

f(t) = EQxs

[
ϕ(Xx

n)e−it
σ(Gn,x)−nΛ′(s)

σs
√
n

]
= Rn

s, −it
σs
√
n

ϕ(x), t ∈ R, (5.4)

h(t) = e−
t2
2

{[
1− (it)3 Λ′′′(s)

6σ3
s

√
n

]
Rns,0ϕ(x)− itbs,ϕ(x)

σs
√
n

}
, t ∈ R. (5.5)

It is clear that F (−∞) = H(−∞) = 0 and F (∞) = H(∞). Moreover, one
can verify that the functions F,H and their corresponding Fourier-Stieltjes
transforms f, h satisfy the conditions of Proposition 4.1 for r = δ1

√
n, with

some δ1 > 0 sufficiently small. Hence, by Proposition 4.1 we get that for
any real T > r,

sup
y∈R
|F (y)−H(y)| 6 1

π
(I1 + I2 + I3 + I4), (5.6)
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where

I1 = 3πb
T

sup
y∈R
|H ′(y)|, I2 =

∫
r6|t|6T

∣∣∣∣f(t)− h(t)
t

∣∣∣∣ dt,
I3 = sup

y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣+ sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizye−ib
z
T dz

∣∣∣∣
+ sup

y60

∣∣∣∣∫
C−r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣+ sup
y>0

∣∣∣∣∫
C+
r

f(z)− h(z)
z

eizyeib
z
T dz

∣∣∣∣
=: I31 + I32 + I33 + I34,

I4 = 2
T

∫ T

−T
|f(t)− h(t)|dt, (5.7)

with the constant b > 0 and the complex contours C−r , C+
r defined in (4.2).

By virtue of (5.6), in order to establish Theorem 5.2 it suffices to prove
that, as n→∞, uniformly in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ ,

I1 + I2 + I3 + I4 = ‖ϕ‖γo
( 1√

n

)
. (5.8)

Control of I1. From (5.3) we deduce that uniformly in ϕ ∈ Bγ ,
sup

s∈(−η,η)
sup
x∈S

∣∣EQxs [ϕ(Xx
n)]
∣∣ 6 C‖ϕ‖γ . (5.9)

By the formula (3.39) and the bound (3.36), we get that uniformly in ϕ ∈ Bγ ,
sup

s∈(−η,η)
sup
x∈S
|bs,ϕ(x)| 6 C‖ϕ‖γ . (5.10)

Using the bounds (5.9) and (5.10), and taking into account that σ2
s > 0 and

Λ′′′(s) ∈ R are bounded by a constant independent of s ∈ (−η, η), we obtain
that |H ′(y)| is bounded by c1‖ϕ‖γ , uniformly in s ∈ (−η, η), x ∈ S, y ∈ R
and ϕ ∈ Bγ . Hence, for any ε > 0, we can choose a > 0 large enough such
that for T = a

√
n, uniformly in ϕ ∈ Bγ ,

sup
s∈(−η,η)

sup
x∈S

I1 6
3πbc1
T
‖ϕ‖γ <

ε√
n
‖ϕ‖γ . (5.11)

Control of I2. Since σm := infs∈(−η,η) σs > 0, we can pick δ1 small enough
such that 0 < δ1 < min{a, δσm/2}, where δ > 0 is the constant given in
Proposition 3.8. Then, with r = δ1

√
n we bound I2 as follows:

I2 6
∫
δ1
√
n<|t|6a

√
n

∣∣∣f(t)
t

∣∣∣dt+
∫
δ1
√
n<|t|6a

√
n

∣∣∣h(t)
t

∣∣∣dt. (5.12)

Let σM := sups∈(−η,η) σs. It holds that 0 < σM <∞. On the right-hand side
of (5.12), using Proposition 3.10 with K = {t ∈ R : δ1/σM 6 |t| 6 a/σm},
the first integral is bounded by Ce−cn‖ϕ‖γ , uniformly in s ∈ (−η, η), x ∈ S
and ϕ ∈ Bγ ; the second integral, by the bounds (5.9) and (5.10) and direct



40 HUI XIAO, ION GRAMA, AND QUANSHENG LIU

calculations, is bounded by Ce−cn‖ϕ‖γ , also uniformly in s ∈ (−η, η), x ∈ S
and ϕ ∈ Bγ . Consequently, we conclude that uniformly in ϕ ∈ Bγ ,

sup
s∈(−η,η)

sup
x∈S

I2 6 Ce
−cn‖ϕ‖γ . (5.13)

Control of I3. Recall that the term I3 is decomposed into four terms in
(5.7). We will only deal with I31, since I32, I33, I34 can be treated in a similar
way. In view of (5.4) and (5.5), by the spectral gap decomposition (3.32),
we get

f(z)− h(z) = J1(z) + J2(z) + J3(z) + J4(z), (5.14)
where

J1(z) = πs(ϕ)
{
λn
s, −iz
σs
√
n

− e−
z2
2

[
1− (iz)3 Λ′′′(s)

6σ3
s

√
n

]}
, (5.15)

J2(z) = λn
s, −iz
σs
√
n

[
Πs, −iz

σs
√
n
ϕ(x)− πs(ϕ) + iz

bs,ϕ(x)
σs
√
n

]
, (5.16)

J3(z) = iz
bs,ϕ(x)
σs
√
n

(
e−

z2
2 − λn

s, −iz
σs
√
n

)
, (5.17)

J4(z) = Nn
s, −iz
σs
√
n

ϕ(x)−Nn
s,0ϕ(x)e−

z2
2

[
1− (iz)3 Λ′′′(s)

6σ3
s

√
n

]
. (5.18)

With the above notation, we use the decomposition (5.14) to bound I31 in
(5.7) as follows:

I31 6
4∑

k=1
Ak, where Ak := sup

y60

∣∣∣∣∫
C−r

Jk(z)
z

eizye−ib
z
T dz

∣∣∣∣ . (5.19)

We now give bounds of Ak, 1 6 k 6 4, in a series of lemmata. Let us start
by showing an elementary inequality, which will be used repeatedly in the
sequel. Let [z1, z2] = {z1 + θ(z2 − z1)) : 0 6 θ 6 1} be the complex segment
with the endpoints z1 and z2.

Lemma 5.4. Let f be an analytic function on the open convex domain
D ⊆ C. Then for any z1, z2 ∈ D, and n > 1,∣∣∣∣∣f(z2)−

n−1∑
k=0

f (k)(z1)
k! (z2 − z1)k

∣∣∣∣∣ 6 supz∈[z1,z2] |f (n)(z)|
n! |z2 − z1|n.

Proof. The proof of this inequality can be carried out by induction. The
inequality clearly holds for n = 1 since for any z1, z2 ∈ D,

|f(z2)− f(z1)| =
∣∣∣∣∣
∫

[z1,z2]
f ′(z)dz

∣∣∣∣∣ 6 sup
z∈[z1,z2]

|f ′(z)||z2 − z1|. (5.20)

For n > 2, applying (5.20) to F (z) = f(z) −
∑n−1
k=1

f (k)(z1)
k! (z − z1)k, z ∈ D,

leads to the desired assertion. �
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Now we are ready to establish a bound for each term Ak. The proof
is based on the saddle point method. To be more precise, we deform the
integration path, which passes through a suitable point related to the saddle
point, to minimise the integral in Ak (see (5.19)).

Lemma 5.5. Let C−r be defined by (4.2) with r = δ1
√
n and δ1 > 0 small

enough. Then, for T = a
√
n with a > 0 large enough, uniformly in x ∈ S,

s ∈ (−η, η) and ϕ ∈ Bγ,

A1 = sup
y60

∣∣∣∣∫
C−r

J1(z)
z

eizye−ib
z
T dz

∣∣∣∣ 6 c

n
‖ϕ‖γ .

Proof. In view of (3.33), using Λ = log κ and Taylor’s formula, we have

λn
s, −iz
σs
√
n

= e−
z2
2 e

n
∑∞

k=3
Λ(k)(s)
k! (− iz

σs
√
n

)k
. (5.21)

For brevity, for any z ∈ C−r , denote

h1(z) = 1
z

[
e
n
∑∞

k=3
Λ(k)(s)
k! (− iz

σs
√
n

)k − 1− (−iz)3 Λ′′′(s)
6σ3

s

√
n

]
e−ib

z
T . (5.22)

Then, in view of (5.15), the term A1 can be rewritten as

A1 = πs(ϕ) sup
y60

∣∣∣∣∫
C−r
e−

z2
2 +izyh1(z)dz

∣∣∣∣ . (5.23)

The main contribution to the integral in (5.23) is given by the saddle point
z = iy which is the solution of the equation d

dz (− z2

2 + izy) = 0. Denote by
D−2r = {z ∈ C : |z| < 2r,=z < 0} the domain on analyticity of h1, where
r = δ1

√
n with δ1 > 0 small enough. Set

yn = min
{
− y, δ1

√
n
}
. (5.24)

When −δ1
√
n 6 y 6 0, the saddle point iy belongs to D−2r. By Cauchy’s

integral theorem, we change the integration in (5.23) to a rectangular path
inside the domain on analyticity D−2r which passes through the saddle point.
When y < −δ1

√
n is large, the saddle point iy is outside the domain D−2r.

In this case we choose a rectangular path inside D−2r which passes through
the point −iyn = −iδ1

√
n. Note that πs(ϕ) is bounded by c1‖ϕ‖γ uniformly

in s ∈ (−η, η) and ϕ ∈ Bγ . Since the function h1 has an analytic extension
on the domain D−2r with r = δ1

√
n, applying Cauchy’s integral theorem, we
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deduce that

A1 6 c1‖ϕ‖γ sup
y60

∣∣∣∣∣
{∫ −δ1√n−iyn
−δ1
√
n

+
∫ δ1

√
n

δ1
√
n−iyn

}
e−

z2
2 +izyh1(z)dz

∣∣∣∣∣
+ c1‖ϕ‖γ sup

y60

∣∣∣∣∣
∫ δ1

√
n−iyn

−δ1
√
n−iyn

e−
z2
2 +izyh1(z)dz

∣∣∣∣∣
=: c1‖ϕ‖γ(A11 +A12). (5.25)

Control of A11. Using a change of variable, we get

A11 = e−
δ21
2 n sup

y60

∣∣∣∣ ∫ yn

0
e
t2
2 +ty−iδ1

√
n(t+y)h1(−δ1

√
n− it)dt

−
∫ yn

0
e
t2
2 +ty+iδ1

√
n(t+y)h1(δ1

√
n− it)dt

∣∣∣∣
6 e−

δ21
2 n sup

y60

∣∣∣∣∫ yn

0
e
t2
2 +ty {|h1(−δ1

√
n− it)|+ |h1(δ1

√
n− it)|

}
dt

∣∣∣∣ . (5.26)

We first give a bound for |h1(±δ1
√
n− it)|. Since t ∈ [0, yn] and yn 6 δ1

√
n,

direct calculations give

<
[
(−i)3(±δ1

√
n− it)3] = 3δ2

1nt− t3 6 2δ3
1n

3/2,

which implies that for δ1 > 0 sufficiently small,

<
{
n
∞∑
k=3

Λ(k)(s)
k!

(−i)k(±δ1
√
n− it)k

(σs
√
n)k

}
6

1
4δ

2
1n. (5.27)

Observe that there exists a constant c > 0 such that uniformly in t ∈ [0, yn]
and s ∈ (−η, η),∣∣∣1

z

∣∣∣ =
∣∣∣ 1
±δ1
√
n− it

∣∣∣ 6 c

δ1
√
n
,
∣∣∣i3(±δ1

√
n− it)3 Λ′′′(s)

6σ3
s

√
n

∣∣∣ 6 cn. (5.28)

Since | exp{− ib
T (±δ1

√
n−it)}| is bounded by some constant c > 0, uniformly

in t ∈ [0, yn] and n > 1, from the bounds (5.27) and (5.28), it follows that
uniformly in s ∈ (−η, η),

|h1(−δ1
√
n− it)|+ |h1(δ1

√
n− it)| 6 c

δ1
√
n

(
e
δ21
4 n + cn

)
6
cδ1√
n
e
δ21
4 n.

In view of (5.24), we have t 6 yn 6 −y and thus e
t2
2 +ty 6 1 for any

t ∈ [0, yn]. Note that yn 6 δ1
√
n by (5.24). Consequently, we obtain the

desired upper bound for A11:

sup
s∈(−η,η)

A11 6 cδ1
yn√
n
e−

δ21
2 ne

δ21
4 n 6 cδ1e

−
δ21
4 n. (5.29)
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Control of A12. Using a change of variable z = t− iyn leads to

A12 = sup
y60

∣∣∣∣∣e 1
2y

2
n+yny

∫ δ1
√
n

−δ1
√
n
e−

t2
2 +it(yn+y)h1(t− iyn)dt

∣∣∣∣∣
6 sup

y60

∣∣∣∣∣e 1
2y

2
n+yny

∫ δ1
√
n

−δ1
√
n
e−

t2
2 |h1(t− iyn)|dt

∣∣∣∣∣ , (5.30)

where the function h1 is defined by (5.22). To estimate the term A12, the
main task is to give a control of |h1(t − iyn)|. It follows from Lemma 5.4
that |ez1 − ez2 | 6 emax{<z1,<z2}|z1 − z2| and |ez2 − 1 − z2| 6 1

2 |z2|2e|z2| for
any z1, z2 ∈ C, and hence

|ez1 − 1− z2| 6 emax{<z1,<z2}|z1 − z2|+
1
2 |z2|2e|z2|. (5.31)

We shall make use of the inequality (5.31) to derive a bound of |h1(t− iyn)|.
Since yn√

n
6 δ1 where δ1 > 0 can be sufficiently small, we get that, for

|t| 6 δ1
√
n and large enough n, uniformly in s ∈ (−η, η),

<
{[
− i(t− iyn)

]3 Λ(3)(s)
6σ3

s

√
n

}
= yn√

n

(3t2 − y2
n)Λ(3)(s)

6σ3
s

6
1
4 t

2, (5.32)

<
{
n
∞∑
k=3

Λ(k)(s)
k!

[
− i(t− iyn)

σs
√
n

]k}
6

yn√
n

(6t2 − 1
2y

2
n)Λ(3)(s)

6σ3
s

6
1
4 t

2. (5.33)

Moreover, elementary calculations yield that there exists a constant c > 0
such that, for sufficiently large n, uniformly in s ∈ (−η, η),∣∣∣∣∣n

∞∑
k=3

Λ(k)(s)
k!

[
− i(t− iyn)

σs
√
n

]k
− [−i(t− iyn)]3 Λ(3)(s)

6σ3
s

√
n

∣∣∣∣∣
=
∣∣∣∣∣n
∞∑
k=4

Λ(k)(s)
k!

[
− i(t− iyn)

σs
√
n

]k∣∣∣∣∣ 6 ct4 + y4
n

n
. (5.34)

It is clear that

sup
s∈(−η,η)

∣∣∣∣∣[− i(t− iyn)
]3 Λ(3)(s)

6σ3
s

√
n

∣∣∣∣∣
2

6 c
t6 + y6

n

n
. (5.35)

Taking into account that both |t| and yn are less than δ1
√
n, and the fact

δ1 > 0 can be small enough, it follows that

sup
s∈(−η,η)

exp
{∣∣∣∣∣[− i(t− iyn)

]3 Λ(3)(s)
6σ3

s

√
n

∣∣∣∣∣
}
6 e

1
4 (t2+y2

n).
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Combining this with the bounds (5.32), (5.33), (5.34) and (5.35), and using
the inequality (5.31), we conclude that

sup
s∈(−η,η)

∣∣∣∣∣en
∑∞

k=3
Λ(k)(s)
k! (− iz

σs
√
n

)k − 1− (−iz)3 Λ(3)(s)
6σ3

s

√
n

∣∣∣∣∣
6 c

t4 + y4
n

n
e

1
4 t

2 + c
t6 + y6

n

n
e

1
4 (t2+y2

n) 6 c
t4 + y4

n + t6 + y6
n

n
e

1
4 (t2+y2

n). (5.36)

Since | exp{− ib
T (t − iyn)}| is bounded by some constant, uniformly in |t| 6

δ1
√
n and n > 1, by (5.36) and the fact | 1

t−iyn | = 1/
√
t2 + y2

n, we find that

sup
s∈(−η,η)

|h1(t− iyn)| 6 c |t|
3 + y3

n + |t|5 + y5
n

n
e

1
4 (t2+y2

n).

Therefore, noting that y 6 −yn and 0 6 yn 6 δ1
√
n, we obtain

sup
s∈(−η,η)

A12 6
c

n
sup
y60

∣∣∣∣∣e 3
4y

2
n+yny

∫ δ1
√
n

−δ1
√
n
e−

t2
4 (|t|3 + y3

n + |t|5 + y5
n)dt

∣∣∣∣∣
6
c

n
sup

yn∈[0,δ1
√
n]
e−

1
4y

2
n(1 + y3

n + y5
n) 6 c

n
.

Substituting this and (5.29) into (5.25), we conclude the proof. �

Lemma 5.6. Let J2(z) be defined by (5.16), and C−r be defined by (4.2) with
r = δ1

√
n and δ1 > 0 small enough. Then, for T = a

√
n with a > 0 large

enough, uniformly in x ∈ S, s ∈ (−η, η) and ϕ ∈ Bγ,

A2 = sup
y60

∣∣∣∣∫
C−r

J2(z)
z

eizye−ib
z
T dz

∣∣∣∣ 6 c

n
‖ϕ‖γ .

Proof. Denote

h2(z) = e
n
∑∞

k=3
Λ(k)(s)
k! (− iz

σs
√
n

)k
[
Πs, −iz

σs
√
n
ϕ(x)− πs(ϕ) + iz

bs,ϕ(x)
σs
√
n

]
e−ib

z
T

z
.

Using (5.21), we rewrite A2 as

A2 = sup
y60

∣∣∣∣∫
C−r
e−

z2
2 +izyh2(z)dz

∣∣∣∣ .
As in the estimation of Lemma 5.5, the solution of the saddle point equation
d
dz (− z2

2 + izy) = 0 is z = iy. Set yn = min{−y, δ1
√
n}. Since yn ∈ D−2r,

where r = δ1
√
n, and the function h2 is analytic on the domain D−2r, by
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Cauchy’s integral theorem we obtain

A2 6 sup
y60

∣∣∣∣∣
{∫ −δ1√n−iyn
−δ1
√
n

+
∫ δ1

√
n

δ1
√
n−iyn

}
e−

z2
2 +izyh2(z)dz

∣∣∣∣∣
+ sup

y60

∣∣∣∣∣
∫ δ1

√
n−iyn

−δ1
√
n−iyn

e−
z2
2 +izyh2(z)dz

∣∣∣∣∣
=: A21 +A22.

Control of A21. Similarly to (5.26), we use a change of variable to get

A21 6 e
−
δ21
2 n sup

y60

∣∣∣∣∫ yn

0
e
t2
2 +ty

[
|h2(−δ1

√
n− it)|+ |h2(δ1

√
n− it)|

]
dt

∣∣∣∣ .
Using Lemma 5.4, the formula (3.39) and the bound (3.36), for any z =
±δ1
√
n− it with t ∈ [0, yn], we get that uniformly in s ∈ (−η, η), x ∈ S and

ϕ ∈ Bγ ,∣∣∣1
z

∣∣∣∣∣∣Πs, −iz
σs
√
n
ϕ(x)− πs(ϕ) + iz

bs,ϕ(x)
σs
√
n

∣∣∣ 6 c |z|
n
‖ϕ‖γ 6

c√
n
‖ϕ‖γ . (5.37)

Note that |e−ib
z
T | is bounded uniformly in z = ±δ1

√
n− it, where t ∈ [0, yn].

Therefore, taking into account the bounds (5.27) and (5.37), we obtain that
uniformly in s ∈ (−η, η) , x ∈ S and ϕ ∈ Bγ ,

|h2(−δ1
√
n− it)|+ |h2(δ1

√
n− it)| 6 c√

n
e
δ21
4 n‖ϕ‖γ .

Since y 6 0, for any t ∈ [0, yn], it follows that t22 +ty 6 0 and thus e
t2
2 +ty 6 1.

Combining this with the above inequality yields that uniformly in ϕ ∈ Bγ ,

sup
s∈(−η,η)

sup
x∈S

A21 6 ce
−
δ21
2 n

yn√
n
e
δ21
4 n‖ϕ‖γ 6 ce−

δ21
4 n‖ϕ‖γ . (5.38)

Control of A22. Similarly to (5.30), we use a change of variable to get

A22 6 sup
y60

∣∣∣∣∣e 1
2y

2
n+yny

∫ δ1
√
n

−δ1
√
n
e−

t2
2 |h2(t− iyn)|dt

∣∣∣∣∣ .
We first estimate |h2(t−iyn)|. In the same way as in (5.37), with z = t−iyn,
we obtain that uniformly in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ ,∣∣∣1

z

∣∣∣∣∣∣Πs, −iz
σs
√
n
ϕ(x)− πs(ϕ) + iz

bs,ϕ(x)
σs
√
n

∣∣∣ 6 c |z|
n
‖ϕ‖γ 6 c

|t|+ yn
n
‖ϕ‖γ .
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Combining this with the bound (5.33), we get that uniformly in ϕ ∈ Bγ ,

sup
s∈(−η,η)

sup
x∈S

A22 6
c

n
‖ϕ‖γ sup

y60

∣∣∣∣∣e 1
2y

2
n+yny

∫ δ1
√
n

−δ1
√
n
e−

t2
4 (|t|+ yn)dt

∣∣∣∣∣
6
c

n
‖ϕ‖γ sup

yn∈[0,δ1
√
n]
e−

1
2y

2
n(1 + yn) 6 c

n
‖ϕ‖γ . (5.39)

Putting together (5.38) and (5.39) completes the proof. �

Lemma 5.7. Let J3(z) be defined by (5.17), and C−r be defined by (4.2) with
r = δ1

√
n and δ1 > 0 small enough. Then, for T = a

√
n with a > 0 large

enough, uniformly in x ∈ S, s ∈ (−η, η) and ϕ ∈ Bγ,

A3 = sup
y60

∣∣∣∣∫
C−r

J3(z)
z

eizye−ib
z
T dz

∣∣∣∣ 6 c

n
‖ϕ‖γ .

Proof. We denote

h3(z) = 1
σs
√
n

[
e
n
∑∞

k=3
Λ(k)(s)
k! (− iz

σs
√
n

)k − 1
]
e−ib

z
T . (5.40)

Using the expansion (5.21) and the bound (5.10), we have that uniformly in
s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ ,

A3 6 c‖ϕ‖γ sup
y60

∣∣∣∣∫
C−r
e−

z2
2 +izyh3(z)dz

∣∣∣∣ .
As in Lemma 5.5, the saddle point equation d

dz (− z2

2 + izy) = 0 has the
solution z = iy. Set yn = min{−y, δ1

√
n}. It follows from Cauchy’s integral

theorem that

A3 6 c‖ϕ‖γ sup
y60

∣∣∣∣∣
{∫ −δ1√n−iyn
−δ1
√
n

+
∫ δ1

√
n

δ1
√
n−iyn

}
e−

z2
2 +izyh3(z)dz

∣∣∣∣∣
+ c‖ϕ‖γ sup

y60

∣∣∣∣∣
∫ δ1

√
n−iyn

−δ1
√
n−iyn

e−
z2
2 +izyh3(z)dz

∣∣∣∣∣
=: A31 +A32.

Control of A31. Similarly to (5.26), we use a change of variable to get

A31 6 c‖ϕ‖γe−
δ21
2 n sup

y60

∣∣∣∣∫ yn

0
e
t2
2 +ty

[∣∣∣h3(−δ1
√
n− it)

∣∣∣+ ∣∣∣h3(δ1
√
n− it)

∣∣∣]dt∣∣∣∣ .
Using (5.27), we deduce that uniformly in s ∈ (−η, η) and x ∈ S,

|h3(−δ1
√
n− it)|+ |h3(δ1

√
n− it)| 6 c√

n

(
e
δ21
4 n + 1

)
6

c√
n
e
δ21
4 n.
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Since t2

2 + ty 6 0 for any t ∈ [0, yn] and y 6 0, we have e
t2
2 +ty 6 1. This,

together with the above inequality, implies that uniformly in ϕ ∈ Bγ ,

sup
s∈(−η,η)

sup
x∈S

A31 6 c
yn√
n
e−

δ21
4 n‖ϕ‖γ 6 ce−

δ21
4 n‖ϕ‖γ . (5.41)

Control of A32. Similarly to (5.30), one has

A32 6 c‖ϕ‖γ sup
y60

∣∣∣∣∣e 1
2y

2
n+yny

∫ δ1
√
n

−δ1
√
n
e−

t2
2 |h3(t− iyn)|dt

∣∣∣∣∣ .
We first give a control of |h3(t − iyn)|. It follows from Lemma 5.4 that
|ez − 1| 6 emax{<z,0}|z| for any z ∈ C. Using this inequality and taking into
account the bound (5.33), we obtain

sup
s∈(−η,η)

∣∣∣en∑∞k=3
Λ(k)(s)
k! (− iz

σs
√
n

)k − 1
∣∣∣ 6 ce 1

4 t
2 |t|3 + y3

n√
n

,

and hence

sup
s∈(−η,η)

sup
x∈S
|h3(t− iyn)| 6 ce

1
4 t

2 |t|3 + y3
n

n
.

It follows that uniformly in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ ,

A32 6
c

n
‖ϕ‖γ sup

y60

∣∣∣e− 1
2y

2
n

∫ δ1
√
n

−δ1
√
n
e−

t2
4 (|t|3 + y3

n)dt
∣∣∣ 6 c

n
‖ϕ‖γ . (5.42)

Putting together (5.41) and (5.42), we conclude the proof. �

Lemma 5.8. Let J4(z) be defined by (5.18), and C−r be defined by (4.2) with
r = δ1

√
n and δ1 > 0 small enough. Then, for T = a

√
n with a > 0 large

enough, uniformly in x ∈ S, s ∈ (−η, η) and ϕ ∈ Bγ,

A4 = sup
y60

∣∣∣∣∫
C−r

J4(z)
z

eizye−ib
z
T dz

∣∣∣∣ 6 ce−cn‖ϕ‖γ .
Proof. Since =z 6 0 on C−r and y 6 0, we have |eizy| 6 1. Using again the
fact that =z 6 0, we get that |e−ib

z
T | is uniformly bounded on C−r . From the

bound (3.37) and the fact that δ1 > 0 can be sufficiently small, we deduce
that |J4(z)| 6 ce−cn‖ϕ‖γ , uniformly in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ .
Therefore, noting that |1z | = (δ1

√
n)−1 and that the length of C−r is πδ1

√
n,

the desired result follows. �

End of the proof of Theorem 5.2. Combining Lemmata 5.5-5.8, we obtain
that I31 6 c

n‖ϕ‖γ , uniformly in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ .
Now we give a control of the term I32 defined in (5.7). Note that y > 0

in I32 and the integral in I32 is taken over the semicircle C+
r , which lies in

the upper part of the complex plane. In this case we have the saddle point
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equation d
dz (− z2

2 + izy) = 0 whose solution z = iy also lies in the upper
part of the complex plane. Similarly to (5.24), we choose a suitable point
yn = min{y, δ1

√
n}. Proceeding in the same way as for bounding I31 we

obtain that I32 6 c
n‖ϕ‖γ , uniformly in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ .

Let us now bound the terms I33 and I34 defined in (5.7). Since the function
z 7→ eib

z
T is analytic on C−r and C+

r , the estimates of I33 and I34 are similar
to those of I31 and I32, respectively. From these bounds, we conclude that
there exists a constant c > 0 such that uniformly in s ∈ (−η, η), x ∈ S and
ϕ ∈ Bγ ,

I3 6
c

n
‖ϕ‖γ . (5.43)

It remains to estimate I4 defined in (5.7). We can decompose the dif-
ference |f(t) − h(t)| in the same way as we did in (5.14) (with real-valued
t = z). Then proceeding in a similar way as in the estimation of I31, I32, I33
and I34, one can verify that there exists a constant c > 0 such that uniformly
in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ ,

I4 6
c

n
‖ϕ‖γ . (5.44)

Combining (5.43), (5.43) and the bounds for I1 and I2 in (5.11) and (5.13),
and using the fact that ε > 0 can be arbitrary small, we obtain (5.8), which
finishes the proof of Theorem 5.2. �

5.3. Proof of Theorem 5.1. Since the proof of Theorem 5.1 is quite similar
to that of Theorem 5.2, we only sketch the main differences. Denote

F (y) = EQxs

[
ϕ(Xx

n)1{σ(Gn,x)−nΛ′(s)
σs
√
n

6y
}], y ∈ R,

H(y) = EQxs [ϕ(Xx
n)] Φ(y), y ∈ R.

By the definition of the operator Rs,z in (3.29), direct calculations lead to

f(t) =
∫
R
e−itydF (y) = Rn

s, −it
σs
√
n

ϕ(x), t ∈ R,

h(t) =
∫
R
e−itydH(y) = e−

t2
2 Rns,0ϕ(x), t ∈ R.

One can verify that the functions F,H and their corresponding Fourier-
Stieljes transforms f, h satisfy all the conditions stated in Proposition 4.1.
Instead of using Proposition 4.1 with r < T in the proof of Theorem 5.2,
we apply Proposition 4.1 with r = T = δ1

√
n, where δ1 > 0 is a sufficiently

small constant. Then we obtain a similar inequality as (5.6) but with the
term I2 = 0. Since the non-arithmeticity condition A5 is only used in the
bound of the term I2, following the proof of Theorem 5.2 we show that
under the conditions of Theorem 5.1, the terms I1 and I3 defined in (5.7)
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are bounded by c‖ϕ‖γ/
√
n, uniformly in s ∈ (−η, η), x ∈ S and ϕ ∈ Bγ . We

omit the details of the rest of the proof.

6. Proof of moderate deviation expansions

In this section we prove Theorem 2.3. The proof is based on the Berry-
Esseen bound in Theorem 5.1 and follows the standard techniques in Petrov
[42], and therefore some details will be left to the reader.

We start with the following lemma whose proof uses the analyticity of the
eigenfunction rs and the linear functional νs, see Proposition 3.1:

Lemma 6.1. Assume either conditions A1 and A2 for invertible matrices,
or conditions A1 and A3 for positive matrices. Then, there exists η > 0
such that uniformly in s ∈ (−η, η) and ϕ ∈ Bγ,

‖rs − 1‖∞ 6 C|s| and |νs(ϕ)− ν(ϕ)| 6 C|s|‖ϕ‖γ .

Proof. According to Proposition 3.1, we have r0 = 1, ν0 = ν. In addition,
the mappings s 7→ rs and s 7→ νs are analytic on (−η, η). The assertions
follow using Taylor’s formula. �

Proof of Theorem 2.3. When y ∈ [0, 1], Theorem 2.3 is a direct consequence
of Theorem 5.1, so it remains to prove Theorem 2.3 in the case when y > 1
with y = o(

√
n). We proceed to prove the first assertion in Theorem 2.3.

Applying the change of measure formula (3.16), we have

I := E
[
ϕ(Xx

n)1{σ(Gn,x)>nΛ′(0)+
√
nσ0y}

]
(6.1)

= rs(x)κn(s)EQxs

[
(ϕr−1

s )(Xx
n)e−sσ(Gn,x)

1{σ(Gn,x)>nΛ′(0)+
√
nσ0y}

]
.

Under the assumptions of Theorem 2.3, by Proposition 3.15, σ2
s = Λ′′(s) > 0

for any s ∈ (−η, η) with η > 0 small enough. We denoteW x
n = σ(Gn,x)−nΛ′(s)

σs
√
n

.
Recalling that Λ = log κ, we rewrite (6.1) as follows:

I = rs(x)e−n[sΛ′(s)−Λ(s)]

× EQxs

[
(ϕr−1

s )(Xx
n)e−sσs

√
nWx

n1{
Wx
n>
√
n[Λ′(0)−Λ′(s)]

σs
+σ0y

σs

}] . (6.2)

By Proposition 3.1, the function Λ is analytic and hence for s ∈ (−η, η),
Λ(s) =

∑∞
k=1

γk
k! s

k, where γk = Λ(k)(0). For any y > 1 with y = o(
√
n),

consider the equation
√
n[Λ′(s)− Λ′(0)] = σ0y. (6.3)

Choosing the unique real root s of (6.3), it follows from Petrov [42] that

sΛ′(s)− Λ(s) = y2

2n −
y3

n3/2 ζ( y√
n

), (6.4)
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where ζ is the Cramér series defined by (2.9). Substituting (6.3) into (6.2),
and using (6.4), we get

I = rs(x)e−
y2
2 + y3

√
n
ζ( y√

n
)EQxs

[
(ϕr−1

s )(Xx
n)e−sσs

√
nWx

n1{Wx
n>0}

]
. (6.5)

For brevity, denote F (u) = EQxs

[
(ϕr−1

s )(Xx
n)1{Wx

n6u}
]
, u ∈ R. In view of

(6.5), using Fubini’s theorem and the integration by parts, we deduce that

I = rs(x)e−
y2
2 + y3

√
n
ζ( y√

n
)EQxs

[
(ϕr−1

s )(Xx
n)
∫ ∞

0
1{06Wx

n6u}sσs
√
n e−sσs

√
nudu

]
= rs(x)e−

y2
2 + y3

√
n
ζ( y√

n
)
∫ ∞

0
e−s
√
nσsudF (u). (6.6)

Let l(u) = F (u)− πs(ϕr−1
s )Φ(u), u ∈ R. It follows that∫ ∞

0
e−s
√
nσsudF (u) = I1 + πs(ϕr−1

s )√
2π

I2, (6.7)

I1 =
∫ ∞

0
e−s
√
nσsudl(u), I2 =

∫ ∞
0

e−s
√
nσsu−u

2
2 du. (6.8)

Estimate of I1. Integrating by parts, using the fact that rs ∈ Bγ and
the Berry-Esseen bound in Theorem 5.1 implies that uniformly in s ∈ [0, η),
x ∈ S and ϕ ∈ Bγ ,

|I1| 6 |l(0)|+ s
√
nσs

∫ ∞
0

e−s
√
nσsu|l(u)|du 6 C√

n
‖ϕ‖γ . (6.9)

Estimate of I2. Since the function Λ is analytic on (−η, η) and σ2
s =

Λ′′(s) > 0, by Taylor’s formula, we have Λ′(s)− Λ′(0) = sσ2
0
[
1 +O(s)

]
and

σ2
s = σ2

0
[
1 + O(s)

]
. Thus, using standard techniques from Petrov [42], one

has

I2 = I3 +O
( 1√

n

)
, where I3 =

∫ ∞
0

e
−
√
n[Λ′(s)−Λ′(0)]

σ0
u−u

2
2 du. (6.10)

Since σs is strictly positive and bounded uniformly in s ∈ (0, η), using (6.3)
and the fact that y > 1, for sufficiently large n, we get that s

√
nσs >

y
2σ0

σs >
c1 > 0. This implies that C1 6 s

√
nI2 6 C2 for large enough n, where

C1 < C2 are two positive constants independent of n and s. Combining this
two-sided bound with (6.7), (6.9) and (6.10), we obtain∫ ∞

0
e−s
√
nσsudF (u) = I3

[
πs(ϕr−1

s )√
2π

+ ‖ϕ‖γO(s)
]
. (6.11)

Substituting (6.3) into (6.10), we get∫ ∞
0

e−s
√
nσsudF (u) = e

y2
2

∫ ∞
y

e−
1
2u

2
du

[
πs(ϕr−1

s )√
2π

+ ‖ϕ‖γO(s)
]
.
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Together with (6.6), this implies

I = rs(x)e
y3
√
n
ζ( y√

n
)[1− Φ(y)

][
πs(ϕr−1

s ) + ‖ϕ‖γO(s)
]
, (6.12)

where πs(ϕr−1
s ) = νs(ϕ)

νs(rs) . By Lemma 6.1, we have ‖rs − 1‖∞ 6 Cs and
|πs(ϕr−1

s ) − ν(ϕ)| 6 Cs‖ϕ‖γ , uniformly in s ∈ [0, η) and ϕ ∈ Bγ . Since
s = O( y√

n
), this concludes the proof of the first assertion of Theorem 2.3.

The proof of the second assertion of Theorem 2.3 can be carried out in
a similar way. Specifically, instead of using (6.3), we consider the equation√
n[Λ′(s)− Λ′(0)] = −σ0y, where y > 1 and s ∈ (−η, 0]. We then apply the

spectral gap properties of operators Ps, Qs, Rs,z (see Section 3) for negative
valued s to deduce the second assertion by following the proof of the first
one. We omit the details. �

7. Proof of the local limit theorems

The goal of this section is to establish the local limit theorems with mod-
erate deviations, namely Theorems 2.4 and 2.5.

7.1. Proof of Theorem 2.4. We first establish an asymptotic expansion
which will be used to prove Theorem 2.4. Assume that ψ : R 7→ C is a
continuous function with compact support in R, which is differentiable in a
small neighborhood of 0 on the real line.

Proposition 7.1. Assume either conditions A1 and A2 for invertible ma-
trices, or conditions A1, A3 and A4 for positive matrices. Then, there
exist constants η, δ, c, C > 0 such that for all s ∈ (−η, η), x ∈ S, |l| 6 1√

n
,

ϕ ∈ Bγ and n > 1,

∣∣∣∣∣σs√n e nl
2

2σ2
s

∫
R
e−itlnRns,it(ϕ)(x)ψ(t)dt−

√
2ππs(ϕ)ψ(0)

∣∣∣∣∣
6

C√
n
‖ϕ‖γ + C

n
‖ϕ‖γ sup

|t|6δ

(
|ψ(t)|+ |ψ′(t)|

)
+ Ce−cn‖ϕ‖γ

∫
R
|ψ(t)|dt. (7.1)
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Proof. For brevity, denote cs(ψ) =
√

2π
σs
πs(ϕ)ψ(0). Taking a small constant

δ > 0 and using the spectral gap decomposition (3.32) with z = it, we have∣∣∣√n e nl22σ2
s

∫
R
e−itlnRns,it(ϕ)(x)ψ(t)dt− cs(ψ)

∣∣∣
6
∣∣∣√n e nl22σ2

s

∫
|t|>δ

e−itlnRns,it(ϕ)(x)ψ(t)dt
∣∣∣

+
∣∣∣√n e nl22σ2

s

∫
|t|<δ

e−itlnNn
s,it(ϕ)(x)ψ(t)dt

∣∣∣
+
∣∣∣√n e nl22σ2

s

∫
|t|<δ

e−itlnλns,itΠs,it(ϕ)(x)ψ(t)dt− cs(ψ)
∣∣∣

=: J1 + J2 + J3. (7.2)
For J1, since the function ψ is bounded and compactly supported on R,
taking into account Proposition 3.10 and the fact |e−itln| = 1, we get

sup
s∈(−η,η)

sup
x∈S

sup
|l|6 1√

n

J1 6 Cδe
−cδn‖ϕ‖γ

∫
|t|>δ
|ψ(t)|dt. (7.3)

For J2, by (3.37) there exist constants cδ > 0 and a ∈ (0, 1) such that
sup

s∈(−η,η)
sup
x∈S

sup
|t|<δ
|Nn

s,it(ϕ)(x)| 6 sup
s∈(−η,η)

sup
|t|<δ
‖Nn

s,it‖Bγ→Bγ‖ϕ‖γ 6 cδan‖ϕ‖γ .

This implies that uniformly in s ∈ (−η, η), |l| 6 1√
n
, x ∈ S and ϕ ∈ Bγ ,

J2 6 Cδe
−cδn‖ϕ‖γ

∫
|t|<δ
|ψ(t)|dt. (7.4)

For J3, we make a change of variable t = t′/
√
n to get

J3 =
∣∣∣e nl22σ2

s

∫ δ
√
n

−δ
√
n
e−itl

√
nλn

s, it√
n

Πs, it√
n

(ϕ)(x)ψ
( t√

n

)
dt− cs(ψ)

∣∣∣
6

∣∣∣∣∣e nl
2

2σ2
s

∫ δ
√
n

−δ
√
n
e−itl

√
nλn

s, it√
n

[
Πs, it√

n
(ϕ)(x)ψ

( t√
n

)
− πs(ϕ)ψ(0)

]
dt

∣∣∣∣∣
+
∣∣∣∣∣πs(ϕ)ψ(0)e

nl2
2σ2
s

∫ δ
√
n

−δ
√
n
e−itl

√
nλn

s, it√
n

dt− cs(ψ)
∣∣∣∣∣

=: J31 + J32. (7.5)
Using the formula (3.33) and the fact that the function Λ is analytic in a
small neighborhood of 0 of the complex plane, we can check that there exists
a constant C > 0 such that for all s ∈ (−η, η), t ∈ [−δ

√
n, δ
√
n] and n > 1,∣∣∣∣λns, it√

n

− e−
σ2
st

2
2

∣∣∣∣ 6 C√
n
e−

σ2
st

2
4 . (7.6)
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By (3.36) and the fact that Πs,0(ϕ)(x) = πs(ϕ), it follows that uniformly in
s ∈ (−η, η), t ∈ [−δ

√
n, δ
√
n] and x ∈ S,∣∣∣∣Πs, it√

n
(ϕ)(x)− πs(ϕ)

∣∣∣∣ 6 ∥∥∥∥Πs, it√
n
−Πs,0

∥∥∥∥
Bγ→Bγ

‖ϕ‖γ 6 c
|t|√
n
‖ϕ‖γ .

Since the function ψ is differentiable in a small neighborhood of 0, we obtain
that there exists a constant C > 0 such that for all s ∈ (−η, η), x ∈ S and
t ∈ [−δ

√
n, δ
√
n],∣∣∣Πs, it√

n
(ϕ)(x)ψ

( t√
n

)
− πs(ϕ)ψ(0)

∣∣∣
6
∣∣∣Πs, it√

n
(ϕ)(x)ψ

( t√
n

)
− πs(ϕ)ψ

( t√
n

)∣∣∣+ ∣∣∣Πs,0(ϕ)(x)ψ
( t√

n

)
− πs(ϕ)ψ(0)

∣∣∣
6 C

|t|√
n
‖ϕ‖γ sup

|t|6δ
|ψ(t)|+ C

|t|√
n
‖ϕ‖γ sup

|t|6δ
|ψ′(t)|.

Combining this with (7.6), we get the desired bound for J31: there exists a
constant C > 0 such that, for all n > 1, |l| 6 1√

n
, s ∈ (−η, η), x ∈ S and

ϕ ∈ Bγ ,

J31 6
C√
n
‖ϕ‖γ + C

n
‖ϕ‖γ sup

|t|6δ

(
|ψ(t)|+ |ψ′(t)|

)
. (7.7)

To estimate J32 in (7.5), we first notice that

J32 6

∣∣∣∣∣πs(ϕ)ψ(0)e
nl2
2σ2
s

∫ δ
√
n

−δ
√
n
e−itl

√
n
(
λn
s, it√

n

− e−
σ2
st

2
2

)
dt

∣∣∣∣∣
+
∣∣∣∣∣πs(ϕ)ψ(0)e

nl2
2σ2
s

∫
|t|>δ

√
n
e−itl

√
ne−

σ2
st

2
2 dt

∣∣∣∣∣
=: J321 + J322. (7.8)

For J321, from (7.6) it follows that J321 6 C√
n
‖ϕ‖γ . For J322, using the

basic inequality
∫∞
y e−

t2
2 dt 6 1

ye
− y

2
2 for y > 0, we get that J322 6 e−cn‖ϕ‖γ .

Hence, there exists a constant C > 0 such that for all |l| 6 1√
n
, s ∈ (−η, η)

and ϕ ∈ Bγ , it holds that J32 6 C√
n
‖ϕ‖γ . This, together with (7.7) and

(7.5), implies the desired bound for J3: there exists a constant C > 0 such
that for all n > 1, |l| 6 1√

n
, s ∈ (η, η), x ∈ S and ϕ ∈ Bγ ,

J3 6
C√
n
‖ϕ‖γ + C

n
‖ϕ‖γ sup

|t|6δ

(
|ψ(t)|+ |ψ′(t)|

)
.

Combining this with (7.3) and (7.4), we conclude the proof of Proposition
7.1. �
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Now we are equipped to establish Theorem 2.4.

Proof of Theorem 2.4. We only need to establish the first assertion of the
theorem since the second and the third ones are its particular cases. By
the change of measure formula (3.16), we get that for any s ∈ (−η, η) with
sufficiently small η > 0,

Jn : = E
[
ϕ(Xx

n)ψ
(
σ(Gn, x)− nλ−

√
nσy

)]
(7.9)

= rs(x)κn(s)EQxs

[
(ϕr−1

s )(Xx
n)e−sσ(Gn,x)ψ

(
σ(Gn, x)− nλ−

√
nσy

)]
.

For brevity, denote

T xn = σ(Gn, x)− nΛ′(s).

By considering equation (6.3) for any |y| = o(
√
n) (not necessarily |y| > 1),

we get the identity (6.4) for |y| = o(
√
n). Hence, we have

Jn = rs(x)e−n[sΛ′(s)−Λ(s)]EQxs

[
(ϕr−1

s )(Xx
n)e−sTxnψ(T xn )

]
= rs(x)e−

y2
2 + y3

√
n
ζ( y√

n
)EQxs

[
(ϕr−1

s )(Xx
n)e−sTxnψ(T xn )

]
.

We denote

ψs(u) = e−suψ(u), u ∈ R. (7.10)

Taking into account Lemma 6.1, in order to establish Theorem 2.4, it is
sufficient to prove the following asymptotic: as n→∞,

An := σ
√

2πnEQxs

[
(ϕr−1

s )(Xx
n)ψs(T xn )

]
→ ν(ϕ)

∫
R
ψ(u)du. (7.11)

To prove (7.11), we need to use some smoothing techniques. For sufficiently
small ε > 0, we denote for any s ∈ (−η, η) and u ∈ R,

ψ+
s,ε(u) = sup

u′∈R:|u′−u|6ε
ψs(u′), ψ−s,ε(u) = inf

u′∈R:|u′−u|6ε
ψs(u′). (7.12)

Denote respectively by ψ̂+
s,ε and ψ̂−s,ε the Fourier transform of ψ+

s,ε and ψ−s,ε.
For the moment we suppose that

lim
ε→0

ψ̂+
0,ε(0) = lim

ε→0
ψ̂−0,ε(0) =

∫
R
ψ(u)du. (7.13)

Note that the Fourier transform of the function ψs may not be integrable
on R. In the sequel we shall use a smoothing inequality from [22, Lemma
5.2], which gives two-sided bounds for ψs. Let ρ be a non-negative density
function on R with

∫
R ρ(u)du = 1 and ρ(u) 6 C

1+u4 for all u ∈ R, so that its
Fourier transform ρ̂ is supported on [−1, 1]. For any 0 < ε < 1, define the
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rescaled density function ρε by ρε(u) = 1
ερ(uε ), u ∈ R, whose Fourier trans-

form has a compact support on [−ε−1, ε−1]. Then, there exists a positive
constant Cρ(ε) with Cρ(ε)→ 0 as ε→ 0, such that for any u ∈ R,

ψ−s,ε∗ρε2(u)−
∫
|v|>ε

ψ−s,ε(u− v)ρε2(v)dv 6 ψs(u) 6 (1 + Cρ(ε))ψ+
s,ε∗ρε2(u).

(7.14)

Now we are going to prove (7.11). The proof will be done by establishing
upper and lower bounds for An. Without loss of generality, we assume that
the target functions ϕ and ψ are non-negative.

Upper bound. Applying the smoothing inequality (7.14) and the Fourier
inversion formula to the function ψ+

s,ε∗ρε2 , we get

An 6 (1 + Cρ(ε))σ
√

2πnEQxs

[
(ϕr−1

s )(Xx
n)(ψ+

s,ε ∗ ρε2)(T xn )
]

= (1 + Cρ(ε))σ
√
n

2π

∫
R
Rns,it(ϕr−1

s )(x)ψ̂+
s,ε(t)ρ̂ε2(t)dt, (7.15)

where Rs,it is the perturbed operator defined by (3.29) with z = it. Applying
Proposition 7.1 with ϕ = ϕr−1

s and ψ = ψ̂+
s,ερ̂ε2 (one can verify that the

remainder term in (7.1) vanishes as n → ∞, uniformly in s ∈ (−η, η)), we
obtain, uniformly in s ∈ (−η, η), |t| > δ and x ∈ S,

lim sup
n→∞

An 6 (1 + Cρ(ε))ν(ϕ)ψ̂+
0,ε(0).

Letting ε → 0, we get the desired upper bound for An: uniformly in s ∈
(−η, η) and x ∈ S,

lim sup
n→∞

An 6 ν(ϕ) lim
ε→0

ψ̂+
0,ε(0). (7.16)

Lower bound. Similarly to (7.15), using the smoothing inequality (7.14),
the fact that ψ−s,ε 6 ψs 6 (1 + Cρ(ε))ψ+

s,ε ∗ρε2 , and the Fourier inversion
formula to the functions ψ−s,ε∗ρε2 and ψ+

s,ε∗ρε2 , we obtain

An > σ
√

2πnEQxs

[
(ϕr−1

s )(Xx
n)(ψ−s,ε ∗ ρε2)(T xn )

]
− σ
√

2πn
∫
|v|>ε

EQxs

[
(ϕr−1

s )(Xx
n)ψ−s,ε(T xn − v)

]
ρε2(v)dv

> σ
√
n

2π

∫
R
Rns,it(ϕr−1

s )(x)ψ̂−s,ε(t)ρ̂ε2(t)dt

− (1 + Cρ(ε))σ
√
n

2π

∫
|v|>ε

[∫
R
e−itvRns,it(ϕr−1

s )(x)ψ̂+
s,ε(t)ρ̂ε2(t)dt

]
ρε2(v)dv

=: Bn(ε)−Dn(ε). (7.17)
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For Bn(ε), in the same way as in the proof of (7.16), by considering the func-
tion ψ−s,ε instead of ψ+

s,ε and using Proposition 7.1, we have that uniformly
in s ∈ (−η, η) and x ∈ S,

lim inf
ε→0

lim inf
n→∞

Bn(ε) > ν(ϕ) lim
ε→0

ψ̂−0,ε(0). (7.18)

For Dn(ε), we first note that we can follow the proof of the upper bound for
An to check the following asymptotic: for sufficiently small ε > 0, uniformly
in s ∈ (−η, η), x ∈ S and v ∈ [−

√
n,
√
n],

lim
n→∞

σ

√
n

2πe
v2

2nσ2
s

∫
R
e−itvRns,it(ϕr−1

s )(x)ψ̂+
s,ε(t)ρ̂ε2(t)dt = ν(ϕ)ψ̂+

0,ε(0).
(7.19)

To obtain an upper bound for the term Dn(ε), we shall apply the Lebesgue
dominated convergence theorem to pass to the limit as n→∞ through the
integral

∫
|v|>ε. The applicability of this theorem is justified below. We split

the integral
∫
|v|>ε in the term Dn(ε) into two parts:

∫
|v|>
√
n and

∫
ε6|v|6

√
n.

For the first part
∫
|v|>
√
n, since the density function ρε2 has polynomial

decay, i.e. ρε2(v) 6 Cε
1+v4 , |v| >

√
n, we get that

√
nρε2(v) 6 Cε

1+|v|3 , which is
integrable on R. For the second part, using (7.19) we see that, the function
under the integral

∫
ε6|v|6

√
n is dominated by Cρε2 which is integrable on R.

Therefore, we can interchange the limit as n → ∞ and the integral
∫
|v|>ε,

and then use (7.19) again to obtain that uniformly in s ∈ (−η, η) and x ∈ S,

lim sup
n→∞

Dn(ε) 6 (1 + Cρ(ε))ν(ϕ)ψ̂+
0,ε(0)

∫
|v|>ε

ρε2(v)dv.

The integral on right-hand side converges to 0 as ε → 0, since ρε2(v) =
1
ε2 ρ( v

ε2 ) and the function ρ is integrable on R. Together with (7.17) and
(7.18), this implies the desired lower bound for An: uniformly in s ∈ (−η, η)
and x ∈ S,

lim inf
n→∞

An > ν(ϕ) lim
ε→0

ψ̂−0,ε(0). (7.20)

Combining (7.16) and (7.20), we obtain the assertion of Theorem 2.4,
provided that (7.13) holds. Condition (7.13) can be relaxed to the direct
Riemann integrability condition of the target function ψ, by applying the
approximation techniques developed in [49]. So the proof of Theorem 2.4 is
complete. �

7.2. Proof of Theorem 2.5. In this subsection we prove Theorem 2.5
concerning the local limit theorem with moderate deviations for the operator
norm ‖Gn‖ in the case of invertible matrices. In this proof Theorem 2.4
plays the key role. Another important ingredient is the following Lemma



LIMIT THEOREMS FOR PRODUCTS OF RANDOM MATRICES 57

7.2 established recently by Benoist and Quint [5], which provides a precise
and interesting comparison between log ‖Gn‖ and σ(Gn, x):

Lemma 7.2. Assume conditions A1 and A2 for invertible matrices. Then,
for any a > 0, there exist c > 0 and k0 ∈ N, such that for all n > k > k0
and x = Rv ∈ Pd−1,

P
(∣∣∣∣log ‖Gn‖

‖Gk‖
− log |Gnv|

|Gkv|

∣∣∣∣ 6 e−ak) > 1− e−ck.

Proof of Theorem 2.5. Without loss of generality, we assume that the target
function ϕ is non-negative.

We first give the upper bound. By Lemma 7.2, we get that for any
a > 0, there exist c > 0 and k0 ∈ N, such that for all n > k > k0 and
x = Rv ∈ Pd−1,

Jn := E
[
ϕ(Xx

n)1{log ‖Gn‖−nλ∈[a1,a2]+
√
nσy}

]
6 E

[
ϕ(Xx

n)1{
log |Gnv||Gkv|

+log ‖Gk‖−nλ∈[a1−e−ak,a2+e−ak]+
√
nσy
}]+ e−ck‖ϕ‖∞.

With the notation Gn,k = gn . . . gk+1 for any n > k > 1, we have Xx
n =

Gn,k ·Xx
k and σ(Gn, x)−σ(Gk, x) = σ(Gn,k, Xx

k ). Thus the first term of the
right-hand side of the above inequality can be rewritten as

E
[
ϕ(Gn,k ·Xx

k )1{
σ(Gn−k,Xx

k
)−(n−k)λ∈[a1−e−ak,a2+e−ak]+

√
nσy−(log ‖Gk‖−kλ)

}].
Now we fix a sufficiently large constant C1 > 0 and we choose

k = bC1y
2c,

where byc denotes the integer part of y ∈ R. For any ε > 0, there exists a
large enough k1 > 1 such that for all k > k1,

[a1 − e−ak, a2 + e−ak] ⊂ I+
ε := [a1 − ε, a2 + ε].

Using the large deviation bounds for log ‖Gk‖ (see [5] or [49]), we see that
for any δ > 0, there exists a constant c > 0 such that for large enough k > 1,

P
(∣∣∣ log ‖Gk‖ − kλ

∣∣∣ > kδ
)
6 e−ck.

Using this bound, it follows that

Jn 6 E
[
ϕ(Gn,k ·Xx

k )1{
σ(Gn−k,Xx

k
)−(n−k)λ∈I+

ε +
√
nσy−(log ‖Gk‖−kλ)

}
1{∣∣ log ‖Gk‖−kλ

∣∣6kδ}
]

+ e−ck‖ϕ‖∞.
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Taking conditional expectation given the σ-algebra Fk = σ(g1, . . . , gk), we
get

Jn 6 E
{
E
[
ϕ(Gn,k ·Xx

k )1{
σ(Gn−k,Xx

k
)−(n−k)λ∈I+

ε +
√
nσy−(log ‖Gk‖−kλ)

}
1{∣∣ log ‖Gk‖−kλ

∣∣6kδ}∣∣∣Fk

]}
+ e−ck‖ϕ‖∞.

Applying Theorem 2.4, we obtain that, as n → ∞, uniformly in x ∈ Pd−1

and |y| = o(n1/6),

Jn 6 sup
|u|6kδ

exp
{
− 1

2
( y
√
n√

n− k
− u

σ
√
n− k

)2} 1
σ
√

2πn

×
[
(a2 − a1 + 2ε)ν(ϕ) + o(1)

]
+ e−ck‖ϕ‖∞. (7.21)

Since k = bC1y
2c, it follows that as n→∞,

Jn 6
e−

y2
2

σ
√

2πn

[
(a2 − a1 + 2ε)ν(ϕ) + o(1)

]
. (7.22)

We next give the lower bound. Since the proof is similar to that of the
upper bound, we only sketch the main differences. By Lemma 7.2, we get
that for any a > 0, there exist c > 0 and k0 ∈ N, such that for all n > k > k0
and x ∈ Pd−1,

Jn > E
[
ϕ(Xx

n)1{
log |Gnx||Gkx|

+log ‖Gk‖−nλ∈[a1+e−ak,a2−e−ak]+
√
nσy
}].

With the notation used in the proof of the upper bound, we have

Jn > E
[
ϕ(Gn,k ·Xx

k )1{
σ(Gn−k,Xx

k
)−(n−k)λ∈I−ε +

√
nσy−(log ‖Gk‖−kλ)

}
1{∣∣ log ‖Gk‖−kλ

∣∣6kδ}],
where I−ε := [a1 + ε, a2 − ε]. Notice that, for any ε > 0, there exists a large
enough k1 > 1 such that for all k > k1,

I−ε ⊂ [a1 + e−ak, a2 − e−ak].

In the same way as in the proof of (7.21), we take conditional expectation
given Fk and use Theorem 2.4 to obtain that as n → ∞, uniformly in
x ∈ Pd−1 and |y| = o(n1/6),

Jn > inf
|u|6kδ

exp
{
− 1

2
( y
√
n√

n− k
− u

σ
√
n− k

)2} 1
σ
√

2πn

×
[
(a2 − a1 − 2ε)ν(ϕ)− o(1)

]
.
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As k = bC1y
2c, elementary calculations lead to

Jn >
e−

y2
2

σ
√

2πn

[
(a2 − a1 + 2ε)ν(ϕ)− o(1)

]
. (7.23)

Since ε > 0 can be arbitrary small, combining (7.22) and (7.23), we conclude
the proof of Theorem 2.5. �
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