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ABSTRACT

We introduce in this paper a novel active learning algorithm
for satellite image change detection. The proposed solution is
interactive and based on a question & answer model, which
asks an oracle (annotator) the most informative questions
about the relevance of sampled satellite image pairs, and ac-
cording to the oracle’s responses, updates a decision function
iteratively. We investigate a novel framework which mod-
els the probability that samples are relevant; this probability
is obtained by minimizing an objective function capturing
representativity, diversity and ambiguity. Only data with a
high probability according to these criteria are selected and
displayed to the oracle for further annotation. Extensive ex-
periments on the task of satellite image change detection after
natural hazards (namely tornadoes) show the relevance of the
proposed method against the related work.

Index Terms— Frugal learning, interactive satellite im-
age change detection.

1. INTRODUCTION

Satellite image change detection is the process of identifying
occurrences of targeted changes in a scene, at a given instant
t1, w.r.t. the same scene acquired at an earlier instant t0. One
of the major applications of change detection is damage as-
sessment after natural hazards (e.g., tornadoes, earth-quakes,
etc.) in the purpose of prioritizing disaster response accord-
ingly. This task consists in finding relevant changes (such as
building destruction, damage of transportation routes and in-
frastructures, etc.) while discarding irrelevant ones (due to
weather conditions, occlusions, sensor artefact and alignment
errors, as well as effects due to oscillating objects, trees, etc.).

Early change detection solutions were initially based on
simple comparisons of multi-temporal signals, via image dif-
ferences and thresholding, using vegetation indices, principal
component and change vector analyses (see [1–3, 5, 6, 9] and
references therein). These methods also rely on a prelimi-
nary pre-processing step that attenuates the effects of irrele-
vant changes, by finding parameters of sensors for registration
as well as correcting radiometric effects, occlusions and shad-
ows (see for instance [10–15]). Other methods either ignore
irrelevant changes or consider them as a part of appearance
model design and are able to detect relevant changes while

being resilient to irrelevant ones [16–20]. In particular, ma-
chine learning methods are promising [7, 8], but their success
is highly dependent on the availability of large collections of
hand-labeled training data [4, 22, 33, 34]. Indeed, these ap-
proaches are limited by the huge scene variability and the lack
of labeled training data in order to characterize rare relevant
changes and abundant irrelevant ones. Besides, even when la-
beled data are available, these labels could be erroneous and
oblivious to the annotator’s (user’s) subjectivity and intention.

Many existing solutions try to bypass the aforementioned
limitations by making learning frugal and less dependent on
large collections of labeled data; this includes few shot [21]
and self-supervised learning [32]. However, these solutions
are limited as their design is agnostic to the user’s subjec-
tivity and intention. Weakly-supervised and active learning
solutions [23,25–30] are rather more appropriate where users
annotate very few samples of the most relevant and irrelevant
changes (according to a targeted intention), and a training
model updates a decision criterion accordingly. In this paper,
we follow this line and we introduce a novel interactive satel-
lite image change detection algorithm which asks the user the
most informative questions about the relevance of changes
and according to the user’s responses updates a change detec-
tion criterion. The new proposed model is probabilistic and
assigns for each unlabeled training sample a measure which
captures how critical is that sample in order to update the de-
cision criteria. We obtain this measure as the optimum of a
constrained objective function mixing representativity, diver-
sity, ambiguity and cardinality. In contrast to related active
learning solutions [24], which are basically heuristics, the one
proposed in this paper is probabilistic and unifies all the afore-
mentioned terms in a single objective function whose solution
models the probability of relevance of samples when learn-
ing decision functions. Extensive experiments conducted on
the highly imbalanced task of satellite image change detection
show the effectiveness of the proposed model.

2. PROPOSED METHOD

Let Ir = {p1, . . . , pn}, It = {q1, . . . , qn} be two satellite
images captured at two different instants t0 and t1 with t0 <
t1, pi, qi ∈ Rd (here d = 30× 30× 3, see experiments). Ir,
It, referred to as reference and test images respectively, are
assumed registered, i.e., pixels in pairs {(pi, qi)}i correspond



to the same locations. Now, we define I = {x1, . . . ,xn},
with xi = (pi, qi), and Y = {y1, . . . ,yn} the underlying un-
known labels. Our goal is to design a change detection func-
tion f : I → {−1,+1} which predicts the unknown labels
in {yi}i with yi = +1 if the test patch qi ∈ It corresponds
to a “change” w.r.t. its reference patch pi ∈ Ir and yi = −1
otherwise. As “changes” are scarce, it is very reasonable to
assume that |{xi : yi = +1}| � |{xi : yi = −1}|. Learn-
ing f requires a subset of training data annotated by an ora-
cle1. As these annotations are usually highly expensive, the
design of f should consider as few annotations as possible
while minimizing the generalization error P (f(X) 6= Y ).

2.1. Interactive satellite image change detection

Our design principle is iterative and relies on a question &
answer model, which suggests the most informative display2

to an oracle, collects annotations and updates the decision
function f accordingly. Let Dt ⊂ I be a subset of images
shown to an oracle at iteration t and let Yt be the unknown
labels of Dt; in practice |Dt| is fixed depending on the tar-
geted annotation budget. We build our learning function f
iteratively by asking the oracle “questions” about labels inDt
according to the following steps

Display zero. Select a display D0 including representatives
of I. In practice, D0 corresponds to centroids of a partition
{h1, . . . , hK} of I obtained with K-means clustering.
Run the following steps for t = 0, . . . , T − 1 (T may also
depend on a predefined annotation budget):
-Oracle model. Label displayDt with an oracle function (de-
noted C(.)) and assign C(Dt) to Yt.
-Learning model. Train a decision function ft(.) on data la-
beled, so far, ∪tk=0(Dk,Yk) and use it to predict labels on
test data depending on ft(.). In practice, we use support vec-
tor machines (SVMs) in order to build/update ft(.).
-Display model. Select the next display Dt+1 ⊂ I\∪tk=0Dk
(to show to the oracle) that minimizes P (ft+1(X) 6= Y ).
It is clear that a brute force strategy that (i) considers all
the possible displays D ⊂ I\ ∪tk=0 Dk, (ii) learns the un-
derlying classifiers ft+1(.) on D ∪tk=0 Dt and (iii) evaluates
their generalization error is highly combinatorial and out of
reach. Display selection heuristics, related to active learning,
are usually used instead, but one should be cautious when us-
ing these heuristics since many of them can perform worse
than the basic display strategy consisting in choosing data
uniformly randomly (see [31] and references within). Our
alternative display model proposed in this paper, combines
diversity and ambiguity as well as representativity; diversity
aims to select data in order to discover different modes of
ft+1(.) while ambiguity seeks to locally refine the decision
boundary of ft+1(.). Details about our display model, shown

1i.e., user or expert.
2subset of images.

subsequently, constitute the main contribution of this work.

2.2. Proposed display model

We consider a probabilistic framework which assigns for each
sample xi a membership degree µi that measures the proba-
bility of xi belonging to the subsequent display Dt+1; conse-
quently,Dt+1 will correspond to the unlabeled {xi}i with the
highest memberships {µi}i. Considering µ ∈ Rn as a vec-
tor of these memberships {µi}i, we propose to find µ as the
minimum of the following constrained minimization problem

min
µ≥0,‖µ‖1=1

tr
(
diag(µ′[C ◦D])

)
+ α[C′µ]′ log[C′µ]

+βtr
(
diag(µ′[F ◦ logF])

)
+ γµ′ logµ,

(1)

here ◦, ′ are respectively the hadamard product and the ma-
trix transpose, ‖.‖1 is the `1 norm, log is applied entry-
wise, and diag maps a vector to a diagonal matrix. In the
above objective function, (i) D ∈ Rn×K and Dik = d2ik
is the euclidean distance between xi and kth cluster cen-
troid, (ii) C ∈ Rn×K is the indicator matrix with each
entry Cik = 1 iff xi belongs to the kth cluster (0 oth-
erwise), and (iii) F ∈ Rn×2 is a scoring matrix with
(Fi1,Fi2) = (f̂t(xi), 1 − f̂t(xi)) and f̂t ∈ [0, 1] being a
normalized version of ft. The first term of this objective func-
tion (rewritten as

∑
i

∑
k 1{xi∈hk}µid

2
ik) measures the rep-

resentativity of the selected samples in D; in other words, it
captures how close is each xi w.r.t. the centroid of its cluster,
so this term reaches its smallest value when all the selected
samples coincide with these centroids. The second term
(rewritten as

∑
k[
∑n
i=1 1{xi∈hk}µi] log[

∑n
i=1 1{xi∈hk}µi])

measures the diversity of the selected samples as the entropy
of the probability distribution of the underlying clusters; this
measure is minimized when the selected samples belong to
different clusters and vice-versa. The third criterion (equiv-
alent to

∑
i

∑nc
c µiFic logFic) captures the ambiguity in D

measured as the entropy of the scoring function; this term
reaches it smallest value when data are evenly scored w.r.t.
different categories. Finally, the fourth term is related to the
cardinality of D, measured by the entropy of the distribution
µ; this term also acts as a regularizer and helps obtaining
a closed form solution (as also shown subsequently). The
impact of these terms is controlled by α, β, γ ≥ 0.
We formulate the minimization problem by adding an equal-
ity constraint and bounds which ensure a normalization of
the relevance values and allow us to consider {µi}i as a
probability distribution on I.

2.3. Optimization

Proposition 1 Let 1nc, 1K denote vectors of nc and K ones
respectively. The optimality conditions of (1) lead to the solu-
tion

µ(τ+1) :=
µ̂(τ+1)

‖µ̂(τ+1)‖1
, (2)



with µ̂(τ+1) being

exp

(
− 1

γ
[(D◦C)1K+αC(log[C′µ(τ)]+1K)+β(F ◦ logF)1nc]

)
.

(3)

In view of space, details of the proof are omitted and result
from the gradient optimality conditions of Eq. (1).
Considering the above proposition, the optimal solution is ob-
tained iteratively as a fixed point of Eqs (2) and (3) with µ̂(0)

initially set to random values. Note that convergence is ob-
served in practice in few iterations, and the underlying fixed
point, denoted as µ̃, corresponds to the most relevant samples
in the displayDt+1 (according to criterion 1) used to train the
subsequent classifier ft+1 (see also algorithm 1).

Algorithm 1: Display selection mechanism
Input: Images in I, display D0 ⊂ I, budget T , B.
Output: ∪T−1t=0 (Dt,Yt) and {ft}t.
for t := 0 to T − 1 do
Yt ← C(Dt) ; // Oracle model

ft ← argminf P (f(X) 6= Y ) ; // Learning

model (built on top of ∪t
k=0(Dk,Yk))

µ̂(0) ← random; µ(0) ← µ̂(0)

‖µ̂(0)‖1
; τ ← 0

while (‖µ(τ+1) − µ(τ)‖1 ≥ ε ∧ τ < maxiter) do
Set µ(τ+1) using Eqs. (2) and (3) ;
// Display model

τ ← τ + 1

µ̃← µ(τ)

Dt+1 ← {xi ∈ I\ ∪tk=0 Dk : µ̃i ∈ LB(µ̃)} ;
// LB(µ̃) being the B largest values of µ̃

3. EXPERIMENTS

We evaluate the performances of our interactive change de-
tection algorithm using a dataset of 2, 200 non-overlapping
patch pairs (of 30 × 30 pixels in RGB) taken from two
registered (reference and test) GeoEye-1 satellite images of
2, 400×1, 652 pixels with a spatial resolution of 1.65m/pixel.
These images correspond to the same area of Jefferson (Al-
abama) taken respectively in 2010 and in 2011 with many
changes due to tornadoes (building destruction, etc.) and no-
changes (including irrelevant ones as clouds). The underlying
ground truth contains 2,161 negative patch pairs (no-changes
and irrelevant ones) and only 39 positive patch pairs (relevant
changes), so < 2% of these patches correspond to relevant
changes; half of this set is used to build the display and the
learning models and the other half for evaluation. Perfor-
mances are reported using equal error rate (EER) on the eval
set of I. EER is the balanced generalization error that equally
weights errors in ”change” and ”no-change” classes. Smaller
EER implies better performance.

Iter 1 2 3 4 5 6 7 8 9 10
Samp% 1.45 2.90 4.36 5.81 7.27 8.72 10.18 11.63 13.09 14.54

rep 48.05 26.21 12.72 10.48 9.88 9.70 8.52 8.85 8.61 8.82
div 48.05 31.24 23.45 30.41 44.81 24.12 13.22 17.02 6.88. 7.98
amb 48.05 46.68 38.73 29.91 14.74 20.11 8.33 7.41 7.37 5.53

rep+div 48.05 26.21 33.35 25.10 21.55 11.71 2.84 1.65 1.59 1.43
rep+amb 48.05 26.21 12.62 10.81 9.82 9.70 8.53 9.23 8.60 8.82
div+amb 48.05 41.69 28.82 23.08 23.41 23.42 19.82 13.10 8.16 6.97

all 48.05 26.21 33.35 25.52 23.70 14.59 2.74 1.54 1.67 1.48

Table 1. This table shows an ablation study of our display model. Here rep, amb
and div stand for representativity, ambiguity and diversity respectively. These results
are shown for different iterations t = 0, . . . , T −1 (Iter) and the underlying sampling
rates (Samp) again defined as (

∑t−1
k=0 |Dk|/(|I|/2))× 100.

3.1. Ablation study

Initially, we study the impact of each term of our objective
function when taken separately and jointly. Note that cardi-
nality term is always kept as it acts as a regularizer that also
defines the closed form solution shown earlier. Table 1 shows
the impact of each of these terms individually, pairwise and all
jointly taken. We observe that representativity+diversity are
the most important criteria at the early stages of the iterative
change detection process, while the impact of the ambiguity
term comes later during the last iterations (when the modes
of data are all explored) in order to locally refine change de-
cision functions. These observations are shown through EER,
and for different sampling rates defined at each iteration t as
(
∑t−1
k=0 |Dk|/(|I|/2)) × 100 with |Dk| set to 16 in practice

and again |I| = 2, 200.

3.2. Comparison

In order to further investigate the relevance of our method,
we compare our display model against three different related
strategies, namely maxmin, uncertainty as well as random
sampling. Maxmin consists in sampling a display Dt+1

greedily at each iteration of the interactive process; each data
in xi ∈ Dt+1 ⊂ I\∪tk=0Dk is chosen in order to maximize its
minimum distance w.r.t. ∪tk=0Dk, thereby the display Dt+1

will correspond to the most distinct samples. Uncertainty
sampling consists in choosing the display whose unlabeled
samples are the most ambiguous (i.e., whose SVM scores are
the closest to zero). Random consists in picking randomly
samples from the pool of unlabeled training data. We also
compare our method with fully-supervised learning where
a monolithic classifier is trained using 100% of the ground
truth of training data.
Figure 1 shows EER w.r.t different iterations (and the un-
derlying sampling rates in table 1). We observe the positive
impact of our display model compared to the other strategies.
As the task is highly imbalanced, all these comparative strate-
gies are unable to spot the rare class (changes) sufficiently;
maxmin and random make it possible to capture the diver-
sity of the data without being able to minimize the EER at
the latest iterations. Uncertainly refines locally the decision
functions but suffers from the lack of diversity. Whereas
all these strategies (for t ≤ 1) have high EERs, interactive
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Fig. 1. This figure shows a comparison of different sampling strategies w.r.t. dif-
ferent iterations (Iter) and the underlying sampling rates in table 1 (Samp). Here Un-
cer and Rand stand for uncertainty and random sampling respectively. Note that fully-
supervised learning achieves an EER of 0.94%. See again section 3.2 for more details.

change detection (when combined with our display model)
rapidly reduces the EER and overtakes all the other strategies,
at the end of the iterative process. This comes from the rapid
adaptation of decision functions {ft(.)}t to the oracle when
frugally learning from the most relevant samples.

4. CONCLUSION

We introduce in this paper a novel interactive satellite image
change detection algorithm. The proposed method is based
on a query & answer model which suggests the most infor-
mative patch pairs to an oracle and according to the responses
of the latter updates a decision criterion that captures the or-
acle’s intention. Our proposed display model is probabilistic
and obtained by minimizing a constrained objective function
mixing (i) diversity that explores different modes of data dis-
tribution, (ii) representativity which focuses on the most in-
formative samples in these modes and (iii) ambiguity that re-
turns samples with the most ambiguous classifications. We
also consider a regularization term that smooths the learned
probabilities and allows obtaining closed form solutions. Ex-
periments conducted on the highly imbalanced task of satel-
lite image change detection show the effectiveness of our pro-
posed frugal learning approach.
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