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Abstract. We prove a zero-one law for the stationary measure for algebraic sets generalizing the results of Furstenberg
[13] and Guivarc’h and Le Page [21]. As an application, we establish a local limit theorem for the coefficients of random
walks on the general linear group.

Résumé. Nous prouvons une loi zéro-un pour la mesure stationnaire pour des ensembles algébriques en généralisant
les résultats de Furstenberg [13] et Guivarc’h et Le Page [21]. Comme application, nous établissons un théorème local
limite pour les coefficients de marches aléatoires sur le groupe linéaire général.
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1. Introduction

1.1. Motivation and objectives

Let d > 2 be an integer. We denote by V a d-dimensional vector space over R and by V ∗ the dual space
of V . We choose norms on V and V ∗ which will be both denoted by | · |. For any v ∈ V and f ∈ V ∗, the
corresponding duality bracket is denoted by 〈f, v〉= f(v); sometimes instead of f(v) we shall use the reverse
notation v(f) = 〈v, f〉. Denote by G = GL(V ) the group of linear automorphisms of V . The projective space
P(V ) of V is the set of elements x= Rv, where v ∈ V \ {0}. The projective space of V ∗ is denoted by P(V ∗).
For any x = Rv ∈ P(V ) and y = Rf ∈ P(V ∗) we define δ(y,x) = |〈f,v〉|

|f ||v| . For any g ∈ G and x = Rv ∈ P(V )
with v ∈ V \ {0}, let gx = Rgv ∈ P(V ), where gv ∈ V is the image of the automorphism v 7→ gv on V . Set
N = {0,1,2, . . .} and N∗ = N \ {0}.

Let µ be a probability measure on G. Consider the probability space (Ω,F ,P), where Ω = GN∗ , F is the
Borel σ-algebra on Ω and P = µ⊗N

∗ . If we denote by gi the coordinate mapping on Ω, then g1, g2, . . . is a
sequence of independent and identically distributed random elements in G defined on (Ω,F ,P) with the same
law µ. Set Gn = gn . . . g1, for n> 1.

A measure ν is called µ-invariant (or equivalently µ-stationary) if µ∗ν = ν, where ∗ stands for the convolution
of probability measures. Furstenberg [13] showed that under some mild conditions there exists a unique µ-
invariant probability measure ν on P(V ) which is not supported by any proper projective hyperplane: for any
projective hyperplane Y (P(V ),

ν(Y ) = 0. (1)

The Furstenberg zero-law (1) turns out to be one of the key properties in the study of random walks on the
group G. It is used in the proof of many limit theorems for the norm cocycle log |Gnv|, where v ∈ V \ {0} is a
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starting vector. We refer to Furstenberg and Kesten [14], Furstenberg [12], Le Page [25], Bougerol and Lacroix
[9], Goldsheid and Guivarc’h [16], Guivarc’h [19], Benoist and Quint [3–5], Xiao, Grama and Liu [28], who
established the law of large numbers, the central limit theorem, the local limit theorem and large deviation
asymptotics. Some of these results have been extended to the coefficients 〈f,Gnv〉, where f ∈ V ∗ and v ∈ V ,
however much less is known in this respect. Guivarc’h and Raugi [22] have proved the law of large numbers
and the central limit theorem for the coefficients. In the setting of reductive groups, Benoist and Quint [5] have
established the law of iterated logarithm and the large deviation bounds. The approach developed in [22], [9]
and [18] for the proof of the law of large numbers and of the central limit theorem for log |〈f,Gnv〉| is based
on the use of the quantitative version of the property (1) called Hölder regularity of the stationary measure ν
which we state below: there exist positive constants α and C such that for any y = Rf ∈ P(V ∗) and ε > 0,

ν ({x ∈ P(V ) : δ(y,x) 6 ε}) 6Cεα. (2)

The next elementary identity relates the coefficient 〈f,Gnv〉 to the norm |Gnv|: for any x = Rv ∈ P(V ) and
y = Rf ∈ P(V ∗) with |f |= 1,

log |〈f,Gnv〉|= log |Gnv|+ log δ(y,Gnx), (3)

where δ(y,Gnx) = |〈f,Gnv〉|
|f ||Gnv| . From (2) one can deduce that for any β > 0,

lim
n→∞

n−β log δ(y,Gnx) = 0 P-a.s. (4)

Now using (3) and (4) we can infer the limit behaviour of log |〈f,Gnv〉| from that of log |Gnv|. This allows
for instance to prove the law of large numbers and the central limit theorem: for any x = Rv ∈ P(V ) and
y = Rf ∈ P(V ∗),

lim
n→∞

1
n

log |〈f,Gnv〉|= λ P-a.s.

and for any t ∈R,

lim
n→∞

P
(

log |〈f,Gnv〉| − nλ
σ
√
n

6 t

)
= Φ(t),

where λ ∈ R is a constant called the top Lyapunov exponent of µ, σ is a positive number given by σ2 =
limn→∞

1
nE[(log |Gnv| − nλ)2], and Φ is the standard normal distribution function. For the law of iterated

logarithm and large deviation bounds, Benoist and Quint [5, Lemma 14.11], following the approach of Bourgain,
Furman, Lindenstrauss and Mozes [10], have developed another strategy based on the following inequality: for
any a > 0 there exist positive constants c,C and n0 such that for any n0 6 l6 n, x ∈ P(V ) and y ∈ P(V ∗),

P
(
δ(y,Gnx) 6 e−al

)
6Ce−cl. (5)

The bound (5) implies (2), and therefore contains more information than (2). When studying the logarithm of
the coefficients log |〈f,Gnv〉|, (5) gives an alternative way to prove the law of large numbers and the central
limit theorem, but also allows to establish new results like the law of iterated logarithm and the large deviation
bounds. However, many important properties such as the Berry-Esseen bounds, local limit theorems, large
deviation principles and exact asymptotics of large deviations for the coefficients 〈f,Gnv〉 cannot be obtained
by this approach. For these latter statements the exact contribution of the term δ(y,Gnx) should be accounted,
which means that we need to establish more general theorems for the couple (Gnx, log |Gnv|).

We find out that in order to transfer many asymptotic properties from the couple (Gnx, log |Gnv|) to that
of the coefficients log |〈f,Gnv〉|, it is necessary to establish the identity (1) for subsets of P(V ) which are not
projective hyperplanes, in particular, for the hypersurfaces {x ∈ P(V ) : δ(y,x) = t}, where t 6= 0. The main
goal of the paper is to extend the result of Furstenberg (1) from the special case of projective hyperplanes
to arbitrary algebraic subsets Y of the projective space P(V ). There is, however, an essential difference with
the Furstenberg’s result, which confers the mass 0 to a projective hyperplane. We show that for an arbitrary
algebraic set Y of P(V ) it holds that ν(Y ) is 0 or 1. Contrary to the Furstenberg zero-law, it is possible, as we
show in Example 2.3, that the invariant measure ν is concentrated on an algebraic subset of dimension d− 2 on
the projective space P(V ). It is also interesting to note that for projective hyperplanes the Furstenberg zero-law
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can be strengthened to the regularity property (2), while for algebraic sets the quantitative analog of (2) has
not yet been established.

Using the zero-one law of the stationary measure ν we will prove the following local limit theorem for
the coefficients 〈f,Gnv〉: under appropriate conditions, for any real numbers a1 < a2, any f ∈ V ∗ \ {0} and
v ∈ V \ {0}, as n→∞,

P
(

log |〈f,Gnv〉| − nλ ∈ [a1, a2]
)

= a2 − a1

σ
√

2πn
(1 + o(1)).

Based on a zero-one law for the invariant measure under the change of measure which is proved in Theorem
2.6, it is possible to establish a local limit theorem with large deviations for the coefficients of Gn, however this
will be done elsewhere.

1.2. Idea of the proof of the local limit thorem

For illustration we show how to apply our zero-one law to establish the local limit theorem for the coefficients
〈f,Gnv〉, where f ∈ V ∗ \ {0} and v ∈ V \ {0}. Letting I = [a1, a2] be an interval of the real line, we have to
handle the probability

P(log |〈f,Gnv〉| − nλ ∈ I). (6)

Using (3) and discretizing the values of δ(y,Gnx), the probability (6) is bounded from above by
∞∑
k=1

P
(

log |Gnv| − nλ ∈ Iη + ηk,Gnx ∈ Y ηk
)
, (7)

where η > 0 is sufficiently small and will be chosen later, Iη = [a1−η, a2 +η] and Y ηk = {x ∈ P(V ) :− log δ(y,x) ∈
η[k−1, k)}. By the local limit theorem for the couple (Gnx, log |Gnv|) (actually in the paper we circumvent it by
using the spectral gap theory and some smoothing technique), each probability in the sum (7) is asymptotically
bounded by length(Iη)

σ
√

2πn ν(Y ηk), with Y
η

k = {x ∈ P(V ) : − log δ(y,x) ∈ η[k − 1 − ε, k + ε)}. Hence, the sum (7)
asymptotically does not exceed

length(Iη)
σ
√

2πn

∞∑
k=1

ν(Y ηk). (8)

An important issue is to show that the sum in (8) converges to 1 as ε→ 0 and η→ 0. This turns out to be a
difficult problem. By some easy calculations it reduces to showing that for any k > 0,

ν ({x ∈ P(V ) : log δ(y,x) =−ηk}) = 0. (9)

The set Y0 = {x ∈ P(V ) : δ(y,x) = 0} is a projective hyperplane in P(V ) of dimension d−2. By (1), it holds that
ν(Y0) = 0, under the strong irreducibility condition on the measure µ. For k > 1, the equality (9) may not be
true for an arbitrary η, as we show in the paper. In fact we establish a zero-one law for the invariant measure
ν (see Theorem 2.2), from which it follows that for any t < 0,

ν ({x ∈ P(V ) : log δ(y,x) = t}) = 0 or 1.

This statement implies that (9) holds true for any k > 1 if we choose an appropriate constant η. Indeed, if there
exists t < 0 such that ν({x ∈ P(V ) : log δ(y,x) = t}) = 1, then we can choose η such that −ηk 6= t for any k, so
that (9) holds true for any k. Otherwise η can be chosen arbitrarily. This proves that the sum in (8) converges
to 1 as ε→ 0 and η→ 0 and so we obtain that lim supn→∞ of the probability (6) is bounded from above by
length(Iη)
σ
√

2πn . By some similar reasoning lim infn→∞ of (6) is bounded from below by the same quantity.

2. Main results

The inverse of g ∈G = GL(V ) is denoted by g−1. The adjoint operator g∗ of g ∈G is the automorphism g∗ of V ∗
defined by (g∗f)(v) = f(gv), where v ∈ V and f ∈ V ∗. Let C(P(V )) be the space of complex valued continuous
functions on P(V ).
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All over the paper µ is a probability measure on G. Denote by suppµ the support of µ and by Γµ := [suppµ]
the smallest closed subsemigroup of G generated by suppµ.

An element g ∈G is called proximal if it has an algebraically simple dominant eigenvalue, namely, g has an
eigenvalue λg satisfying |λg|> |λ′g| for all other eigenvalues λ′g of g. It is easy to check that λg ∈R. We choose
v+
g an eigenvector with unit norm |vg|= 1, corresponding to the eigenvalue λg , which will be called dominant
eigenvector of g. The unique element x+

g = Rv+
g ∈ P(V ) will be called attractor of g. Note that it does not

depend on the choice of v+
g .

We need the following strong irreducibility and proximality conditions:

A1 (Strong irreducibility). No non-trivial finite union of proper subspaces of V is Γµ-invariant, that is, no
non-trivial finite union of proper subspaces V1, . . . , Vk in V satisfies g(V1 ∪ . . . ∪ Vk) ⊂ V1 ∪ . . . ∪ Vk for any
g ∈ Γµ.

A2 (Proximality). Γµ contains at least one proximal element.

Assume conditions A1 and A2. By a well known result of Furstenberg [13], on the projective space P(V )
there exists a unique µ-stationary probability measure ν such that for any ϕ ∈ C(P(V )),∫

P(V )

∫
G
ϕ(gx)µ(dg)ν(dx) =

∫
P(V )

ϕ(x)ν(dx). (10)

Moreover, Furstenberg [13] (see also Bougerol and Lacroix [9, Chapter III, Proposition 2.3]) showed that under
appropriate assumptions any proper projective subspace Y ⊂ P(V ) has ν-measure 0.

Theorem 2.1 (Furstenberg). Assume condition A1. Then, for any µ-stationary measure ν and any proper
projective subspace Y ⊂ P(V ), it holds that ν(Y ) = 0.

Our first result extends Theorem 2.1 to algebraic subsets of P(V ). We recall that a subset X in V is algebraic
if there exist polynomial functions p1, . . . , pk on V such that X = {v ∈ V : p1(v) = . . .= pk(v) = 0}. We say that
X is homogeneous if for every t ∈ R and v ∈X it holds that tv ∈X . A subset Y of P(V ) is algebraic if there
exists an algebraic homogeneous subset X in V whose projective image on P(V ) is Y .

Theorem 2.2. Assume conditions A1 and A2. Then, for any algebraic subset Y of P(V ), it holds that either
ν(Y ) = 0 or ν(Y ) = 1.

The statement of Theorem 2.2 can be interpreted as a statement about the behaviour of the trajectory
(Gnx)n>0: either for some x ∈ P(V ) the trajectory (Gnx)n>0 stays in Y with probability 1, or for every x ∈ P(V )
this trajectory mostly avoids Y . The case where the Zariski closure of Γµ acts transitively on P(V ) has been
considered in Proposition 10.1 (b) of Benoist and Quint [5], however, Theorem 2.2 covers also the case where
this action is not transitive. For instance, in the example below this Zariski closure is contained in the group
of isometries O(q) which does not act transitively on P(V ). Another point of view of the way the random walk
(Gnx)n>0 avoids an algebraic subset is developed in the paper by Aoun [1].

The following example shows that there exist proper algebraic subsets of P(V ) of ν-invariant measure 0 or
1.

Example 2.3. Let d > 3. Fix an integer p such that 1 6 p 6 d − 1 and equip V with the quadratic form
q(v) = v2

1 + v2
2 + . . .+ v2

p− v2
p+1− . . .− v2

d. Let O(q) be the group of isometries of q, that is the group of elements
g ∈ GL(V ) such that q(gv) = q(v) for all v ∈ V . We choose µ to be any probability measure on O(q) such
that Γµ is proximal and strongly irreducible. For instance we can take any probability measure µ with the full
support O(q); then it will be proximal and strongly irreducible, since the group O(q) is proximal and strongly
irreducible on V for d > 3. Denote by ν the unique µ-stationary probability measure on P(V ). Let Y be the
subset of P(V ) defined as the set of straight lines in V which are spanned by vectors v ∈ V with q(v) = 0. Then
the µ-invariant measure ν is such that ν(Y ) = 1. In particular this implies that the support of the measure ν
is contained in Y .

Consider the case when p = 1. Let f be the linear functional f : u ∈ V 7→ u1 ∈ R so that |f | = 1 and let
y = Rf ∈ P(V ∗). Define the algebraic subset Y = {x ∈ P(V ) : δ(x, y) = 1/

√
2}. We will show that Y contains

the support of the measure ν. Indeed, if v is such that q(v) = 0, then v2
1 = v2

2 + . . . + v2
d and hence, with

x= Rv ∈ suppν,

δ(x, y) = |〈f, v〉|
|f ||v|

= 1√
2
.
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Therefore ν(Y ) = 1. Moreover, if we define Y ′ = {x ∈ P(V ) : δ(x, y) = t} with t 6= 1/
√

2, then ν(Y ′) = 0.

Corollary 2.4. Assume conditions A1 and A2. For any t ∈ (−∞,0), define the hypersurface Y0 = {x ∈ P(V ) :
δ(x, y) = t}. Then ν(Y0) is 0 or 1.

Proof. Let f ∈ V ∗ be such that |f |= 1 and y = Rf ∈ P(V ∗). Define the homogenous set X0 as the collection
of all vectors v ∈ V satisfying 〈f, v〉2 = t2|v|2. Then Y0 is the projective image of X0 \ {0} on P(V ). As the
function φ : v ∈ V 7→ f(v)2 − t2|v|2 = (f1v1 + . . .+ fdvd)2 − t2(v2

1 + . . .+ v2
d) is a polynomial on V , the set X0 is

algebraic. Since it is also homogeneous, by definition the set Y0 is algebraic in P(V ), and the conclusion follows
from Theorem 2.2.

In order to state our second result we need to introduce the transfer operators and related notions. These
operators play an important role in many problems related to random walks on the group G, see for instance
Le Page [25] or Guivarc’h and Le Page [21]. We are going to show that the stationary measures related to these
operators do not charge the algebraic subsets.

For any g ∈G, x= Rv ∈ P(V ) and y = Rf ∈ P(V ∗), set

σ(g,x) = log |gv|
|v|

, σ(g∗, y) = log |g
∗f |
|f |

. (11)

Denote N(g) = max{‖g‖,‖g−1‖}. Consider the sets

I+
µ =

{
s> 0 :

∫
G
‖g‖sµ(dg)<+∞

}
, I−µ =

{
s6 0 :

∫
G
N(g)−sµ(dg)<+∞

}
and note that both I+

µ and I−µ contain at least the element 0. Let s ∈ I+
µ ∪ I−µ . Define the transfer operators

Ps and P ∗s as follows: for any ϕ ∈ C(P(V )) and x ∈ P(V ),

Psϕ(x) =
∫
G
esσ(g,x)ϕ(gx)µ(dg) (12)

and for any ϕ ∈ C(P(V ∗)) and y ∈ P(V ∗),

P ∗s ϕ(y) =
∫
G
esσ(g∗,y)ϕ(g∗y)µ(dg). (13)

The next assumption will be necessary to state the results for s < 0.

A3 (Two-sided exponential moment). There exists α ∈ (0,1) such that∫
G
N(g)αµ(dg)<+∞.

Let s ∈ I+
µ . By [21, Theorem 2.6], under conditions A1 and A2, there exist a unique κ(s)> 0 and a unique

probability measure νs on P(V ) such that νs is an eigenmeasure for the transfer operator Ps corresponding to
the eigenvalue κ(s):

Psνs = κ(s)νs. (14)

Similarly, the conjugate transfer operator P ∗s has a unique probability eigenmeasure ν∗s on P(V ∗) corresponding
to the same eigenvalue κ(s):

ν∗sP
∗
s = κ(s)ν∗s .

For detailed account of the mentioned properties for s > 0 we refer the reader to [20, 21], where it is proved
that the mapping s 7→ κ(s) is analytic on a complex neighborhood of the interval I+

µ . Guivarc’h and Le Page
[21] have also proved that the measure νs does not charge any proper projective subspace Y in P(V ).

Theorem 2.5 (Guivarc’h and Le Page). Assume conditions A1 and A2. Then, for any s ∈ I+
µ and any proper

projective subspace Y of P(V ), it holds that νs(Y ) = 0.
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Our second result extends Theorem 2.5 to proper algebraic subsets of P(V ).

Theorem 2.6. Assume conditions A1 and A2. Then, for any s ∈ I+
µ and any proper algebraic subset Y of

P(V ), it holds that either νs(Y ) = 0 or νs(Y ) = 1.

We are able to prove a similar assertion for small negative s. First we show in Section 3 the existence and
the uniqueness of the eigenmeasure νs for small negative values s.

Proposition 2.7. Assume conditions A1, A2 and A3. Then, there exists s0 > 0 with the following property:
for any s ∈ [−s0,0), there exist a unique κ(s) > 0 and a unique probability measure νs on P(V ) such that νs
is an eigenmeasure for the transfer operator Ps corresponding to the eigenvalue κ(s). Similarly, the transfer
operator P ∗s has a unique probability eigenmeasure ν∗s on P(V ∗) corresponding to the same eigenvalue κ(s).

For negative values of s we can prove the following analogue of Theorem 2.6.

Theorem 2.8. Assume conditions A1, A2 and A3. Then, there exists s0 > 0 such that for any s ∈ [−s0,0)
and any proper algebraic subset Y of P(V ), it holds that either νs(Y ) = 0 or νs(Y ) = 1.

It is easy to see that all the conclusions of the Example 2.3 apply also to the measure νs.
As an application of the stated results we use Theorem 2.2 to establish a local limit theorem for the coefficients

of random walks on the general linear group GL(V ).

Theorem 2.9. Assume conditions A1, A2 and A3. Let −∞< a1 < a2 <∞ be real numbers. Then, as n→∞,
uniformly in f ∈ V ∗ and v ∈ V with |f |= 1 and |v|= 1,

P
(

log |〈f,Gnv〉| − nλ ∈ [a1, a2]
)

= a2 − a1

σ
√

2πn
(1 + o(1)).

To the best of our knowledge, a local limit theorem for the coefficients of random walks on the general linear
group GL(V ) has not been established in the literature so far. Local limit theorem for sums of independent
random variables have been studied by many authors: we refer the reader to Gnedenko [15], Stone [27], Borovkov
and Borovkov [8], Breuillard [11]. For the norm cocycle of random walks on GL(V ), local limit theorems have
been proved by Le Page [25], Guivarc’h [19], Benoist and Quint [5]. The local limit theorems established in
[5] play an important role for studying stationary measures on finite volume homogeneous spaces, see [2] for
details.

Other potential applications of Theorem 2.2 are the Berry-Esseen bound, the Edgeworth expansion and
the Cramér type moderate deviation. A paper in progress is [31], where a local limit theorem with moderate
deviations has been established. In its turn Theorems 2.6 and 2.8 can be used to establish various limit theorems
like the large deviation principle and local limit theorem with large deviations for the coefficients [30].

3. Properties of the stationary measure

3.1. The existence and the uniqueness of the probability eigenmeasure for negative s

In this section we prove the existence and the uniqueness of the probability eigenmeasure of the transfer operator
Ps for s < 0. Actually we shall establish it for s in a sufficiently small neighborhood of 0, i.e. for |s|< s0, for
some small s0 > 0. The approach is inspired by that of Guivarc’h and Le Page [20, 21]. The existence of such a
measure is deduced from a very general fixed point theorem due to Brouwer-Schauder-Tychonoff. To establish
the uniqueness one can make use of the general results on the perturbation theory of linear operators, which
simplifies slightly the proofs of Guivarc’h and Le Page [20, 21].

We proceed to state a fixed point theorem for measures in an abstract context. LetX be a compact topological
space and C(X) be the space of complex valued continuous functions on X equipped with the uniform norm.
Denote by C(X)′ the topological dual space of C(X) equipped with the weak-∗ topology. Recall that the weak-∗
topology is the weakest topology on C(X)′ for which the mapping ν ∈ C(X)′ 7→ ν(ϕ) ∈C is continuous for any
ϕ ∈ C(X) and that by Riesz representation theorem, the space C(X)′ coincides with the space of complex valued
Borel measures on X .

Lemma 3.1. Let T : C(X)→C(X) be a bounded linear operator such that T (f)> 0 for any f > 0. Then, there
exist a constant α> 0 and a Borel probability measure ν0 on X such that T ′ν0 = αν0, where T ′ : C(X)′→C(X)′
is the adjoint operator of T .
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Proof. Recall the Brouwer-Schauder-Tychonoff theorem (see [6, Appendix]): Let P be a convex and compact
subset inside a topological vector space V and let A :P →P be a continuous mapping. Then there exists ν0 ∈ P
such that Aν0 = ν0.

We shall apply Brouwer-Schauder-Tychonoff theorem with V = C(X)′. By Riesz representation theorem, the
space C(X)′ coincides with the space of complex valued Borel measures on X . Let P be the subspace of C(X)′
formed by probability measures. Then the set P is convex and by the Banach-Alaoglu theorem it is compact in
the weak-∗ topology. Since T1> 0 everywhere, the mapping ν ∈ P 7→ ν(T (1)) ∈R does not vanish on P . Note
that for any ϕ ∈ C(X) with ϕ> 0, it holds T ′ν(ϕ) = ν(Tϕ) > 0 since Tϕ> 0. This allows to define the mapping
A :P →P by setting, for any ν ∈ P,

Aν = T ′ν

ν(T1) .

As T is a bounded linear operator on C(X), the adjoint operator T ′ is continuous for the weak-∗ topology.
Since T1 is a continuous function on X , the mapping ν 7→ ν(T1) is also continuous for the weak-∗ topology.
Therefore, the mapping A is continuous for the weak-∗ topology. By the Brouwer-Schauder-Tychonoff theorem,
the mapping A has a fixed point ν0: Aν0 = ν0. The assertion follows with α= ν0(T (1)).

Let γ ∈ (0,1). Consider the Banach space Bγ of γ-Hölder continuous functions on P(V ) endowed with the
norm

‖ϕ‖Bγ = sup
x∈P(V )

|ϕ(x)|+ sup
x,x′∈P(V ):x 6=x′

|ϕ(x)−ϕ(x′)|
d(x,x′)γ ,

where d(x,x′) is the sin of the angle between the vector lines x = Rv and x′ = Rv′ in P(V ): d(x,x′) =√
1−

(
〈v,v′〉
|v||v′|

)2
. The topological dual of Bγ endowed with the induced norm is denoted by B′γ . Denote by

B∗γ the Banach space of γ-Hölder continuous functions on P(V ∗) endowed with the norm

‖ϕ‖B∗γ = sup
y∈P(V ∗)

|ϕ(x)|+ sup
y,y′∈P(V ∗):y 6=y′

|ϕ(y)−ϕ(y′)|
d(y, y′)γ ,

where d(y, y′) is the sin of the angle between the vector lines y = Rf and y′ = Rf ′ in P(V ∗): d(y, y′) =√
1−

(
〈f,f ′〉
|f ||f ′|

)2
.

Recall that C(P(V )) is the space of the continuous complex valued functions on P(V ) and C(P(V ))′ is the
space of the complex valued Borel measures on P(V ).

Lemma 3.2. Assume conditions A1, A2 and A3. Then, there exists a positive constant s0 such that for any
|s|< s0 the operator Ps has a unique probability eigenmeasure νs associated with the unique eigenvalue κ(s).

Proof. Note that for s real and close to 0, Ps : C(P(V ))→ C(P(V )) is a bounded linear operator. Moreover
Psϕ> 0 for any ϕ> 0 on P(V ). Denote by P ′s : C(P(V ))′→C(P(V ))′ the adjoint operator of Ps. Using Lemma
3.1 with X = P(V ), we get that there exists a probability eigenmeasure νs such that P ′sνs = α(s)νs. By the
duality, for any ϕ ∈ C(P(V )), we have νs(Psϕ) = P ′sνs(ϕ), so that

νs(Psϕ) = α(s)νs(ϕ). (15)

The measure νs and the eigenvalue α(s) might a priori not be unique. We shall prove the uniqueness using the
perturbation theory of linear operators.

From the results of Le Page [25] it follows that the operator P0 has a spectral gap property on the Banach
space Bγ , for some γ > 0. Since the dependence of the operator Ps in s is analytic (cf. [9, Chapter V, Lemma
3.2] or [5, Lemma 11.17]), we can apply the perturbation theory of linear operators [24, Theorem III.8]. Thus
there exist constants s0 > 0 and holomorphic mappings s 7→ θs ∈B′γ , s 7→ rs ∈Bγ , s 7→ κs ∈C on (−s0, s0) such
that θ0 = ν, r0 = 1, ν(rs) = 1, θs(rs) = 1 and

θs(Psϕ) = κ(s)θs(ϕ), Psrs = κ(s)rs, (16)
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for any ϕ ∈ C(P(V )). Moreover, one can choose s0 small enough so that there exist constants C > 0 and ρ0 ∈ (0,1)
such that for any complex |s|< s0, we have |κ(s)|> ρ0 and

‖Pns ϕ− κ(s)nθs(ϕ)rs‖Bγ
6Cρn0 ‖ϕ‖Bγ

. (17)

In particular, (17) implies that for any complex |s|< s0, the complex number κ(s) is the unique eigenvalue of
Ps in Bγ with modulus strictly larger than ρ0 and the associated eigenspace is Crs. Indeed, let ϕ ∈Bγ with
ϕ 6= 0 and λ ∈C be such that Ps(ϕ) = λϕ and λ 6= κ(s). Then

λθs(ϕ) = θs(Psϕ) = κ(s)θs(ϕ),

hence θs(ϕ) = 0. Therefore, (17) gives that

|λ|n‖ϕ‖Bγ
= ‖Pns ϕ‖Bγ

6Cρn0‖ϕ‖Bγ
.

This implies that |λ|6 ρ0, which means that κ(s) is the unique eigenvalue with modulus strictly larger than
ρ0.

Let us now show that the eigenspace associated to κ(s) is spanned by the function rs. Indeed, if ϕ is in this
eigenspace then ϕ ∈Bγ and Psϕ= κ(s)ϕ. Again by (17), we have

|κ(s)|n‖ϕ− θs(ϕ)rs‖Bγ
= ‖Pns ϕ− κ(s)nθs(ϕ)rs‖Bγ

6Cρn0‖ϕ‖Bγ
.

Since |κ(s)|> ρ0, we get ϕ= θs(ϕ)rs.
We shall use the uniqueness property of κ(s) to show that κ(s) is real and that rs takes real values for real

s ∈ (−s0, s0). Indeed, as s is real, for any ϕ ∈Bγ we have Psϕ = Psϕ, which gives Psrs = Psrs = κsrs. Since
κ(s) is the unique eigenvalue of Ps with modulus strictly larger that ρ0, this proves κs = κs. Besides, from the
equation Psrs = κsrs it follows that rs belongs to the eigenspace Crs associated to κ(s), so there exists z ∈C
such that rs = zrs. Since ν(rs) = 1 = ν(rs), we get z = 1 and hence rs = rs as required.

Since r0 = 1, we can assume that s0 is small enough such that rs is strictly positive for real s ∈ (−s0, s0).
We now prove that α(s) = κ(s) for real s ∈ (−s0, s0). We put ϕ= rs in (15) and use the second identity in (16)
to obtain

α(s)νs(rs) = νs(Psrs) = κ(s)νs(rs). (18)

Since rs > 0 we have νs(rs)> 0, which implies that α(s) = κ(s) for real valued s.
Iterating (15) and using the fact that α(s) = κ(s), we have that for any ϕ ∈Bγ ,

νs (Pns ϕ) = κ(s)nνs(ϕ). (19)

From (19) and (17), taking the limit as n→∞ we obtain that

νs(ϕ) = νs (θs(ϕ)rs) = θs(ϕ)νs(rs),

from which it follows that for any ϕ ∈Bγ ,

νs(ϕ)
νs(rs)

= θs(ϕ).

This proves that the linear functional θs is indeed a non-negative Borel measure, and that any non-negative
Borel measure which is an eigenmeasure of Ps is proportional to θs.

To show the uniqueness of the eigenfunction of the operator Ps we need more notation. For any real |s|< s0,
let rs > 0 be the function introduced in the proof of Lemma 3.2. Introduce the operator Qs by setting, for any
ϕ ∈ C(P(V )),

Qsϕ= Ps(rsϕ)
κ(s)rs

. (20)

Then Qs is a Markov operator, namely, Qsϕ> 0 for any ϕ> 0, and Qs(1) = 1.
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Lemma 3.3. For any ϕ ∈ C(P(V )), one has

lim
n→∞

sup
x∈P(V )

∣∣∣∣Qns (ϕ)(x)− νs(ϕrs)
νs(rs)

∣∣∣∣= 0 (21)

and

lim
n→∞

sup
x∈P(V )

∣∣∣∣ 1
κ(s)nP

n
s (ϕ)(x)− νs(ϕ)

νs(rs)
rs(x)

∣∣∣∣= 0. (22)

Proof. First note that from (17) we have that (22) holds for any ϕ ∈Bγ . This implies that (21) also holds for
any ϕ ∈Bγ . As Qs is a Markov operator, it has norm 1 in C(P(V )), so Qns is uniformly bounded in the space of
bounded operators of C(P(V )). Since Bγ is dense in C(P(V )), the convergence (21) holds for any ϕ ∈ C(P(V )).
This in turn implies that (22) also holds for ϕ ∈ C(P(V )).

Lemma 3.4. Assume conditions A1, A2 and A3. Then, for any |s|< s0, the function rs is the unique (up to
a scaling constant) non-negative continuous eigenfunction of the operator Ps.

Proof. If we take ϕ to be a non-negative non-zero continuous eigenfunction of Ps associated to some eigenvalue
λ, then by (22) we get

lim
n→∞

sup
x∈P(V )

∣∣∣∣ 1
κ(s)nλ

nϕ(x)− νs(ϕ)
νs(rs)

rs(x)
∣∣∣∣= 0. (23)

It follows that λ= κ(s) and ϕ= νs(ϕ)
νs(rs)rs, which means that the function ϕ coincides (up to a scaling constant)

with the eigenfunction rs.

Applying the previous theory to the operator P ∗s and to the adjoint projective space P(V ∗) we obtain the
following:
Lemma 3.5. Assume conditions A1, A2 and A3. Then, there exists a positive constant s0 such that for any
real |s|< s0 the operator P ∗s has a unique probability eigenmeasure ν∗s and a unique (up to a scaling constant)
positive continuous eigenfunction r∗s associated with the same unique eigenvalue κ∗(s).

We will show in Lemma 3.10 that κ∗(s) = κ(s).

3.2. The Hölder regularity of the stationary measure

In this section we establish the Hölder regularity of the stationary measure νs defined in Lemma 3.2.
Note that ν0 coincides with the stationary measure ν defined by (10). The Hölder regularity of the stationary

measure ν has been established in [22] (see also [5, 9, 18]): under conditions A1, A2 and A3, there exists a
constant α> 0 such that

sup
y∈P(V ∗)

∫
P(V )

1
δ(y,x)α ν(dx)<+∞. (24)

By the Frostman lemma (see [26]), the assertion (24) implies that the Hausdorff dimension of the stationary
measure ν is at least α. As mentioned before, (24) plays a crucial role for establishing limit theorems such as
the law of large numbers and the central limit theorem for the coefficients 〈f,Gnv〉 (see [5, 9, 18, 22]). In the
following we establish the Hölder regularity of the stationary measure νs when s is in a small neighborhood of 0.
The proof is based on (24) and the spectral gap properties of the transfer operator Ps established in subsection
3.1.
Proposition 3.6. Assume conditions A1, A2 and A3. Then, there exist constants s0 > 0 and α> 0 such that

sup
s∈(−s0,s0)

sup
y∈P(V ∗)

∫
P(V )

1
δ(y,x)α νs(dx)<+∞. (25)

In particular, there exist constants α,C > 0 such that for any 0< t < 1,

sup
s∈(−s0,s0)

sup
y∈P(V ∗)

νs ({x ∈ P(V ) : δ(y,x) 6 t}) 6Ctα. (26)
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One implication of the Proposition 3.6 is that the eigenmeasure νs does not charge the projective hyperplanes.
Precise formulation follows:

Corollary 3.7. Assume conditions A1, A2 and A3. Then there exists a constant s0 > 0 such that for any
s ∈ (−s0, s0) and any projective hyperplane Y of P(V ) it holds νs(Y ) = 0.

Before proceeding to proving Proposition 3.6, let us first recall a change of measure formula which will be
used in the proof of Proposition 3.6. For any s ∈ (−s0, s0), the family of functions qsn(x, g) = esσ(g,x)

κ(s)n
rs(gx)
rs(x) , n> 1,

satisfies the equation

qsk+m(x, g2g1) = qsk(g1x, g2)qsm(x, g1)

for x ∈ P(V ) and g1, g2 ∈ G. This, together with the fact that Psrs = κ(s)rs, implies that the probability
measures

Qxs,n(dg1, . . . , dgn) = qsn(x, gn . . . g1)µ(dg1) . . . µ(dgn) (27)

form a projective system on GN. By the Kolmogorov extension theorem, there exists a unique probability
measure Qxs on GN with marginals Qxs,n. We denote by EQxs the corresponding expectation. For any measurable
function ϕ on (P(V )×R)n, it holds that

1
κ(s)nrs(x)E

[
rs(Gnx)esσ(Gn,x)ϕ

(
G1x,σ(G1, x), . . . ,Gnx,σ(Gn, x)

)]
= EQxs

[
ϕ
(
G1x,σ(G1, x), . . . ,Gnx,σ(Gn, x)

)]
. (28)

Under the changed measure Qxs , the Markov chain (Gnx)n>0 has a unique stationary measure πs defined by
πs(ϕ) = νs(ϕrs)

νs(rs) , for any ϕ ∈ C(P(V )).
We shall use the following result which has been established in [5, Lemma 14.11].

Lemma 3.8. Assume conditions A1, A2, A3. Then, for any ε > 0, there exist constants c0 > 0 and n0 > 1
such that for all n> k > n0, x ∈ P(V ) and y ∈ P(V ∗),

P
(
δ(y,Gnx) 6 e−εk

)
6 e−c0k.

Proof of Proposition 3.6. Step 1. We choose a small enough constant s0 > 0 and show that for any ε > 0,
there exist constants c1 > 0 and n0 > 1 such that for any n> n0,

sup
s∈(−s0,s0)

sup
y∈P(V ∗)

sup
x∈P(V )

Qxs
(
δ(y,Gnx) 6 e−εn

)
6 e−c1n. (29)

To prove this, using (28) and the fact that the eigenfunction x 7→ rs(x) is strictly positive and bounded on P(V )
uniformly in s ∈ (−s0, s0), we get

Qxs
(
δ(y,Gnx) 6 e−εn

)
= 1
κ(s)nrs(x)E

[
esσ(Gn,x)rs(Gnx)1{δ(y,Gnx)6e−εn}

]
6

c

κ(s)nE
[
esσ(Gn,x)1{δ(y,Gnx)6e−εn}

]
.

By Hölder’s inequality, it follows that

Qxs
(
δ(y,Gnx) 6 e−εn

)
6

c

κ(s)n
[
Ee2sσ(Gn,x)

]1/2 [
P
(
δ(y,Gnx) 6 e−εn

)]1/2
. (30)

It is easy to see that Ee2sσ(Gn,x) 6
{
E
[
N(g1)2|s|]}n. Since κ(0) = 1 and the function κ is continuous in a small

neighborhood of 0, we can choose a sufficiently small constant s0 > 0 such that

sup
s∈(−s0,s0)

sup
x∈P(V )

1
κ(s)n

[
Ee2sσ(Gn,x)

]1/2
6 ec2n,



A zero-one law for invariant measures 11

where c2 > 0 is a constant satisfying c2 < c0/4 with c0 given in Lemma 3.8. This, together with (30) and Lemma
3.8, concludes the proof of (29) with c1 = c0/4.

Step 2. The invariance of πs under the operator Qns says that for any non-negative Borel measurable function
ϕ on P(V ), we have

πs(ϕ) =
∫
P(V )

∫
Gn
ϕ(gn . . . g1x)Qxs,n(dg1, . . . , dgn)πs(dx),

where Qxs,n is a probability measure on Gn defined by (27). This, together with (29), gives that uniformly in
s ∈ (−s0, s0) and y ∈ P(V ∗),

πs
({
x ∈ P(V ) : δ(y,x) 6 e−εn

})
=
∫
P(V )

Qxs,n
(
δ(y,Gnx) 6 e−εn

)
πs(dx) 6 e−c1n. (31)

We denote Bn := {x ∈ P(V ) : e−ε(n+1) 6 δ(y,x) 6 e−εn}. Choosing α ∈ (0, c1/ε), we deduce from (31) that
uniformly in s ∈ (−s0, s0) and y ∈ P(V ∗),∫

P(V )

1
δ(y,x)απs(dx) =

∫
{x∈P(V ):δ(y,x)>e−εn0}

1
δ(y,x)απs(dx) +

∞∑
n=n0

∫
Bn

1
δ(y,x)απs(dx)

6 eεn0α +
∞∑

n=n0

eεα(n+1)e−c1n <+∞.

This proves (25) by the relation πs(ϕ) = νs(ϕrs)
νs(rs) for any ϕ ∈ C(P(V )). The inequality (26) is a direct consequence

of (25) by the Markov inequality.

Let s0 be small enough. For any real s such that |s|< s0, any y ∈ P(V ∗) and bounded measurable function
ϕ on P(V ) denote

νys (ϕ) =
∫
P(V )

ϕ(x)δ(x, y)sνs(dx).

Corollary 3.9. There exists s0 > 0 such that for any s ∈ (−s0,0), the mapping y ∈ P(V ∗) 7→ νys ∈ C(P(V ))′ is
continuous for the total variation norm on C(P(V ))′.

Proof. Let s0 be small enough and s ∈ (−s0,0). Let y, y′ ∈ P(V ∗). Since both νys and νy
′

s are absolutely
continuous with respect to νs, we have

‖νys − νy
′

s ‖TV =
∫
P(V )
|δ(x, y)s − δ(x, y′)s|νs(dx)

=
∫
P(V )

|δ(x, y′)−s − δ(x, y)−s|
δ(x, y)−sδ(x, y′)−s νs(dx).

Applying the Hölder inequality gives

‖νys − νy
′

s ‖3TV 6

(∫
P(V )
|δ(x, y′)−s − δ(x, y)−s|3νs(dx)

)(∫
P(V )

δ(x, y)3sνs(dx)
)(∫

P(V )
δ(x, y′)3sνs(dx)

)
.

As y′→ y, the first term converges to 0 by the dominated convergence theorem, whereas the other two terms
remain bounded by Proposition 3.6.

3.3. The explicit form of the eigenfunction for negative s

We apply the results of the previous two sections to give explicit forms of the eigenfunctions of the operators
Ps and P ∗s for s < 0. Let us recall the corresponding results for s > 0 which have been established in [21]: under
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conditions A1 and A2, for any s ∈ I+
µ , the functions

rs(x) =
∫
P(V ∗)

δ(x, y)sν∗s (dy), r∗s(y) =
∫
P(V )

δ(x, y)sνs(dx) (32)

are the unique (up to a scaling constant) non-negative eigenfunctions of the operators Ps and P ∗s , respectively.
The proof of these expressions for s < 0 is quite different from that in the case s > 0; it requires the Hölder
regularity of the eigenmeasures νs and ν∗s , which has been established in Proposition 3.6.

First we state the cohomological equation (see [5]) which will also be useful later on: for any g ∈G, x= Rv ∈
P(V ) and y = Rf ∈ P(V ∗),

log δ(y, gx) + σ(g,x) = log δ(x, g∗y) + σ(g∗, y). (33)

For the ease of the reader we include a short proof of (33). By elementary transformations,

log |〈f, gv〉|
|f ||v|

= log |〈f, gv〉|
|f ||gv|

+ log |gv|
|v|

= log δ(y, gx) + σ(g,x)

and, in the same way,

log |〈v, g
∗f〉|

|f ||v|
= log |〈v, g

∗f〉|
|g∗f ||v|

+ log |g
∗f |
|f |

= log δ(x, g∗y) + σ(g∗, y).

By the definition of the automorphism g∗, we have 〈f, gv〉= 〈v, g∗f〉, hence the identity (33) follows.

Lemma 3.10. Assume conditions A1, A2 and A3. Then, there exists a constant s0 > 0 such that for any
s ∈ (−s0,0), the eigenfunctions rs and r∗s are defined (up to a scaling constant) as follows: for x ∈ P(V ) and
y ∈ P(V ∗),

rs(x) =
∫
P(V ∗)

δ(x, y)sν∗s (dy), r∗s(y) =
∫
P(V )

δ(x, y)sνs(dx). (34)

Moreover, κ∗(s) = κ(s) for any s ∈ (−s0,0).

Proof. Let x ∈ P(V ). By Proposition 3.6, there exists s0 > 0 such that for any s ∈ (−s0,0),

φs(x) =
∫
P(V ∗)

δ(x, y)sν∗s (dy)

is well-defined and positive. By Corollary 3.9 (applied to the dual situation), the function φs is continuous on
P(V ) when s0 is small enough. We claim that Psφs = κ∗(s)φs with κ∗ from Lemma 3.5. Indeed, since φs is
uniformly bounded on P(V ), using the cohomological identity (33) and Fubini’s theorem we get

Psφs(x) =
∫
G
esσ(g,x)

(∫
P(V ∗)

δ(gx, y)sν∗s (dy)
)
µ(dg)

=
∫
P(V ∗)

∫
G
esσ(g∗,y)+s log δ(x,g∗y)µ(dg)ν∗s (dy). (35)

Note that the function y 7→ δ(x, y)s belongs to the space L1(ν∗s ). As the operator P ∗s is positive and ν∗s is a
probability eigenmeasure of P ∗s , then P ∗s can be extended to be a bounded operator on L1(ν∗s ), which we still
denote by P ∗s . Therefore, by (35),

Psφs(x) =
∫
P(V ∗)

P ∗s (δ(x, ·)s)(y)ν∗s (dy)

= κ∗(s)
∫
P(V ∗)

δ(x, y)sν∗s (dy) = κ∗(s)φs(x).

By Lemma 3.4 we get that κ∗(s) = κ(s) and rs = cφs for some constant c > 0.
The proof for r∗s is similar and therefore will not be detailed here.
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To summarize, the same relations between Ps, P ∗s , νs, ν∗s , rs, r∗s and κ(s) hold for both positive and small
negative s: under appropriate conditions there exists s0 > 0 such that for any s ∈ (−s0,0)∪ I+

µ ,

Psνs = κ(s)νs, P ∗s ν
∗
s = κ(s)ν∗s (36)

and

Psrs = κ(s)rs, P ∗s r
∗
s = κ(s)r∗s . (37)

3.4. Harmonicity of the invariant measure

Assume that s ∈ (−s0,0) ∪I+
µ , where s0 > 0 is small enough. For any y ∈ P(V ∗) and bounded measurable

function ϕ on P(V ), denote

υys (ϕ) =
∫
P(V )

ϕ(x)δ(x, y)s

r∗s(y) νs(dx). (38)

Due to the regularity of the eigenmeasure νs we have 0 < δ(x, y) 6 1, νs-a.s. on P(V ) (for large s > 0 this
follows from Theorem 2.5; for small s < 0 it can be deduced from Proposition 3.6). Since the eigenfunction r∗s
is bounded and strictly positive on P(V ), the measures νs and υys are equivalent.

Lemma 3.11. The following two assertions hold:
1. Assume conditions A1 and A2. Then, for any s ∈ I+

µ , the mapping y ∈ P(V ∗) 7→ υys ∈ C(P(V ))′ is contin-
uous in the total variation norm ‖ · ‖TV.

2. Assume conditions A1, A2 and A3. Then, there exists a constant s0 > 0 such that for any s ∈ (−s0,0),
the mapping y ∈ P(V ∗) 7→ υys ∈ C(P(V ))′ is continuous in the total variation norm ‖ · ‖TV.

Proof. For positive s > 0 the assertion of the lemma is easily proved due to the continuity of the mapping
(x, y) 7→ δ(x, y)s (see Lemma 3.5 of [21]). For s < 0 the assertion of the lemma follows from Corollary 3.9.

For any g ∈G and y ∈ P(V ∗), set

q∗s (g, y) = esσ(g∗,y)

κ(s)
r∗s(g∗y)
r∗s(y) . (39)

By (37), for any y ∈ P(V ∗), the function q∗s (g, y) is a positive density on G, i.e.∫
G
q∗s (g, y)µ(dg) = 1, (40)

and for any g ∈G,

q∗s (g, y)> 0. (41)

For any g ∈G, y ∈ P(V ∗) and bounded measurable function ϕ on P(V ), define

gυys (ϕ) =
∫
P(V )

ϕ(gx)υys (dx), (42)

where υys is a probability measure given by (38). The following lemma can be viewed as a generalization of the
stationary property πs = πsQs. For s > 0 it has been obtained in [21, Lemma 3.6].

Lemma 3.12. Assume either conditions A1, A2 and s ∈ I+
µ , or conditions A1, A2, A3 and s ∈ (−s0,0) with

small enough s0 > 0. Then, for any y ∈ P(V ∗) and bounded measurable function ϕ on P(V ), we have

υys (ϕ) =
∫
G
gυg

∗y
s (ϕ)q∗s (g, y)µ(dg).
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Proof. For short we denote ψys (x) = ϕ(x)es log δ(x,y)/r∗s(y). By the definition (38) of the measure υys , we have

υys (ϕ) =
∫
P(V )

ϕ(x)e
s log δ(x,y)

r∗s(y) νs(dx) =
∫
P(V )

ψys (x)νs(dx).

From the identity Psνs(ψys ) = κ(s)νs(ψys ), it follows that

υys (ϕ) = 1
κ(s)

∫
P(V )

Psψ
y
s (x)νs(dx)

= 1
κ(s)r∗s(y)

∫
P(V )

(∫
G
ϕ(gx)es log δ(gx,y)+sσ(g,x)µ(dg)

)
νs(dx).

Using the cohomological identity (33), Fubini’s theorem and (42), we get

υys (ϕ) = 1
κ(s)r∗s(y)

∫
G

(∫
P(V )

ϕ(gx)es log δ(x,g∗y)+sσ(g∗,y)νs(dx)
)
µ(dg)

=
∫
G

esσ(g∗,y)

κ(s)r∗s(y)

(∫
P(V )

ϕ(gx)es log δ(x,g∗y)νs(dx)
)
µ(dg)

=
∫
G

esσ(g∗,y)

κ(s)
r∗s(g∗y)
r∗s(y) gυg

∗y
s (ϕ)µ(dg)

=
∫
G
q∗s (g, y)gυg

∗y
s (ϕ)µ(dg),

as desired.

4. Auxiliary statements

4.1. Stationary measures on finite extensions

Let G be a locally compact subgroup of G. Assume that H < G is a closed subgroup of finite index, which
means that the quotient G/H is a finite set. Let µ be a probability measure on G. Denote by Ω the set of
infinite sequences (g1, g2, . . .) and equip it with the measure µ⊗N∗ . For any ω ∈Ω, set

τ(ω) = min{k > 1 : gk . . . g1 ∈H}.

The stopping time τ is µ⊗N∗ -a.s. finite, see Lemma 5.5 of [5]. Define the mapping f : ω ∈ Ω 7→ gτ(ω) . . . g1 ∈H .
Let µH be the image of the measure µ⊗N∗ by the mapping f. We call µH the probability measure induced by
µ on the subgroup H . From Lemma 5.7 of [5] we have the following assertion.

Lemma 4.1. Assume that the probability measure m is µ-stationary on P(V ). Then m is also a µH -stationary
probability measure.

4.2. Determination of the support of the stationary measure

Since we will use facts from complex algebraic geometry, we now introduce some basic notions on complex
algebraic sets. We write VC for the complexification of V . For example, one can define VC as the space V 2

equipped with the complex vector space structure defined by (a+ ib)(v,w) = (av− bw,aw+ bv) for a, b ∈R and
v,w ∈ V . One then identifies V with the set V ×{0} ⊂ V 2. We recall that a subset X in VC is algebraic if there
exist complex polynomial functions p1, . . . , pk on VC such that X = {v ∈ VC : p1(v) = . . .= pk(v) = 0}. We say
that X is homogeneous if for every t ∈ C and v ∈X it holds that tv ∈X . The topological space X is called
Noetherian if every non-increasing sequence of closed subsets is eventually constant.

We also need the projective space of VC, which is defined in a similar way: P(VC) is the set of elements
x= Cv, where v ∈ VC \ {0}. A subset Y of P(VC) is algebraic if there exists an algebraic homogeneous subset
X whose projective image is Y . With this notion, a set X in V is (real) algebraic if and only if there exists a
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complex algebraic set X ′ such that X =X ′ ∩V . In the same way, a set Y in P(V ) is (real) algebraic if and only
if there exists a complex algebraic set Y ′ such that Y = Y ′ ∩ P(V ).

From the Noetherian property of the ring of polynomial functions it follows that the sets defined as zeros
of infinitely many polynomials are also algebraic. This implies that the algebraic sets are precisely the closed
sets of the Zariski topology. The set GL(VC) is a Zariski open subset of the complex vector space End(VC) of
complex endomorphisms of VC, so we can equip it with the Zariski topology of End(VC). The closure of a set
Y in the Zariski topology is denoted by Zc(Y ).

The limit set of the semigroup Γµ is a subset of P(VC) defined as follows:

Λ(Γµ) = {x+
g : g ∈ Γµ, g is proximal}.

It is well known that, under conditions A1 and A2, Λ(Γµ) is the smallest nonempty closed Γµ-invariant set in
the projective space Pd−1

C .

Lemma 4.2. Assume either conditions A1, A2 and s ∈ I+
µ , or conditions A1, A2, A3 and s ∈ (−s0,0) with

small enough s0 > 0. Then the support of νs is Λ(Γµ).

Proof. If we apply Lemma 3.1 with T = Ps and X = Λ(Γµ), then we obtain that Ps admits an eigenmeasure
which is concentrated on Λ(Γµ). By the uniqueness of the eigenmeasure νs (see (14) and Lemma 3.5), we get
νs(Λ(Γµ)) = 1. This proves that the support of νs is contained in Λ(Γµ).

Conversely, let us prove that for any nonempty open subset U ⊂ Λ(Γµ) it holds that νs(U) > 0. To show
this we fix some point x ∈ supp(νs). Since the orbit Γµx is dense in Λ(Γµ), we can find an integer n ∈ N and
g ∈ supp(µ)n such that gx ∈ U . As supp(µ)n is the support of the measure µ∗n, we get

P(Gnx ∈ U)> 0.

This gives

Pns 1U (x) = E
(
esσ(Gn,x)1{Gnx∈U}

)
> 0.

Since the function Pns (1U ) is upper semi-continuous, the set

V = {x′ ∈ P(V ) : Pns 1U (x′)> 0}

is open. By assumption V ∩ supp(νs) is nonempty, hence νs(V )> 0 and νs(Pns 1U )> 0. It follows that νs(U) =
κ(s)−nνs(Pns 1U )> 0, as required.

Remark 4.3. Let Γ∗µ be the adjoint semigroup of Γµ, which is a subsemigroup of GL(V ∗). Then assumptions
A1 and A2 hold for Γ∗µ if and only if they hold for Γµ. In particular, there exists a smallest nonempty closed
Γ∗µ-invariant subset in the dual projective space P(V ∗), which will be called limit set and denoted by Λ(Γ∗µ).

Let Hµ = Zc(Γµ) be the Zariski closure of Γµ in GL(VC). Define Xµ = Zc(Λ(Γµ)) = Zc(suppν). Note that
Xµ is an algebraic subset of P(VC).

Lemma 4.4. Assume conditions A1 and A2. The algebraic set Xµ is the unique closed Hµ-orbit in P(VC). In
particular, every nonempty Zariski closed Hµ-invariant subset contains Xµ.

Proof. It is a general fact in algebraic geometry (we refer to Borel [7, Corollary 1.8, p.53]) that there exists
x0 ∈ P(V ) such that Y0 =Hµx0 is a Zariski closed orbit. We shall prove that Xµ = Y0.

The orbit Y0 is also analytically closed and, moreover, it is Γµ-invariant (if g ∈ Γµ then gY0 = gHµx0 =
{gg′x0 : g′ ∈Hµ} ⊂ Y , as gg′ ∈Hµ). Therefore, the minimal closed Γµ-invariant set Λ(Γµ) is contained in Y0:
Λ(Γµ) ⊂ Y0. This implies that Xµ = Zc(Λ(Γµ)) ⊂ Zc(Y0) = Y0, since Y0 is Zariski closed. So we have showed
that Xµ ⊂ Y0.

Now we prove the converse inclusion Y0 ⊂ Xµ. Since Xµ is a Γµ-invariant Zariski closed subset, by the
continuity of the map g ∈GL(VC) 7→ gx ∈ P(VC) in the Zariski topology for any x ∈ P(VC), the set Xµ is also
Hµ-invariant. This means that HµXµ ⊂Xµ. We know that for any x ∈ Y0 it holds that Hµx= Y0. Since Xµ ⊂ Y0,
we have that Hµx= Y0 for any x ∈Xµ. This implies that Y0 =Hµx⊂Xµ, which concludes the proof.
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To avoid any confusion with the notion of strong irreducibility of the set Γµ introduced before, let us recall
the notion of irreducibility of an algebraic subset. We say that an algebraic subset Y is irreducible if Y cannot
be represented as the union of two proper closed algebraic subsets of Y .

Lemma 4.5. Assume conditions A1 and A2. Then, the algebraic set Xµ is irreducible.

Proof. Let H0
µ be the Zariski connected component of Hµ which contains the unit element of G. Note that

H0
µ is a finite index Zariski closed subgroup of Hµ.
Let µ0 be the measure on H0

µ induced by the measure µ through the mapping f as explained in Section 4.1.
By Lemma 4.1, the probabilty measure ν defined by (10) is µ0-stationary. By the construction of µ0 we have
Γµ0 = Γµ ∩H0

µ. Since any finite index subgroup of a strongly irreducible group is still strongly irreducible, it
follows that Γµ0 is strongly irreducible (we note that the irreducibility is not necessarily preserved). It is also
proximal since any positive power of an element of Γµ is also proximal. By the result of Furstenberg [13] the
measure µ0 has a unique stationary probability measure ν0 on P(V ) which (by uniqueness) coincides with ν.
This implies that Xµ =Xµ0 = Zc(suppν0) = Zc(Λ(Γµ0)).

Applying Lemma 4.4 with µ0 instead of µ, we conclude that Xµ =X0
µ is an H0

µ-orbit in P(V ). Since H0
µ is

connected (and therefore irreducible as an algebraic set), we conclude that Xµ is irreducible as the image of
H0
µ by the Zariski continuous mapping g ∈H0

µ 7→ gx0 ∈Xµ.

4.3. The maximum principle

We shall use repeatedly the following simple fact which we call maximum principle.

Lemma 4.6. Let φ : (X,P ) 7→R be a measurable function on the measurable space X equipped with the prob-
ability measure P which satisfies φ(x) 6 β, P -a.s. and

∫
φ(x)P (dx) = β, where β ∈ R is a real number. Then

φ= β, P -a.s.

5. Proof of Theorem 2.2

We shall prove the following statement which implies Theorem 2.2. All over this section we assume conditions
A1 and A2. First we recall that by the definition of Xµ (see Section 4.2) we have Xµ = Zc(suppν), so that
ν(Xµ) = 1.

Proposition 5.1. For any proper algebraic subset Y of Xµ, it holds ν(Y ) = 0.

We need to recall some elementary notions from algebraic geometry (see, for instance Borel [7]). We say that
a topological space X is irreducible if and only if X cannot be written as X =X1 ∪X2, where X1 and X2 are
proper closed subsets of X . Recall that a topological space X is Noetherian if every non-increasing sequence
of closed subsets is eventually constant. Any Noetherian topological space can be written as a finite union of
closed irreducible subsets.

The (combinatorial) dimension of a Noetherian topological space X is the maximum length l of sequences
X0 ( . . .( . . .Xl of distinct irreducible closed sets in X :

dim(X) = sup{l :X0 ( . . .( . . .Xl (X} ∈N∪ {∞}.

From this definition it is obvious that if X is irreducible and has finite dimension then any proper closed subset
of X has strictly smaller dimension.

It is known that the projective space P(VC) is irreducible and Noetherian for the Zariski topology with
dim(P(VC)) = d−1. In the following by the dimension of an algebraic subset of P(V ) we mean the combinatorial
dimension.

Denote by A(Xµ) the set of irreducible algebraic subsets Y of Xµ. Set

d0 = min{1 6 r 6 d : Y ∈A(Xµ), dim(Y ) = r, ν(Y )> 0}.

It is easy to see that d0 6 dim(Xµ) 6 d− 1.

Lemma 5.2. Let Y be an algebraic subset of P(VC) with dim(Y )< d0. Then ν(Y ) = 0.
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Proof. Write Y as a union of irreducible algebraic subsets Y1, . . . , Yr of P(VC): Y = Y1∪ . . .∪Yr (see Proposition
1.5 of Hartshorne [23]). As each Yk has dimension strictly less that d0, we have ν(Yk) = 0, by the definition of
d0. So ν(Y ) = 0.

We will establish the following assertion, which is the key point in the proof of Theorem 2.2.

Proposition 5.3. The dimension of Xµ is d0: dim(Xµ) = d0.

The proof of this proposition requires some additional assertions. For any c > 0, set

W0(c) = {Y ∈A(Xµ) : dim(Y ) = d0, ν(Y ) > c}.

We start by showing that this set is finite.

Lemma 5.4. For any c > 0, the set W0(c) is finite. Moreover cardW0(c) 6 c−1.

Proof. Let Y1, · · · , Yr be two by two distinct elements of W0(c). For any 1 6 i < j 6 r, the intersection Yi ∩ Yj
is an algebraic subset of dimension strictly smaller than d0. By Lemma 5.2 we have ν(Yi ∩Yj) = 0. This implies
that ν(Y1 ∪ · · · ∪ Yr) > cr, so r 6 c−1.

Set

β = sup{ν(Y ) : Y ∈A(Xµ), dim(Y ) = d0}. (43)

In the following it is important to show that the supremum in (43) is attained.

Lemma 5.5. The following maximum is attained,

β = max{ν(Y ) : Y ∈A(Xµ), dim(Y ) = d0}.

Proof. As β > 0, we have

β = sup{ν(Y ) : Y ∈W0(β/2)}.

By Lemma 5.4, the set W0(β/2) is finite. Therefore, the supremum is attained.

All the algebraic sets Y ∈A(Xµ) for which the maximum β is realized are collected in the set

W = {Y ∈A(Xµ) : dim(Y ) = d0, ν(Y ) = β},

which is finite by Lemma 5.4 (as a subset of W0(β)).

Lemma 5.6. The set W is Γµ-invariant, which means that for any g ∈ Γµ and any Y ∈ W we have that
gY ∈W .

Proof. Let Y be an element of W . Since the measure ν is µ-stationary, we have

ν(Y ) =
∫

Γµ
ν(g−1Y )µ(dg).

For any g ∈ Γµ, we have that g−1Y ∈A(Xµ) and g−1Y has dimension d0, hence ν(g−1Y ) 6 β. Since

β = ν(Y ) =
∫

Γµ
ν(g−1Y )µ(dg),

by the maximum principle (see Lemma 4.6), we get that ν(g−1Y ) = β for µ-almost all g ∈ Γµ. Since W is
finite (by Lemma 5.4), we get that g−1W =W for µ-almost all g ∈ Γµ, and that the set {g ∈ Γµ : g−1W =W}
is closed. We have shown that it has µ measure 1, therefore it contains the suppµ (by the definition of the
latter). This means that for any g ∈ suppµ we have g−1W ⊂W . Since the cardinality ofW is finite, we get that
g−1W =W for any g ∈ suppµ. By the definition of the support of the measure µ, the last statement implies
that g−1W =W for all g ∈ Γµ. Since g−1W =W is equivalent to gW =W for g ∈ Γµ, the assertion follows.
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Proof of Proposition 5.3. By Lemma 5.6, the set W is Γµ-invariant (ΓµW ⊂W), and by Lemma 5.4, the
set W is finite. Therefore, the set Z =

⋃
Y ∈W Y is a Zariski closed Γµ-invariant algebraic subset in Xµ. As Γµ

is Zariski dense in Hµ = Zc(Γµ), the algebraic set Z is Hµ-invariant. By Lemma 4.4, we have that Xµ ⊂ Z. On
the other hand Z ⊂Xµ, so Z =Xµ, which reads as Xµ =

⋃
Y ∈W Y . According to Lemma 4.5, Xµ is irreducible,

hence we get Xµ = Y for some Y in W . In particular, dim(Y ) = d0 = dim(Xµ), which concludes the proof of
Proposition 5.3.

Now we show that Proposition 5.3 implies Proposition 5.1.

Proof of Proposition 5.1. Let Y be an algebraic subset of Xµ with ν(Y ) > 0 and let us show that Y =
Xµ. By Proposition 1.5 of Hartshorne [23], we can decompose the set Y into a union of Zariski closed and
Zariski irreducible subsets Z1, . . . ,Zr of Xµ: Y = Z1 ∪ . . . ∪ Zr. Then, there exists k such that ν(Zk)> 0, and
hence dim(Zk) > d0 = dim(Xµ), by Proposition 5.3. It follows that Zk =Xµ, hence Y =Xµ as claimed by our
assertion.

Now we prove that Proposition 5.1 implies Theorem 2.2.

Proof of Theorem 2.2. Let Y be an algebraic subset of the projective space P(VC). If Xµ ⊂ Y , we have
ν(Y ) > ν(Xµ) = 1. Otherwise, Y ∩Xµ is a proper algebraic subset of Xµ. Since ν(Xµ) = 1, we have ν(Y ) =
ν(Y ∩Xµ) = 0, by Proposition 5.1. The assertion of the theorem now follows from the fact that an algebraic
subset of P(V ) is the intersection of an algebraic subset of the projective space P(VC) with P(V ).

6. Proof of Theorems 2.6 and 2.8

We shall first prove the following:

Proposition 6.1. Assume conditions A1 and A2. Then, for any s ∈ I+
µ and for any proper algebraic subset

Y of Xµ, it holds νs(Y ) = 0.

Proposition 6.2. Assume conditions A1, A2 and A3. Then, there exists a constant s0 > 0 such that for any
s ∈ [−s0,0) and for any proper algebraic subset Y of Xµ, it holds νs(Y ) = 0.

We will see at the end of this section that Propositions 6.1 and 6.2 imply Theorems 2.6 and 2.8, respectively.
To establish Propositions 6.1 and 6.2 we stick to the proof of Guivarc’h and Le Page [21]. The proofs that

we give below will work in both cases s ∈ I+
µ and s ∈ [−s0,0), where s0 > 0 is small enough.

We need a series of auxiliary statements. We use the notation A(Xµ) from Section 5 and υys from Section
3.4. For any y ∈ P(V ∗) define

d0 = min{1 6 r 6 d : Y ∈A(Xµ), dim(Y ) = r, υys (Y )> 0}.

Since the measures υys and νs are equivalent, there is no dependence on y in the above definition of d0, so that

d0 = min{1 6 r 6 d : Y ∈A(Xµ), dim(Y ) = r, νs(Y )> 0}.

It easy to see that d0 6 dim(Xµ) 6 d− 1.

Lemma 6.3. Let Y be an algebraic subset of P(VC) with dim(Y )< d0. Then νs(Y ) = 0.

Proof. The proof being similar to that of Lemma 5.2 is left to the reader.

In the sequel we are going to prove the following assertion.

Proposition 6.4. It holds that dim(Xµ) = d0.

We shall show below that Proposition 6.4 implies our Propositions 6.1 and 6.2.
The proof of Proposition 6.4 is based on several lemmas. For any c > 0, set

Wy
0 (c) = {Y ∈A(Xµ) : dim(Y ) = d0, υ

y
s (Y ) > c}.

Lemma 6.5. Let c > 0 be a constant. Then, for any y ∈ (Pd−1)∗ , the setWy
0 (c) is finite. Moreover cardWy

0 (c) 6
c−1.
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Proof. Let Y1, · · · , Yr be two by two distinct elements of W y
0 (c). For any 1 6 i < j 6 r, the intersection Yi ∩Yj

is an algebraic set of dimension strictly smaller than d0, hence by Lemma 6.3, υys (Yi ∩ Yj) = 0. This implies
that υys (Y1 ∪ · · · ∪ Yr) > cr, so r 6 c−1.

Proceeding as in the proof of Lemma 5.5, from Lemma 6.5 it follows that for y ∈ P(V ∗), the number

h(y) = max
{
υys (Y ) : Y ∈A(Xµ), dim(Y ) = d0

}
(44)

is well-defined and the max is attained. By Lemma 3.11, the function h : P(V ∗)→ R+ is continuous and thus
attains its maximum on P(V ∗). Therefore, we can define

β = max
y∈P(V ∗)

h(y). (45)

Lemma 6.6. If h(y) = β for some y ∈ P(V ∗), then h(g∗y) = β for all g ∈ Γµ. In particular h(y) = β for all
y ∈Λ(Γ∗µ).

Proof. Assume that y ∈ P(V ∗) and h(y) = β. Using (44) and (45), we see that there exists Y ∈ A(Xµ) such
that υys (Y ) = β. Note that 1Y (gx) = 1g−1Y (x) for x ∈ P(V ). By Lemma 3.12, it holds that

β = υys (Y ) =
∫
G
υg
∗y
s (g−1Y )q∗s (g, y)µ(dg). (46)

Since g−1Y is an irreducible algebraic subset of dimension d0, we have that for any g−1 ∈ Γµ,

υg
∗y
s (g−1Y ) 6 β. (47)

From (46), (47) and the fact that q∗s (g, y)µ(dg) is a probability measure, by the maximum principle (Lemma
4.6), it follows that υg∗ys (g−1Y ) = β for q∗s (·, y)dµ almost all g ∈G. Using the fact that the measures q∗s (·, y)dµ
and µ are equivalent, we obtain that υg∗ys (g−1Y ) = β for µ-a.s. g ∈G. Therefore, h(g∗y) = β for µ-a.s. g ∈G.
Since the function h is continuous on P(V ∗), we conclude that h(g∗y) = β for all g ∈ suppµ, hence, by iteration,
for all g ∈ Γµ.

To prove the second assertion, define

Z =
{
y ∈ P(V ∗) : h(y) = β

}
. (48)

The set Z is nonempty and, since the function h is continuous, it is closed. From the first assertion of the
lemma we have Γ∗µZ ⊂ Z. Since Λ(Γ∗µ) is the smallest nonempty closed Γ∗µ-invariant set (by Remark 4.3), we
get Λ(Γ∗µ)⊂ Z. Therefore, by the definition (48) of Z, we conclude that h(y) = β for all y ∈Λ(Γ∗µ).

For any y ∈ P(V ∗), we collect all the algebraic sets Y ∈A(Xµ) for which h(y) defined by (44) is realized, in
the set

W(y) =
{
Y ∈A(Xµ) : dim(Y ) = d0, υ

y
s (Y ) = h(y)

}
. (49)

In the same way as in the proof of Lemma 5.5, using Lemma 6.5 one can show that W(y) is a finite set:
card(W(y))<∞. For any y ∈ P(V ∗), set

n(y) = card(W(y)). (50)

Note that for any Y ∈ W(y) we have υys (Y ) = h(y) = β. So, by Lemma 6.5 we get that n(y) 6 β−1 for any
y ∈ P(V ∗). Set

r = max {n(y) : y ∈ P(V ∗), h(y) = β} .

Lemma 6.7. Suppose that y ∈ P(V ∗) is such that h(y) = β and n(y) = r. Then h(g∗y) = β and n(g∗y) = r for
all g ∈ Γµ. In particular h(y) = β and n(y) = r for all y ∈Λ(Γ∗µ).
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Proof. Define for any y ∈ P(V ∗),

hr(y) = max
{
υys (Y ) : Y = Y1 ∪ · · · ∪ Yr, Yk ∈A(Xµ),dim(Yk) = d0,1 6 k 6 r

}
.

By Lemma 3.11, the function hr is continuous on P(V ∗). We claim that for any y ∈ P(V ∗), we have hr(y) 6 βr
and equality holds if and only if h(y) = β and n(y) = r. Indeed, for Y1, . . . , Yr from the definition of hr, (44) and
(45) imply that υys (Yk) 6 β, thus hr(y) 6 βr. Moreover, if hr(y) = βr, then there exist Y1, . . . , Yr ∈A(Xµ) with
dim(Yk) = d0 for 1 6 k 6 r such that υys (Y ) = βr, where Y = Y1 ∪ · · · ∪ Yr. Then, necessarily the sets Y1, · · · , Yr
are two by two distinct and υys (Yi) = β for any 1 6 i6 r. Thus h(y) = β and n(y) = r. The converse statement
is obvious.

Therefore, to prove the first assertion of the lemma we need to show that the set {y ∈ P(V ∗) : hr(y) = βr}
is Γ∗µ-invariant. For any y in this set, let Y1, . . . , Yr ∈ A(Xµ) be such that dim(Yk) = d0 for 1 6 k 6 r and
υys (Y ) = βr, where Y = Y1 ∪ · · · ∪ Yr. Using Lemma 3.12, we get

βr = υys (Y1 ∪ · · · ∪ Yr) =
∫
G
υg
∗y
s

(
g−1(Y1 ∪ · · · ∪ Yr)

)
q∗s (g, y)µ(dg).

Since υys (g−1(Y1 ∪ · · · ∪ Yr)) 6 βr for any g ∈ G and y ∈ P(V ∗), by the maximum principle (Lemma 4.6), it
follows that q∗s (·, y)dµ-a.s.

υg
∗y
s

(
g−1(Y1 ∪ · · · ∪ Yr)

)
= βr.

This means that hr(g∗y) = βr for q∗s (·, y)dµ almost all g ∈G. Since the measures q∗s (·, y)dµ and µ are equivalent,
we deduce that hr(g∗y) = βr holds for µ almost all g ∈G. Thus we have proved that hr(y) = βr implies hr(g∗y) =
βr µ-a.s. for µ almost all g ∈G. Since the function h is continuous on P(V ∗), it follows that hr(g∗y) = βr for
all g ∈ suppµ and hence for g ∈ Γµ. This means that Γ∗µZr ⊂ Zr, where

Zr = {y ∈ P(V ∗) : hr(y) = βr} .

By Lemma 6.6, we know that Γ∗µZ ⊂ Z, where Z is defined by (48). Therefore Γ∗µ(Zr ∩Z)⊂ (Zr ∩Z). Noting
that

Zr ∩Z = {y ∈ P(V ∗) : h(y) = β, n(y) = r} ,

we get the first assertion of the lemma.
Now we prove the second assertion. Since the function hr is continuous, the set Zr is nonempty and closed.

We have seen in the proof of Lemma 6.6 that the set Z is also nonempty and closed. Recalling that Λ(Γ∗µ) is
the smallest closed Γ∗µ-invariant set (by Remark 4.3), we obtain Λ(Γ∗µ)⊂ Zr ∩Z, which is precisely the second
assertion.

Lemma 6.8. The mapping y ∈ Λ(Γ∗µ) 7→W(y) is locally constant. In particular, the number of distinct values
of this mapping is finite, i.e.

card
{
W(y) : y ∈Λ(Γ∗µ)

}
<∞.

Proof. For any y ∈ P(V ∗), set

ε(y) = max {υys (Y ) : Y ∈A(Xµ), dim(Y ) = d0, υ
y
s (Y )< β} ,

where the maximum is attained (this can be established using Lemma 6.5 in the same way as in the proof
of Lemma 5.5). Equip the space C(P(V ))′ of complex valued Borel measures on P(V ) with the total variation
norm ‖ · ‖TV. Since ε(y)< β, by the continuity of the mapping y ∈ P(V ∗) 7→ υys ∈ C(P(V ))′ (see Lemma 3.11),
we get

ε0 = sup
y∈P(V ∗)

ε(y)< β.

Note that any algebraic subset Y has the following property:

υys (Y ) = β or υys (Y ) 6 ε0. (51)
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On the compact set Λ(Γ∗µ) there exists a neighborhood Uy ⊂ Λ(Γµ) of y such that for any y′ ∈ Uy ,

‖υys − υy
′

s ‖TV < β − ε0. (52)

Let Y1, . . . , Yr be the elements of W(y) that realize β, i.e. υys (Yk) = β, k = 1, . . . , r. In particular, this implies
that

υys (Y1 ∪ . . .∪ Yr) = βr. (53)

Then, by (52) and (53),∣∣∣υys (Y1 ∪ . . .∪ Yr)− υy
′

s (Y1 ∪ . . .∪ Yr)
∣∣∣= ∣∣∣βr− υy′s (Y1 ∪ . . .∪ Yr)

∣∣∣< β − ε0. (54)

By (51) we have either υy′s (Yk) = β or υy′s (Yk) 6 ε0, for k = 1, . . . , r. If there exists Yk such that υy′s (Yk) 6 ε0,
then this will lead to a contradiction. Hence we get that υy′s (Yk) = β for k = 1, . . . , r, so that W(y′)⊂W(y). In
turn, since cardW(y) = cardW(y′) = r, we obtain that W(y) =W(y′) for any y′ ∈ Uy , which means that the
mapping y 7→W(y) is locally constant on Λ(Γ∗µ).

Since Λ(Γ∗µ) is a closed set of the projective space P(V ∗), it is also compact. We know that any locally
constant mapping on a compact set has a finite range. Therefore, the mapping y 7→W(y) on Λ(Γ∗µ) takes only
finitely many values. This proves the second assertion.

Lemma 6.9. For any y ∈ Λ(Γ∗µ), we have W(g∗y) = g−1W(y) for µ-a.s. all g ∈ Γµ.

Proof. Let y ∈ Λ(Γ∗µ) and Y1, . . . , Yr be two by two distinct elements of W(y) that realize β, i.e. such that
Yk ∈A(Xµ), dim(Yk) = d0 and υys (Yk) = β for any k = 1, . . . , r. Since the sets Y1, · · · , Yr are two by two distinct,
for any 1 6 i < j 6 r, the intersection Yi ∩ Yj is an algebraic set of dimension strictly smaller than d0, in view
of Lemma 6.3 it holds that υys (Yi ∩ Yj) = 0. This implies βr = υys (Y1 ∪ · · · ∪ Yr). Taking into account Lemma
3.12, we have

βr = υys (Y1 ∪ · · · ∪ Yr) =
∫
G
υg
∗y
s

(
g−1(Y1 ∪ · · · ∪ Yr)

)
q∗s (g, y)µ(dg).

Since υys (g−1(Y1 ∪ · · · ∪ Yr)) 6 βr for any y ∈ P(V ∗), by the maximum principle (Lemma 4.6), it follows that
µ-a.s. on G, and therefore following the same reasoning as in the proof of Lemma 6.7 for all g ∈ suppµ,

υg
∗y
s

(
g−1(Y1 ∪ · · · ∪ Yr)

)
= βr.

Note that υg∗ys (g−1Yi) 6 β, so that for all g ∈ suppµ,

βr = υg
∗y
s

(
g−1(Y1 ∪ · · · ∪ Yr)

)
6

r∑
i=1

υg
∗y
s (g−1Yi) 6 βr.

This implies that υg∗ys (g−1Yi) = β for all g ∈ suppµ and i= 1, · · · , r. Thus g−1W(y)⊂W(g∗y) for all g ∈ suppµ.
Noticing that both sets have the same cardinality r, we obtain that g−1W(y) =W(g∗y) for all g ∈ suppµ. The
desired assertion follows.

Proof of Proposition 6.4. The proof is similar to that of Proposition 5.3. Set

W =
⋃

y∈Λ(Γ∗µ)

W(y).

By Lemma 6.9, the set W is Γµ-invariant: ΓµW =W. By Lemma 6.8, the set W is finite, hence Z :=
⋃
Y ∈W Y

is a nonempty Γµ-invariant algebraic subset in Xµ. Since Γµ is Zariski dense in Hµ = Zc(Γµ), the algebraic set
Z is Hµ-invariant. By Lemma 4.4 Xµ is the minimal Hµ invariant algebraic subset, so Xµ ⊂ Z. On the other
hand, we have Z =

⋃
Y ∈W Y ⊂Xµ, therefore, we get Z =Xµ. This reads as Xµ =

⋃
Y ∈W Y . From Lemma 4.5,

we know that Xµ is irreducible, therefore, we obtain that Xµ = Y for some Y in W . In particular, it holds that
dim(Y ) = d0 = dim(Xµ), which concludes the proof of Proposition 6.4.
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We are now prepared to prove Propositions 6.1 and 6.2. The proof is based on Proposition 6.4 and the
arguments already used in Section 5.

Proof of Propositions 6.1 and 6.2. Let Y be an algebraic subset of the set Xµ with νs(Y )> 0. As the set
Y can be reducible, we decompose it as a finite union of irreducible algebraic subsets. Specifically, according
to Proposition 1.5 of [23], there exist irreducible algebraic subsets Z1, . . . ,Zr such that Y = Z1 ∪ . . . ∪ Zr.
From νs(Y )> 0, it follows that νs(Zk)> 0 for some 1 6 k 6 r. Recalling that d0 is the minimal dimension of
irreducible algebraic subsets U satisfying νs(U) > 0, we get dim(Zk) > d0. By Proposition 6.4, we know that
dim(Xµ) = d0. Hence we have dim(Zk) > d0 = dim(Xµ). This implies that Zk =Xµ, hence Y =Xµ. The latter
obviously proves the claims of Propositions 6.1 and 6.2.

We end the section by establishing Theorems 2.6 and 2.8.

Proof of Theorems 2.6 and 2.8. Let Y be an algebraic subset of the projective space P(VC). If Xµ ⊂ Y ,
we have νs(Y ) > νs(Xµ) = 1, by Lemma 4.2. Otherwise, Y ∩ Xµ is a proper algebraic subset of Xµ. Since
νs(Xµ) = 1, it follows that νs(Y ) = νs(Y ∩Xµ) = 0, according to Propositions 6.1 and 6.2 for s > 0 and s < 0
respectively. The assertion of both theorems now follows from the fact that an algebraic subset of P(V ) is the
intersection of an algebraic subset of the projective space P(VC) with P(V ).

7. Proof of local limit theorems for coefficients

In this section we show how to apply the zero-one law for the stationary measure ν to establish a local limit
theorem for the coefficients 〈f,Gnv〉 of the random walk Gn, which to the best of our knowledge cannot be
found in the literature.

7.1. Auxiliary results

Let us fix a non-negative density function ρ on R with
∫
R ρ(u)du = 1, whose Fourier transform ρ̂(t) =∫

R e
−ituρ(u)du, t ∈ R, is supported on [−1,1]. For any 0 < ε < 1, define the rescaled density function ρε by

ρε(u) = 1
ερ(uε ), u ∈ R, whose Fourier transform has a compact support on [−ε−1, ε−1]. Set Bε(u) = {u′ ∈ R :

|u′ − u|6 ε}. For any non-negative integrable function ψ, we define

ψ+
ε (u) = sup

u′∈Bε(u)
ψ(u′) and ψ−ε (u) = inf

u′∈Bε(u)
ψ(u′), u ∈R. (55)

We need the following smoothing inequality from [17], which gives two-sided bounds for the function ψ.
Lemma 7.1. Suppose that ψ is a non-negative integrable function and that ψ+

ε and ψ−ε are measurable for any
ε > 0. Then, there exists a positive constant Cρ(ε) with Cρ(ε)→ 0 as ε→ 0, such that

ψ−ε ∗ρε2(u)−
∫
|w|>ε

ψ−ε (u−w)ρε2(w)dw 6 ψ(u) 6 (1 +Cρ(ε))ψ+
ε ∗ρε2(u), u ∈R.

Define the perturbed operator Pit as follows: for any t ∈R and ϕ ∈ C(P(V )),

Pit(ϕ)(x) =
∫
G
eit(σ(g,x)−λ)ϕ(gx)µ(dg), x ∈ P(V ). (56)

The following proposition which is taken from [29] will be used in the proof of Theorem 2.9. Recall that ν is the
unique stationary measure of the Markov chain (Gnx)n>0 on the projective space P(V ). Let ϕ be a γ-Hölder
continuous function on P(V ). Assume that ψ : R 7→C is a continuous function with compact support in R, and
moreover, ψ is differentiable in a small neighborhood of 0 on the real line.
Proposition 7.2. Assume conditions A1, A2 and A3. Then, there exist constants δ > 0, c > 0, C > 0 such
that for all x ∈ P(V ), |l|6 1√

n
, ϕ ∈ Bγ and n> 1,∣∣∣∣σ√ne nl22σ2

∫
R
e−itlnPnit(ϕ)(x)ψ(t)dt−

√
2πν(ϕ)ψ(0)

∣∣∣∣
6

C√
n
‖ϕ‖γ + C

n
‖ϕ‖γ sup

|t|6δ

(
|ψ(t)|+ |ψ′(t)|

)
+Ce−cn‖ϕ‖γ

∫
R
|ψ(t)|dt.
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The explicit dependence of the bound on the target function ϕ as well as the rate of convergence established
in Proposition 7.2 will be used in the proof of Theorem 2.9.

7.2. Proof of Theorem 2.9

The goal of this subsection is to establish Theorem 2.9 using Theorems 2.1 and 2.2, Lemma 3.8 and Proposition
7.2.

Proof of Theorem 2.9. The basic idea is to decompose the logarithm of the coefficient log |〈f,Gnv〉| as a
sum of the norm cocycle σ(Gn, x) and of log δ(y,Gnx), where x= Rv ∈ P(V ) and y = Rf ∈ P(V ∗) with |v|= 1
and |f |= 1, see (3). Specifically, we have the decomposition:

J : = σ
√

2πnP
(

log |〈f,Gnv〉| − nλ ∈ [a1, a2]
)

= σ
√

2πnP
(
Svn + log δ(y,Gnx) ∈ [a1, a2]

)
, (57)

where

Svn = log |Gnv| − nλ.

For any fixed small constant 0< η < 1, we denote

Ik := (−ηk,−η(k− 1)], k ∈N∗.

In the sequel, let bac denote the integral part of a ∈R. To apply limit theorems established for the norm cocycle
log |Gnv|, we are led to discretize the function x 7→ log δ(y,x) to obtain that: with a sufficiently large constant
C1 > 0,

J = σ
√

2πnP
(
Svn + log δ(y,Gnx) ∈ [a1, a2], log δ(y,Gnx) 6−ηbC1 lognc

)
+ σ
√

2πn
bC1 lognc∑
k=1

P
(
Svn + log δ(y,Gnx) ∈ [a1, a2], log δ(y,Gnx) ∈ Ik

)
=: J1 + J2.

Upper bound of J1. The term J1 is easily handled by using the fact that, with very small probability, the
Markov chain (Gnx)n>0 stays close to the hyperplane kerf . Indeed, by Lemma 3.8, we get that there exists a
constant cη > 0 such that

J1 6 σ
√

2πnP
(

log δ(y,Gnx) 6−ηbC1 lognc
)
6 σ
√

2πne−cηbC1 lognc→ 0, (58)

as n→∞, since the constant C1 > 0 is sufficiently large.
Upper bound of J2. Note that on the set {log δ(y,Gnx) ∈ Ik}, we have 0< log δ(y,Gnx) + ηk 6 η and hence

J2 6 σ
√

2πn
bC1 lognc∑
k=1

E
(
1{Svn−ηk∈[a1,a2+η]}1{log δ(y,Gnx)∈Ik}

)
.

We denote ψ1(u) = 1{u∈[a1,a2+η]}, u ∈ R, and ψ+
ε (u) = supu′∈Bε(u)ψ1(u′) as in (55), for 0 < ε < 1. Using the

upper bound in Lemma 7.1 gives

J2 6 (1 +Cρ(ε))σ
√

2πn
bC1 lognc∑
k=1

E
[
(ψ+
ε ∗ρε2)(Svn − ηk)1{log δ(y,Gnx)∈Ik}

]
. (59)

For small enough constant ε1 > 0, we define the density function ρ̄ε1 by setting ρ̄ε1(u) := 1
ε1

(1 − |u|ε1
) for

u ∈ [−ε1, ε1], and ρ̄ε1(u) = 0 otherwise. For any k ∈ N∗, with the notation χk(u) := 1{u∈Ik} and χ+
k,ε1

(u) =
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supu′∈Bε1 (u) χk(u′), one can check that

χk(u) 6 (χ+
k,ε1
∗ ρ̄ε1)(u) 6 χ+

k,2ε1
(u), u ∈R. (60)

For y ∈ P(V ∗), we denote for short ϕyk(x) = (χ+
k,ε1
∗ ρ̄ε1)(log δ(y,x)), x ∈ P(V ), which is Hölder continuous on

P(V ). Using (60) leads to

J2 6 (1 +Cρ(ε))σ
√

2πn
bC1 lognc∑
k=1

E
[
ϕyk(Gnx)(ψ+

ε ∗ρε2)(Svn − ηk)
]
. (61)

Denote by ψ̂+
ε the Fourier transform of ψ+

ε , then by the Fourier inversion formula,

ψ+
ε ∗ρε2(u) = 1

2π

∫
R
eituψ̂+

ε (t)ρ̂ε2(t)dt, u ∈R.

Substituting u= Svn − ηk and using Fubini’s theorem, we obtain

J2 6 (1 +Cρ(ε))σ
√

n

2π

bC1 lognc∑
k=1

∫
R
e−itηkPnit(ϕ

y
k)(x)ψ̂+

ε (t)ρ̂ε2(t)dt, (62)

where Pit is the perturbed operator defined by (56). We shall apply Proposition 7.2 to deal with each integral
in (62) for fixed k > 1. Note that eCk

2
n → 1 as n→∞, uniformly in 1 6 k 6 bC1 lognc. Since the function ψ̂+

ε ρ̂ε2

is compactly supported in R, using Proposition 7.2 with ϕ= ϕyk, ψ = ψ̂+
ε ρ̂ε2 and l= ηk

n , we obtain that for any
fixed k > 1, as n→∞, uniformly in f ∈ V ∗ and v ∈ V with |f |= 1 and |v|= 1,∣∣∣∣σ√ n

2π

∫
R
e−itηkPnit(ϕ

y
k)(x)ψ̂+

ε (t)ρ̂ε2(t)dt− ψ̂+
ε (0)ρ̂ε2(0)ν(ϕyk)

∣∣∣∣6 C√
n
‖ϕyk‖γ .

Note that ρ̂ε2(0) = 1 and

ψ̂+
ε (0) =

∫
R

sup
y′∈Bε(u)

ψ+
ε (u′)du=

∫
R
1{u∈[a1−ε,a2+η+ε]}du= a2 − a1 + η+ 2ε.

One can calculate that γ-Hölder norm ‖ϕyk‖γ is dominated by C eηγk

(1−e−2ε1 )γ , uniformly in y ∈ P(V ∗). Taking
sufficiently small γ > 0, we obtain that the series C√

n

∑bC1 lognc
k=1

eηγk

(1−e−2ε1 )γ converges to 0 as n→∞. Conse-
quently, we are allowed to interchange the limit as n→∞ and the sum over k in (62) to obtain that, uniformly
in f ∈ V ∗ and v ∈ V with |f |= 1 and |v|= 1,

lim sup
n→∞

J2 6 (1 +Cρ(ε))(a2 − a1 + η+ 2ε)
∞∑
k=1

ν(ϕyk). (63)

Observe that for any x ∈ P(V ),

ϕyk(x) 6 1{
log δ(y,·)∈Ik

}(x) + 1{
log δ(y,·)∈Ik,ε1

}(x), (64)

where Ik,ε1 =
(
− ηk− 2ε1,−ηk

]
∪
(
− η(k− 1),−η(k− 1) + 2ε1

]
. For the first part in (64), we have that for any

y ∈ P(V ∗),
∞∑
k=1

ν
(
x ∈ P(V ) : log δ(y,x) ∈ Ik

)
= 1. (65)

For the second part in (64), we need to apply Theorem 2.1 and the zero-one law for the stationary measure ν
established in Theorem 2.2. By the Lebesgue dominated convergence theorem, we get

E := lim
ε1→0

∞∑
k=1

ν
(
x ∈ P(V ) : log δ(y,x) ∈ Ik,ε1

)
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=
∞∑
k=1

ν
(
x ∈ P(V ) : log δ(y,x) =−ηk

)
+
∞∑
k=1

ν
(
x ∈ P(V ) : log δ(y,x) =−η(k− 1)

)

= 2
∞∑
k=1

ν
(
x ∈ P(V ) : log δ(y,x) =−ηk

)
,

where in the last equality we used Theorem 2.1. We are going to apply Theorem 2.2 to prove that E = 0. In
fact, for any y ∈ P(V ∗) and any set Yy,t = {x ∈ P(V ) : log δ(y,x) = t} with t ∈ (−∞,0), by Theorem 2.2 it holds
that either ν(Yy,t) = 0 or ν(Yy,t) = 1. If ν(Yy,t) = 0 for all y ∈ P(V ∗) and t ∈ (−∞,0), then clearly we get that
E = 0. If ν(Yy0,t0) = 1 for some y0 ∈ P(V ∗) and t0 ∈ (−∞,0), then we can always choose 0 < η < 1 in such a
way that −ηk 6= t0 for all k > 1, so that we also obtain E = 0 for all y ∈ P(V ∗). Therefore, combining this with
(63), (64) and (65), letting first ε→ 0 and then η→ 0, and noting that Cρ(ε)→ 0 as ε→ 0, we obtain the upper
bound: uniformly in f ∈ V ∗ and v ∈ V with |f |= 1 and |v|= 1,

lim sup
n→∞

J2 6 a2 − a1. (66)

Lower bound of J2. Since 0< log δ(y,Gnx) + ηk 6 η on the set {log δ(y,Gnx) ∈ Ik}, we have

J2 > σ
√

2πn
bC1 lognc∑
k=1

E
[
1{Svn−ηk∈[a1+η,a2−η]}1{log δ(y,Gnx)∈Ik}

]
.

We denote ψ2(u) = 1{u∈[a1,a2+η]}, u ∈ R, and recall that ψ−ε (u) = infu′∈Bε(u)ψ2(u′) is defined by (55), for
0< ε< 1. By Lemma 7.1, we get

J2 > σ
√

2πn
bC1 lognc∑
k=1

E
[
(ψ−ε ∗ρε2)(Svn − ηk)1{log δ(y,Gnx)∈Ik}

]

− σ
√

2πn
bC1 lognc∑
k=1

∫
|w|>ε

E
[
ψ−ε (Svn − ηk−w)1{log δ(y,Gnx)∈Ik}

]
ρε2(w)dw

=: J3 − J4. (67)

For any k ∈N, define χk(u) := 1{u∈Ik} and χ
−
k,ε1

(u) = infu′∈Bε1 (u) χk(u′). It is easy to verify that

χk(u) > (χ−k,ε1
∗ ρ̄ε1)(u) > χ−k,2ε1

(u), u ∈R, (68)

where ρ̄ε1 is the density function introduced in (60). For short, we denote ϕ̃yk(x) = (χ−k,ε1
∗ ρ̄ε1)(log δ(y,x)),

x ∈ P(V ), which is Hölder continuous on P(V ).
Lower bound of J3. Using (68), we get

J3 > σ
√

2πn
bC1 lognc∑
k=1

E
[
ϕ̃yk(Gnx)(ψ−ε ∗ρε2)(Svn − ηk)

]
.

In an analogous way as in the proof of (63), we obtain

lim inf
n→∞

J3 > (a2 − a1 − 2η− 2ε)
∞∑
k=1

ν(ϕ̃yk). (69)

Proceeding in a similar way as in the proof of the upper bound (66) for J2, using Theorem 2.2, we can obtain
the lower bound for J3: uniformly in f ∈ V ∗ and v ∈ V with |f |= 1 and |v|= 1,

lim inf
η→0

lim inf
ε→0

lim inf
n→∞

J3 > a2 − a1. (70)



26

Upper bound of J4. Note that ψ−ε 6 ψ, then it follows from Lemma 7.1 that ψ−ε 6 (1+Cρ(ε))ψ̂+
ε ρ̂ε2 . Moreover,

using (60), we get 1{log δ(y,Gnx)∈Ik} 6 (χ+
k,ε1
∗ ρ̄ε1)(Gnx). Similarly to (62), we have that J4 defined in (67) is

bounded from above by

(1 +Cρ(ε))σ
√

n

2π

bC1 lognc∑
k=1

∫
|w|>ε

[∫
R
e−it(ηk+w)Pnit(ϕ

y
k)(x)ψ̂+

ε (t)ρ̂ε2(t)dt
]
ρε2(w)dw.

Applying Proposition 7.2 with ϕ = ϕyk and ψ = ψ̂+
ε ρ̂ε2 , it follows from the Lebesgue dominated convergence

theorem that

lim inf
n→∞

J4 6 (1 +Cρ(ε))
bC1 lognc∑
k=1

ν(ϕyk)ψ̂+
ε (0)ρ̂ε2(0)

∫
|w|>ε

ρε2(w)dw→ 0,

as ε→ 0. Combining this with (67) and (70), we get the lower bound for J2: uniformly in f ∈ V ∗ and v ∈ V
with |f |= 1 and |v|= 1,

lim inf
n→∞

J2 > a2 − a1. (71)

Putting together (58), (66) and (71), we conclude the proof of Theorem 2.9.
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