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Abstract

Spectral graph convolutional networks (GCNs) are par-
ticular deep models which aim at extending neural networks
to arbitrary irregular domains. The principle of these net-
works consists in projecting graph signals using the eigen-
decomposition of their Laplacians, then achieving filtering
in the spectral domain prior to back-project the resulting
filtered signals onto the input graph domain. However, the
success of these operations is highly dependent on the rele-
vance of the used Laplacians which are mostly handcrafted
and this makes GCNs clearly sub-optimal. In this paper,
we introduce a novel spectral GCN that learns not only the
usual convolutional parameters but also the Laplacian op-
erators. The latter are designed ”end-to-end” as a part of
a recursive Chebyshev decomposition with the particularity
of conveying both the differential and the non-differential
properties of the learned representations – with increasing
order and discrimination power – without overparametriz-
ing the trained GCNs. Extensive experiments, conducted on
the challenging task of skeleton-based action recognition,
show the generalization ability and the outperformance of
our proposed Laplacian design w.r.t. different baselines
(built upon handcrafted and other learned Laplacians) as
well as the related work.

1. Introduction
Deep learning is currently achieving a signifi-

cant progress in computer vision and several related
fields [38–41, 67–71]. The purpose of deep learning is to
train multi-layered and highly nonlinear parametric models
whose inputs correspond to vectorial data (images, etc.) and
outputs to their classification or regression [44, 45]. One of
the most popular models include convolutional neural net-
works (CNNs) which operate by shifting equivariant filters
and measuring their responses across different image loca-
tions. While these operations are well defined on regular
grids (namely images), their extension to irregular domains
(such as skeletons in action recognition [20–22]) requires

designing convolutions on general graph structures [46–49].

The difficulty in extending CNNs to irregular graphs
stems from the eclectic properties of graphs and their
heterogeneous topological properties which make convo-
lutions ill-posed. A particular class of neural machines,
known as graph convolutional networks (GCNs), has
emerged and seeks to generalize convolutions to irregular
graph structures [50]. Their principle consists in learning
representations by aggregating signals through nodes and
their neighbors, prior to apply convolutions on the resulting
aggregates [27, 29, 50, 55, 64–66, 72]. Two categories
of GCNs exist in the literature; spatial and spectral. In
spatial GCNs [51–56], the representation of a given node is
obtained by averaging the representations of its neighbors
before applying convolutions using the inner product. In
spectral GCNs [15, 28, 46, 47, 49, 57–61], convolutions
proceed differently by first projecting filters and input
graph signals using the eigen-decomposition of their Lapla-
cians, prior to achieve filtering, and then back-projecting
the resulting filtered signals onto the input graph do-
main [62, 63]. Whereas spectral GCNs make convolutions
well defined compared to spatial ones, their drawback
resides in the non-localized aspect of the learned filters and
also the high complexity of Laplacian eigen-decomposition.

Other spectral GCNs have been introduced in the litera-
ture including Chebyshev networks [47] which consider in-
stead localized convolutional filters using a recursive poly-
nomial decomposition. The success of these GCNs is highly
reliant on the choice of the Laplacian operators, and most of
the existing ones are handcrafted or designed upon the in-
herent properties of the data. These properties correspond
to preexisting (intrinsic) node-to-node relationships such as
connectivity in 3D skeletons, links in social networks, pro-
tein connectivity in biological systems, etc. Nevertheless,
handcrafted Laplacians are not sufficient in order to cap-
ture all node relationships as their design is oblivious to
the tasks at hand. Indeed, in many real-world applications
such as skeleton-based recognition, intrinsic relationships
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are suitable to identify individuals using their anthropo-
metric measurements while other extrinsic characteristics
are more useful to recognize their dynamics and actions.
Hence, extrinsic node-to-node relationships should be in-
ferred in order to maximize the performances of the tar-
geted applications (see Fig. 3). In other words, connectivity
in Laplacians should be appropriately learned by including
not only the available (intrinsic) node-to-node connections
in graphs but also their inferred (extrinsic) relationships.

1.1. Related work

Laplacian — or equivalently graph — inference is gen-
erally ill-posed, NP-hard [1–3] and most of the existing ap-
proaches rely on constraints (including similarity, smooth-
ness, sparsity, band-limitedness, etc.) for a better condi-
tioning [4, 5, 73–86]. Particularly in GCNs, early methods
[6,49,52] rely on predetermined node-to-node relationships
using similarities or the inherent properties of the targeted
applications in order to define Laplacian operators. How-
ever, in spite of being relatively effective, the potential of
these operators is not fully explored as their design is ei-
ther agnostic to the tasks at hand or achieved using the te-
dious cross validation. More recent advances aim at defin-
ing graph topology — and hence the underlying Laplacian
— that best fits a given task [7–12,15,59]. For instance, the
work in [11] proposes a graph network for semi-supervised
classification that learns graph topology, with sparse struc-
ture, given a cloud of points; node-to-node connections are
modeled with a joint probability distribution on Bernoulli
random variables whose parameters are found using bi-level
optimization. A computationally more efficient variant is
introduced in [12] using a weighted cosine similarity and
edge thresholding.

Other solutions make improvement w.r.t. the original
GCNs [49] by exploiting symmetric matrices [15] and dis-
covering hidden structural relations (unspecified in the orig-
inal graphs), using a so-called residual graph adjacency ma-
trix, and by learning a distance function over nodes. The
work in [59] introduces a dual architecture with two paral-
lel graph convolutional layers sharing the same parameters.
This method considers a normalized adjacency matrix and
a positive pointwise mutual information matrix to capture
node co-occurrences through random walks sampled from
graphs. In the particular context of skeleton-based action
recognition, GCNs have been increasingly used [13,14,24–
26, 35, 36, 42, 43] as they explicitly model, with a better in-
terpretability, the spatial and temporal connectivity among
joints. However, while all skeleton-joints contribute in mo-
tion, only a few of them are actually relevant to recognize
the targeted action categories; hence, other work focuses
on learning more complete spatial and temporal joint co-
occurrences for skeleton data [15, 30, 34, 37].

1.2. Contribution

In this paper, we introduce a novel framework that learns
graph topology and Laplacians as a part of GCN and Cheby-
shev basis design. This basis is expressed using an efficient
recursive form evaluated on a single shared Laplacian which
conveys both the differential and non-differential properties
of the learned graph representations. This Chebyshev basis
also captures the statistical properties of the learned repre-
sentations, with increasing order and discrimination power,
without increasing the actual number of training parameters
in the resulting GCNs. Different settings of our design are
considered including symmetry and orthogonality that fur-
ther constrain the learned Laplacians and enhance the gen-
eralization capacity of our GCNs. Experiments, conduced
on the challenging task of skeleton-based human action and
hand gesture recognition, show the high accuracy and the
outperformance of our method w.r.t. different baselines as
well as the related work.

Our proposed method in this paper is different, from all
the aforementioned related work, at least in two aspects; on
the one hand, none of this related work considers Lapla-
cian learning as a part of Chebyshev basis design. On the
other hand, existing methods consider multiple indepen-
dent matrix operators that capture the actual topology of
the input graphs and increase the discrimination power of
the learned GCN representations, but this comes at the ex-
pense of overparametrized networks and the risk of over-
fitting. In contrast, our Chebyshev basis design increases
the discrimination power of the representations (that cap-
ture different hops in graphs), without overparametrizing
the trained networks, as the learned Laplacian parameters
are shared through all the Chebyshev polynomials. Besides,
making the Chebyshev basis1 orthogonal acts as a regular-
izer that controls the actual number of training parameters
and enhances further the generalization power of our GCNs
as corroborated later in experiments.

2. Chebyshev Convolutional Networks

Given a graph G = (V, E) with |V| = n, |E| being
respectively the number of its vertices and edges, and L
the Laplacian of G. For instance, L could be the random
walk Laplacian defined as L = In − A[D−1(A)] where
(i) In is an n × n identity matrix, (ii) A an adjacency
matrix with each entry Auu′ > 0 iff (u, u′) ∈ E and 0
otherwise, and (iii) D(A) a diagonal degree matrix with
each entry [D(A)]uu =

∑
vAvu. Let UΛU> be the

eigen-decomposition of L, with U, Λ being respectively
the matrix of eigenvectors (graph Fourier basis) and the

1The generative aspect of our basis makes it possible to capture dif-
ferent hops of neighbors without increasing the actual number of training
parameters and this enhances the discrimination power of the learned rep-
resentation as shown through this paper.
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Figure 1. This figure shows the architecture of our Chebyshev Convolutional Network. In each convolutional block, the Chebyshev basis
{Tk(.)}k is first evaluated on the Laplacian L, then multiplied by the input graph signal ψ(V), and finally aggregated using the parameters
θ. These Chebyshev convolutional blocks are followed by global average pooling prior to softmax classification. Note that the Laplacian
L is shared across the basis {Tk(.)}k and through the Chebyshev convolutional blocks; in practice, only a very few convolutional blocks
are necessary as the basis {Tk(.)}k already captures different hops/depths in graphs. (Better to zoom the pdf).

diagonal matrix of its eigenvalues; spectral graph convolu-
tion is a well defined operator (see for instance [50]) which
is achieved by first projecting a given graph signal ψ(.)
using the eigen-decomposition of L, and then multiplying
the resulting projection by a convolutional filter prior to
back-project the result in the original signal space.

Formally, the convolutional operator ?G (rewritten for
short as ?) on a given graph signal ψ(V) ∈ Rs×n is
(ψ ? gθ)V = U gθ(Λ)U>ψ(V)>; here > is the matrix
transpose operator and gθ denotes a non-parametric convo-
lutional filter defined as gθ(Λ) = diag(θ) with θ ∈ Rn. As
this filter is not localized, we consider instead [47]

(ψ ? gθ)V =

K−1∑
k=0

θk Tk(L) ψ(V)>, (1)

with θ = (θ1 . . . θK)> ∈ RK being the learned convolu-
tional filter parameters and Tk the k-th order Chebyshev
polynomial recursively defined as Tk(L) = 2L◦Tk−1(L)−
Tk−2(L), with Tk(L) ∈ Rn×n, T0(L) = In, T1(L) = L
and ◦ the Hadamard (element-wise) matrix product. When
L is the combinatorial Laplacian, we consider in practice a
rescaled version as 2L/λmax − In (instead of L with λmax
being the largest eigenvalue of L) in order to guarantee the
orthogonality of the basis {Tk(L)}k; see again [47] and
later (in section 3.2) the general rescaling of any Laplacian
that guarantees orthogonality of the Chebyshev basis. The
whole architecture of this convolution is described in Fig. 1.

3. Our Laplacian Design
Considering the tensor of the Chebyshev polynomials

{Tk(L)}k and the loss L associated to a given classifica-
tion task, we turn the design of the Laplacian L (thereby
the Chebychev basis {Tk(L)}k) as a part of GCN training.

Considering the gradient of L w.r.t. the Chebyshev terms,
denoted as ∇kL = ∂L

∂Tk(L) , and since L is shared across
{Tk(L)}k, one may write

∂L
∂L

= vec−1
(K−1∑
k=0

Jk vec(∇kL)

)
, (2)

being Jk ∈ Rn2×n2

the diagonal Jacobian matrix whose
entry [Jk]ij,ij =

∂[Tk(L)]ij
∂Lij

and vec(.) a vectorization that
appends the entries of a given matrix using the x-y order in
Jk, and vec−1 its inverse. In the above equation, one may
show that each entry of the Jacobian Jk can be recursively
obtained as

0 k = 0
1 k = 1

2
[
[Tk−1(L)]ij + Lij

∂[Tk−1(L)]ij
∂Lij

]
− ∂[Tk−2(L)]ij

∂Lij
k ≥ 2,

(3)
so L can be updated using Eqs (2), (3) and gradient descent.
However, as designed above, the learned matrix L is not
guaranteed to be a valid Laplacian. In what follows, we
consider reparametrization which constrains L to be valid.

3.1. Laplacian Reparametrization

We turn the design of L into the learning of the
adjacency matrix A while guaranteeing the resulting
matrix L to be a valid Laplacian. Different reparame-
terizations are considered including L = D(A) − A
which corresponds to the combinatorial form. If we
constrain A to be column-stochastic, then L corresponds
to the random walk graph Laplacian. We also con-
sider other reparametrizations including the normalized
defined as L = In− [D(A>)]−

1
2A[D(A)]−

1
2 (see table 1).
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Constraints Reparametrization Jacobian
COMB D(A>)−A [Jc]ij,pq = 1{i=j,p 6=q} − 1{i 6=j}
NDRW A [D(A)]−1 [Jndrw]ij,pq = 1{j=q} (δip − Lij) [1n D(A)−1]pq
DRW In −A [D(A)]−1 [Jdrw]ij,pq = 1{j=q} (Lij − δip) [1n D(A)−1]pq
NDN [D(A>)]−

1
2A [D(A)]−

1
2 [Jndn]ij,pq = 1{i=p∨j=q}

Lij

2Apq

(
2δipδjq − [D(A>)−1A + AD(A)−1]pq

)
DN In − [D(A>)]−

1
2A [D(A)]−

1
2 [Jdn]ij,pq = 1{i=p∨j=q}

Lij

2Apq

(
[D(A>)−1A + A D(A)−1]pq − 2δipδjq

)
Symmetry A + A> [Js]ij,pq = 1{(i=p,j=q)∨(i=q,j=p)}
S-COMB D(A + A>)− (A + A>) Jsc = Jc Js

S-NDRW (A + A′) [D(A + A>)]−1 Jsndrw = Jndrw Js

S-DRW In − (A + A>) [D(A + A>)]−1 Jsdrw = Jdrw Js

S-NDN [D(A + A>)]−
1
2 (A + A>) [D(A + A>)]−

1
2 Jsndn = Jndn Js

S-DN In − [D(A + A>)]−
1
2 (A + A>) [D(A + A>)]−

1
2 Jsdn = Jdn Js

Table 1. Different reparametrizations and the underlying Jacobians. In this table, COMB stands for “Combinatorial” Laplacian, NDRW
for “Non Differential Random Walk”, DRW for “Differential Random Walk”, NDN for “Non Differential Normalized” Laplacian, and DN
for “Differential Normalized” one. The symmetric variants of these Laplacians are prefixed by ”S”.

For any reparametrization of L, the chain rule leads to

∂L
∂A

= vec−1
(
J vec

(
∂L
∂L

))
, (4)

with ∂L
∂L obtained from Eq. 2 and J being a sparse Jaco-

bian matrix whose entry [J]ij,pq = [
∂Lij

∂Apq
]ij,pq; this matrix

is given in table 1 for different Laplacian settings including
the combinatorial and random walk which respectively cap-
ture the differential and non-differential properties of node
features. We also consider the differential random walk –
as a combination of these two Laplacians – obtained by
plugging the latter into the former. All these Laplacians
are built upon either symmetric or non-symmetric matri-
ces A. Note that symmetry is obtained using weight shar-
ing, i.e., by constraining the upper and the lower triangular
parts of A to share the same entries. This is guaranteed
by considering a reparametrization as A + A> (with A
being now a free matrix) and by tying pairwise symmet-
ric entries of the gradient ∂L

∂A ; this is equivalently obtained
by multiplying the original gradient ∂L

∂A by the Jacobian
[Js]ij,pq = 1{(i=p,j=q)∨(i=q,j=p)} which is again extremely
sparse and highly efficient to evaluate.

3.2. Orthogonality

Learning multiple matrices {Tk(L)}K−1k=0 allows us
to capture different graph topologies when achieving
aggregation and convolution, and this enhances the dis-
crimination power of the GCN representations without
increasing the actual number of training parameters (as
also shown later in experiments). However, if aggregation
produces, for a given u ∈ V , linearly dependent vectors
Xu = {

∑
u′ [Tk(L)]uu′ ψ(u′)}k, then convolution will

also generate linearly dependent representations with an
overestimated number of training parameters in the null
space of Xu. Besides, matrices {T1(L), . . . , TK(L)} used
for aggregation, may also correspond to overlapping and

redundant neighborhoods.
Provided that {ψ(u′)}u′∈Nr(u) are linearly independent,
and K upper-bounded by rank(

{
ψ(u′)

}
u′∈Nr(u)

) ≤
min(|V|, s), the condition that makes vectors in Xu
linearly independent reduces to orthogonality, i.e.,
〈Tk(L), Tk′(L)〉F = 0, ∀k 6= k′, with 〈., .〉F being the
Hilbert-Schmidt (or Frobenius) inner product defined as
〈Tk(L), Tk′(L)〉F = tr(Tk(L)>Tk′(L)) with tr(.) being
the matrix trace operator. A sufficient condition that guar-
antees the orthogonality of the Chebyshev basis consists in
taking the Laplacian 2(L− λminIn)/(λmax − λmin) − In
instead of L with λmin (resp. λmax) being the smallest
(resp. largest) eigenvalue of L, and this guarantees the
eigenvalues of the resulting matrix to be in [−1,+1] and
also the minimality of {Tk(L)}k (see for instance [47]). It
is easy to see that this normalization equates the rescaled
Laplacian shown in section 2, i.e., on the combinatorial
setting, as its smallest eigenvalue is zero.

4. Experiments
In this section, we evaluate the performance of our GCN

network for the task of action recognition [93, 99] using
two challenging skeleton datasets; SBU Interaction [88] and
First-Person Hand Action (FPHA) [87]. The purpose is to
show the relevance of our Laplacian design and its compar-
ison against different handcrafted Laplacians and learned
ones as well as more general related work in action recog-
nition.

4.1. Datasets and implementation details

Dataset description. SBU is an interaction dataset ac-
quired (under relatively well controlled conditions) using
the Microsoft Kinect sensor; it includes in total 282 moving
skeleton sequences (performed by two interacting individu-
als) belonging to 8 categories: “approaching”, “departing”,
“pushing”, “kicking”, “punching”, “exchanging objects”,
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“hugging”, and “hand shaking”. Each pair of interacting
individuals corresponds to two 15 joint skeletons and each
joint is encoded with a sequence of its 3D coordinates
across video frames. In this dataset, we consider the same
evaluation protocol as the one suggested in the original
dataset release [88] (i.e., train-test split).
The FPHA dataset includes 1175 skeletons belonging to
45 action categories which are performed by 6 different
individuals in 3 scenarios. In contrast to SBU, action
categories are highly variable with inter and intra subject
variability including style, speed, scale and viewpoint.
Each skeleton includes 21 hand joints and each joint is
again encoded with a sequence of its 3D coordinates across
video frames. We evaluate the performance of our method
using the 1:1 setting proposed in [87] with 600 action
sequences for training and 575 for testing. In all these
experiments, we report the average accuracy over all the
classes of actions.

Skeleton normalization. Let St = {pt1, . . . , ptn} denote
the 3D skeleton coordinates at frame t. Without a loss of
generality, we consider a particular order so that pt1, pt2
and pt3 correspond to three reference joints (e.g., neck, left
shoulder and right shoulder for SBU dataset); as shown in
Fig. 3, this corresponds to joints 2, 4 and 7 for SBU and
1, 3 and 5 for FPHA. As the relative distance between
these 3 joints is stable w.r.t. any motion, these 3 joints
are used in order to estimate the rigid motion (similarity
transformation) for skeleton normalization (see also [89]).
Each graph sequence is processed in order to normalize
its 3D coordinates using a similarity transformation; the
translation parameters t = (tx, ty, tz) of this transforma-
tion correspond to the shift that makes the reference point
(p02 + p03)/2 coincide with the origin while the rotation pa-
rameters (θx, θy, θz) are chosen in order to make the plane
formed by p01, p02 and p03 coplanar with the x-y plane and the
vector p02−p03 colinear with the x-axis. Finally, the scaling γ
of this similarity is chosen to make the ‖p02 − p03‖2 constant
through all the action instances. Hence, each normalized
joint is transformed as p̂ti = γ(pti−t)Rx(θx)Ry(θy)Rz(θz)
with Rx, Ry , Rz being rotation matrices along the x, y and
z axes respectively.

Input graphs. Considering a sequence of normalized
skeletons {St}t, each joint sequence {p̂tj}t in these
skeletons defines a labeled trajectory through successive
frames (see Fig. 2). Given a finite collection of trajectories,
we consider the input graph G = (V, E) where each
node vj ∈ V corresponds to the labeled trajectory {p̂tj}t
and an edge (vj , vi) ∈ E exists between two nodes iff
the underlying trajectories are spatially neighbors. Each
trajectory (i.e., node in G) is processed using temporal
chunking: first, the total duration of a sequence (video)

(raw coordinates)
Temporal Chunking

ψ(v)

Motion trajectory (v)

Figure 2. This figure shows the whole keypoint tracking and de-
scription process.

is split into M equally-sized temporal chunks (M = 4 in
practice), then the normalized joint coordinates {p̂tj}t of the
trajectory vj are assigned to the M chunks (depending on
their time stamps) prior to concatenate the averages of these
chunks; this produces the description of vj (again denoted
as ψ(vj) ∈ Rs with s = 3 ×M ) and {ψ(vj)}j constitutes
the raw description of nodes in a given sequence. Note that
two trajectories vj and vi, with similar joint coordinates
but arranged differently in time, will be considered as
very different when using temporal chunking. Note also
that beside being compact and discriminant, this temporal
chunking gathers advantages – while discarding drawbacks
– of two widely used families of techniques mainly global
averaging techniques (invariant but less discriminant)
and frame resampling techniques (discriminant but less
invariant). Put differently, temporal chunking produces
discriminant raw descriptions that preserve the temporal
structure of trajectories while being frame-rate and dura-
tion agnostic.

Implementation settings. We trained the GCN networks
end-to-end using the Adam optimizer [101] for 1,800
epochs with a batch size equal to 200 for SBU and 600
for FPHA, a momentum of 0.9 and a global learning rate
(denoted as ν(t)) inversely proportional to the speed of
change of the loss used to train our networks; when this
speed increases (resp. decreases), ν(t) decreases as ν(t)←
ν(t− 1)× 0.99 (resp. increases as ν(t)← ν(t− 1)/0.99).
All these experiments are run on a GeForce GTX 1070 GPU
device (with 8 GB memory) and neither dropout nor data
augmentation are used.
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4.2. Baselines

We compare the performances of our GCN w.r.t. dif-
ferent Chebyshev basis settings which are defined upon
handcrafted and learned Laplacians, as well as against to-
tally learned Laplacian basis. Note that all these Laplacians
are combined with symmetry and orthogonality settings as
described earlier.

Handcrafted Laplacians (HL). All the Chebyshev terms
{Tk(.)}k are evaluated upon a handcrafted Laplacian L
which in turns depends on a fixed adjacency matrix A (set
using the original input graph).

Multi-Laplacians (ML). In this configuration, the Lapla-
cian used in the Chebyshev terms is trained as a weighted
combination of the handcrafted variants of the Laplacians
in table 1 (built upon the fixed matrix A). Note that
orthogonality is obtained by normalizing the final learned
Laplacian while symmetry is enforced in the handcrafted
adjacency matrix A.

Totally Learned Laplacians (TLL). In this variant, K in-
dependent Laplacians {Lk}k (and hence the underlying ad-
jacency matrices) are learned. In contrast to the handcrafted
setting, orthogonality and symmetry are obtained as a part
of the optimization process (as already discussed in sec-
tions 3.1 and 3.2).

Laplacians Differential Non-Differential Combined
Settings COMB NDRW NDN DRW DN

K = 2
HL 96.9231 96.9231 96.9230 93.8462 96.9230

TLL 96.9231 95.3846 98.4615 96.9231 98.4615
Our 98.4615 98.4615 96.9230 96.9231 98.4615

K = 4
HL 95.3846 93.8462 96.9231 96.9230 96.9230

TLL 96.9231 95.3846 98.4615 98.4615 96.9230
Our 98.4615 100.000 98.4615 98.4615 98.4615

K = 8
HL 96.9231 98.4615 96.9231 96.9230 96.9230

TLL 96.9231 98.4615 98.4615 93.8462 96.9230
Our 96.9231 98.4615 98.4615 98.4615 98.4615

Table 2. Detailed performances on SBU using Chebyshev net-
works with handcrafted (HL) and learned Laplacians (Our), and
using totally learned Laplacians (TLL). These performances are
shown for K ∈ {2, 4, 8} and for different reparametrizations of
the Laplacians including differential (COMB), and non differen-
tial (NDRW, NDN) as well as their combinations (DRW, DN); see
again Table. 1. Note that both symmetry and orthogonality con-
straints are used in these results.

4.3. Ablation study and comparison

Tables 2, 3 show a comparison of our GCN-based action
recognition against the aforementioned GCN baselines, i.e.
based on Handcrafted Laplacians and Totally Learned ones
(performances with Multi-Laplacians are rather shown
in Table 5); these comparisons are shown for different
K ∈ {2, 4, 8}. From all these results, we observe a clear

Laplacians Differential Non-Differential Combined
Settings COMB NDRW NDN DRW DN

K = 2
HL 85.9130 85.3913 85.5652 85.3913 84.8695

TLL 85.5652 86.4348 85.7391 85.3913 86.0869
Our 85.3913 85.7391 85.5652 85.5652 85.7391

K = 4
HL 86.4348 84.1739 85.9130 84.0000 84.5217

TLL 84.3478 85.3913 86.4347 85.0435 85.5652
Our 85.2174 85.3913 85.7391 87.1304 87.3043

K = 8
HL 85.2174 83.8261 86.0869 84.6957 85.7391

TLL 84.5217 85.5652 85.7391 85.0435 84.8695
Our 84.6957 86.9565 86.7826 84.6957 84.5217

Table 3. Same caption as Table. 2 on the FPHA database.

gain of our Chebyshev-based Laplacian design w.r.t. these
baselines; at least one of the setting (namely K = 4)
provides a significant gain. Table 4 shows an ablation
study, where the impact of each component of our GCN
(Laplacians, symmetry and orthogonality) is observed
separately and jointly. From these results, we observe a
positive impact when constraining the learned matrices to
be symmetric and orthogonal; this gain is noticeable with
non-differential Laplacians on SBU and with combined
(differential/non-differential) ones on FPHA and this
clearly shows the complementary aspect of these two
Laplacian settings mainly on challenging datasets (i.e.,
FPHA). Again, this gain reaches the highest values when
K is sufficiently (not very) large and this follows the small
size of the original skeletons (diameter and dimensionality
of the graphs and the signal) used for action recognition
which constrains the required number of Laplacian terms in
the Chebyshev decomposition. Hence, with few Chebyshev
terms, our method is able to learn relevant Laplacians and
representations for action recognition.

Constraints Differential Non-Differential Combined Avg.
Dataset Sym Orth COMB NDRW DRW NDN DN perf.

SBU

7 7 90.76 98.46 98.46 96.92 98.46 96.61
3 7 95.38 100.0 98.46 98.46 98.46 98.15
7 3 95.38 96.92 98.46 96.92 98.46 97.23
3 3 98.46 100.00 98.46 98.46 98.46 98.76

Avg. - - 95.00 98.84 98.46 97.69 98.46 -

FPHA

7 7 79.30 85.21 86.60 86.78 86.43 84.86
3 7 84.00 85.73 85.73 86.43 86.08 85.60
7 3 83.13 85.39 85.73 86.78 86.78 85.56
3 3 85.21 85.39 85.73 87.13 87.30 86.15

Avg. - - 82.91 85.43 85.95 86.78 86.65 -

Table 4. Ablation study on SBU and FPHA databases, when sym-
metry (sym) and orthogonality (orth) are taken separately and
when combined (in these results K = 4).

Our proposed Laplacian design avoids the strong bias
about the handcrafted adjacency matrices which are rather
suitable to capture the anthropometric characteristics of
skeletons and less optimal for action recognition. On an-
other hand, Tables. 2, 3 and 4 show that our Laplacian
design makes it possible to capture better the topology of
the graph data (i.e., the neighborhood system defined by
the learned Laplacian and its underlying adjacency matrix
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Figure 3. This figure shows original skeletons (left) with their intrinsic node-to-node relationships useful for individual identification
(middle), and an example of the adjacency matrix associated to the learned Laplacian which shows the extrinsic node-to-node relationships
found to be the most discriminating for skeleton-based action recognition when using our proposed method (the exact setting corresponds to
Tables 2 and 3, using NDRW Laplacian withK = 4). (Better to zoom the PDF version to view the learned node-to-node relationships).

A). In contrast, the baselines are limited when connec-
tivity is handcrafted and also when learned using totally
trained Laplacians, as this results either into a biased Lapla-
cian or into a larger number of training parameters, while
Chebyshev provides a compromise between these two ex-
treme cases: indeed, it enhances the discrimination power
of the representation without increasing the actual number
of training parameters. In sum, the gain of our GCN results
from (i) the relative flexibility of the proposed design which
allows learning complementary aspects of graph topology
(through the Chebyshev basis), and also (ii) the regulariza-
tion effect of our constraints (Laplacian weight sharing in
Chebyshev, Laplacian reparametrization, orthogonality and
symmetry) which all mitigate overfitting.
Finally, we compare the classification performances of our
GCN against other, and more general, related methods in
action recognition ranging from sequence based such as
LSTM and GRU [18,90,104] to deep graph (non-vectorial)
methods [24], etc. (see related work in tables 5 and 6). From
the results in these tables, our GCN brings a noticeable gain
w.r.t. related state of the art methods.

5. Conclusion
We introduce in this paper a novel Chebyshev-based

Laplacian design for graph convolutional networks (GCNs).
The learned Laplacians capture the most influencing in-
teractions between body parts in skeleton action recogni-
tion. The strength of our method resides in its ability to

Method Accuracy (%)
Raw Position [88] 49.7
Joint feature [32] 86.9

CHARM [33] 86.9
H-RNN [16] 80.4

ST-LSTM [17] 88.6
Co-occurrence-LSTM [30] 90.4

STA-LSTM [18] 91.5
ST-LSTM + Trust Gate [17] 93.3

VA-LSTM [19] 97.6
GCA-LSTM [104] 94.9

Riemannian manifold. traj [103] 93.7
DeepGRU [90] 95.7

RHCN + ACSC + STUFE [24] 98.7
Multi-Laplacians (ML baseline [61]) 98.4

Our best (table 2) 100
Table 5. Comparison against state of the art methods using the
SBU database.

learn shared Laplacians which are embedded in a Cheby-
shev basis that increases the discrimination power of our
graph representation. In contrast to usual deep networks,
the parameters of our GCNs are interpretable as their de-
sign is constrained “by construction” and this also brings a
regularization effect that mitigates overfitting. Indeed, our
Laplacian weight sharing and reparametrization — together
with symmetry and orthogonality constraints — enhance
the representational power of our learned graph features
without increasing the actual number of training parameters
in the resulting GCNs. Several operators are considered in-
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Method Color Depth Pose Accuracy (%)
Two stream-color [91] 3 7 7 61.56
Two stream-flow [91] 3 7 7 69.91
Two stream-all [91] 3 7 7 75.30
HOG2-depth [92] 7 3 7 59.83

HOG2-depth+pose [92] 7 3 3 66.78
HON4D [94] 7 3 7 70.61

Novel View [95] 7 3 7 69.21
1-layer LSTM [30] 7 7 3 78.73
2-layer LSTM [30] 7 7 3 80.14
Moving Pose [96] 7 7 3 56.34

Lie Group [23] 7 7 3 82.69
HBRNN [16] 7 7 3 77.40

Gram Matrix [97] 7 7 3 85.39
TF [98] 7 7 3 80.69

JOULE-color [100] 3 7 7 66.78
JOULE-depth [100] 7 3 7 60.17
JOULE-pose [100] 7 7 3 74.60
JOULE-all [100] 3 3 3 78.78
Huang et al. [13] 7 7 3 84.35
Huang et al. [43] 7 7 3 77.57
Our best (table 3) 7 7 3 87.3

Table 6. Comparison against state of the art methods using the
FPHA database.

cluding differential and non-differential Laplacians which
model the statistical properties of the learned graph repre-
sentations, and when combined, they further enhance the
performances of action recognition. Extensive experiments,
conducted on standard databases (namely SBU and FPHA),
show a clear gain of our design w.r.t. different handcrafted
and (other) learned Laplacians, as well as the related work
in skeleton-based action recognition.
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