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ABSTRACT

Context modeling is one of the most fertile sub-fields of vi-
sual recognition which aims at designing discriminant image
representations while incorporating their intrinsic and extrin-
sic relationships. However, the potential of context modeling
is currently under-explored and most of the existing solutions
are either context-free or restricted to simple handcrafted ge-
ometric relationships.
We introduce in this paper DHCN: a novel Deep Hierarchi-
cal Context Network that leverages different sources of con-
texts including geometric and semantic relationships. The
proposed method is based on the minimization of an objec-
tive function mixing a fidelity term, a context criterion and
a regularizer. The solution of this objective function defines
the architecture of a bi-level hierarchical context network; the
first level of this network captures scene geometry while the
second one corresponds to semantic relationships. We solve
this representation learning problem by training its underly-
ing deep network whose parameters correspond to the most
influencing bi-level contextual relationships and we evaluate
its performances on image annotation using the challenging
ImageCLEF benchmark.

Index Terms— Hierarchical context learning, deep
context-aware networks, image annotation.

1. INTRODUCTION

Image annotation is one of the major challenges in computer
vision which aims at assigning keywords (a.k.a labels or con-
cepts) to images. The difficulty in image annotation stems
from the extreme variability of the learned concepts and their
versatile content which is usually described with handcrafted
or learned representations [1–11]. However, due to its lim-
ited representational power, content is usually upgraded with
context in order to capture both the intrinsic and the extrin-
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sic properties of images1. Indeed, while context-free mod-
els are effective when images (from the same concepts) are
well clustered, they miserably fail when concepts exhibit a
strong intra-class variability. In contrast, context-dependent
solutions reduce the ratio between intra and inter class vari-
ability even when content of images — belonging to the same
concepts — is corrupted [12].

Several existing methods leverage context prior to achieve
image annotation and outperform context-free approaches by
a significant margin. In these solutions, context is usually de-
fined as a neighborhood system, i.e., a set of geometric or
statistical dependencies between low level primitives (such as
interest points, regions, etc.) or semantic relationships. These
relationships make it possible to model pairwise and high-
order interactions between images and their primitives using
well designed objective functions; several works follow this
line including neighborhood embedding [13] and spatially-
constrained deep learning [14,15]. These methods learn func-
tions that map neighboring data from the input (raw) space
into a well designed feature space while maintaining their
proximity. Other methods rely on structural regularization
which integrates a priori knowledges into different penaliza-
tion terms and constrain the learned models to reflect these
knowledges. Typical works include `1-norm [16], `0-norm,
`12-norm [17] and structural regularization [18] which usu-
ally define convex (globally optimal) problems. Variants of
these models consider prediction scores on labeled and unla-
beled data for regularization (as in Laplacian SVMs [19, 20])
in order to diffuse labels from training to test data. More
recently, graph neural networks have attracted a particular
attention as an extension of convolutional neural networks
(CNNs) [21–25] to non-Euclidean domains [26–31] and have
shown very promising performances on relational graph data.

The success of all the aforementioned methods is very de-
pendent on the relevance of the used neighborhood systems
which are usually handcrafted and when learned they are re-
stricted only to simple geometric relationships. In contrast,
the solution proposed in this paper learns both geometric and
semantic contextual relationships in a unified framework. Our

1Intrinsic properties of images are usually related to scene structure or geometry
while extrinsic properties refer to semantic relationships (such as “image-to-image”
links in social networks).
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Fig. 1. (Left) This figure shows the “unfolded” multi-layered context network with increasing dimensionality that captures larger and more influencing contexts. (Right)
Hierarchical context learning framework including geometric context (the first red dashed rectangle) and semantic contexts (the second red dashed rectangle). In this network, we
only show four semantic neighbors for each image as an example (better to zoom the PDF version).

design principle relies on the context-dependent similarities
introduced in [12,32–34] but, in contrast to these works, con-
siders learned bi-level contexts instead of handcrafted ones.
Learning context translates into optimizing the adjacency ma-
trices of the neighborhood system and this equivalently re-
duces to training a particular deep network whose parameters
correspond to the most influencing (geometric and semantic)
relationships in image annotation. With this approach, the
representation of a given image is obtained recursively by ag-
gregating (i) the representations of neighboring primitives (in-
sides images) following the learned geometric context and (ii)
those of neighboring images according to the learned seman-
tic context. This results into a highly discriminant hierarchical
representation as shown later in experiments.

2. CONTEXT-AWARE SIMILARITY NETWORKS

Let I = {Ip}Pp=1 denote a collection of training images and
Sp = {xp

1, . . . ,x
p
n} be a list of non-overlapping cells taken

from a regular grid of Ip; without a loss of generality, we as-
sume n constant for all images. A context-aware similarity (or
kernel denoted as κ) is a symmetric and positive semi-definite
(p.s.d) function that returns the resemblance between any two
given cells x, x′ in X = ∪pSp. As designed subsequently,
the particularity of κ w.r.t. many usual kernels (such as linear,
RBF, etc.) is that κ(x,x′) depends not only on the content of
the cells (x,x′) but also on their context {Nc(x)×Nc(x

′)}c;
here {Nc(x)}c corresponds to the neighborhood system, i.e.,
the set of neighbors of x with particular (learned) geometric
relationships. The kernel κ (or equivalently its gram matrix
K) is learned by minimizing the following objective function

min
K

tr(−KS′)− α1

C∑
c=1

tr(KPcK
′P

′

c) +
β1
2
||K||22, (1)

here ′ and tr denotes matrix transpose and the trace operator
respectively, κ(x,x′) = Kx,x′ (with Kx,x′ being an entry
of K), S is a (context-free) visual similarity matrix between
data in X and α1 ≥ 0, β1 > 0 balance similarity between
neighboring cells and regularization. In the above objective
function the matrices {Pc}c correspond to a neighborhood
system {Nc(.)}Cc=1; each entry Pc,x,x′ 6= 0 if x′ ∈ Nc(x),

otherwise Pc,x,x′ ← 0. In practice, C (with C = 4) differ-
ent types of neighbors are considered (top, bottom, left, right)
and the initial spatial support of these neighbors {Nc(x)}Cc=1

corresponds to a disk with a radius r around x (see more de-
tails about the setting of r in experiments). Using κ, one may
define the similarity between any two given images Ip and Iq
using convolution which aggregates the similarities between
all the pairs in Sp×Sq as K(Sp,Sq) =

∑
i,j κ(x

p
i ,x

q
j). Note

that K is also symmetric and p.s.d resulting from the closure
of the positive semi-definiteness w.r.t. the sum.
One may show that the solution of Eq. (1) is recursively ob-
tain as the fixed-point (denoted as K̃) of

K(t+1) = S + γ1

C∑
c=1

PcK
(t)P

′

c, (2)

with γ1 = α1/β1. Resulting from the p.s.d of {K(t)}t
(thereby K̃) and K, the maps associated to these kernels are
respectively [33]

Φ(t+1) =
(
Φ

′(0) γ
1
2
1 P1Φ

′(t) . . . γ
1
2
1 PCΦ

′(t)
)′

φK(Sp) =
∑
x∈Sp

Φ̃x,

(3)
here Φ̃x denotes the restriction of Φ̃ to x and Φ(0) is the map
of the initial kernel K(0); for instance, this initial map can be
exactly set using the Kronecker tensor product for the polyno-
mial kernel or approximated using KPCA for any other kernel
(see more details in [33,35]). Following the recursive form in
Eq. (3), it is easy to see that the latter is strictly equivalent to
a multi-layered deep network (also referred to as deep context
network) whose input is Φ(0), intermediate layers {Φ(t)}t,
output φK(Sp) and weights corresponding to the adjacency
matrices {Pc}c (see Fig. 1, left); hence training this network
makes it possible to learn the neighborhood system, i.e., the
spatial (geometric) context.

3. DEEP HIERARCHICAL CONTEXT LEARNING

In this section, we extend the previous framework to build a
deep hierarchical context network that learns not only geo-



metric but also semantic relationships between images. This
turns out to be more effective as shown later in experiments.

3.1. Bi-level context learning

As describe earlier, context learning makes it possible to cap-
ture spatial relationships between image cells. While being
already performant, this design focuses mainly on the geo-
metric structure of images and ignores totally other types of
relationships, namely semantic ones. The tenet in this ex-
tension is to consider an extra-level in context-aware similar-
ity design that considers images similar not only when their
learned representations {φK(Sp)}p are close but also when
their semantic context is similar too. The notion of semantic
context is inherently different but complementary w.r.t. the
one used earlier; indeed, the semantic neighborhood system
(now denoted as NI(Sp)), associated to any given image Sp,
is defined as the set of images sharing semantic relations2 with
Sp. Considering PI as the adjacency matrix related toNI(.),
and KI the targeted context-aware similarity (to learn), we
find the latter by minimizing a variant of Eq. (1)

min
KI

tr(−KIS̃
′)− α2tr(KIPIK

′

IP
′

I) +
β2
2
||KI ||22, (4)

here α2 ≥ 0, β2 > 0, KI is the learned similarity matrix
for images in I and entries of S̃ correspond to inner prod-
ucts of the obtained {φK(Sp)}p on the fixed-points of Eq. (3).
Similarly, one may show that the solution of Eq. (4) can be
recursively defined as K

(t+1)
I = S̃ + γ2PIK

(t)
I P

′

I which is
again a p.s.d kernel whose map is explicitly given by

Φ
(t+1)
I =

(
φ′K(I) γ

1
2
2 PIΦ

′(t)
I

)′
, (5)

with γ2 = α2/β2 and φ′K(I) dependent on the geometric
context Pc. By combining the recursive forms in Eqs. (3)
and (5), one may define a deep context network (related to
Eq. 5) on top of another one (related to Eq. 3); training the
parameters {Pc}c, PI of this complete deep hierarchical con-
text network (DHCN) makes it possible to learn bi-level con-
textual relationships where the first level captures low-order
geometric relationships while the second level models high-
order semantic links between images. The whole architecture
is shown in Fig. (1, right).

3.2. Optimization

The two objective functions shown earlier define the com-
plete architecture of the DHCN but training its parameters
(and hence the context) requires another (supervised) loss.
Considering a K-label classification task, a multi-class SVM
layer (whose parameters denoted as {wk}k) is stacked on top
of DHCN for label prediction. Let {(Ip,Yp

k)}p denote the

2For instance, one may consider these relations using similarity or links
in social networks.

training set of images and their labels with Yp
k = +1 iff Ip

belongs to class k and Yp
k = −1 otherwise. The supervised

loss used to train our context matrices and SVM parameters
is defined as

min
{Pc}c,PI ,wk

K∑
k=1

1

2
||wk||2+Ck

P∑
p=1

max(0, 1−Yp
kw
′
kΦI(Ip)).

(6)
We solve this problem using alternating optimization. First,
we fix {Pc}c and PI and optimize the binary SVMs {fk(.) =
w′kΦI(.)}Kk=1 using LIBSVM [36]. Then, we fix the learned
SVMs and update the context parameters by gradient descent.
Let E denote the loss in Eq. (6), the gradient of E w.r.t. the
final kernel map ΦI(Ip) is given by

∂E

∂ΦI(Ip)
= −

P∑
p=1

K∑
k=1

CkYp
kwk1{1−Yp

kw
′
kΦI(Ip))}. (7)

Using the chain rule [21], we backpropagate this gradient to
the previous layers in order to obtain all the gradients of E
w.r.t. P

(t)
I and {P(t)

c }c for t = T − 1, . . . , 0. Finally, we
update the context matrices using gradient descent. These two
iterative steps are repeated till convergence which is observed
(in practice) in less than 100 iterations.

4. EXPERIMENTS

In this section, we apply the proposed DHCN to image an-
notation using the challenging ImageCLEF benchmark. The
goal is to predict a list of keywords that best describes the vi-
sual content of images. This benchmark includes more than
250k images belonging to 95 concepts (also referred to as
keywords); note that the latter are not exclusive, so one may
assign multiple keywords to a given image when the scores
of the underlying SVMs are positive. As the ground-truth has
been released only on the dev set (of 1,000 images), we ran-
domly split this set into two equally-sized subsets, one for
training and another for evaluation.

Each image in ImageCLEF is rescaled to a median di-
mension of 400 × 500 pixels and partitioned into a regu-
lar grid of 8 × 10 cells. Two types of features are used to
describe the contents of the cells: i) Bag-of-Words (BoW)
histogram with a SIFT code-book of 500 dimensions and ii)
Deep VGG features pretrained on ImageNet (“imagenet-vgg-
m-1024”) [37]. This VGG-net is composed of five convolu-
tional and three fully-connected layers and the output of the
second fully-connected layer is used to describe the content
of the cells in the regular grids. The performances are mea-
sured using the average F-scores (harmonic means of recall
and precision) both at the concept and the sample levels (de-
noted respectively as MF-C and MF-S) as well as the mean
Average Precision (mAP).
In these experiments, we consider a six layer DHCN archi-
tecture corresponding to 2 (geometric context) + 1 (pooling)



Method r |NI |
BoW features VGG-CNN features

Lin kernel map HI kernel map Lin kernel map HI kernel map
CF (Context-free) - - 39.7/24.4/46.6 41.3/25.1/49.5 45.3/30.8/56.4 45.5/30.1/57.9

DFCN (Deep fixed context network [33]) 1 - 40.6/24.6/48.3 42.6/26.3/50.5 45.8/31.2/57.6 46.4/30.7/58.5
DLCN (Deep learned context network [34]) 1 - 42.7/26.4/50.5 45.2/26.4/53.9 47.5/32.7/58.7 48.8/32.7/59.9

DHCN (proposed) 1 10 54.6/43.2/64.8 55.5/43.4/65.3 56.0/44.8/65.6 55.7/44.7/65.8
DFCN (Deep fixed context network [33]) 5 - 41.0/25.3/48.9 42.9/26.7/51.3 46.8/31.8/57.9 46.9/31.1/58.7

DLCN (Deep learned context network [34]) 5 - 44.0/26.6/52.0 45.6/26.2/54.0 47.9/33.2/58.8 48.4/32.7/59.5
DHCN (proposed) 5 10 54.6/39.8/64.9 55.5/42.0/65.7 56.1/44.0/65.7 56.5/43.8/66.6
DHCN (proposed) 1 15 54.7/43.6/64.4 54.8/43.6/66.0 56.2/44.7/66.3 56.0/44.4/66.1

Table 1. The performance (in %) of different methods in the test set of ImageCLEF. A triple ·/ ·/· stands for MF-S/MF-C/mAP. In these experiments r corresponds to the radius
of the disk that supports geometric context while |NI | corresponds to the size of semantic context.

Fig. 2. Examples of annotation results using context-free representations (“CF”), deep context networks with fixed and learned contexts (resp. denoted as “DFCN” and “DLCN”),
as well as deep hierarchical context network (“DHCN”). “GT” refers to ground-truth annotation while the stars mean the presence of a given concept in the test image.

Kernel MF-S MF-C mAP
GMKL [38] 41.3 24.3 49.1
2LMKL [39] 45.0 25.8 54.0
LDMKL [4] 47.8 30.0 58.6
DLCN [34] 48.8 32.7 59.9

DHCN (proposed) 56.5 43.8 66.6
Table 2. Performance comparison w.r.t. the most closely related work.

layers followed by 2 (semantic context) + 1 (SVM) layers.
Linear and histogram intersection (HI) maps are used as in-
puts to the DHCN and two settings of r (the radius of the disk
supporting the geometric context) are considered (r = 1 and
r = 5). Note that the initial matrices {Pc}c and PI (weights
of DHCN) are normalized to be row-stochastic, γ1 and γ2 are
initially set to 1, and |NI(.)| ∈ {10, 15} in practice.

Tab. 1 shows the performances of context-free networks
(related to linear and HI kernel maps) vs. deep context net-
works with three settings: i) matrices in {Pc}c are hand-
crafted (DFCN) ii) only {Pc}c are learned (DLCN) and iii)
both {Pc}c, PI are learned (DHCN). From all these results,
we observe that the DHCN outperforms all the other settings
by a large margin (for different features and kernel map ini-
tializations) compared to context-free and handcrafted deep
context networks as well as learned ones (where only geo-
metric context is learned); globally, a more influencing im-
pact on performances is observed with neighborhood systems
learned with larger values of r and |NI(.)|. Finally, perfor-

mance comparisons w.r.t. the most related work are provided
in Tab. 2 and some qualitative results in Fig. 2.

5. CONCLUSION

In this paper, we propose a deep hierarchical context net-
work (DHCN) for image annotation. The method leverages
two levels of contextual relationships; geometric and seman-
tic. This is achieved by learning “end-to-end” the parameters
of a deep context network whose architecture corresponds to
the solution of an objective function that mixes a content cri-
terion that maximizes the similarity between visually close
contents, a context term which restores the similarity when
content is versatile and a regularizer that smooths the simi-
larity and helps providing a closed-form solution. Training
the parameters of this deep context network, using a super-
vised SVM loss, makes it possible to learn the most influ-
encing geometric and semantic contextual relationships for
image annotation. Experiments conducted on the challeng-
ing ImageCLEF benchmark, show that the proposed DHCN
substantially enhances the performances of image annotation
compared to shallow context-free as well as deep context net-
works with handcrafted or learned (geometric only) contexts.
As a future work, we are currently investigating other priors
on geometric and semantic relationships in order to further
enhance the performances of image annotation.
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