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Berry-Esseen bound and precise moderate deviations for products of random matrices

Hui Xiao, Ion Grama, Quansheng

 d,R). Denote by P d-1 the projective space of R d . Let (g n ) n 1 be a sequence of i.i.d. d × d real random matrices of the same law µ on GL(d, R). For any n 1, consider the product G n = g n . . . g 1 and the process X x n = RG n v ∈ P d-1 , with the starting point x = Rv ∈ P d-1 . The norm cocycle is defined by σ(G n , x) = log |Gnv| |v| , where x = Rv ∈ P d-1 . The study of the asymptotic properties of the Markov chain (X x n ) n 1 and of the product (G n ) n 1 has attracted a good deal of attention since the groundwork of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], where the strong law of large numbers (LLN) for the operator norm G n has been established. In the same context, Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] proved the LLN for the norm cocycle σ(G n , x): for any

x ∈ P d-1 , lim n→∞ σ(G n , x) n = lim n→∞ Eσ(G n , x) n = λ P-a.s.,
where λ is a real number called upper Lyapunov exponent associated with the product G n . Another cornerstone result is the central limit theorem (CLT) for the couple (X x n , σ(G n , x)), established under contracting type assumptions by Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]: for any fixed y ∈ R and any Hölder continuous function ϕ :

P d-1 → R, it holds uniformly in x ∈ P d-1 that lim n→∞ E ϕ(X x n )1 σ(Gn,x)-nλ σ √ n y = ν(ϕ)Φ(y),
where ν is the unique stationary probability measure of the Markov chain 2 is the asymptotic variance independent of x, and Φ is the standard normal distribution function. The optimal conditions for the CLT to hold true have been established recently by Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. The next step in these studies is to know how precise are the approximations in the LLN and the CLT. The asymptotic of the large deviation probabilities describes the rate of convergence in the LLN, and the Berry-Esseen bound characterizes that in the CLT. For sums of independent random variables these topics have been extensively studied over many decades, and have been proved to play the key role for many problems in probability theory and mathematical statistics. For deep and optimal results in this direction we refer to the pioneering works of Cramér [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF], Esseen [START_REF] Esseen | Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law[END_REF], Bahadur and Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF], Petrov [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF] and to the monographs of Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], Stroock [START_REF] Stroock | An introduction to the theory of large deviations[END_REF], Varadhan [START_REF] Varadhan | Large deviations and applications[END_REF], Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF] and Borovkov and Borovkov [START_REF] Borovkov | Asymptotic analysis of random walks[END_REF].

X x n on P d-1 , σ 2 = lim n→∞ 1 n E (σ(G n , x) -nλ)
For products of random matrices the known results about the rate of convergence in the LLN and the CLT are far from being optimal, although there are already important studies on the topic. The main goal of the present paper is to fill in this gap by proving large deviation asymptotics and Berry-Esseen type bounds which are close to definitive. Precise large deviation asymptotics originate from the work of Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] and more recently have been considered e.g. by Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF], Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], Sert [START_REF] Sert | Large deviation principle for random matrix products[END_REF], Xiao, Grama and Liu [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. For moderate deviations, very little results are known. Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] have recently established the moderate deviation principle for reductive groups, which in our setting reads as follows: for any interval B ⊆ R, and positive sequence (b n ) n 1 satisfying bn n → 0 and bn

√ n → ∞, it holds uniformly in x ∈ P d-1 that lim n→∞ n b 2 n log P σ(G n , x) -nλ b n ∈ B = -inf y∈B y 2 2σ 2 .
(1.1)

A functional moderate deviation principle has been established by Cuny, Dedecker and Jan [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF]. The first objective of our paper is to improve on the result (1.1) by establishing a Cramér type moderate deviation expansion for σ(G n , x): we prove that uniformly in x ∈ P d-1 and y ∈ [0, o( √ n)],

P σ(G n , x) -nλ

√ nσy 1 -Φ(y) = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n , ( 1.2) 
where t → ζ(t) is the Cramér series of the logarithm of the eigenfunction related to the transfer operator of the Markov walk associated to the product of random matrices (see Section 2.3).

In many important models it is useful to extend the moderate deviation expantion (1.2) for the couple (X x n , σ(G n , x)) which describes completely the random walk (G n v) n 1 . We prove that, for any Hölder continuous function ϕ on P d-1 , uniformly in x ∈ P d-1 and y ∈ [0, o(

√ n)], E ϕ(X x n )1 {σ(Gn,x)-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + O y + 1 √ n , (1.3) 
see Theorem 2.3 for a slightly stronger statement.

Our second objective, which is also the key point in proving (1.3), is a Berry-Esseen bound for the couple (X x n , σ(G n , x)): for any Hölder continuous function ϕ on P d-1 , sup

x∈P d-1 , y∈R E ϕ(X x n )1 σ(Gn,x)-nλ σ √ n y -ν(ϕ)Φ(y) = O 1 √ n , ( 1.4) 
see Theorem 2.1. This extends the result of Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established for the particular target function ϕ = 1 (see also Jan [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF]). We further upgrade (1.4) to an Edgeworth expansion under a non-arithmeticity condition, see Theorem 2.2, which is new even for ϕ = 1.

Our third objective is to establish the following local limit theorem with moderate deviations: for any real numbers -∞ < a 1 < a 2 < ∞, we have, uniformly in x ∈ P d-1 and |y|

= o( √ n), E ϕ(X x n )1 {σ(Gn,x)-nλ∈[a 1 ,a 2 ]+ √ nσy} ∼ ν(ϕ) a 2 -a 1 σ √ 2πn e -y 2 2 + y 3 √ n ζ( y √ n ) . (1.5)
For a more general version of (1.5), see Theorem 2.4, where a target function ψ on σ(G n , x) is considered. When |y| = o(n 1/6 ), the term

y 3 √ n ζ( y √ n
) tends to 0 and can be removed in (1.5). In this case, (1.5) improves the local limit theorem of [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 17.10] established for |y| = O( √ log n). Local limit theorems with moderate deviations of type (1.5) are used for instance in [START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF] for studying dynamics of group actions on finite volume homogeneous spaces. As an important application of (1.5) we establish a new local limit theorem with moderate deviations for the operator norm G n , see Theorem 2.5.

All the results stated above concern invertible matrices, but we also establish analogous theorems for positive matrices. Some limit theorems for σ(G n , x) in case of positive matrices such as central limit theorem and Berry-Esseen theorem have been established earlier by Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], and Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF]. Here, we extend the Berry-Esseen theorem of [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] to the couple (X x n , σ(G n , x)) with a target function ϕ on the Markov chain X x n . We also complement the results in [START_REF] Furstenberg | Products of random matrices[END_REF][START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF]] by giving a Cramér type moderate deviation expansion and a local limit theorem with moderate deviations.

The results of the paper can be useful in number of models of growing interest in probability and statistics. In particular, our study has been motivated by applications to branching random walks and multitype branching processes in random environment; we refer to [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF][START_REF] Bui | Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices[END_REF][START_REF] Grama | Berry-Esseen's bound and harmonic moments for supercritical multi-type branching processes in random environments[END_REF][START_REF] Grama | Cramér type moderate deviation expansion for supercritical multi-type branching processes in random environments[END_REF] where large deviation asymptotics have been obtained in these settings using the results of this paper. For an application to moderate deviations for the operator norm and the spectral radius of products of random matrices we refer to [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the random walk on GL d (R)[END_REF]. Other fields of application include the financial mathematics, among them multidimensional stochastic recursions and perpetuity sequences.

On the other hand with the approach developed in the paper, one can also study limit theorems for Markov chains, dynamical systems, random walks on hyperbolic groups and homogeneous spaces; for these topics we refer to Hennion and Hervé [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF], Parry and Pollicott [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF], Gouëzel [START_REF] Gouëzel | Local limit theorem for nonuniformly partially hyperbolic skew-products and Farey sequences[END_REF], Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], Benoist and Quint [START_REF] Benoist | Central limit theorem on hyperbolic groups[END_REF]. For example, combining our approach with the techniques from Guivarc'h and Hardy [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF], it is possible to obtain extensions of our results to the setting of Anosov's diffeomorphisms and more general dynamical systems allowing a coding by mixing sub-shifts. As another example, one can establish the analogs of the results of the paper for Markov chains with compact state spaces. These aspects will be not considered here because of the limitation of the length of the paper. 1.2. Key ideas of the approach. For the moderate deviation expansions (1.2) and (1.3), our proof is different from those in [START_REF] Benoist | Random walks on reductive groups[END_REF] and [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF]: in [START_REF] Benoist | Random walks on reductive groups[END_REF] the moderate deviation principle (1.1) is obtained by following the strategy of Kolmogorov [START_REF] Kolmogorov | Über das Gesetz der iterierten Logarithmus[END_REF] suited to show the law of iterated logarithm (see also de Acosta [START_REF] De Acosta | A new proof of the Hartman-Wintner law of the iterated logarithm[END_REF] and Wittman [START_REF] Wittmann | A general law of iterated logarithm[END_REF]); in [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF] the proof of the functional moderate deviation principle is based on the martingale approximation method developed in [START_REF] Benoist | Central limit theorem for linear groups[END_REF].

In order to prove (1.3) we have to rework the spectral gap theory for the transfer operators P z and R s,z , by considering the case when s can take values in the interval (-η, η) with η > 0 small, and z belongs to a small complex ball centered at the origin, see Section 3. This allows to define the change of measure Q x s and to extend the Berry-Esseen bound (1.4) for the changed measure Q x s , see Theorem 5.1. The moderate deviation expansion (1.3) is established by adapting the techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF].

It is surprising that the proof of the Berry-Esseen bound and of the Edgeworth expansion with a non-trivial target function ϕ = 1 is way more difficult than the analogous results with ϕ = 1. This can be seen from the sketch of the proof which we give below.

For simplicity, we assume that σ = 1. Introduce the transfer operator P z : for any Hölder continuous function ϕ on P d-1 and z ∈ C, P z ϕ(x) = E e zσ(g 1 ,x) ϕ(X x 1 ) , x ∈ P d-1 .

(1.6)

Let F be the distribution function of σ(Gn,x)-nλ √ n and f be its Fourier transform:

f (t) = e it √ nλ (P n -it/ √ n 1)(x), t ∈ R.
The Berry-Esseen bound (1.4) with target function ϕ = 1 is usually proved using Esseen's smoothing inequality: there exists a constant C > 0 such that for all T > 0,

sup y∈R |F (y) -Φ(y)| 1 π T -T f (t) -e -t 2 /2 t dt + C T . ( 1.7) 
Inserting the spectral gap decomposition

P n z = κ n (z)M z + L n z (n 1) (1.8) 
into (1.7) allows us to obtain the Berry-Esseen bound (1.4) with ϕ = 1: after some straightforward calculations, it reduces to showing that, with

T = c √ n, T -T (L n -it/ √ n 1)(x) /|t|dt < ∞. (1.9) 
The bound (1.9) is proved using Taylor's expansion

L n z 1 = L n 0 1+z d dz (L n z 1)+ o(z) with z = -it/
√ n, and the fact that L n 0 1 = 0. However, when we replace the unit function 1 by a target function ϕ for which in general L n 0 ϕ = 0, instead of (1.9), we have

T -T |L n -it/ √ n ϕ(x)|/|t|dt = ∞, (1.10) 
even though |L n 0 ϕ(x)| decays exponentially fast to 0 as n → ∞. To overcome this difficulty, we have elaborated a new approach based on smoothing inequality on complex contours and on the saddle point method, see Proposition 4.1. More precisely, we formulate our smoothing inequality as follows: there exists a constant C > 0 such that for any T r > 0,

sup y∈R |F (y) -Φ(y)| 1 π sup y 0 C - r f (z)e izy e -ib z T dz + 1 π sup y>0 C + r f (z)e izy e -ib z T dz + 1 π sup y 0 C - r f (z)e izy e ib z T dz + 1 π sup y>0 C + r f (z)e izy e ib z T dz + 1 π r |t| T f (t) dt + 2 πT T -T tf (t) dt + C T , ( 1.11) 
where

f (z) = f (z)-e -z 2 /2 z
, b > 0 is a fixed constant, C - r and C + r are semicircles in the complex plane given by

C - r = {z ∈ C : |z| = r, z < 0}, C + r = {z ∈ C : |z| = r, z > 0}.
Using the new smoothing inequality, together with the spectral gap property (1.8), leads to the estimation of the following integrals:

C + r ∪ C - r κ n (z)M z ϕ(x) -e -z 2 /2 z e izy e ±ib z T dz, (1.12) 
C + r ∪ C - r L n z ϕ(x) z
e izy e ±ib z T dz.

(

The integral (1.12) is handled by using the saddle point method choosing a suitable path for the integration in Section 5.2, which is one of the challenging parts of the proof. For the integral (1.13) we use the facts that |L n z ϕ(x)| decays exponentially fast as n → ∞ and that | e izy z | 1 r for z ∈ C - r , y 0 and r = c √ n. In contrast to (1.10), the intergral (1.13) is bounded by Ce -cn uniformly in y. The case y > 0 is treated similarly, which allows us to establish (1.4). Note that the non-arithmeticity condition is not needed for the validity of (1.4). Under the non-arithmeticity condition, in Theorem 2.2 we obtain an Edgeworth expansion for (X x n , σ(G n , x)) with the target function ϕ on X x n , which is of independent interest.

Main results

Notation and conditions. Let

N = {0, 1, 2, . . .} and N * = N \ {0}.
The real part, imaginary part and the conjugate of a complex number z are denoted by z, z and z respectively. For y ∈ R, we write φ(y) = 1 √ 2π e -y 2 /2 and Φ(y) = y -∞ φ(t)dt. For any η > 0, set B η (0) = {z ∈ C : |z| < η} for the ball with center 0 and radius η in the complex plane C. We denote by c, C, positive constants whose values may change from line to line. By c α , C α we mean positive constants depending only on the index α. We write 1 A for the indicator function of an event A. For a measure ν and a function ϕ we denote ν(ϕ) = ϕdν.

For d 2, let M (d, R) be the set of d × d matrices with entries in R. We shall work with products of invertible or non-negative matrices. Denote by G = GL(d, R) the group of invertible matrices of M (d, R). A non-negative matrix g ∈ M (d, R) is said to be allowable, if every row and every column of g has a strictly positive entry. Denote by G + the multiplicative semigroup of allowable non-negative matrices of M (d, R), which will be called simply positive. We write G • + for the subsemigroup of G + with strictly positive entries.

The space R d is equipped with any given norm

| • |. Let P d-1 = {x = Rv : v ∈ R d \ {0}} be the projective space of R d . Let R d
+ be the positive quadrant of R d , and P d-1

+ = {x = Rv : v ∈ R d + \ {0}} be the set of directions corresponding to nonzero vectors in R d + .
To unify the exposition, we use the symbol S to denote P d-1 in case of invertible matrices and P d-1 + in case of positive matrices. For any matrix g in G or G + and x = Rv ∈ S, we write g • x = Rgv for the projective action of g on S. The space S is endowed with the metric d: for invertible matrices, d is the angular distance, i.e., for any x, y ∈ P d-1 , d(x, y) = | sin θ(x, y)|, where θ(x, y) is the angle between x and y; for positive matrices, d is the Hilbert cross-ratio metric, i.e., for any x = We refer to [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] for more details of the metric d.

Rv ∈ P d-1 + and y = Ru ∈ P d-1 + with |v| = |u| = 1, d(x, y) = 1-m(v,u)m(u,v) 1+m(v,u)m(u,v) , where m(v, u) = sup{α > 0 : αu i v i , ∀i = 1, . . . ,
Let C(S) be the space of continuous complex-valued functions on S and 1 be the constant function with value 1. Let γ > 0. For any ϕ ∈ C(S), set

ϕ γ := ϕ ∞ + [ϕ] γ , ϕ ∞ := sup x∈S |ϕ(x)|, [ϕ] γ := sup x,y∈S |ϕ(x) -ϕ(y)| d γ (x, y) .
Introduce the Banach space B γ := {ϕ ∈ C(S) : ϕ γ < +∞}. Assume that on some probability space (Ω, F, P) we are given a sequence of i.i.d. random matrices (g n ) n 1 of the same law µ on G or G + . Set G n = g n . . . g 1 , n 1, then for any starting point x ∈ S, the process , where ι(g) > 0 for both g ∈ G and g ∈ G + . In the following we use the notation N (g) = max{ g , ι(g) -1 }. From the Cartan decomposition it follows that the norm g coincides with the largest singular value of g, i.e.

X x 0 = x, X x n = G n •x,
g is the square root of the largest eigenvalue of g T g, where g T denotes the transpose of g. For an invertible matrix g ∈ G , ι(g) = g -1 -1 , hence ι(g) is the smallest singular value of g and N (g) = max{ g , g -1 }. We need the two-sided exponential moment condition:

A1. There exists a constant η 0 ∈ (0, 1) such that E[N (g 1 ) η 0 ] < +∞.
We denote by Γ µ := [supp µ] the smallest closed subsemigroup of M (d, R) generated by supp µ, the support of the measure µ.

For invertible matrices, we need the strong irreducibility and proximality conditions. Recall that a matrix g is said to be proximal if g has an eigenvalue λ g satisfying |λ g | > |λ g | for all other eigenvalues λ g of g. The normalized eigenvector v g (|v g | = 1) corresponding to the eigenvalue λ g is called the dominant eigenvector. It is easy to verify that λ g ∈ R.

A2. (i)(Strong irreducibility) No finite union of proper subspaces

of R d is Γ µ -invariant.
(ii)(Proximality) Γ µ contains at least one proximal matrix.

For positive matrices, we use the allowability and positivity conditions:

A3. (i) (Allowability) Every g ∈ Γ µ is allowable.

(ii) (Positivity) Γ µ contains at least one matrix belonging to G • + . It follows from the Perron-Frobenius theorem that every g ∈ G • + has a dominant eigenvalue λ g > 0, with the corresponding eigenvector v g ∈ S d-1

+ . Under conditions A1 and A2 for invertible matrices, or conditions A1 and A3 for positive matrices, there exists a unique µ-stationary probability measure ν on S ( [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]): for any ϕ ∈ C(S),

(µ * ν)(ϕ) = S Γµ ϕ(g 1 •x)µ(dg 1 )ν(dx) = S ϕ(x)ν(dx) = ν(ϕ). (2.2)
Moreover, for invertible matrices, supp ν (the support of ν) is given by

V (Γ µ ) = {v g ∈ P d-1 : g ∈ Γ µ , g is proximal}; (2.3)
for positive matrices, supp ν is given by

V (Γ µ ) = {v g ∈ P d-1 + : g ∈ Γ µ ∩ G • + }. (2.4)
In addition, for both cases, V (Γ µ ) is the unique minimal Γ µ -invariant subset (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]).

For positive matrices, it will be shown in Proposition 3.15 that under conditions A1 and A3, the asymptotic variance

σ 2 = lim n→∞ 1 n E (σ(G n , x) -nλ) 2
exists with value in [0, ∞). To establish the Berry-Esseen theorem and the moderate deviation expansion, we need the following condition:

A4. The asymptotic variance σ 2 satisfies σ 2 > 0.

We say that the measure µ is arithmetic, if there exist t > 0, β ∈ [0, 2π) and a function ϑ : S → R such that exp[itσ(g, x) -iβ + iϑ(g•x) -iϑ(x)] = 1 for any g ∈ Γ µ and x ∈ V (Γ µ ). To establish the Edgeworth expansion for positive matrices, we impose the following condition:

A5. (Non-arithmeticity)

The measure µ is non-arithmetic.

A simple sufficient condition introduced in [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] for the measure µ to be non-arithmetic is that the additive subgroup of R generated by the set {log λ g : [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Lemma 2.7]. We end this subsection by giving some implications among the above conditions. For invertible matrices, it was proved in [START_REF] Guivarc | Semigroup actions on tori and stationary measures on projective spaces[END_REF] that condition A2 implies condition A5. For positive matrices, conditions A1, A3 and A5 imply condition A4, see Proposition 3.15.

g ∈ Γ µ ∩ G • + } is dense in R, see

Berry-Esseen bound and Edgeworth expansion.

In this subsection we formulate the Berry-Esseen theorem and the Edgeworth expansion for the couple (X x n , σ(G n , x)). We first state the Berry-Esseen theorem with a target function on X x n . Through the rest of the paper we assume that γ > 0 is a fixed small enough constant so that the spectral properties stated in Proposition 3.1 hold true.

Theorem 2.1. Assume either conditions A1 and A2 for invertible matrices, or conditions A1, A3 and A4 for positive matrices. Then, there exists a constant C > 0 such that for all n 1, x ∈ S, y ∈ R and ϕ ∈ B γ ,

E ϕ(X x n )1 σ(Gn,x)-nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ . (2.5)
The proof of this theorem follows the same line as the proof of the Edgeworth expansion in Theorem 2.2 formulated below, and will be sketched at the end of Section 5. The presence of the target function in Theorem 2.1 turns out to be crucial in the study of the asymptotic of moderate deviations of the logarithm of the coefficients log | f, G n v | with f ∈ (R d ) * and v ∈ R d , which will be done in a forthcoming paper.

Theorem 2.1 extends the Berry-Esseen bounds from [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF] for invertible matrices, and [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] for positive matrices to versions with target functions on X x n . Note that the results in [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF][START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] have been established under some polynomial moment conditions. However, proving (2.5) with the target function ϕ = 1 under the polynomial moments is still an open problem.

The next result gives an Edgeworth expansion for σ(G n , x) with a target function ϕ on X x n . To formulate it, we introduce the necessary notation. Consider the following transfer operator: for any s ∈ (-η, η) with η > 0 small, and ϕ ∈ C(S),

P s ϕ(x) = E e sσ(g 1 ,x) ϕ(g 1 •x) , x ∈ S.
It will be shown in Proposition 3.1 that there exists a unique Hölder continuous function r s on S such that

P s r s = κ(s)r s , ( 2.6) 
where κ(s) is the unique dominant eigenvalue of P s . Set Λ(s) = log κ(s).

We shall show in Lemma 3.11 that for any ϕ ∈ B γ , the function

b ϕ (x) = lim n→∞ E (σ(G n , x) -nλ)ϕ(X x n ) , x ∈ S (2.7)
is well defined, belongs to B γ and has an equivalent expression (3.39) in terms of derivative of the projection operator Π 0,z , see Proposition 3.8.

Theorem 2.2. Assume either conditions A1 and A2 for invertible matrices, or conditions A1, A3 and A5 for positive matrices. Then, as n → ∞, uniformly in x ∈ S, y ∈ R and ϕ ∈ B γ ,

E ϕ(X x n )1 σ(Gn,x)-nλ σ √ n y (2.8) -ν(ϕ) Φ(y) + Λ (0) 6σ 3 √ n (1 -y 2 )φ(y) + b ϕ (x) σ √ n φ(y) = ϕ γ o 1 √ n .
The proof of this theorem is postponed to Section 5 and is based on a new smoothing inequality (Proposition 4.1) and the saddle point method. Even for ϕ = 1, Theorem 2.2 is new.

Moderate deviation expansions. Denote γ

k = Λ (k) (0), k
1, where Λ = log κ with the function κ defined in (2.6). In particular, γ 1 = λ and γ 2 = σ 2 , see Propositions 3.13 and 3.15, where we also give an expression for γ 3 . Throughout the paper, we write ζ for the Cramér series of Λ (see [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF] and [START_REF] Petrov | Sums of independent random variables[END_REF]): 

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ
x ∈ S, y ∈ [0, o( √ n)] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {σ(Gn,x)-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , E ϕ(X x n )1 {σ(Gn,x)-nλ - √ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n .
Note that the above asymptotic expansions remain valid even when ν(ϕ) = 0. In this case, for example, the first expansion becomes

E ϕ(X x n )1 {σ(Gn,x)-nλ √ nσy} = 1 -Φ(y) e y 3 √ n ζ( y √ n ) ϕ γ O y + 1 √ n .
It is an open question to extend the results of Theorem 2.3 to higher order expansions under the additional condition of non-arithmeticity. We refer to Saulis [START_REF] Saulis | An asymptotic expansion for probabilities of large deviations for sums of independent random variables (Russian)[END_REF] and Rozovsky [START_REF] Rozovsky | Asymptotic expansions for probabilities of large deviations[END_REF] for relevant results in the i.i.d. real-valued case. In the case of products of random matrices this problem seems to us interesting because of the presence of the derivatives in s of the eigenfunction r s and of the linear functional ν s in the higher order terms.

In particular, under conditions of Theorem 2.3, with ϕ = 1 we obtain:

P σ(Gn,x)-nλ σ √ n y 1 -Φ(y) = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n , P σ(Gn,x)-nλ σ √ n -y Φ(-y) = e -y 3 √ n ζ(-y √ n ) 1 + O y + 1 √ n .
When ϕ ∈ B γ is a real-valued function satisfying ν(ϕ) > 0, Theorem 2.3 clearly implies the following moderate deviation principle for σ(G n , x) with target function on X x n : for any Borel set B ⊆ R, and positive sequence (b n ) n 1 satisfying bn n → 0 and bn 

√ n → ∞, uniformly in x ∈ S, -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 σ(Gn,x)-nλ bn ∈B (2.10) lim sup n→∞ n b 2 n log E ϕ(X x n )1 σ(Gn,
= o( √ n), E ϕ(X x n )ψ σ(G n , x) -nλ - √ nσy = e -y 2 2 + y 3 √ n ζ( y √ n ) σ √ 2πn ν(ϕ) R ψ(u)du + o(1) .
In particular, for any ϕ ∈ B γ and real numbers

-∞ < a 1 < a 2 < ∞, we have, as n → ∞, uniformly in x ∈ S and |y| = o( √ n), E ϕ(X x n )1 {σ(Gn,x)-nλ∈[a 1 ,a 2 ]+ √ nσy} = e -y 2 2 + y 3 √ n ζ( y √ n ) σ √ 2πn
(a 2 -a 1 )ν(ϕ)+o [START_REF] Bahadur | On deviations of the sample mean[END_REF] .

With ϕ = 1, we have, as n → ∞, uniformly in x ∈ S and |y| = o( √ n),

P σ(G n , x) -nλ ∈ [a 1 , a 2 ] + √ nσy = e -y 2 2 + y 3 √ n ζ( y √ n ) σ √ 2πn a 2 -a 1 + o(1) .
In the case of invertible matrices, a similar local limit theorem has been established in [START_REF] Benoist | Random walks on reductive groups[END_REF] in a more general setting and plays an important role in studying dynamics of group actions on finite volume homogeneous spaces, see [START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF]Proposition 4.7]. Specifically, from [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 17.10], by simple calculations we deduce that for any a 1 < a 2 , it holds uniformly in [START_REF] Bahadur | On deviations of the sample mean[END_REF] .

x ∈ P d-1 and |y| = O( √ log n) that, as n → ∞, P σ(G n , x) -nλ ∈ [a 1 , a 2 ] + √ nσy = e -y 2 2 σ √ 2πn a 2 -a 1 + o(1
= o(n 1/6 ), E ϕ(X x n )1 {log Gn -nλ∈[a 1 ,a 2 ]+ √ nσy} = e -y 2 2 σ √ 2πn (a 2 -a 1 )ν(ϕ) + o
With ϕ = 1, we have, as n → ∞, uniformly in x ∈ P d-1 and |y| = o(n 1/6 ),

P log G n -nλ ∈ [a 1 , a 2 ] + √ nσy = e -y 2 2 σ √ 2πn a 2 -a 1 + o(1) . (2.12)
In the smaller range |y| = O( √ log n), the result (2.12) has been established for the general framework of semisimple real Lie groups in [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 17.7], under some assumptions which reduce to ours for the general linear group GL(d, R). Thus Theorem 2.5 extends the results in [START_REF] Benoist | Random walks on reductive groups[END_REF] to the wider range |y| = o(n 1/6 ), and to the couple (X x n , log G n ) with a target function ϕ on the Markov chain X x n . Note that it is an open question to establish local limit theorem with moderate deviation for log G n in the whole range |y| = o( √ n).

Spectral gap theory

This section is devoted to investigating the spectral gap properties of some linear operators to be introduced below: the transfer operator P z , its normalization Q s which is a Markov operator, and the perturbed operator R s,z , for real-valued s and complex-valued z. The properties for these operators have been studied in recent years, for instance in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF], where various results have been established under different restrictions on s and z, which are not enough for obtaining the results of the paper. We shall complete these results by investigating the case when s ∈ (-η, η) with η > 0 small, and z belongs to a small ball of the complex plane centered at the origin. The case of s < 0 turns out to be more difficult than the case s 0 and requires a deeper analysis. We also complement the previous results with some new properties to be used in the proofs of the main results of the paper.

3.1. Properties of the transfer operator P z . Recall that the Banach space B γ consists of all the γ-Hölder continuous complex-valued functions on S. We write B γ for the topological dual of B γ endowed with the norm

ν B γ = sup ϕ∈Bγ : ϕ γ =1 |ν(ϕ)|, for any linear functional ν ∈ B γ . Let L(B γ , B γ )
be the set of all bounded linear operators from B γ to B γ equipped with the operator norm • Bγ →Bγ . Denote by (Q) the spectral radius of an operator Q ∈ L(B γ , B γ ), and by Q| E its restriction to the subspace E ⊆ B γ .

For any z ∈ C with |z| < η 0 , where η 0 is given in condition A1, define the transfer operator P z as follows: for any ϕ ∈ C(S),

P z ϕ(x) = E e zσ(g 1 ,x) ϕ(g 1 •x) , x ∈ S.
(3.1)

The transfer operator P z acts from C(S) to the space of bounded functions on S. The proposition stated below gives the spectral gap properties of the operator P z for z in a small enough neighborhood of 0 in the complex plane.

In the sequel, even if it is not stated explicitly, we assume that γ > 0 is a sufficiently small constant.

Proposition 3.1. Assume that µ satisfies either conditions A1 and A2 for invertible matrices, or conditions A1 and A3 for positive matrices. Then,

P z ∈ L(B γ , B γ ) for any z ∈ B η 0 2 (0)
, and the mapping z

→ P z : B η 0 2 (0) → L(B γ , B γ
) is analytic for γ > 0 small enough, where η 0 > 0 is given in condition A1. Moreover, there exists a constant η > 0 such that for any z ∈ B η (0) and n 1, we have the decomposition

P n z = κ n (z)M z + L n z , (3.2)
where the operator M z := ν z ⊗ r z is a rank one projection on B γ defined by M z ϕ = νz(ϕ) νz(rz) r z for any ϕ ∈ B γ , and the mappings on

B η (0) z → κ(z) ∈ C, z → r z ∈ B γ , z → ν z ∈ B γ , z → L z ∈ L(B γ , B γ )
are unique under the normalization conditions ν(r z ) = 1 and ν z (1) = 1, where ν is defined in (2.2); all these mappings are analytic in B η (0), and possess the following properties:

(a) for any z ∈ B η (0), it holds that M z L z = L z M z = 0; (b) for any z ∈ B η (0), P z r z = κ(z)r z and ν z P z = κ(z)ν z ; (c) κ(0) = 1, r 0 = 1, ν 0 = ν,
and κ(s) and r s are real-valued and satisfy κ(s) > 0 and r s (x) > 0 for any s ∈ (-η, η) and x ∈ S;

(d) for any k ∈ N, there exist constants C k > 0 and 0 < a 1 < a 2 < 1 such that |κ(z)| > 1 -a 1 and d k dz k L n z Bγ →Bγ C k (1 -a 2 ) n for all z ∈ B η (0).
Let us point out the differences between Proposition 3.1 and the previous results in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. Firstly, we complement the results in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF] by giving the explicit formula M z ϕ = νz (ϕ) νz(rz) r z in (3.2), for z ∈ B η (0), which is one of the crucial points in the proofs of the results of the paper. Basically, it permits us to deduce the spectral gap properties of the Markov operator Q s and as well as the perturbed operator R s,z from those of P z . In particular, this will enable us to obtain an explicit formula for the operators N s and N s,z in Propositions 3.4 and 3.8, and the uniformity of the bounds (3.36) and (3.37). Secondly, for positive matrices, some points of Proposition 3.1 have been obtained in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] only for real z 0. The difficulty here is the case when z ∈ R is negative and when z is not real, so Proposition 3.1 is new for positive matrices when |z| η. Thirdly, we show that κ(z) and r z take real positive values when z is real, which allows to define the change of measure Q x s for real s, for both invertible matrices and positive matrices. Previously it was shown in [START_REF] Benoist | Random walks on reductive groups[END_REF] that κ(z) is real-valued for real z ∈ (-η, η) for invertible matrices.

Remark 3.2. Define the conjugate transfer operator P *

z by

P * z ϕ(x) = E e zσ(g T 1 ,x) ϕ(g T 1 • x) , x ∈ S * ,
where S * is the dual projective space of S, z ∈ C with z ∈ (-η 0 , η 0 ), and g T 1 denotes the transpose of the matrix g 1 . One can verify that P * z satisfies all the properties of Proposition 3.1: under conditions of Proposition 3.1, we have the decomposition

P * n z = κ * n (z)ν * z ⊗ r * z + L * n z , z ∈ B η (0), n 1, (3.3) 
and all the assertions in Proposition 3.1 hold for

P * z , κ * (z), ν * z , r * z , L * z instead of P z , κ(z), ν z , r z , L z .
Proof of Proposition 3.1. We split the proof into three steps. In steps 1 and 2 we concentrate on the case of positive matrices, since for invertible matrices the results of these steps have been proved in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. In step 1 we follow the same lines as in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. In step 2 we follow [START_REF] Hennion | Stable laws and products of positive random Matrices[END_REF] to prove the spectral gap property of the operator P 0 and we use the perturbation theory to extend it to P z . In step 3 the proof is new and is provided for both invertible and positive matrices by complementing the results in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF].

Step 1. We only need to consider the case of positive matrices. We will show that there exists γ ∈ (0, η 0 6 ) such that P z ∈ L(B γ , B γ ), and that the mapping z → P z is analytic on

B η 0 2 (0). For any m 0, z ∈ B η 0 2 (0) and ϕ ∈ B γ , let P (m) z ϕ(x) = E (σ(g 1 , x)) m e zσ(g 1 ,x) ϕ(g 1 •x) , x ∈ S d-1 + .
It suffices to show that for any z ∈ B η 0 2 (0) and θ ∈ B η 0 6 (0),

P z+θ = ∞ m=0 θ m m! P (m) z , ( 3.4) 
and that there exists a constant C > 0 not depending on θ and z such that

∞ m=0 |θ| m m! P (m) z ϕ γ C ϕ γ . (3.5)
From (3.5) we deduce that

P (0) z = P z ∈ L(B γ , B γ ).
Moreover, the bound (3.5) ensures the validity of (3.4) which implies the analyticity of the mapping z → P z on B η 0 2 (0).

It remains to prove (3.5). We first give a control of

P (m) z ϕ ∞ . Since |σ(g, x)| log N (g) for any g ∈ Γ µ and x ∈ S d-1 + , we get ∞ m=0 |θ| m m! P (m) z ϕ ∞ ϕ ∞ E e (|θ|+| z|) log N (g 1 ) C ϕ ∞ . (3.6) To control [P (m) z ϕ] γ , note that for any ϕ ∈ B γ , [P (m) z ϕ] γ sup x,y∈P d-1 + ,x =y E (σ(g 1 , x)) m -(σ(g 1 , y)) m d γ (x, y) e zσ(g 1 ,x) ϕ(g 1 •x) + sup x,y∈P d-1 + ,x =y E (σ(g 1 , y)) m e zσ(g 1 ,x) -e zσ(g 1 ,y) d γ (x, y) ϕ(g 1 •x) + sup x,y∈P d-1 + ,x =y E (σ(g 1 , y)) m e zσ(g 1 ,y) ϕ(g 1 •x) -ϕ(g 1 •y) d γ (x, y) =: I 1,m + I 2,m + I 3,m . (3.7)
We then control each of the three terms

I 1,m , I 2,m , I 3,m . Control of I 1,m . Since for any a, b ∈ C, m ∈ N and 0 < γ < 1, |a m -b m | 2m max{|a| m-γ , |b| m-γ }|a -b| γ , ( 3.8) 
we get

I 1,m 2m ϕ ∞ sup x,y∈P d-1 + ,x =y E (log N (g 1 )) m-γ N (g 1 ) | z| d γ (x, y) |σ(g 1 , x) -σ(g 1 , y)| γ .
Using (2.1), we deduce that for any g ∈ Γ µ ,

|σ(g, x) -σ(g, y)| C g ι(g) -1 d(x, y), ( 3.9) 
and hence

∞ m=0 |θ| m m! I 1,m 2 ϕ ∞ E (log N (g 1 )) 1-γ e (|θ|+| z|+2γ) log N (g 1 ) . (3.10)
Control of I 2,m . Using (3.8), we deduce that for any z 1 , z 2 ∈ C,

|e z 1 -e z 2 | 2 max{|z 1 | 1-γ , |z 2 | 1-γ } max{e z 1 , e z 2 }|z 1 -z 2 | γ . (3.11)
By this inequality, we find that for any g ∈ Γ µ ,

e zσ(g,x) -e zσ(g,y) 2(log N (g)) 1-γ e | z| log N (g) |σ(g, x) -σ(g, y)| γ .
Combining this with (3.9) implies that

∞ m=0 |θ| m m! I 2,m 2 ϕ ∞ E (log N (g 1 )) 1-γ e (|θ|+| z|+2γ) log N (g 1 ) .
(3.12)

Control of I 3,m . Since ϕ ∈ B γ and d(g •x, g •y) d(x, y) for any g ∈ Γ µ , we get ∞ m=0 |θ| m m! I 3,m ϕ γ E e (|θ|+| z|+2γ) log N (g 1 ) .
Combining this with (3.6), (3.7), (3.10) and (3.12), we obtain (3.5).

Step 2. Again we only need to consider the case of positive matrices. We will prove the decomposition formula (3.2) together with parts (a), (b) and (d). Our proof follows closely [START_REF] Hennion | Stable laws and products of positive random Matrices[END_REF]. Define the operator M on B γ by

M ϕ = ν(ϕ)1, ϕ ∈ B γ . Set E = ker M ∩ B γ . We first show that ϕ ∞ [ϕ] γ for any ϕ ∈ E. Since ν(ϕ) = 0 for any ϕ ∈ E, there exist x 1 , x 2 ∈ P d-1 + such that ϕ(x 1 ) = ϕ(x 2 ) = 0. Since d(x, y) ∈ [0, 1], it follows that ϕ ∞ sup x∈P d-1 + | ϕ(x) -ϕ(x 1 )| + sup x∈P d-1 + | ϕ(x) -ϕ(x 2 )| 2[ϕ] γ . (3.13)
We next show that (P | E ) < 1, where P = P 0 (see (3.1)). For any x, y ∈ P d-1 + , x = y, and ϕ ∈ B γ , there exists a ∈ (0, 1) such that for large n 1,

|P n ϕ(x) -P n ϕ(y)| d γ (x, y) ϕ γ E d γ (G n •x, G n •y) d γ (x, y) ϕ γ a n ,
where for the last inequality we use [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]Lemma 3.2]. Observe that for any

ϕ ∈ B γ , we have ϕ -M ϕ ∈ E, thus P n (ϕ -M ϕ) ∈ E for any n 1 since νP = ν.
Combining this with (3.13) and the above inequality, we get

P n (ϕ -M ϕ) γ 2[P n (ϕ -M ϕ)] γ 2a n [ϕ] γ 2a n ϕ γ , which implies (P | E ) < 1.
This, together with the definition of E and the fact that P 1 = 1, shows that 1 is the isolated dominant eigenvalue of the operator P . Using this and the analyticity of P z ∈ L(B γ , B γ ) shown in step 1, and applying the perturbation theorem (see [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]Theorem III.8]), we obtain the decomposition formula (3.2) with M z (ϕ) = c 1 ν z (ϕ)r z for some constant c 1 = 0, as well as parts (a), (b) and (d). Using P z r z = κ(z)r z , we get c 1 = 1/ν z (r z ) and thus M z ϕ = νz(ϕ) νz(rz) r z for any ϕ ∈ B γ .

Step 3. We prove part (c) for both invertible matrices and positive matrices. From P 1 = 1, we see that κ(0) = 1 and r 0 = 1. Letting z = 0 in ν z P z = κ(z)ν z , we get ν 0 P = ν 0 and thus ν 0 = ν since ν is the unique µ-stationary probability measure. Now we fix z ∈ (-η, η) and we show that κ(z) and r z are real-valued. Taking the conjugate in the equality P z r z = κ(z)r z , we get P z r z = κ(z)r z , so that κ(z) is an eigenvalue of the operator P z . By the uniqueness of the dominant eigenvalue of P z , it follows that κ(z) = κ(z), showing that κ(z) is real-valued for z ∈ (-η, η). We now prove that r z is real-valued. Write r z in the form r z = u z + iv z , where u z and v z are real-valued functions on S. From the normalization condition ν(r z ) = 1, we get ν(u z ) = 1 and ν(v z ) = 0. From the equation P z r z = κ(z)r z and the fact that κ(z) is real-valued, we get that P z u z = κ(z)u z and

P z v z = κ(z)v z .
By part (a), the space of eigenvectors corresponding to the eigenvalue κ(z) is one dimensional. Therefore, we have either u z = cv z for some constant c ∈ R, or v z = 0. However, the equality u z = cv z is impossible because we have seen that ν(u z ) = 1 and ν(v z ) = 0. Hence v z = 0 and r z is real-valued for z ∈ (-η, η). The positivity of κ(z) and r z then follows from κ(0) = 1, r 0 = 1 and the analyticity of the mappings z → κ(z) and z → r z . This ends the proof of part (c), as well as the proof of Proposition 3.1.

Definition of the change of measure Q x

s . Proposition 3.1 allows us to perform a change of measure. Note that this change of measure for positive s has been studied in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]; however, for negative s it is new. For any s ∈ (-η, η), x ∈ S and g ∈ Γ µ , denote

q s n (x, g) = e sσ(g,x) κ n (s) r s (g • x) r s (x) , n 1. (3.14)
Then (q s n ) satisfies the cocycle property: for any n, m 1 and

g 1 , g 2 ∈ Γ µ , q s n (x, g 1 )q s m (g 1 •x, g 2 ) = q s n+m (x, g 2 g 1 ). (3.15)
Since κ(s) and r s are strictly positive, q s n (x, G n )µ(dg 1 )...µ(dg n ), n 1, is a sequence of probability measures, and forms a projective system on M (d, R) N * . By the Kolmogorov extension theorem, there is a unique probability measure Q x s on M (d, R) N * with marginals q s n (x, G n )µ(dg 1 )...µ(dg n ). Denote by E Q x s the corresponding expectation. For any n ∈ N and any bounded measurable function h on (S ×R) n , it holds that for any s ∈ (-η, η) 

and x ∈ S, 1 κ n (s)r s (x) E r s (X x n )e sσ(Gn,x) h X x 1 , σ(G 1 , x), ..., X x n , σ(G n , x) = E Q x s h X x 1 , σ(G 1 , x), ..., X x n , σ(G n , x) . ( 3 
Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x), x ∈ S.
Under the changed measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator given by Q s .

The next assertion will be useful to prove that the function κ is strictly convex (see Lemma 3.16). Recall that V (Γ µ ) is the support of the measure ν (cf.(2.3) and (2.4)).

Lemma 3.3. Assume the conditions of Proposition

3.1. Let s ∈ (-η, η), where η > 0 is a small constant. If ϕ Q s ϕ for some real-valued function ϕ ∈ C(S), then ϕ(x) = sup y∈S ϕ(y) for any x ∈ V (Γ µ ).
Proof. We use the approach developed in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. Set M = sup y∈S ϕ(y) and S + = {x ∈ S : ϕ(x) = M}. From the condition ϕ Q s ϕ and the fact that [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]), we obtain V (Γ µ ) ⊆ S + and the claim follows.

Γµ q s 1 (x, g)µ(dg) = 1, we get that if x ∈ S + , then g•x ∈ S + for any g ∈ Γ µ , so that Γ µ S + ⊆ S + . Since V (Γ µ ) is the unique minimal Γ µ -invariant set (see
We state the spectral gap property of the Markov operator Q s , whose proof is postponed to Section 3.5. Proposition 3.4. Assume the conditions of Proposition 3.1. Then there exists η > 0 such that for any s ∈ (-η, η) and n 1, we have

Q n s = Π s + N n s , where the mappings s → Π s , s → N s ∈ L(B γ , B γ ) are analytic on (-η, η)
and satisfy the following properties:

(a) with π s (ϕ) := νs (ϕrs) νs(rs) , we have for any ϕ ∈ B γ ,

Π s (ϕ)(x) = π s (ϕ)1, N n s (ϕ)(x) = 1 κ n (s) L n s (ϕr s )(x) r s (x) , x ∈ S,
where ν s , r s , L s are given in Proposition 3.1; (b) Π s N s = N s Π s = 0, and for each k ∈ N, there exist constants C k > 0 and a ∈ (0, 1) such that sup s∈(-η,η)

d k ds k N n s Bγ →Bγ C k a n .
(3.17)

3.4. Quasi-compactness of the operator Q s+it . For any s ∈ (-η, η) and t ∈ R, define the operator Q s+it as follows: for any ϕ ∈ B γ ,

Q s+it ϕ(x) = 1 κ(s)r s (x) P s+it (ϕr s )(x) = 1 κ(s)r s (x) E e (s+it)σ(g 1 ,x) ϕ(g 1 •x)r s (g 1 •x) , x ∈ S.
The spectral gap properties of the operator Q s+it for |t| small enough can be deduced from Proposition 3.1. However, this approach does not work for large |t|. In order to investigate the spectral gap properties of the operator Q s+it for t ∈ R, we first prove the Doeblin-Fortet inequality and then we apply the theorem of Ionescu-Tulcea and Marinescu [START_REF] Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF] to establish the quasi-compactness of the operator Q s+it . Using this property, we shall apply the non-arithmeticicty condition A5 to prove that the spectral radius of Q s+it is strictly less than 1 when t is different from 0.

The following is the Doeblin-Fortet inequality for the operator Q s+it : Lemma 3.5. Assume the conditions of Proposition 3.1. Then, there exist constants 0 < a < 1, and η > 0 small enough, such that for any s ∈ (-η, η), t ∈ R, n 1 and ϕ ∈ B γ , we have

[Q n s+it ϕ] γ C s,t,n ϕ ∞ + C s a n [ϕ] γ . ( 3.18) 
For positive-valued s, analogous results can be found in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices and in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for positive matrices. The proofs in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] rely essentially on the Hölder continuity of the mapping x → q s n (x, g) defined in (3.14). However, this property does not hold any more in the case when s is negative. Our proof of Lemma 3.5 is carried out using the Hölder inequality and the spectral gap properties of the operator P s established in Proposition 3.1.

Proof of Lemma 3.5. Using the definition of Q s+it and the cocycle property (3.15), we get that for any n 1,

Q n s+it ϕ(x) = 1 κ n (s)r s (x) P n s+it (ϕr s )(x), x ∈ S.

It follows that sup

x,y∈S,x =y

|Q n s+it ϕ(x) -Q n s+it ϕ(y)| d γ (x, y) J 1 (n) + J 2 (n), (3.19) 
where

J 1 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) 1 r s (x) - 1 r s (y) P n s+it (ϕr s )(x) , J 2 (n) = sup x,y∈S,x =y 1 r s (y)d γ (x, y)κ n (s) P n s+it (ϕr s )(x) -P n s+it (ϕr s )(y) .
Note that by Proposition 3.1, for any s ∈ (-η, η), we have min x∈S r s (x) > 0, max x∈S r s (x) < ∞ and κ(s) > 0. Control of J 1 (n). Observe that uniformly in x ∈ S,

|P n s+it (ϕr s )(x)| P n s (|ϕ|r s )(x) ϕ ∞ κ n (s) r s ∞ C s ϕ ∞ κ n (s).
Since r s ∈ B γ , this implies that for any s ∈ (-η, η) and t ∈ R,

J 1 (n) C s ϕ ∞ . (3.20) Control of J 2 (n).
Using the definition of P s+it and taking into account that r s is strictly positive and bounded on S, we have

J 2 (n) C s (J 21 (n) + J 22 (n) + J 23 (n)), (3.21) 
where

J 21 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) E (e (s+it)σ(Gn,x) -e (s+it)σ(Gn,y) )ϕ(X x n ) , J 22 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) E e (s+it)σ(Gn,y) (ϕ(X x n ) -ϕ(X y n )) , J 23 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) E e (s+it)σ(Gn,y) ϕ(X y n )[r s (X x n ) -r s (X y n )] .
Control of J 21 (n). Using (3.11) and the inequality log u u ε , u > 1, for ε > 0 small enough, we obtain e (s+it)σ(Gn,x) -e (s+it)σ(Gn,y)

2(N (G n )) |s|+ε σ(G n , x) -σ(G n , y) γ . (3.22)
From the inequality (2.1), by arguing as in the estimate of (3.9), we get

σ(G n , x) -σ(G n , y) γ C G n γ ι(G n ) -γ d γ (x, y).
Using first (3.22) and then the last bound, we deduce that

J 21 (n) C ϕ ∞ κ n (s) E (N (g 1 )) |s|+ε g 1 γ ι(g 1 ) -γ n C s,t,n ϕ ∞ , (3.23)
where the last inequality holds by condition A1. Control of J 22 (n). Since ϕ ∈ B γ , applying the Hölder inequality leads to

J 22 (n) C s [ϕ] γ κ n (s) sup x,y∈S,x =y E e sσ(Gn,y) d γ (X x n , X y n ) d γ (x, y) C s [ϕ] γ sup x,y∈S,x =y E e 2sσ(Gn,y) 1/2 κ n (s) E d 2γ (X x n , X y n ) d 2γ (x, y) 1/2 . (3.24)
Since γ > 0 is small enough, by [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 1] for invertible matrices and [29, Lemma 3.2] for positive matrices, there exists a constant a 0 ∈ (0, 1) such that for sufficiently large n 1,

sup x,y∈S,x =y E d 2γ (X x n , X y n ) d 2γ (x, y) 1/2 a n 0 . (3.25)
In view of Proposition 3.1, we have

E e 2sσ(Gn,y) = κ n (2s)(M 2s 1)(y) + L n 2s 1(y), y ∈ S.
Since, by Proposition 3.1(d), M 2s 1 ∞ is bounded by some constant C s , and

L n 2s 1 ∞ is bounded by C s κ n (2s) uniformly in n 1, it follows that sup n 1 sup y∈S E[e 2sσ(Gn,y) ] κ n (2s) C s . (3.26)
As κ is continuous in the neighborhood of 0 and κ(0) = 1, one can choose η > 0 small enough and a constant α ∈ (0, 1/a 0 ) such that κ n/2 (2s)/κ n (s) α n , uniformly in s ∈ (-η, η). Substituting this inequality together with (3.25) and (3.26) into (3.24), we obtain that for any s ∈ (-η, η) with η > 0 small, there exists 0 < a < 1 such that uniformly in n 1,

J 22 (n) C s a n [ϕ] γ . (3.27)
Control of J 23 (n). Using (3.26) and the fact that r s ∈ B γ , and applying similar techniques as in the control of J 22 (n), one can verify that there exists a constant 0 < a < 1 such that uniformly in n 1, 

J 23 (n) C s a n ϕ ∞ [r s ] γ C s a n ϕ ∞ . ( 3 
J 2 (n) C s,t,n ϕ ∞ + C s a n [ϕ] γ .
Combining this with (3.20) and (3.19), we obtain the inequality (3.18).

From Lemma 3.5 and the fact that [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] for more details). Proposition 3.6. Assume the conditions of Proposition 3.1. Then, there exists η > 0 such that for any s ∈ (-η, η) and t ∈ R, the operator Q s+it is quasi-compact.

Q s+it ϕ ∞ C s ϕ ∞ for any s ∈ (-η, η) and t ∈ R, we can deduce that Q s+it ∈ L(B γ , B γ ). We next prove that the operator Q s+it is quasi-compact. Recall that an operator Q ∈ L(B γ , B γ ) is called quasi-compact if B γ can be decomposed into two Q invariant closed subspaces B γ = E⊕F such that dim E < ∞, each eigenvalue of Q| E has modulus (Q), and (Q| F ) < (Q) (see
Proof. The proof consists of verifying the conditions of the theorem of Ionescu-Tulcea and Marinescu [START_REF] Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF]. We follow the formulation in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]Theorem II.5].

Firstly, by the definition of Q s+it , there exists a constant

C s > 0 such that Q s+it ϕ ∞ C s ϕ ∞ for any s ∈ (-η, η), t ∈ R and ϕ ∈ B γ .
Secondly, by Lemma 3.5, the Doeblin-Fortet inequality (3.18) holds for the operator Q s+it .

Thirdly, denoting K = {Q s+it ϕ : ϕ γ 1}, we claim that for any s ∈ (-η, η) and t ∈ R, the set

K is conditionally compact in (B γ , • ∞ ). Since Q s+it ϕ ∞ C s ϕ ∞ for any ϕ ∈ B γ , we conclude that K is uniformly bounded in (B γ , • ∞ ).
Moreover, by taking n = 1 in (3.18), we get that uniformly in ϕ ∈ B γ with ϕ γ 1,

|Q s+it ϕ(x) -Q s+it ϕ(y)| C s,t d γ (x, y).
This shows that K is equicontinuous in (B γ , • ∞ ). Therefore, we obtain the claim by the Arzelà-Ascoli theorem.

The assertion of the proposition now follows from the theorem of Ionescu-Tulcea and Marinescu.

The proposition below shows that the spectral radius of the operator Q s+it is strictly less than 1 when t is different from 0. The proof which relies on the non-arithmeticity condition A5, follows the standard pattern in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]; it is included for the commodity of the reader. Proposition 3.7. Assume either conditions A1 and A2 for invertible matrices, or conditions A1, A3 and A5 for positive matrices. Then, there exists η > 0 such that for any s ∈ (-η, η) and t ∈ R\{0}, we have (Q s+it ) < 1.

Proof. By the definition of Q s+it , we have (Q s+it ) (Q s ) = 1. Suppose that (Q s+it ) = 1 for some t = 0. Then, applying Proposition 3.6, there exist ϕ ∈ B γ and β ∈ R such that Q s+it ϕ = e iβ ϕ. From this equation, we deduce that |ϕ| Q s |ϕ|. Using Lemma 3.3, this implies that |ϕ(x)| = sup y∈S |ϕ(y)| for any x ∈ V (Γ µ ), so that ϕ(x) = ce iϑ(x) , where c = 0 is a constant and ϑ is a real-valued continuous function on S. Substituting this into the equation

Q s+it ϕ = e iβ ϕ gives that for any x ∈ V (Γ µ ), E Q x s exp itσ(g 1 , x) -iβ + iϑ(g 1 •x) -iϑ(x) = 1.
Since ϑ is real-valued, this implies exp[itσ(g, x) -iβ + iϑ(g • x) -iϑ(x)] = 1 for any x ∈ V (Γ µ ) and µ-a.e. g ∈ Γ µ , which contradicts to condition A5. Therefore, (Q s+it ) < 1 for any t = 0. Recalling that condition A2 implies condition A5 for invertible matrices, the proof of Proposition 3.7 is complete.

3.5. Spectral gap properties of the perturbed operator R s,z . For any s ∈ (-η, η) and z ∈ C such that s + z ∈ (-η 0 , η 0 ), define the perturbed operator R s,z as follows: for any ϕ ∈ B γ ,

R s,z ϕ(x) = E Q x s e z(σ(g 1 ,x)-Λ (s)) ϕ(X x 1 ) , x ∈ S. (3.29) 
With some calculations using (3.15), it follows that for any n 1,

R n s,z ϕ(x) = E Q x s e z(σ(Gn,x)-nΛ (s)) ϕ(X x n ) , x ∈ S. (3.30) 
The following formula relates the operator R n s,z to the operator P n s+z and is of independent interest: for any ϕ ∈ B γ , n 1, s ∈ (-η, η) and z ∈ B η (0),

R n s,z (ϕ) = e -nzΛ (s) P n s+z (ϕr s ) κ n (s)r s . ( 3.31) 
The identity (3.31) is obtained by the definitions of R s,z and P z using the change of measure (3.16).

There are two ways to establish spectral gap properties of the operator R s,z : one is to use the perturbation theory of operators [30, Theorem III.8], another is based on the Ionescu-Tulcea and Marinescu theorem [START_REF] Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF] about the quasi-compactness of operators. The representation (3.31) allows us to deduce the spectral gap properties of R s,z directly from the properties of the operator P z . This has some advantages: it ensures the uniformity in s ∈ (-η, η), allows to deal with negative-vaued s and provides an explicit formula for the projection operator Π s,z and the remainder operator N n s,z defined below.

Recall that Λ = log κ, where κ is defined in (2.6).

Proposition 3.8. Assume the conditions of Proposition 3.1. Then, there exist η > 0 and δ ∈ (0, η) such that for any s ∈ (-η, η) and z ∈ B δ (0),

R n s,z = λ n s,z Π s,z + N n s,z , n 1, (3.32) 
λ s,z = e Λ(s+z)-Λ(s)-Λ (s)z (3.33) sup

and for ϕ ∈ B γ , Π s,z (ϕ) = ν s+z (ϕr s ) ν s+z (r s+z ) r s+z r s , (3.34) N n s,z (ϕ) = e -n[Λ(s)+Λ (s)z] L n s+z (ϕr s ) r s , ( 3 
z∈B δ (0) d k dz k Π s,z Bγ →Bγ C k , (3.36) sup s∈(-η,η) sup z∈B δ (0) d k dz k N n s,z Bγ →Bγ C k a n . (3.37)
Note that, for s > 0, similar results have been obtained in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]. The novelty here is that s can account for negative values s ∈ (-η, 0] and that the bounds (3.36) and (3.37) hold uniformly in s ∈ (-η, η). This plays a crucial role in establishing Theorem 2.3.

Proof of Proposition 3.8. The proof is divided into three steps.

Step 1. By Proposition 3.1, we have

P n s+z (ϕr s ) = κ n (s + z) ν s+z (ϕr s ) ν s+z (r s+z ) r s+z + L n s+z (ϕr s ).
Substituting this into (3.31) shows (3.32), (3.33), (3.34) and (3.35).

Step 2. We prove parts (a) and (b). The assertion in part (a) follows from the expressions (3.33), (3.34) and (3.35), and the analyticity of the mappings z → κ(z), z → r z , z → ν z and z → L z defined in Proposition 3.1. To show part (b), by (3.34), we have that Π s,z is a rank-one projection on the subspace w r s+z rs : w ∈ C . The identity Π s,0 (ϕ)(x) = π s (ϕ) follows from (3.34) and the fact that π s (ϕ) = νs (ϕrs) νs(rs) . Using Proposition 3.1, we get that L z r z = 0 and ν z (L z ϕ) = 0 for any ϕ ∈ B γ . This, together with (3.34) and (3.35), shows that Π s,z N s,z = N s,z Π s,z = 0.

Step 3. We prove part (c). By Proposition 3.1, there exists a constant η > 0 such that the mappings z → κ(z), z → r z , z → ν z are analytic and uniformly bounded on B 2η (0). Combining this with (3.34), we obtain (3.36). We now prove (3.37). Since the function r s is strictly positive on the compact set S, by Proposition 3.1(d), we deduce that there exists a constant 0 < a 0 < 1 such that uniformly in ϕ ∈ B γ ,

sup s∈(-η,η) sup z∈Bη(0) L n s+z (ϕr s ) r s γ C ϕ γ a n 0 . (3.38)
Using the fact that the function Λ is continuous and Λ(0) = 0, there exist a small η > 0, δ ∈ (0, η) and a constant a 1 < 1 a 0 such that sup s∈(-η,η)

sup z∈B δ (0) e -n[Λ(s)+Λ (s)z] Ca n 1 .
Combining this with (3.38) proves (3.37) with k = 0. The proof of (3.37) when k 1 can be carried out in the same way as in the case of k = 0.

Proof of Proposition 3.4. The assertion is obtained from Proposition 3.8 taking z = 0.

In order to establish the non-arithmeticity of the perturbed operator R s,it , we shall need the following lemma from [30, Lemma III.9]: Lemma 3.9. Let s ∈ R, δ > 0 and I s,δ = (s -δ, s + δ). Assume that the mapping t ∈ I s,δ → P (t) ∈ L(B γ , B γ ) is continuous. Let r > (P (s)). Then, there exist constants ε = ε(s) and c = c(s) > 0 such that sup t∈(s-ε,s+ε) Let I ⊂ (-η, η) and K ⊆ R\{0} be any compact sets. Since

P n (t)
σ(G n , x) (s,t)∈I×K s -ε(s), s + ε(s) × t -δ(t), t + δ(t) ⊃ I × K,
by Heine-Borel's theorem, there exist an integer m 0 1 and a sequence {s m , t m } 1 m m 0 such that

m 0 m=1 (s m -ε m , s m + ε m ) × (t m -δ m , t m + δ m ) ⊃ I × K,
where ε m = ε(s m ) and δ m = δ(s m ). This concludes the proof of Proposition 3.10 by taking

C K = min 1 m m 0 C(s m , t m ).
We now give some properties of the function b s,ϕ defined as follows: for any s ∈ (-η, η) and

ϕ ∈ B γ , b s,ϕ (x) := lim n→∞ E Q x s (σ(G n , x) -nΛ (s))ϕ(X x n ) , x ∈ S.
In particular, with s = 0, we have b 0,ϕ = b ϕ , which is defined in (2.7). Proof. In view of Proposition 3.8, we have that for any ϕ ∈ B γ ,

E Q x s e z(σ(Gn,x)-nΛ (s)) ϕ(X x n ) = λ n s,z Π s,z ϕ(x) + N n s,z ϕ(x), x ∈ S.
From (3.33), we have λ s,0 = 1 and dλs,z dz | z=0 = 0. Differentiating both sides of the above equation with respect to z at the point 0 gives that for any x ∈ S,

E Q x s (σ(G n , x) -nΛ (s))ϕ(X x n ) = dΠ s,z dz z=0 ϕ(x) + dN n s,z dz z=0 ϕ(x). (3.40)
Using the bounds (3.36) and (3.37), we find that the first term on the righthand side of (3.40) belongs to B γ , and the second term converges to 0 exponentially fast as n → ∞. Hence, letting n → ∞ in (3.40), we obtain (3.39). This shows that the function b s,ϕ is well-defined and b s,ϕ ∈ B γ .

For any s ∈ (-η, η) with η > 0 small, define Q s = S Q x s π s (dx). The following result will be used to prove the strong law of large numbers for σ(G n , x) under the changed measure Q s : Lemma 3.12. Assume the conditions of Proposition 3.1. There exist η > 0 and c, C > 0 such that uniformly in s ∈ (-η, η), ϕ ∈ B γ and n 1,

E Qs (σ(G n , x) -nΛ (s))ϕ(X x n ) C ϕ γ e -cn . (3.41)
Proof. We follow the proof of the previous lemma. Integrating both sides of the identity (3.40) with respect to π s , we get, for any ϕ ∈ B γ ,

E Qs (σ(G n , x) -nΛ (s))ϕ(X x n ) = π s dΠ s,z dz z=0 ϕ + π s dN n s,z dz z=0 ϕ . (3.42) Since Π 2 s,z ϕ = Π s,z ϕ, we have 2Π s,0 ( dΠs,z dz | z=0 ϕ) = dΠs,z dz | z=0 ϕ.
Integrating both sides of this equation with respect to π s and using the fact that Π s,0 = π s , we find that We now establish the strong laws of large numbers for σ(G n , x) under the measures Q x s and Q s , which are of independent interest. Proposition 3.13. Assume the conditions of Proposition 3.1. Then, there exists η > 0 such that for any s ∈ (-η, η) and x ∈ S,

lim n→∞ σ(G n , x) n = Λ (s), Q x s -a.s..
Proof. By the Borel-Cantelli lemma, it suffices to show that for any ε > 0, s ∈ (-η, η) and x ∈ S, we have

∞ n=1 Q x s σ(G n , x) -nΛ (s) nε < ∞. (3.44) 
Now let us prove (3.44). By Markov's inequality, we have for small δ > 0,

Q x s σ(G n , x) -nΛ (s) nε e -nδε E Q x s e δ(σ(Gn,x)-nΛ (s)
) + e -nδε E Q x s e -δ(σ(Gn,x)-nΛ (s)) . From (3.30) and Proposition 3.8, we deduce that there exist positive constants c, C independent of s, x, δ such that E Q x s e δ(σ(Gn,x)-nΛ (s)) + E Q x s e -δ(σ(Gn,x)-nΛ (s)) Ce n[Λ(s+δ)-Λ(s)-Λ (s)δ] + Ce n[Λ(s-δ)-Λ(s)+Λ (s)δ] + Ce -cn . Using Taylor's formula and taking δ > 0 small enough, we conclude that

Q x s σ(G n , x) -nΛ (s) nε Ce -n δ 2 ε ,
which implies the desired assertion (3.44).

Proposition 3.14. Assume the conditions of Proposition 3.1. Then, there exists η > 0 such that for any s ∈ (-η, η) and x ∈ S,

lim n→∞ σ(G n , x) n = Λ (s), Q s -a.s.. Proof. Taking ϕ = 1 in (3.41) leads to lim n→∞ 1 n E Qs σ(G n , x) = Λ (s). ( 3 

.45)

Let Ω = M (d, R) N * and Ω = S × Ω. Following [27, Theorem 3.10], we define the shift operator θ on Ω by θ(x, ω) = (g 1 •x, θω), where ω ∈ Ω and θ is the shift operator on Ω. For any x ∈ S and ω ∈ Ω, set h(x, ω) = σ(g 1 (ω), x).

Then h is Q s -integrable. Since σ(G n , x) = n-1 k=0 (h • θ k )(x, ω)
and Q s is θ-ergodic, it follows from Birkhoff's ergodic theorem that σ(Gn,x)) n converges Q s -a.s. to some constant c s as n → ∞. If we suppose that c s is different from Λ (s), then this contradicts to (3.45). Thus c s = Λ (s) and the assertion of the lemma follows. Now we give the third-order Taylor expansion of λ s,z defined by (3.33), with respect to z at the origin in the complex plane C. Proposition 3.15. Assume the conditions of Proposition 3.1. Then, there exist η > 0 and δ > 0 such that for any s ∈ (-η, η) and z ∈ B δ (0),

λ s,z = 1 + σ 2 s 2 z 2 + Λ (s) 6 z 3 + o(|z| 3 ) as |z| → 0, (3.46) 
where (a) σ 2 s = Λ (s) 0 and Λ (s) ∈ R; (b) for invertible matrices, σ s > 0 under the stated conditions; for positive matrices, σ s > 0 if additionally σ = σ 0 > 0 or if the measure µ is non-arithmetic; (c) uniformly in s ∈ (-η, η) and x ∈ S,

σ 2 s = lim n→∞ 1 n E Q x s σ(G n , x) -nΛ (s) 2 = lim n→∞ 1 n E Qs σ(G n , x) -nΛ (s) 2 ;
(d) uniformly in s ∈ (-η, η),

Λ (s) = lim n→∞ 1 n E Qs σ(G n , x) -nΛ (s) 3 .
The proof of Proposition 3.15 is based on the following lemma: Lemma 3.16. Assume the conditions of Proposition 3.1. Then the functions Λ and κ are convex on (-η, η) for η > 0 small enough. Moreover, Λ and κ are strictly convex for invertible matrices under the given conditions, and for positive matrices under the additional condition A5.

Proof. The proof follows [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. Since Λ = log κ, it suffices to prove Lemma 3.16 for the function Λ. For any t ∈ (0, 1), s 1 , s 2 ∈ (-η, η), set s = ts 1 + (1 -t)s 2 . Using Hölder's inequality and the fact that P s r s = κ(s)r s ,

P s (r t s 1 r 1-t s 2 ) κ t (s 1 )κ 1-t (s 2 )r t s 1 r 1-t s 2 . (3.47)
Since κ(s ) is the dominant eigenvalue of the operator P s , we obtain κ(s ) κ t (s 1 )κ 1-t (s 2 ) and thus the function Λ is convex.

To show that the function Λ is strictly convex, we suppose, by absurd, that there exist s 1 = s 2 and some t ∈ (0, 1) such that κ(s ) = κ t (s 1 )κ 1-t (s 2 ). Using this equality, the definition of the Markov operator Q s and (3.47), we get Q s (r t s 1 r 1-t s 2 /r s ) r t s 1 r 1-t s 2 /r s . Applying Lemma 3.3 with ϕ = -r t s 1 r 1-t s 2 /r s , this implies that r t s 1 r 1-t s 2 = cr s on V (Γ µ ) for some constant c > 0. Substituting this equality and the identity κ(s ) = κ t (s 1 )κ 1-t (s 2 ) into (3.47), we see that the Hölder inequality in (3.47) is actually an equality. This yields that there exists a function c(x) > 0 such that for any g ∈ Γ µ and x ∈ V (Γ µ ), e s 1 σ(g,x) r s 1 (g•x) = c(x)e s 2 σ(g,x) r s 2 (g•x).

(3.48)

Integrating both sides of the equation (3.48) with respect to µ gives c(x) = κ(s 1 )rs 1 (x) κ(s 2 )rs 2 (x) . Substituting this into (3.48) and noting that s 1 = s 2 , we find that there exist a constant c 1 > 0 and a real-valued function ϕ on S such that e σ(g,x) = c 1

ϕ(g•x)
ϕ(x) for any g ∈ Γ µ and x ∈ V (Γ µ ). This contradicts to the non-arithmetic condition A5. Recall that condition A2 implies condition A5 for invertible matrices. Hence Λ is strictly convex for invertible matrices under stated conditions.

Proof of Proposition 3.15. The expansion (3.46) follows from the identity (3.33) and Taylor's formula.

For part (a), by Lemma 3.16, we have Λ (s) 0 for any s ∈ (-η, η). Since Λ = log κ and it is shown in Proposition 3.1 that the function κ is real-valued and strictly positive on (-η, η), we get Λ (s) ∈ R.

For part (b), recall that it was shown in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] that σ 0 > 0 for invertible matrices under the stated conditions, and for positive matrices under the additional condition of non-arithmeticity. Hence, using the continuity of the function Λ , we obtain that σ s > 0.

For part (c), by Proposition 3.8, we get that for |z| small, E Q x s e z(σ(Gn,x)-nΛ (s)) = λ n s,z (Π s,z 1)(x) + (N n s,z 1)(x).

(3.49)

It follows from (3.46) that for |z| = o(n -1/3 ),

λ n s,z = 1 + nσ 2 s z 2 2 + nΛ (s) z 3 6 + o(n|z| 3 ). ( 3.50) 
Using Taylor's formula, the bound (3.36) and the fact Π s,0 1 = 1, we obtain

(Π s,z 1)(x) = 1 + c s,x,1 z + c s,x,2 z 2 + c s,x,3 z 3 + o(|z| 3 ), (3.51) 
where the constants c s,x,1 , c s,x,2 , c s,x,3 ∈ C are bounded as functions of s and x. Similarly, using the fact N s,0 1 = 0 and the bound (3.37), there exist constants C s,x,n,1 , C s,x,n,2 , C s,x,n,3 ∈ C which are bounded as functions of s, x and n such that

(N n s,z 1)(x) = C s,x,n,1 z + C s,x,n,2 z 2 + C s,x,n,3 z 3 + o(|z| 3 ). (3.52)
Taking the second derivative on both sides of the equation (3.49) with respect to z at 0, and using the expansions (3.50)-(3.52), we deduce that

E Q x s σ(G n , x) -nΛ (s) 2 = nσ 2 s + 2c s,x,2 + 2C s,x,n,2 . (3.53)
This, together with the definition of Q s and the fact that the constants c s,x,2 , C s,x,n,2 are bounded as functions of s, x, n, concludes the proof of part (c).

For part (d), integrating both sides of the equations (3.49), (3.51) and (3.52) with respect to π s , and using the property (3.43) with ϕ = 1 (thus the second term on the right-hand side of (3.51) vanishes), in the same way as in the proof of (3.53), we get

E Qs σ(G n , x) -nΛ (s) 3 = nΛ (s) + 6c s,3 + 6C s,n,3 .
This implies the desired assertion in part (d).

Remark 3.17. Inspecting the proof of Proposition 3.15, it is easy to see that the results in parts (c) and (d) can be reinforced to the following bounds:

sup s∈(-η,η) sup x∈S 1 n E Q x s σ(G n , x) -nΛ (s) 2 -σ 2 s C n , sup s∈(-η,η) 1 n E Qs σ(G n , x) -nΛ (s) 3 -Λ (s) C n .
The first bound above also holds with the measure Q x s replaced by Q s .

Smoothing inequality on the complex plane

In this section we aim to establish a new smoothing inequality, which plays a crucial role in proving the Berry-Esseen bound and Edgeworth expansion with a target function ϕ on X x n ; see Theorems 2.1, 2.2, 5.1 and 5.3. From now on, for any integrable function h : R → C, denote its Fourier transform by h(t) = R e -ity h(y)dy, t ∈ R. If h is integrable on R, then using the inverse Fourier transform gives h(y) = 1 2π R e ity h(t)dt, for almost all y ∈ R with respect to the Lebesgue measure on R. Denote by h 1 * h 2 the convolution of the functions h 1 , h 2 on the real line.

For any r > 0, denote

D r = {z ∈ C : |z| < r}, D + r = {z ∈ C : |z| < r, z > 0} and D - r = {z ∈ C : |z| < r, z < 0}.
We construct a density function ρ T which plays an important role in establishing a new smoothing inequality. As in [START_REF] Petrov | Sums of independent random variables[END_REF], we define a density function ρ on the real line R by setting ρ(0) = 1/2π and

ρ(y) = 1 2π sin y 2 y 2 2 , y ∈ R \ {0}.
Then ρ is a non-negative function bounded by 1 2π and R ρ(y)dy = 1. Its Fourier transform ρ is given by

ρ(t) = 1 -|t|, t ∈ [-1, 1],
and ρ(t) = 0 otherwise.

For any T > 0 and the fixed constant b > 0 satisfying b -b ρ(y)dy = 3/4, define the density function

ρ T (y) = T ρ(T y -b), y ∈ R, whose Fourier transform ρ T is given by ρ T (t) = e -ib t T 1 - |t| T , t ∈ [-T, T ], (4.1) 
and ρ T (t) = 0 otherwise. Note that the function ρ T is not smooth at the point 0, so that it can not have an analytic extension in a small neighborhood of 0 in the complex plane C. Now we are ready to establish our new smoothing inequality. Its proof is based on the properties of the density function ρ T , Cauchy's integral theorem and some techniques from [START_REF] Esseen | Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law[END_REF][START_REF] Petrov | Sums of independent random variables[END_REF].

Proposition 4.1. Assume that F is non-decreasing on R, and that H is differentiable of bounded variation on

R such that sup y∈R |H (y)| < ∞. Sup- pose that F (-∞) = H(-∞) and F (∞) = H(∞). Let f (t) = R e -ity dF (y) and h(t) = R e -ity dH(y), t ∈ R.
Suppose that r > 0 and that f and h have analytic extensions on D r . Then, for any T r, Upper bound. Since the function F is non-decreasing on R and ρ T is a density function on R, we find that for any y ∈ R,

sup y∈R |F (y) -H(y)| 1 π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 1 π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 1 π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + 1 π sup y>0 C + r f (z) -h(z) z e izy e ib z T dz + 1 π r |t| T f (t) -h(t) t dt + 2 πT T -T |f (t) -h(t)|dt + 3b T sup y∈R |H ( 
F (y) 4 3 y+ 2b T y F (u)ρ T (u -y)du = H(y) + 4 3 y+ 2b T y F (u) -H(u) ρ T (u -y) + H(u) -H(y) ρ T (u -y) du H(y) + 4 3 y+ 2b T y F (u) -H(u) ρ T (u -y)du + 2b T sup y∈R |H (y)|. (4.3) Let F 1 (y) = R F (u)ρ T (u -y)du, and H 1 (y) = R H(u)ρ T (u -y)du, y ∈ R. Elementary calculations lead to R e -ity dF 1 (y) = f (t) ρ T (-t), R e -ity dH 1 (y) = h(t) ρ T (-t), t ∈ R.
Restricted on the real line, the function ρ T is supported on [-T, T ]. By the Fourier inversion formula we get

F 1 (y) -F 1 (v) = 1 2π T -T e ity -e itv it f (t) ρ T (-t)dt, y, v ∈ R, H 1 (y) -H 1 (v) = 1 2π T -T e ity -e itv it h(t) ρ T (-t)dt, y, v ∈ R.
By the definition of ρ T (cf. (4.1)), we get

F 1 (y) -H 1 (y) -(F 1 (v) -H 1 (v)) = 1 2π T -T f (t) -h(t) it e ity e ib t T dt - 1 2π T -T f (t) -h(t) it e itv e ib t T dt - 1 2π T -T f (t) -h(t) it e ity e ib t T |t| T dt + 1 2π T -T f (t) -h(t) it e itv e ib t T |t| T dt.
It follows that for any y, v ∈ R,

F 1 (y) -H 1 (y) -(F 1 (v) -H 1 (v)) 1 2π T -T f (t) -h(t) it e ity e ib t T dt - T -T f (t) -h(t) it e itv e ib t T dt + 1 πT T -T |f (t) -h(t)|dt. (4.4)
We shall use Cauchy's integral theorem to change the integration path [-T, T ] to a contour in the complex plane. In order to estimate the difference |F 1 (y) -H 1 (y)|, we are led to consider two cases: y 0 and y > 0.

Control of |F 1 (y) -H 1 (y)| when y 0. Let C -= C r,T ∪ C - r , where C r,T = [-T, -r] ∪ [r, T ] and C - r is the lower semicircle given in (4.2). Since F (-∞) = H(-∞) and F (∞) = H(∞)
, by the definition of f and h, we see that f (0) = h(0). This, together with the condition that f and h have analytic extensions on D r , implies that z = 0 is a removable singular point of the function z ∈ D r → f (z)-h(z) z ∈ C. Hence, using the fact that the function z → e izy e ib z T is analytic on the domain D r , applying Cauchy's integral theorem, we obtain that for any y, v ∈ R,

T -T f (t) -h(t) it e ity e ib t T dt - T -T f (t) -h(t) it e itv e ib t T dt = C - f (z) -h(z) iz e izy e ib z T dz - C - f (z) -h(z) iz e izv e ib z T dz, ( 4.5) 
where the integration is over the complex curve C -oriented from -T to T . The second integral in (4.5) converges to 0 as v → -∞, by using the Riemann-Lebesgue lemma on the real segment C r,T and by applying the Lebesgue convergence theorem on the semicircle

C - r . Note that F 1 (-∞) = H 1 (-∞) since F (-∞) = H(-∞). Consequently, letting v → -∞ in (4.5)
and substituting it into (4.4), we get

F 1 (y) -H 1 (y) 1 2π C - f (z) -h(z) iz e izy e ib z T dz + 1 πT T -T |f (t) -h(t)|dt.
Therefore, recalling that

C -= C r,T ∪ C - r , it follows that sup y 0 |F 1 (y) -H 1 (y)| 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + 1 πT T -T |f (t) -h(t)|dt. (4.6) Control of |F 1 (y) -H 1 (y)| when y > 0. Let C + = C r,T ∪ C + r , where C r,T = [-T, -r] ∪ [r, T ] and C +
r is the upper semicircle given in (4.2). In an analogous way as in (4.5), applying Cauchy's integral theorem we have

T -T f (t) -h(t) it e ity e ib t T dt - T -T f (t) -h(t) it e itv e ib t T dt = C + f (z) -h(z) iz e izy e ib z T dz - C + f (z) -h(z) iz e izv e ib z T dz, (4.7)
where the integration is over the complex curve C + also oriented from -T to T . The second integral in (4.7) converges to 0 as v → +∞, by using again the Riemann-Lebesgue lemma on the real segment C r,T and by applying the Lebesgue convergence theorem on the upper semicircle Denote ∆ = sup y∈R |F (y) -H(y)|. Then, taking into account that ρ T is a density function on R, using (4.9) and the fact that 2b/T 0 ρ T (y)dy = 3/4, we get that for any y ∈ R,

C + r . Note that F 1 (∞) = H 1 (∞) since F (∞) = H(∞).
y+ 2b T y F (u) -H(u) ρ T (u -y)du |F 1 (y) -H 1 (y)| + ∆ 1 - y+ 2b T y ρ T (u -y)du 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + 1 2π sup y>0 C + r f (z) -h(z) z e izy e ib z T dz + 1 πT T -T |f (t) -h(t)|dt + ∆ 4 .
Substituting this inequality into (4.3), we obtain the following desired upper bound: for any y ∈ R,

F (y) -H(y) 2 3π C r,T f (t) -h(t) t dt + 2 3π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + 2 3π sup y>0 C + r f (z) -h(z) z e izy e ib z T dz + 4 3πT T -T |f (t) -h(t)|dt + ∆ 3 + 2b T sup y∈R |H (y)|. (4.10)
Lower bound. Similarly to the upper bound (4.3), using the fact that F is non-decreasing and ρ T is a density function on R, we have for any y ∈ R,

F (y) 4 3 y y-2b T F (u)ρ T (y -u)du H(y) + 4 3 y y-2b T F (u) -H(u) ρ T (y -u)du - 2b T sup y∈R |H (y)|. Let F 2 (y) = (F * ρ T )(y) and H 2 (y) = (H * ρ T )(y), y ∈ R. Then, R e -ity dF 2 (y) = f (t) ρ T (t), R e -ity dH 2 (y) = h(t) ρ T (t), t ∈ R.
Proceeding in the same way as in the proof of (4.9), one has

sup y∈R |F 2 (y) -H 2 (y)| 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 1 2π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 1 πT T -T |f (t) -h(t)|dt.
Following the proof of (4.10), we obtain the lower bound: for any y ∈ R, 

F (y) -H(y) - 2 3π C r,T f (t) -h(t) t dt - 2 3π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz - 2 3π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz - 4 3πT T -T |f (t) -h(t)|dt - ∆ 3 - 2b T sup y∈R |H ( 
1, s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ , E x s ϕ(X x n )1 σ(Gn,x)-nΛ (s) σs √ n y -π s (ϕ)Φ(y) C √ ϕ γ . (5.1)
The next result gives an Edgeworth expansion for (X x n , σ(G n , x)) with a target function ϕ on X x n under Q x s . The function b s,ϕ (x), x ∈ S, which will be used in the formulation of this result, is defined in Lemma 3.11 and has an equivalent expression (3.39) in terms of derivative of the projection operator Π s,z , see Proposition 3.8.

Theorem 5.2. Assume either conditions A1 and A2 for invertible matrices, or conditions A1, A3 and A5 for positive matrices. Then there exists

η > 0 such that as n → ∞, uniformly in s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ , E Q x s ϕ(X x n )1 σ(Gn,x)-nΛ (s) σs √ n y -E Q x s ϕ(X x n ) Φ(y) + Λ (s) 6σ 3 s √ n (1 -y 2 )φ(y) + b s,ϕ (x) σ s √ n φ(y) = ϕ γ o 1 √ n .
The following asymptotic expansion is slightly different from that in Theorem 5.2, with the term E Q x s [ϕ(X x n )] replaced by π s (ϕ): Theorem 5.3. Under the conditions of Theorem 5.2, there exists η > 0 such that, as n → ∞, uniformly in s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ ,

E Q x s ϕ(X x n )1 σ(Gn,x)-nΛ (s) σs √ n y (5.2) -π s (ϕ) Φ(y) + Λ (s) 6σ 3 s √ n (1 -y 2 )φ(y) + b s,ϕ (x) σ s √ n φ(y) = ϕ γ o 1 √ n .
With fixed s > 0 and ϕ = 1, the expansion (5.2) has been established earlier in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF].

The assertion of Theorem 5.3 follows from Theorem 5.2, since the bound (3.17) implies that there exist constants c, C > 0 such that uniformly in ϕ ∈ B γ , sup s∈(-η,η)

sup x∈S E Q x s [ϕ(X x n )] -π s (ϕ) Ce -cn ϕ γ .
(5.3) Theorems 2.1 and 2.2 follow from the above theorems taking s = 0 and recalling the fact that Λ (0) = λ, σ 0 = σ and 0,ϕ = b ϕ . 5.2. Proof of Theorem 5.2. Without loss of generality, we assume that the target function ϕ is non-negative on S. For any x ∈ S, denote

F (y) = E Q x s ϕ(X x n )1 σ(Gn,x)-nΛ (s) σs √ n y , y ∈ R, H(y) = E Q x s [ϕ(X x n )] Φ(y) + Λ (s) 6σ 3 s √ n (1 -y 2 )φ(y) - b s,ϕ (x) σ s √ n φ(y), y ∈ R.
Define

f (t) = R e -ity dF (y), h(t) = R e -ity dH(y), t ∈ R.
By straightforward calculations we have that for any x ∈ S,

f (t) = E Q x s ϕ(X x n )e -it σ(Gn,x)-nΛ (s) σs √ n = R n s, -it σs √ n ϕ(x), t ∈ R, (5.4 
)

h(t) = e -t 2 2 1 -(it) 3 Λ (s) 6σ 3 s √ n R n s,0 ϕ(x) -it b s,ϕ (x) σ s √ n , t ∈ R. (5.5) It is clear that F (-∞) = H(-∞) = 0 and F (∞) = H(∞).
Moreover, one can verify that the functions F, H and their corresponding Fourier-Stieltjes transforms f, h satisfy the conditions of Proposition 4.1 for r = δ 1 √ n, with some δ 1 > 0 sufficiently small. Hence, by Proposition 4.1 we get that for any real T r,

sup y∈R |F (y) -H(y)| 1 π (I 1 + I 2 + I 3 + I 4 ), (5.6) 
where

I 1 = 3πb T sup y∈R |H (y)|, I 2 = r |t| T f (t) -h(t) t dt, I 3 = sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + sup y>0 C + r f (z) -h(z) z
e izy e ib z T dz =:

I 31 + I 32 + I 33 + I 34 , I 4 = 2 T T -T |f (t) -h(t)|dt, ( 5.7) 
with the constant b > 0 and the complex contours C - r , C + r defined in (4.2). By virtue of (5.6), in order to establish Theorem 5.2 it suffices to prove that, as n → ∞, uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

I 1 + I 2 + I 3 + I 4 = ϕ γ o 1 √ n .
(5.8)

Control of I 1 . From (5.3) we deduce that uniformly in ϕ ∈ B γ , sup s∈(-η,η) sup x∈S E Q x s [ϕ(X x n )] C ϕ γ . ( 5.9) 
By the formula (3.39) and the bound (3.36), we get that uniformly in ϕ ∈ B γ , sup s∈(-η,η)

sup x∈S |b s,ϕ (x)| C ϕ γ . ( 5.10) 
Using the bounds (5.9) and (5.10), and taking into account that σ 2 s > 0 and Λ (s) ∈ R are bounded by a constant independent of s ∈ (-η, η), we obtain that |H (y)| is bounded by c 1 ϕ γ , uniformly in s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ . Hence, for any ε > 0, we can choose a > 0 large enough such that for

T = a √ n, uniformly in ϕ ∈ B γ , sup s∈(-η,η) sup x∈S I 1 3πbc 1 T ϕ γ < ε √ n ϕ γ . (5.11)
Control of I 2 . Since σ m := inf s∈(-η,η) σ s > 0, we can pick δ 1 small enough such that 0 < δ 1 < min{a, δσ m /2}, where δ > 0 is the constant given in Proposition 3.8. Then, with r = δ 1 √ n we bound I 2 as follows:

I 2 δ 1 √ n<|t| a √ n f (t) t dt + δ 1 √ n<|t| a √ n h(t) t dt.
(5.12)

Let σ M := sup s∈(-η,η) σ s . It holds that 0 < σ M < ∞. On the right-hand side of (5.12), using Proposition 3.10 with K = {t ∈ R : δ 1 /σ M |t| a/σ m }, the first integral is bounded by Ce -cn ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ; the second integral, by the bounds (5.9) and (5.10) and direct calculations, is bounded by Ce -cn ϕ γ , also uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . Consequently, we conclude that uniformly in ϕ ∈ B γ , sup s∈(-η,η)

sup x∈S I 2 Ce -cn ϕ γ .
(5.13)

Control of I 3 . Recall that the term 3 is decomposed into four terms in (5.7). We will only deal with I 31 , since I 32 , I 33 , I 34 can be treated in a similar way. In view of (5.4) and (5.5), by the spectral gap decomposition (3.32), we get

f (z) -h(z) = J 1 (z) + J 2 (z) + J 3 (z) + J 4 (z), (5.14) 
where

J 1 (z) = π s (ϕ) λ n s, -iz σs √ n -e -z 2 2 1 -(iz) 3 Λ (s) 6σ 3 s √ n , ( 5.15) 
J 2 (z) = λ n s, -iz σs √ n Π s, -iz σs √ n ϕ(x) -π s (ϕ) + iz b s,ϕ (x) σ s √ n , ( 5.16 
)

J 3 (z) = iz b s,ϕ (x) σ s √ n e -z 2 2 -λ n s, -iz σs √ n , ( 5.17) 
J 4 (z) = N n s, -iz σs √ n ϕ(x) -N n s,0 ϕ(x)e -z 2 2 1 -(iz) 3 Λ (s) 6σ 3 s √ n . ( 5.18) 
With the above notation, we use the decomposition (5.14) to bound I 31 in (5.7) as follows:

I 31 4 k=1 A k , where A k := sup y 0 C - r J k (z) z e izy e -ib z T dz . ( 5.19) 
We now give bounds of A k , 1 k 4, in a series of lemmata. Let us start by showing an elementary inequality, which will be used repeatedly in the sequel. Let [z 1 , z 2 ] = {z 1 + θ(z 2 -z 1 )) : 0 θ 1} be the complex segment with the endpoints z 1 and z 2 . 

f (z 2 ) - n-1 k=0 f (k) (z 1 ) k! (z 2 -z 1 ) k sup z∈[z 1 ,z 2 ] |f (n) (z)| n! |z 2 -z 1 | n .
Proof. The proof of this inequality can be carried out by induction. The inequality clearly holds for n = 1 since for any

z 1 , z 2 ∈ D, |f (z 2 ) -f (z 1 )| = [z 1 ,z 2 ] f (z)dz sup z∈[z 1 ,z 2 ] |f (z)||z 2 -z 1 |. (5.20) 
For n 2, applying (5.20) to

F (z) = f (z) -n-1 k=1 f (k) (z 1 ) k!
(z -z 1 ) k , z ∈ D, leads to the desired assertion. Now we are ready to establish a bound for each term A k . The proof is based on the saddle point method. To be more precise, we deform the integration path, which passes through a suitable point related to the saddle point, to minimise the integral in A k (see (5.19)). Lemma 5.5. Let C - r be defined by with r = δ 1 √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 1 = sup y 0 C - r J 1 (z) z e izy e -ib z T dz c n ϕ γ .
Proof. In view of (3.33), using Λ = log κ and Taylor's formula, we have

λ n s, -iz σs √ n = e -z 2 2 e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k . ( 5.21) 
For brevity, for any z ∈ C - r , denote

h 1 (z) = 1 z e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k -1 -(-iz) 3 Λ (s) 6σ 3 s √ n e -ib z T . ( 5.22) 
Then, in view of (5.15), the term A 1 can be rewritten as

A 1 = π s (ϕ) sup y 0 C - r e -z 2 2 +izy h 1 (z)dz . ( 5.23) 
The main contribution to the integral in (5.23) is given by the saddle point z = iy which is the solution of the equation d dz (-z 2 2 + izy) = 0. Denote by D - 2r = {z ∈ C : |z| < 2r, z < 0} the domain on analyticity of h 1 , where r = δ 1 √ n with δ 1 > 0 small enough. Set

y n = min -y, δ 1 √ n . ( 5.24) 
When -δ 1 √ n y 0, the saddle point iy belongs to D - 2r . By Cauchy's integral theorem, we change the integration in (5.23) to a rectangular path inside the domain on analyticity D - 2r which passes through the saddle point. When y < -δ 1 √ n is large, the saddle point iy is outside the domain D - 2r . In this case we choose a rectangular path inside D - 2r which passes through the point -iy n = -iδ 1 √ n. Note that π s (ϕ) is bounded by c 1 ϕ γ uniformly in s ∈ (-η, η) and ϕ ∈ B γ . Since the function h 1 has an analytic extension on the domain D - 2r with r = δ 1 √ n, applying Cauchy's integral theorem, we deduce that

A 1 c 1 ϕ γ sup y 0 -δ 1 √ n-iyn -δ 1 √ n + δ 1 √ n δ 1 √ n-iyn e -z 2 2 +izy h 1 (z)dz + c 1 ϕ γ sup y 0 δ 1 √ n-iyn -δ 1 √ n-iyn e -z 2 2 +izy h 1 (z)dz =: c 1 ϕ γ (A 11 + A 12 ). (5.25) of A 11 .
Using a change of variable, we get

A 11 = e - δ 2 1 2 n sup y 0 yn 0 e t 2 2 +ty-iδ 1 √ n(t+y) h 1 (-δ 1 √ n -it)dt - yn 0 e t 2 2 +ty+iδ 1 √ n(t+y) h 1 (δ 1 √ n -it)dt e - δ 2 1 2 n sup y 0 yn 0 e t 2 2 +ty |h 1 (-δ 1 √ n -it)| + |h 1 (δ 1 √ n -it)| dt . (5.26)
We first give a bound for |h 1 (±δ

1 √ n -it)|. Since t ∈ [0, y n ] and y n δ 1 √ n, direct calculations give (-i) 3 (±δ 1 √ n -it) 3 = 3δ 2 1 nt -t 3 2δ 3 1 n 3/2 , which implies that for δ 1 > 0 sufficiently small, n ∞ k=3 Λ (k) (s) k! (-i) k (±δ 1 √ n -it) k (σ s √ n) k 1 4 δ 2 1 n. ( 5.27) 
Observe that there exists a constant c > 0 such that uniformly in t ∈ [0, y n ] and s ∈ (-η, η),

1 z = 1 ±δ 1 √ n -it c δ 1 √ n , i 3 (±δ 1 √ n -it) 3 Λ (s) 6σ 3 s √ n cn. (5.28) Since | exp{-ib T (±δ 1 √ n-it)
}| is bounded by some constant c > 0, uniformly in t ∈ [0, y n ] and n 1, from the bounds (5.27) and (5.28), it follows that uniformly in s ∈ (-η, η),

|h 1 (-δ 1 √ n -it)| + |h 1 (δ 1 √ n -it)| c δ 1 √ n e δ 2 1 4 n + cn c δ 1 √ n e δ 2 1 4 n .
In view of (5. 

A 11 c δ 1 y n √ n e - δ 2 1 2 n e δ 2 1 4 n c δ 1 e - δ 2 1 
4 n .

(5.29)

Control of A 12 . Using a change of variable z = t -iy n leads to

A 12 = sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 2 +it(yn+y) h 1 (t -iy n )dt sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 2 |h 1 (t -iy n )|dt ,
where the function h 1 is defined by (5.22). To estimate the term A 12 , the main task is to give a control of |h

1 (t -iy n )|. It follows from Lemma 5.4 that |e z 1 -e z 2 | e max{ z 1 , z 2 } |z 1 -z 2 | and |e z 2 -1 -z 2 | 1 2 |z 2 | 2 e |z 2 |
for any z 1 , z 2 ∈ C, and hence

|e z 1 -1 -z 2 | e max{ z 1 , z 2 } |z 1 -z 2 | + 1 2 |z 2 | 2 e |z 2 | . ( 5.31) 
We shall make use of the inequality (5.31) to derive a bound of |h

1 (t -iy n )|. Since yn √ n δ 1
where δ 1 > 0 can be sufficiently small, we get that, for |t| δ 1 √ n and large enough n, uniformly in s ∈ (-η, η),

-i(t -iy n ) 3 Λ (3) (s) 6σ 3 s √ n = y n √ n (3t 2 -y 2 n )Λ (3) (s) 6σ 3 s 1 4 t 2 , ( 5.32) n 
∞ k=3 Λ (k) (s) k! - i(t -iy n ) σ s √ n k y n √ n (6t 2 -1 2 y 2 n )Λ (3) (s) 6σ 3 s 1 4 t 2 . ( 5.33) 
Moreover, elementary calculations yield that there exists a constant c > 0 such that, for sufficiently large n, uniformly in s ∈ (-η, η),

n ∞ k=3 Λ (k) (s) k! - i(t -iy n ) σ s √ n k -[-i(t -iy n )] 3 Λ (3) (s) 6σ 3 s √ n = n ∞ k=4 Λ (k) (s) k! - i(t -iy n ) σ s √ n k c t 4 + y 4 n n . (5.34) It is clear that sup s∈(-η,η) -i(t -iy n ) 3 Λ (3) (s) 6σ 3 s √ n 2 c t 6 + y 6 n n . ( 5.35) 
Taking into account that both |t| and y n are less than δ 1 √ n, and the fact δ 1 > 0 can be small enough, it follows that sup s∈(-η,η)

exp -i(t -iy n ) 3 Λ (3) (s) 6σ 3 s √ n e 1 4 (t 2 +y 2 n ) .
Combining this with the bounds (5.32), (5.33), (5.34) and (5.35), and using the inequality (5.31), we conclude that sup s∈(-η,η) 

e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k -1 -(-iz) 3 Λ (3) (s) 6σ 3 
δ 1 √ n -δ 1 √ n e -t 2 4 (|t| 3 + y 3 n + |t| 5 + y 5 n )dt c n sup yn∈[0,δ 1 √ n] e -1 4 y 2 n (1 + y 3 n + y 5 n ) c n .
Substituting this and (5.29) into (5.25), we conclude the proof.

Lemma 5.6. Let J 2 (z) be defined by (5.16), and C - r be defined by (4.2) with r = δ 1 √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 2 = sup y 0 C - r J 2 (z) z e izy e -ib z T dz c n ϕ γ . Proof. Denote h 2 (z) = e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k Π s, -iz σs √ n ϕ(x) -π s (ϕ) + iz b s,ϕ (x) σ s √ n e -ib z T z .
Using (5.21), we rewrite A 2 as

A 2 = sup y 0 C - r e -z 2 2 +izy h 2 (z)dz .
As in the estimation of Lemma 5.5, the solution of the saddle point equation Cauchy's integral theorem we obtain 

A 2 sup y 0 -δ 1 √ n-iyn -δ 1 √ n + δ 1 √ n δ 1 √ n-iyn e -z 2 2 +izy h 2 (z)dz + sup y 0 δ 1 √ n-iyn -δ 1 √ n-iyn e -z
δ 1 √ n -δ 1 √ n e -t 2 2 |h 2 (t -iy n )|dt .
We first estimate |h 2 (t-iy n )|. In the same way as in (5.37), with z = t-iy n , we obtain that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

1 z Π s, -iz σs √ n ϕ(x) -π s (ϕ) + iz b s,ϕ (x) σ s √ n c |z| n ϕ γ c |t| + y n n ϕ γ .
Combining this with the bound (5.33), we get that uniformly in ϕ ∈ B γ , sup s∈(-η,η)

sup x∈S A 22 c n ϕ γ sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 4 (|t| + y n )dt c n ϕ γ sup yn∈[0,δ 1 √ n] e -1 2 y 2 n (1 + y n ) c n ϕ γ .
(5.39)

Putting together (5.38) and (5.39) completes the proof.

Lemma 5.7. Let J 3 (z) be defined by (5.17), and C - r be defined by (4.2) with r = δ 1 √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 3 = sup y 0 C - r J 3 (z) z e izy e -ib z T dz c n ϕ γ .
Proof. We denote

h 3 (z) = 1 σ s √ n e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k
-1 e -ib z T .

(5.40)

Using the expansion (5.21) and the bound (5.10), we have that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

A 3 c ϕ γ sup y 0 C - r e -z 2 2 +izy h 3 (z)dz .
As in Lemma 5.5, the saddle point equation d dz (-z 2 2 + izy) = 0 has the solution z = iy. Set y n = min{-y, δ 1 √ n}. It follows from Cauchy's integral theorem that

A 3 c ϕ γ sup y 0 -δ 1 √ n-iyn -δ 1 √ n + δ 1 √ n δ 1 √ n-iyn e -z 2 2 +izy h 3 (z)dz + c ϕ γ sup y 0 δ 1 √ n-iyn -δ 1 √ n-iyn e -z 2 2 +izy h 3 (z)dz =: A 31 + A 32 .
Control of A 31 . Similarly to (5.26), we use a change of variable to get

A 31 c ϕ γ e - δ 2 1 2 n sup y 0 yn 0 e t 2 2 +ty h 3 (-δ 1 √ n -it) + h 3 (δ 1 √ n -it) dt .
Using (5.27), we deduce that uniformly in s ∈ (-η, η) and x ∈ S,

|h 3 (-δ 1 √ n -it)| + |h 3 (δ 1 √ n -it)| c √ n e δ 2 1 4 n + 1 c √ n e δ 2 1
4 n .

Since 

e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k -1 ce 1 4 t 2 |t| 3 + y 3 n √ n ,
and hence sup s∈(-η,η)

sup x∈S |h 3 (t -iy n )| ce 1 4 t 2 |t| 3 + y 3 n n .
It follows that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

A 32 c n ϕ γ sup y 0 e -1 2 y 2 n δ 1 √ n -δ 1 √ n e -t 2 4 (|t| 3 + y 3 n )dt c n ϕ γ . ( 5.42) 
Putting together (5.41) and (5.42), we conclude the proof.

Lemma 5.8. Let J 4 (z) be defined by (5.18), and C - r be defined by (4.2) with r = δ 1 √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 4 = sup y 0 C - r J 4 (z)
z e izy e -ib z T dz ce -cn ϕ γ .

Proof. Since z 0 on C - r and y 0, we have |e izy | 1. Using again the fact that z 0, we get that |e -ib z T | is uniformly bounded on C - r . From the bound (3.37) and the fact that δ 1 > 0 can be sufficiently small, we deduce that |J 4 (z)| ce -cn ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . Therefore, noting that

| 1 z | = (δ 1 √ n) -1 and that the length of C - r is πδ 1 √ n, the desired result follows.
End of the proof of Theorem 5.2. Combining Lemmata 5.5-5.8, we obtain that I 31 c n ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . Now we give a control of the term I 32 defined in (5.7). Note that y > 0 in I 32 and the integral in I 32 is taken over the semicircle C + r , which lies in the upper part of the complex plane. In this case we have the saddle point equation d dz (-z 2 2 + izy) = 0 whose solution z = iy also lies in the upper part of the complex plane. Similarly to (5.24), we choose a suitable point y n = min{y, δ 1 √ n}. Proceeding in the same way as for bounding I 31 we obtain that I 32 c n ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . Let us now bound the terms I 33 and I 34 defined in (5.7). Since the function z → e ib z T is analytic on C - r and C + r , the estimates of I 33 and I 34 are similar to those of I 31 and I 32 , respectively. From these bounds, we conclude that there exists a constant c > 0 such that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

I 3 c n ϕ γ .
(5.43)

It remains to estimate I 4 defined in (5.7). We can decompose the difference |f (t) -h(t)| in the same way as we did in (5.14) (with real-valued t = z). Then proceeding in a similar way as in the estimation of I 31 , I 32 , I 33 and I 34 , one can verify that there exists a constant c > 0 such that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

I 4 c n ϕ γ .
(5.44)

Combining (5.43), (5.43) and the bounds for I 1 and I 2 in (5.11) and (5.13), and using the fact that ε > 0 can be arbitrary small, we obtain (5.8), which finishes the proof of Theorem 5.2. 5.3. Proof of Theorem 5.1. Since the proof of Theorem 5.1 is quite similar to that of Theorem 5.2, we only sketch the main differences. Denote

F (y) = E Q x s ϕ(X x n )1 σ(Gn,x)-nΛ (s) σs √ n y , y ∈ R, H(y) = E Q x s [ϕ(X x n )] Φ(y), y ∈ R.
By the definition of the operator R s,z in (3.29), direct calculations lead to

f (t) = R e -ity dF (y) = R n s, -it σs √ n ϕ(x), t ∈ R, h(t) = R e -ity dH(y) = e -t 2 2 R n s,0 ϕ(x), t ∈ R.
One can verify that the functions F, H and their corresponding Fourier-Stieljes transforms f, h satisfy all the conditions stated in Proposition 4.1. Instead of using Proposition 4.1 with r < T in the proof of Theorem 5.2, we apply Proposition 4.1 with r = T = δ 1 √ n, where δ 1 > 0 is a sufficiently small constant. Then we obtain a similar inequality as (5.6) but with the term I 2 = 0. Since the non-arithmeticity condition A5 is only used in the bound of the term I 2 , following the proof of Theorem 5.2 we show that under the conditions of Theorem 5.1, the terms I 1 and I 3 defined in (5.7) are bounded by c ϕ γ / √ n, uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . We omit the details of the rest of the proof.

Proof of moderate deviation expansions

In this section we prove Theorem 2.3. The proof is based on the Berry-Esseen bound in Theorem 5.1 and follows the standard techniques in Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], and therefore some details will be left to the reader.

We start with the following lemma whose proof uses the analyticity of the eigenfunction r s and the linear functional ν s , see Proposition 3.1: Lemma 6.1. Assume either conditions A1 and A2 for invertible matrices, or conditions A1 and A3 for positive matrices. Then, there exists η > 0 such that uniformly in s ∈ (-η, η) and ϕ ∈ B γ ,

r s -1 ∞ C|s| and |ν s (ϕ) -ν(ϕ)| C|s| ϕ γ .
Proof. According to Proposition 3.1, we have r 0 = 1, ν 0 = ν. In addition, the mappings s → r s and s → ν s are analytic on (-η, η). The assertions follow using Taylor's formula.

Proof of Theorem 2.3. When y ∈ [0, 1], Theorem 2.3 is a direct consequence of Theorem 5.1, so it remains to prove Theorem 2.3 in the case when y > 1 with y = o( √ n). We proceed to prove the first assertion in Theorem 2.3. Applying the change of measure formula (3.16), we have

I := E ϕ(X x n )1 {σ(Gn,x) nΛ (0)+ √ nσ 0 y} (6.1) = r s (x)κ n (s)E Q x s (ϕr -1 s )(X x n )e -sσ(Gn,x) 1 {σ(Gn,x) nΛ (0)+ √ nσ 0 y} .
Under the assumptions of Theorem 2.3, by Proposition 3.15, σ 2 s = Λ (s) > 0 for any s ∈ (-η, η) with η > 0 small enough. We denote W x n = σ(Gn,x)-nΛ (s) σs √ n . Recalling that Λ = log κ, we rewrite (6.1) as follows:

I = r s (x)e -n[sΛ (s)-Λ(s)] × E Q x s (ϕr -1 s )(X x n )e -sσs √ nW x n 1 W x n √ n[Λ (0)-Λ (s)] σs + σ 0 y σs . ( 6.2) 
By Proposition 3.1, the function Λ is analytic and hence for s ∈ (-η, η),

Λ(s) = ∞ k=1 γ k k! s k , where γ k = Λ (k) (0). For any y > 1 with y = o( √ n), consider the equation √ n[Λ (s) -Λ (0)] = σ 0 y. (6.3)
Choosing the unique real root s of (6.3), it follows from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF] that

sΛ (s) -Λ(s) = y 2 2n - y 3 n 3/2 ζ( y √ n ), (6.4) 
where ζ is the Cramér series defined by (2.9). Substituting (6.3) into (6.2), and using (6.4), we get

I = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) E Q x s (ϕr -1 s )(X x n )e -sσs √ nW x n 1 {W x n 0} . ( 6.5) 
For brevity, denote

F (u) = E Q x s (ϕr -1 s )(X x n )1 {W x n u} , u ∈ R.
In view of (6.5), using Fubini's theorem and the integration by parts, we deduce that

I = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) E Q x s (ϕr -1 s )(X x n ) ∞ 0 1 {0 W x n u} sσ s √ n e -sσs √ nu du = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) ∞ 0 e -s √ nσsu dF (u). (6.6) Let l(u) = F (u) -π s (ϕr -1 s )Φ(u), u ∈ R. It follows that ∞ 0 e -s √ nσsu dF (u) = I 1 + π s (ϕr -1 s ) √ 2π I 2 , ( 6.7 
)

I 1 = ∞ 0 e -s √ nσsu dl(u), I 2 = ∞ 0 e -s √ nσsu-u 2 2 du. (6.8)
Estimate of I 1 . Integrating by parts, using the fact that r s ∈ B γ and the Berry-Esseen bound in Theorem 5.1 implies that uniformly in s ∈ [0, η), x ∈ S and ϕ ∈ B γ ,

|I 1 | |l(0)| + s √ nσ s ∞ 0 e -s √ nσsu |l(u)|du C √ n ϕ γ . (6.9)
Estimate of I 2 . Since the function Λ is analytic on (-η, η) and σ 2 s = Λ (s) > 0, by Taylor's formula, we have Λ (s) -Λ (0) = sσ 2 0 1 + O(s) and σ 2 s = σ 2 0 1 + O(s) . Thus, using standard techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], one has

I 2 = I 3 + O 1 √ n , where I 3 = ∞ 0 e - √ n[Λ (s)-Λ (0)] σ 0 u-u 2 2 du. (6.10)
Since σ s is strictly positive and bounded uniformly in s ∈ (0, η), using (6.3) and the fact that y > 1, for sufficiently large n, we get that s √ n σ s y 2σ 0 σ s c 1 > 0. This implies that C 1 s √ nI 2 C 2 for large enough n, where C 1 < C 2 are two positive constants independent of n and s. Combining this two-sided bound with (6.7), (6.9) and (6.10), we obtain .11) Substituting (6.3) into (6.10), we get

∞ 0 e -s √ nσsu dF (u) = I 3 π s (ϕr -1 s ) √ 2π + ϕ γ O(s) . ( 6 
∞ 0 e -s √ nσsu dF (u) = e y 2 2 ∞ y e -1 2 u 2 du π s (ϕr -1 s ) √ 2π + ϕ γ O(s) .
Together with (6.6), this implies

I = r s (x)e y 3 √ n ζ( y √ n ) 1 -Φ(y) π s (ϕr -1 s ) + ϕ γ O(s) , ( 6.12) 
where π s (ϕr -1 s ) = νs(ϕ) νs(rs) . By Lemma 6.1, we have r s -1 ∞ Cs and |π s (ϕr -1 s ) -ν(ϕ)| Cs ϕ γ , uniformly in s ∈ [0, η) and ϕ ∈ B γ . Since s = O( y √ n ), this concludes the proof of the first assertion of Theorem 2.3. The proof of the second assertion of Theorem 2.3 can be carried out in a similar way. Specifically, instead of using (6.3), we consider the equation √ n[Λ (s) -Λ (0)] = -σ 0 y, where y > 1 and s ∈ (-η, 0]. We then apply the spectral gap properties of operators P s , Q s , R s,z (see Section 3) for negative valued s to deduce the second assertion by following the proof of the first one. We omit the details.

Proof of the local limit theorems

The goal of this section is to establish the local limit theorems with moderate deviations, namely Theorems 2.4 and 2.5. 7.1. Proof of Theorem 2.4. We first establish an asymptotic expansion which will be used to prove Theorem 2.4. Assume that ψ : R → C is a continuous function with compact support in R, which is differentiable in a small neighborhood of 0 on the real line. Proposition 7.1. Assume either conditions A1 and A2 for invertible matrices, or conditions A1, A3 and A4 for positive matrices. Then, there exist constants η, δ, c, C > 0 such that for all s ∈ (-η, η), x ∈ S, |l| 

1 √ n , ϕ ∈ B γ and n 1, σ s √ n e nl 2 2σ 2 s R e -itln R n s,it (ϕ)(x)ψ(t)dt - √ 2ππ s (ϕ)ψ(0) C √ n ϕ γ + C n ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| + Ce -cn ϕ γ R |ψ ( 
sup x∈S sup |t|<δ |N n s,it (ϕ)(x)| sup s∈(-η,η) sup |t|<δ N n s,it Bγ →Bγ ϕ γ c δ a n ϕ γ .
This implies that uniformly in s ∈ (-η, η), |l|

1 √ n , x ∈ S and ϕ ∈ B γ , J 2 C δ e -c δ n ϕ γ |t|<δ |ψ(t)|dt. (7.4) 
For J 3 , we make a change of variable t = t / √ n to get

J 3 = e nl 2 2σ 2 s δ √ n -δ √ n e -itl √ n λ n s, it √ n Π s, it √ n (ϕ)(x)ψ t √ n dt -c s (ψ) e nl 2 2σ 2 s δ √ n -δ √ n e -itl √ n λ n s, it √ n Π s, it √ n (ϕ)(x)ψ t √ n -π s (ϕ)ψ(0) dt + π s (ϕ)ψ(0)e nl 2 2σ 2 s δ √ n -δ √ n e -itl √ n λ n s, it √ n dt -c s (ψ) =: J 31 + J 32 . (7.5)
Using the formula (3.33) and the fact that the function Λ is analytic in a small neighborhood of 0 of the complex plane, we can check that there exists a constant C > 0 such that for all s ∈

(-η, η), t ∈ [-δ √ n, δ √ n] and n 1, λ n s, it √ n -e -σ 2 s t 2 2 C √ n e -σ 2 s t 2 4 . ( 7.6) 
By (3.36) and the fact that Π s,0 (ϕ)(x) = π s (ϕ), it follows that uniformly in s

∈ (-η, η), t ∈ [-δ √ n, δ √ n] and x ∈ S, Π s, it √ n (ϕ)(x) -π s (ϕ) Π s, it √ n -Π s,0 Bγ →Bγ ϕ γ c |t| √ n ϕ γ .
Since the function ψ is differentiable in a small neighborhood of 0, we obtain that there exists a constant C > 0 such that for all s ∈ (-η, η), x ∈ S and t

∈ [-δ √ n, δ √ n], Π s, it √ n (ϕ)(x)ψ t √ n -π s (ϕ)ψ(0) Π s, it √ n (ϕ)(x)ψ t √ n -π s (ϕ)ψ t √ n + Π s,0 (ϕ)(x)ψ t √ n -π s (ϕ)ψ(0) C |t| √ n ϕ γ sup |t| δ |ψ(t)| + C |t| √ n ϕ γ sup |t| δ |ψ (t)|.
Combining this with (7.6), we get the desired bound for J 31 : there exists a constant C > 0 such that, for all n 1, |l|

1 √ n , s ∈ (-η, η), x ∈ S and ϕ ∈ B γ , J 31 C √ n ϕ γ + C n ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| . ( 7.7) 
To estimate J 32 in (7.5), we first notice that for y > 0, we get that J 322 e -cn ϕ γ . Hence, there exists a constant C > 0 such that for all |l| 1 √ n , s ∈ (-η, η) and ϕ ∈ B γ , it holds that J 32 C √ n ϕ γ . This, together with (7.7) and (7.5), implies the desired bound for J 3 : there exists a constant C > 0 such that for all n 1, |l|

J 32 π s (ϕ)ψ(0)e nl 2 2σ 2 s δ √ n -δ √ n e -itl √ n λ n s, it √ n -e -σ
1 √ n , s ∈ (η, η), x ∈ S and ϕ ∈ B γ , J 3 C √ n ϕ γ + C n ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| .
Combining this with (7.3) and (7.4), we conclude the proof of Proposition 7.1. Now we are equipped to establish Theorem 2.4.

Proof of Theorem 2.4. We only need to establish the first assertion of the theorem since the second and the third ones are its particular cases. By the change of measure formula (3.16), we get that for any s ∈ (-η, η) with sufficiently small η > 0,

J n : = E ϕ(X x n )ψ σ(G n , x) -nλ -√ nσy (7.9) = r s (x)κ n (s)E Q x s (ϕr -1 s )(X x n )e -sσ(Gn,x) ψ σ(G n , x) -nλ -√ nσy .

For brevity, denote T x n = σ(G n , x) -nΛ (s). By considering equation (6.3) for any |y| = o( √ n) (not necessarily |y| > 1), we get the identity (6.4) for |y| = o( √ n). Hence, we have

J n = r s (x)e -n[sΛ (s)-Λ(s)] E Q x s (ϕr -1 s )(X x n )e -sT x n ψ(T x n ) = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) E Q x s (ϕr -1 s )(X x n )e -sT x n ψ(T x n ) .
We denote ψ s (u) = e -su ψ(u), u ∈ R.

Taking into account Lemma 6.1, in order to establish Theorem 2.4, it is sufficient to prove the following asymptotic: as n → ∞,

A n := σ √ 2πn E Q x s (ϕr -1 s )(X x n )ψ s (T x n ) → ν(ϕ)
R ψ(u)du. (7.11) To prove (7.11), we need to use some smoothing techniques. For sufficiently small ε > 0, we denote for any s ∈ (-η, η) and u ∈ R, Now we are going to prove (7.11). The proof will be done by establishing upper and lower bounds for A n . Without loss of generality, we assume that the target functions ϕ and ψ are non-negative.

Upper bound. Applying the smoothing inequality (7.14) and the Fourier inversion formula to the function ψ + s,ε * ρ ε 2 , we get

A n (1 + C ρ (ε))σ √ 2πn E Q x s (ϕr -1 s )(X x n )(ψ + s,ε * ρ ε 2 )(T x n ) = (1 + C ρ (ε))σ n 2π R R n s,it (ϕr -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt, (7.15) 
where R s,it is the perturbed operator defined by Lower bound. Similarly to (7.15), using the smoothing inequality (7.14), the fact that ψ - s,ε ψ s

(1 + C ρ (ε))ψ + s,ε * ρ ε 2 , and the Fourier inversion formula to the functions ψ - s,ε * ρ ε 2 and ψ + s,ε * ρ ε 2 , we obtain Combining (7.16) and (7.20), we obtain the assertion of Theorem 2.4, provided that (7.13) holds. Condition (7.13) can be relaxed to the direct Riemann integrability condition of the target function ψ, by applying the approximation techniques developed in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. So the proof of Theorem 2.4 is complete.

A n σ √ 2πn E Q x s (ϕr -1 s )(X x n )(ψ - s,ε * ρ ε 2 )(T x n ) -σ √ 2πn |v| ε E Q x s (ϕr -1 s )(X x n )ψ - s,ε (T x n -v) ρ ε 2 (v)dv σ n 2π R R n s,it (ϕr -1 s )(x) ψ - s,ε (t) ρ ε 2 (t)dt -(1 + C ρ (ε))σ n 2π |v| ε R e -itv R
7.2. Proof of Theorem 2.5. In this subsection we prove Theorem 2.5 concerning the local limit theorem with moderate deviations for the operator norm G n in the case of invertible matrices. In this proof Theorem 2.4 plays the key role. Another important ingredient is the following Lemma 7.2 established recently by Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF], which provides a precise and interesting comparison between log G n and σ(G n , x): Lemma 7.2. Assume conditions A1 and A2 for invertible matrices. Then, for any a > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 and x = Rv ∈ P d-1 ,

P log G n G k -log |G n v| |G k v| e -ak > 1 -e -ck .
Proof of Theorem 2.5. Without loss of generality, we assume that the target function ϕ is non-negative. We first give the upper bound. By Lemma 7.2, we get that for any a > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 and x = Rv ∈ P d-1 , With the notation G n,k = g n . . . g k+1 for any n k 1, we have

J n := E ϕ(X x n )1 {log Gn -nλ∈[a 1 ,a 2 ]+ √ nσy} E ϕ(X x n )1
X x n = G n,k • X x k and σ(G n , x) -σ(G k , x) = σ(G n,k , X x k ).
Thus the first term of the right-hand side of the above inequality can be rewritten as Using the large deviation bounds for log G k (see [START_REF] Benoist | Random walks on reductive groups[END_REF] or [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]), we see that for any δ > 0, there exists a constant c > 0 such that for large enough k 1,

E ϕ(G n,k • X x k )1 σ(G n-k ,X
P log G k -kλ > kδ e -ck .
Using this bound, it follows that

J n E ϕ(G n,k • X x k )1 σ(G n-k ,X x k )-(n-k)λ∈I + ε + √ nσy-(log G k -kλ) 1 log G k -kλ kδ + e -ck ϕ ∞ .
Taking conditional expectation given the σ-algebra F k = σ(g 1 , . . . , g k ), we get

J n E E ϕ(G n,k • X x k )1 σ(G n-k ,X x k )-(n-k)λ∈I + ε + √ nσy-(log G k -kλ) 1 log G k -kλ kδ F k + e -ck ϕ ∞ .
Applying Theorem 2.4, we obtain that, as n → ∞, uniformly in x ∈ P d-1 and |y| = o(n 1/6 ), We next give the lower bound. Since the proof is similar to that of the upper bound, we only sketch the main differences. By Lemma 7.2, we get that for any a > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 and x ∈ P d-1 , J n E ϕ(X x n )1 .

J n sup |u| kδ exp - 1 2 y √ n √ n -k - u σ √ n -k 2 1 σ √ 2πn × (
With the notation used in the proof of the upper bound, we have

J n E ϕ(G n,k • X x k )1 σ(G n-k ,X x k )-(n-k)λ∈I - ε + √ nσy-(log G k -kλ) 1 log G k -kλ kδ
, where I - ε := [a 1 + ε, a 2 -ε]. Notice that, for any ε > 0, there exists a large enough k 1 1 such that for all k k 1 ,

I -

ε ⊂ [a 1 + e -ak , a 2 -e -ak ]. In the same way as in the proof of (7.21), we take conditional expectation given F k and use Theorem 2.4 to obtain that as n → ∞, uniformly in x ∈ P d-1 and |y| = o(n 1/6 ),

J n inf |u| kδ exp - 1 2 y √ n √ n -k - u σ √ n -k 2 1 σ √ 2πn
× (a 2 -a 1 -2ε)ν(ϕ) -o(1) .

As k = C 1 y 2 , elementary calculations lead to

J n e -y 2 2 σ √ 2πn (a 2 -a 1 + 2ε)ν(ϕ) -o( 1) . (7.23) Since ε > 0 can be arbitrary small, combining (7.22) and (7.23), we conclude the proof of Theorem 2.5.

1 . Introduction 1 . 1 .

 111 Background and objectives. For any integer d 2, denote by GL(d, R) the general linear group of d × d invertible matrices. Equip R d with any norm | • | and let g = sup v∈R d \{0} |gv| |v| be the operator norm for g ∈ GL(

  d}. In both cases, there exists a constant C > 0 such that |v -u| Cd(x, y), for any x = Rv, y = Ru ∈ S, |v| = |u| = 1. (2.1)

n 1 formsa

 1 Markov chain on S. Let σ(g, x) = log |gv| |v| be the norm cocycle, where g ∈ G and x = Rv ∈ P d-1 or g ∈ G + and x = Rv ∈ P d-1 + . The goal of the present paper is to establish a Berry-Esseen bound and a Cramér type moderate deviation expansion for the couple (X x n , σ(G n , x)) with a target function ϕ on the Markov chain (X x n ), for both invertible matrices and positive matrices. For any g ∈ M (d, R), set g = sup v∈R d \{0} |gv| |v| and ι(g) = inf v∈R d \{0} |gv| |v|

. 28 )

 28 Inserting (3.23), (3.27) and (3.28) into (3.21), we conclude that

. 35 )

 35 where r z , ν z and L z are given in Proposition 3.1. In addition, we have:(a) for fixed s, the mappings z → Π s,z :B δ (0) → L(B γ , B γ ), z → N s,z : B δ (0) → L(B γ , B γ ) and z → λ s,z : B δ (0) → C are analytic, (b)for fixed s and z, Π s,z is a rank-one projection with Π s,0 (ϕ)(x) = π s (ϕ) for any ϕ ∈ B γ and x ∈ S, and Π s,z N s,z = N s,z Π s,z = 0, (c) for any k ∈ N, there exist constants C k > 0 and 0 < a < 1 such that sup s∈(-η,η) 

Lemma 3 . 11 .

 311 Assume the conditions of Proposition 3.1. Then the function b s,ϕ is well-defined, b s,ϕ ∈ B γ and b s,ϕ (x) = dΠ s,z dz z=0 ϕ(x), x ∈ S. (3.39)

43 )

 43 It follows from(3.37) that uniformly in ϕ ∈ B γ and s ∈ (-η, η), the second term on the right-hand side of (3.42) is bounded by C ϕ γ e -cn . Therefore, from (3.42) and (3.43) we obtain(3.41).

  y)|, where b > 0 is a fixed constant satisfying b -b ρ(y)dy = 3/4, and C - r and C + r are semicircles given byC - r = {z ∈ C : |z| = r, z < 0}, C + r = {z ∈ C : |z| = r, z > 0}. (4.2)Proof. Let T r. From the definition of ρ T and the choice of the constant b, we have 2b/T 0 ρ T (y)dy = 3/4. Since ρ 1 2π , the function ρ T is bounded by T /2π. The proof of Proposition 4.1 consists in establishing first an upper bound and then a lower bound.

5 .Theorem 5 . 1 .

 551 y)|. (4.11) Combining (4.10) and (4.11), we conclude the proof of Proposition 4.1. Proofs of Berry-Esseen bound and Edgeworth expansion 5.1. Berry-Esseen bound and Edgeworth expansion under the changed measure. We first present a Berry-Esseen bound under the changed measure Q x s . Assume either conditions A1 and A2 for invertible matrices, or conditions A1, A3 and A4 for positive matrices. Then there exist constants η > 0 and C > 0 such that for all n

Lemma 5 . 4 .

 54 Let f be an analytic function on the open convex domain D ⊆ C. Then for any z 1 , z 2 ∈ D, and n 1,

d dz (-z 2 2 + 1 √

 21 izy) = 0 is z = iy. Set y n = min{-y, δ n}. Since y n ∈ D - 2r , where r = δ 1 √ n, and the function h 2 is analytic on the domain D - 2r , by

  ψ + s,ε (u) = sup u ∈R:|u -u| ε ψ s (u ), ψ - s,ε (u) = inf u ∈R:|u -u| ε ψ s (u ).(7.12)Denote respectively by ψ + s,ε and ψ - s,ε the Fourier transform of ψ + s,ε and ψ - s,ε . For the moment we suppose that lim Fourier transform of the function ψ s may not be integrable on R. In the sequel we shall use a smoothing inequality from [22, Lemma 5.2], which gives two-sided bounds for ψ s . Let ρ be a non-negative density function on R with R ρ(u)du = 1 and ρ(u) C 1+u 4 for all u ∈ R, so that its Fourier transform ρ is supported on [-1, 1]. For any 0 < ε < 1, define the rescaled density function ρ ε by ρ ε (u) = 1 ε ρ( u ε ), u ∈ R, whose Fourier transform has a compact support on [-ε -1 , ε-1 ]. Then, there exists a positive constant C ρ (ε) with C ρ (ε) → 0 as ε → 0, such that for any u ∈ R,ψ - s,ε * ρ ε 2 (u) -|v| ε ψ - s,ε (u -v)ρ ε 2 (v)dv ψ s (u) (1 + C ρ (ε))ψ + s,ε * ρ ε 2 (u). (7.14) 

1 s

 1 (3.29) with z = it. Applying Proposition 7.1 with ϕ = ϕr -and ψ = ψ + s,ε ρ ε 2 (one can verify that the remainder term in (7.1) vanishes as n → ∞, uniformly in s ∈ (-η, η)), we obtain, uniformly in s ∈ (-η, η), |t| δ and x ∈ S,lim sup n→∞ A n (1 + C ρ (ε))ν(ϕ) ψ + 0,ε(0).Letting ε → 0, we get the desired upper bound for A n : uniformly in s ∈ (-η, η) and x ∈ S,

√n 1 ε 2 ρ( v ε 2 )

 12 is dominated by Cρ ε 2 which is integrable on R. Therefore, we can interchange the limit as n → ∞ and the integral |v| ε , and then use(7.19) again to obtain that uniformly in s ∈ (-η, η) and x ∈ S,lim sup n→∞ D n (ε) (1 + C ρ (ε))ν(ϕ) ψ + 0,ε (0) |v| ε ρ ε 2 (v)dv.The integral on right-hand side converges to 0 as ε → 0, since ρ ε 2 (v) = and the function ρ is integrable on R. Together with (7.17) and(7.18), this implies the desired lower bound for A n : uniformly in s ∈ (-η, η) and x ∈ S, lim inf n→∞ A n ν(ϕ) lim ε→0 ψ - 0,ε (0).(7.20) 

  log |Gnv| |G k v| +log G k -nλ∈[a 1 -e -ak ,a 2 +e -ak ]+ √ nσy + e -ck ϕ ∞ .

  x k )-(n-k)λ∈[a 1 -e -ak ,a 2 +e -ak ]+ √ nσy-(log G k -kλ). Now we fix a sufficiently large constant C 1 > 0 and we choosek = C 1 y 2 ,where y denotes the integer part of y ∈ R. For any ε > 0, there exists a large enough k 1 1 such that for all k k 1 ,[a 1 -e -ak , a 2 + e -ak ] ⊂ I + ε := [a 1 -ε, a 2 + ε].

  +log G k -nλ∈[a 1 +e -ak ,a 2 -e -ak ]+ √ nσy

Local limit theorem with moderate deviations. In

  

	general B can be established using Lemma 4.4 of Huang and Liu [34]. With
	ϕ = 1, (2.10) implies the moderate deviation principle (1.1) established in [5,
	Proposition 12.12] for invertible matrices. The moderate deviation principle
	(2.10) with target function on X x n is new for both invertible matrices and
	positive matrices; (1.1) is new for positive matrices. Note that in (2.10) the
	function ϕ is not necessarily strictly positive.		
	2.4. this subsec-
	tion we state a local limit theorem with moderate deviations for σ(G n , x),
	which is of independent interest and can not be deduced directly from The-
	orem 2.3.		
	x)-nλ bn	∈B	-inf y∈ B y 2 2σ 2 ,
	where B • and B are respectively the interior and the closure of B. In fact it is
	enough to show (2.10) only for the case where B is an interval, the result for

Theorem 2.4. Assume either conditions A1 and A2 for invertible ma- trices, or conditions A1, A3 and A4 for

  positive matrices. Then, for any ϕ ∈ B γ and any directly Riemann integrable function ψ with compact support on R, we have, as n → ∞, uniformly in x ∈ S and |y|

Theorem 2.5. Assume conditions A1 and A2 for

  invertible matrices. Let -∞ < a 1 < a 2 < ∞ be real numbers. Then, for any ϕ ∈ B γ , we have, as n → ∞, uniformly in x ∈ P d-1 and |y|

	[5] the group SL(d, R) is considered instead of GL(d, R), and the proximal-
	ity condition A2(ii) is replaced by the condition that the semigroup Γ µ is
	unbounded. For positive matrices, Theorem 2.4 and its consequence (2.11)
	are new.	
	As an application of Theorem 2.4, we can establish a local limit theo-
	rem with moderate deviations for the operator norm G n in the case of
	invertible matrices.	
		) . (2.11)
	Theorem 2.4 extends the range of y in (2.11) beyond O( √	log n) and more-
	over, allows a target function ϕ on the Markov chain X x n . Note also that in

  Bγ →Bγ < cr n .

	Moreover, it holds that		
	lim sup	(P (t))	(P (s)).
	t→s		

Proposition 3.10. Assume the conditions of Proposition 3.7. For any compact set K ⊆ R\{0}, there exist constants C K > 0 and η > 0 such that for any n 1 and ϕ ∈ B γ ,

sup s∈(-η,η) sup t∈K sup x∈S |R n s,it ϕ(x)| e -nC K ϕ γ .

Proof. By Proposition 3.7, for any fixed s ∈ (-η, η) and t ∈ R \ {0}, we have

(R s+it ) = (Q s+it ) < 1.

It follows that for any s ∈ (-η, η) and t ∈ R \ {0}, there exists a constant C(s, t) > 0 such that, for any n 1 and ϕ ∈ B γ , sup x∈S |R n s,it ϕ(x)| e -nC(s,t) ϕ γ . From (3.31), we see that the operator R s,it is continuous in s and t. By Lemma 3.9, there exist constants ε(s) > 0 and δ(t) > 0 such that sup s ∈(s-ε(s),s+ε(s)) sup t ∈(t-δ(t),t+δ(t)) sup x∈S |R n s ,it ϕ(x)| e -nC(s,t) ϕ γ .

  Note that |e-ib z T | is bounded uniformly in z = ±δ 1 √ n -it, where t ∈ [0, y n ].Therefore, taking into account the bounds (5.27) and (5.37), we obtain that uniformly in s ∈ (-η, η) , x ∈ S and ϕ ∈ B γ ,

											2 2 +izy h 2 (z)dz
			=: A 21 + A 22 .	
	Control of A 21 . Similarly to (5.26), we use a change of variable to get
	A 21 e -	δ 2 1 2 n sup	yn	e	t 2 2 +ty |h 2 (-δ 1	√	n -it)| + |h 2 (δ 1	√	n -it)| dt .
				y 0	0				
	Using Lemma 5.4, the formula (3.39) and the bound (3.36), for any z = ±δ 1 √ n -it with t ∈ [0, y n ], we get that uniformly in s ∈ (-η, η), x ∈ S and
	ϕ ∈ B γ ,									
	1 z	Π s, -iz σs √ n	ϕ(x) -π s (ϕ) + iz	b s,ϕ (x) σ s √ n	c	|z| n	ϕ γ	c √ n	ϕ γ .	(5.37)
		|h 2 (-δ 1	√	n -it)| + |h 2 (δ 1	√	n -it)|	c √ n	e	δ 2 1 4 n ϕ γ .
	Since y 0, for any t ∈ [0, y n ], it follows that t 2 2 +ty 0 and thus e	t 2 2 +ty	1.
	Combining this with the above inequality yields that uniformly in ϕ ∈ B γ ,
		sup s∈(-η,η)	sup x∈S	A 21 ce -	δ 2 1 2 n y n √ n	e	δ 2 1 4 n ϕ γ ce -	δ 2 1 4 n ϕ γ .	(5.38)
	Control of A 22 . Similarly to (5.30), we use a change of variable to get
			A 22 sup	e	1 2 y 2 n +yny
					y 0				

  We first give a control of |h 3 (t -iy n )|. It follows from Lemma 5.4 that |e z -1| e max{ z,0} |z| for any z ∈ C.

	t 2 2 + ty	0 for any t ∈ [0, y n ] and y	0, we have e	t 2 2 +ty	1. This,
	together with the above inequality, implies that uniformly in ϕ ∈ B γ ,
		sup s∈(-η,η)	sup x∈S	A 31 c	y n √ n	e -	δ 2 1 4 n ϕ γ ce -	δ 2 1 4 n ϕ γ .	(5.41)
	Control of A 32 . Similarly to (5.30), one has
	A 32 c ϕ γ sup y 0	e	1 2 y 2 n +yny	δ 1 -δ 1 √ √ n n	e -t 2 2 |h 3 (t -iy n )|dt .
								Using this inequality and taking into
	account the bound (5.33), we obtain
		sup						
	s∈(-η,η)						

  t)|dt. (7.1) Proof. For brevity, denote c s (ψ) = , since the function ψ is bounded and compactly supported on R, taking into account Proposition 3.10 and the fact |e -itln | = 1, we get

							√ 2π σs π s (ϕ)ψ(0). Taking a small constant
	δ > 0 and using the spectral gap decomposition (3.32) with z = it, we have
	√ n e	nl 2 2σ 2 s			e -itln R n s,it (ϕ)(x)ψ(t)dt -c s (ψ)
						R
	√	n e	nl 2 2σ 2 s	|t| δ	e -itln R n s,it (ϕ)(x)ψ(t)dt
	+	√	n e	nl 2 2σ 2 s	|t|<δ	e -itln N n s,it (ϕ)(x)ψ(t)dt
	+	√	n e	nl 2 2σ 2 s	|t|<δ	e -itln λ n s,it Π s,it (ϕ)(x)ψ(t)dt -c s (ψ)
	=: J 1 + J 2 + J 3 .	(7.2)
	For J 1 sup		sup	sup	J 1 C δ e -c δ n ϕ γ	|ψ(t)|dt.	(7.3)
	s∈(-η,η)	x∈S	|l| 1 n √	|t| δ

For J 2 , by (3.37) there exist constants c δ > 0 and a ∈ (0, 1) such that sup s∈

(-η,η) 

  n s,it (ϕr -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt ρ ε 2 (v)dv =: B n (ε) -D n (ε). (7.17)For B n (ε), in the same way as in the proof of(7.16), by considering the function ψ - s,ε instead of ψ + s,ε and using Proposition 7.1, we have that uniformly in s ∈ (-η, η) and x ∈ S, For D n (ε), we first note that we can follow the proof of the upper bound for A n to check the following asymptotic: for sufficiently small ε > 0, uniformly in s ∈ (-η, η), x ∈ S and v ∈ [-To obtain an upper bound for the term D n (ε), we shall apply the Lebesgue dominated convergence theorem to pass to the limit as n → ∞ through the integral |v| ε . The applicability of this theorem is justified below. We split the integral |v| ε in the term D n (ε) into two parts: |v|> , since the density function ρ ε 2 has polynomial decay, i.e. ρ ε 2 (v) Cε 1+|v| 3 , which is integrable on R. For the second part, using(7.19) we see that, the function under the integral ε |v|

					lim inf ε→0	lim inf n→∞	B n (ε) ν(ϕ) lim ε→0	ψ -0,ε (0).	(7.18)
								√	n,	√	n],
	lim n→∞	σ	n 2π	e	v 2 2nσ 2 s	R	e -itv R n s,it (ϕr -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt = ν(ϕ) ψ + 0,ε (0). (7.19)
								√	n and ε |v|	√	n .
	For the first part |v|> √ n Cε 1+v 4 , |v| >	√	n, we get that	√	nρ ε 2 (v)

  a 2 -a 1 + 2ε)ν(ϕ) + o(1) + e -ck ϕ ∞ . (7.21) Since k = C 1 y 2 , it follows that as n → ∞,

	J n	e -y 2 2 σ √ 2πn	(a 2 -a 1 + 2ε)ν(ϕ) + o(1) .	(7.22)
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