Computing Small Temporal Modules in Time Logarithmic in History Length
Résumé
A temporal graph G is a sequence of static graphs indexed by a set of integers representing time instants. Given ∆ an integer, a ∆-module is a set of vertices A having the same neighbourhood outside of A for ∆ consecutive instants. We address specific cases of ∆-module enumeration, when |A| = 2 or when ∆ = ∞. Our main parameter for time complexity analysis is the history length τ = max{t : G t ∈ G not empty } − min{t : G t ∈ G not empty }. Using red-black tree data structure, we give solutions to above enumeration problems in time logarithmic in τ. For the general ∆-module enumeration problem, we give a pre-processing using overlapping properties of minimal ∆modules. Numerical analysis of our implementation on graphs collected from real world data scales up to a history length of 10 8 time instants 1. Keywords graph theory • historical data • modular decomposition • temporal graph Supported by Courtanet-Sorbonne Université convention C19.0665 and ANRT grant 2019.0485.
Origine | Fichiers produits par l'(les) auteur(s) |
---|