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LIGHTWEIGHT CONNECTIVITY IN GRAPH CONVOLUTIONAL NETWORKS FOR
SKELETON-BASED RECOGNITION

Hichem Sahbi

Sorbonne University, UPMC, CNRS, LIP6, F-75005 Paris, France

ABSTRACT

Graph convolutional networks (GCNs) aim at extending deep
learning to arbitrary irregular domains, namely graphs. Their
success is highly dependent on how the topology of input
graphs is defined and most of the existing GCN architectures
rely on predefined or handcrafted graph structures.
In this paper, we introduce a novel method that learns the
topology (or connectivity) of input graphs as a part of GCN
design. The main contribution of our method resides in build-
ing an orthogonal connectivity basis that optimally aggregates
nodes, through their neighborhood, prior to achieve convo-
lution. Our method also considers a stochasticity criterion
which acts as a regularizer that makes the learned basis and
the underlying GCNs lightweight while still being highly ef-
fective. Experiments conducted on the challenging task of
skeleton-based hand-gesture recognition show the high effec-
tiveness of the learned GCNs w.r.t. the related work.

Index Terms— Graph convolutional networks, lightweight
connectivity design, skeleton-based recognition.

1. INTRODUCTION

Deep learning is currently witnessing a major interest in
different fields including image processing and pattern recog-
nition [1, 2]. Its principle consists in learning multi-layered
convolutional, pooling and fully connected operations that
extract representations which capture low, mid and high-level
characteristics of patterns while maximizing their classifi-
cation performances. Most of the existing deep learning
architectures [3–11] are targeted to vectorial data; i.e., data
sitting on top of regular domains including images. How-
ever, other data require extending deep learning to irregular
domains (namely graphs [13–15]) such as skeletons in action
recognition. While convolutional operations on regular do-
mains are well defined, their extension to irregular ones (i.e.,
graphs) is generally ill-posed and remains a major challenge.

Two categories of GCNs exist in the literature, spatial
and spectral [12]. Spatial methods achieve node aggregations
prior to apply convolutions using inner products while spec-
tral techniques rely on the well defined graph Fourier trans-
form. Whereas spatial methods are known to be effective
compared to spectral ones, their success is highly dependent

on the topology of input graphs, and most of the existing
solutions rely on handcrafted or predefined graph structures.
The latters are based on similarities or inherent properties of
the targeted applications [13–15, 21, 30, 35, 40] (e.g., node
relationships in social networks, edges in 3D modeling, etc).
These structures are usually powerless to capture the most
prominent relationships between nodes as their design is
agnostic to the targeted application. For instance, when con-
sidering node relationships in skeletons, these links capture
the anthropometric characteristics of individuals which are
useful for their identification, while other connections, yet to
infer, are important for recognizing their actions. Hence, in
spite of being relatively effective, the potential of these GCN
methods is not fully explored as the setting of their graphs
is either oblivious to the tasks at hand or achieved using the
tedious cross validation.

Graph inference is generally ill-posed, NP-hard [16] and
most of the existing approaches rely on constraints (simi-
larity, smoothness, sparsity, band-limitedness) for its condi-
tioning [17–20, 22]. Particularly in GCNs, recent advances
aim at defining graph topology that best fits a given task
[23–26]. For instance, [23] proposes a graph network for
semi-supervised classification that learns graph topology
with sparse structure given a cloud of points; node-to-node
connections are modeled with a joint probability distribution
on Bernoulli random variables whose parameters are found
using bi-level optimization. A computationally more efficient
variant is introduced in [24] using a weighted cosine simi-
larity and edge thresholding. Other solutions make improve-
ment w.r.t. the original GCNs [15] by exploiting symmetric
matrices [25] and discovering hidden structural relations (un-
specified in the original graphs) using a so-called residual
graph adjacency matrix, and by learning a distance function
over nodes. The work in [26] introduces a dual architecture
with two parallel graph convolutional layers sharing the same
parameters, and considers a normalized adjacency and a pos-
itive point-wise mutual information matrix to capture node
co-occurrences through random walks sampled from graphs.

In this paper, we introduce a novel framework that designs
graphs as a part of end-to-end GCN learning. Our design
principle is based on the minimization of a constrained loss
whose solution corresponds not only to the convolutional pa-
rameters of GCNs but also the underlying adjacency matrices



that capture the topology of input graphs. Our contribution
in this paper differs from the aforementioned related work in
multiple aspects. On the one hand, in contrast to many ex-
isting methods – e.g., [27] which consider a single adjacency
matrix shared through power series – the matrix operators
designed in our contribution are non-parametrically learned
and this provides more flexibility to our design. On the other
hand, constraining these matrices, through orthogonality and
stochasticity, allows achieving structured regularization. This
mitigates overfitting and allows learning lightweight GCN
architectures. In contrast to unstructured lightweight network
design (e.g., magnitude pruning), our proposed method cap-
tures (through orthogonality and stochasticity) the structural
relationships between parameters in the learned GCNs. It also
maintains completeness and minimality of the learned repre-
sentations by finding the most discriminating and lightweight
GCNs as supported in our experiments.

2. LEARNING LIGHTWEIGHT CONNECTIVITY

Let S = {Gi = (Vi, Ei)}i denote a collection of graphs
with Vi, Ei being respectively the nodes and the edges of
Gi. Each graph Gi (denoted for short as G = (V, E)) is en-
dowed with a signal {ψ(u) ∈ Rs : u ∈ V} and associated
with an adjacency matrix A with each entry Auu′ > 0 iff
(u, u′) ∈ E and 0 otherwise. GCNs aim at learning a set of
filters F = {gθ = (Vθ, Eθ)}Cθ=1 that define convolution on n
nodes of G (with n = |V|) as

(G ? F)V = f
(
AU>W

)
, (1)

here > stands for transpose, U ∈ Rs×n is the graph signal,
W ∈ Rs×C is the matrix of convolutional parameters cor-
responding to the C filters and f(.) is a nonlinear activation
applied entrywise. In Eq. 1, the input signal U is projected
using A and this provides for each node u, the aggregate set
of its neighbors. When A is common to all graphs1, entries
of A could be handcrafted or learned so Eq. (1) implements a
convolutional block with two layers; the first one aggregates
signals in N (V) (sets of node neighbors) by multiplying U
with A while the second layer achieves convolution by mul-
tiplying the resulting aggregates with the C filters in W.

2.1. Orthogonality-driven connectivity

Learning multiple adjacency matrices (denoted as {Ak}Kk=1)
allows us to capture different contexts and graph topologies
when achieving aggregation and convolution. With multiple
matrices {Ak}k (and associated convolutional filter parame-
ters {Wk}k), Eq. 1 is updated as

(G ? F)V = f

( K∑
k=1

AkU
>Wk

)
. (2)

1e.g., when considering a common graph structure for all actions in videos.

If aggregation produces, for a given u ∈ V , linearly depen-
dent vectors Xu = {

∑
u′ Akuu′ .ψ(u′)}k, then convolution

will also generate linearly dependent representations with an
overestimated number of training parameters in the null space
of Xu. Besides, the tensor {Ak}k used for aggregation, may
also generate overlapping and redundant contexts.
Provided that {ψ(u′)}u′∈Nr(u) are linearly independent, the
sufficient condition that makes vectors in Xu linearly inde-
pendent reduces to constraining (Akuu′)k,u′ to lie on the
Stiefel manifold (see for instance [28]) defined as VK(Rn) =
{M ∈ RK×n : MM> = IK} (with IK being the K × K
identity matrix) which thereby guarantees orthonormality
and minimality of {A1, . . . ,AK}2. A less compelling con-
dition is orthogonality, i.e., 〈Ak,Ak′〉F = 0 and Ak ≥
0n×n, Ak′ ≥ 0n×n, ∀k 6= k′ — with 〈, 〉F being the
Hilbert-Schmidt (or Frobenius) inner product defined as
〈Ak,Ak′〉F = Tr(A>kAk′) — and this equates Ak�Ak′ =
0n×n, ∀k 6= k′, with � denoting the entrywise Hadamard
product and 0n×n the n× n null matrix.

Considering orthogonality (as discussed above), the ten-
sor {Ak}k and W = {Wk}k are learned as

min{Ak≥0}k,W E
(
A1, . . . ,AK ;W

)
s.t. Ak �Ak > 0n×n

Ak �Ak′ = 0n×n ∀k, k′ 6= k

1>nAk = 1>n .

(3)

being E the cross entropy loss and 1>n a vector of n ones.
In the above minimization problem, the first and the second
constraints correspond to orthogonality while the third one
to column-stochasticity. The latter is added in order to ensure
that all of the entries in Ak are positive and each column sums
to one; i.e., each matrix Ak models a Markov chain whose i-
th row and j-th column entry provides the probability of tran-
sition from one node uj to ui in G. Note that orthogonality
(as designed subsequently) allows learning sparse adjacency
matrices while column-stochasticity provides extra sparsity; it
acts as a structured regularizer that enhances further the gen-
eralization power of the learned GCNs3.

2.2. Optimization

A natural approach to solve Eq. (3) is to iteratively and al-
ternately minimize over one matrix while keeping all the oth-
ers fixed. However — and besides the non-convexity of the
loss — the feasible set formed by these O(K2) bi-linear con-
straints is not convex w.r.t. {Ak}k. Moreover, this iterative
procedure is computationally expensive as it requires solving
multiple instances of constrained projected gradient descent
and the number of necessary iterations to reach convergence

2Note that K should not exceed the rank of
{
ψ(u′)

}
u′∈Nr(u)

which is upper
bounded by min(|V|, s); s is again the dimension of the graph signal.

3Without stochasticity, one has to consider a normalization layer (with extra param-
eters), especially on graphs with heterogeneous degrees in order to reduce the covariate
shift and distribute the transition probability evenly through nodes before convolutions.



is large in practice. All these issues make solving this problem
challenging and computationally intractable even for reason-
able values of K and n. In what follows, we investigate a
workaround that optimizes these matrices while guaranteeing
their orthogonality and stochasticity as a part of optimization.
Orthogonality. Let exp(γÂk) � (

∑K
r=1 exp(γÂr)) be a

softmax reparametrization of Ak, with � being the entry-
wise Hadamard division and {Âk}k free parameters in Rn×n.
It becomes possible to implement orthogonality by choosing
large values of γ to make this softmax crisp; i.e., only one en-
try Akij � 0 while all others {Ak′ij}k′ 6=k vanishing thereby
leading to Ak �Ak′ = 0n×n, ∀k, k′ 6= k. By plugging this
crispmax reparametrization into Eq. 3, the gradient of the loss
E (now w.r.t. {Âk}k) is updated using the chain rule as

∂E

∂vec({Âk}k)
= Jorth.

∂E

∂vec({Ak}k)
, (4)

being vec({Ak}k) a vectorization of {Ak}k and (i, j) =
(kij, k′i′j′) an entry of the Jacobian Jorth as

γAkij .(1−Akij) if k = k′, i = i′, j = j′

−γAkij .Ak′ij if k 6= k′, i = i′, j = j′

0 otherwise,
(5)

here ∂E
∂vec({Ak}k) is obtained from layerwise gradient back-

propagation. However, with this reparametrization, large val-
ues of γ may lead to numerical instability when evaluating the
exponential. We circumvent this by choosing γ that satisfies
ε-orthogonality: a surrogate property defined subsequently.

Definition 1 (ε-orthogonality) A basis {Ak}k is ε-orthogonal
if Ak � Ak′ ≤ ε 1n×n, ∀k, k′ 6= k, with 1n×n being the
n× n unitary matrix.

Considering the above definition, (nonzero) matrices belong-
ing to an ε-orthogonal basis are linearly independent w.r.t.
〈., .〉F (provided that γ is sufficiently large) and hence this
basis is also minimal. The following proposition provides a
tight lower bound on γ that satisfies ε-orthogonality.

Proposition 1 (ε-orthogonality bound) Consider {Akij}ij
as the entries of the crispmax reparametrized matrix Ak

defined as exp(γÂk) �
(∑K

r=1 exp(γÂr)
)
. Provided that

∃δ > 0 : ∀i, j, `′, ∃!`, Â`ij ≥ Â`′ij + δ (with `′ 6= `) and if
γ is at least

1

δ
ln

(
K
√

(1− 2ε)

1−
√

(1− 2ε)
+ 1

)
then {A1, . . . ,AK} is ε-orthogonal.

In view of space limitation, details of the proof are omitted
and may be found in [46]. Following the above proposition,
setting γ to the above lower bound guarantees ε-orthogonality.
For instance, when K = 2, δ = 0.01 and provided that
γ ≥ 530, one may obtain 0.01-orthogonality which is almost
a strict orthogonality. This property is satisfied as long as
one slightly disrupts the entries of {Âk}k with random noise
during training4. However, this may still lead to another

4whatever the range of entries in these matrices {Âk}k .

limitation; precisely, bad local minima are observed due to
an early convergence to crisp adjacency matrices. We pre-
vent this by steadily annealing the temperature 1/γ of the
softmax through training epochs (using γ.epoch

max epochs instead of
γ). This focuses the optimization initially on the loss, and
as training evolves, the temperature cools down and allows
reaching the aforementioned lower bound (thereby crispmax)
and ε-orthogonality at convergence.

Lightweight connectivity with stochasticity. Unless explic-
itly mentioned, Ak is simply rewritten as A. We consider
a reparametrization A = h(Â)D(h(Â>))−1, with D(.) be-
ing the degree matrix operator, h a strictly monotonic positive
function and this allows a free setting of the matrix Â during
optimization while guaranteeing stochasticity. In practice, h
is set to exp and the original gradient is obtained, similarly
to Eq. 4, from layerwise gradient back propagation by mul-
tiplying the original gradient by the Jacobian [Jstc]ij,i′j′ =
[Ai′j′ .(δii′ −Aij)] with δii′ = 1{i=i′}. Note that stochastic-
ity, when combined with orthogonality, leightens connectiv-
ity by a factor n compared to orthogonality whose factor does
not exceed K; this combination is obtained by multiplying
the underlying Jacobians, so the final gradient becomes

∂E

∂vec({Âk}k)
= Jstc.Jorth.

∂E

∂vec({Ak}k)
, (6)

and this order of application is strict, as orthogonality sus-
tains after stochasticity while the converse is not necessarily
guaranteed at the end of the optimization process.

3. EXPERIMENTS

Database and settings. We evaluate the performance of
our GCN on the task of action recognition using the First-
Person Hand Action (FPHA) dataset [29]. The latter includes
1175 skeletons belonging to 45 action categories which are
performed by 6 different individuals in 3 scenarios. Action
categories are highly variable with inter and intra subject
variability including style, speed, scale and viewpoint. Each
video (sequence of skeletons) is initially described with a
handcrafted graph G = (V, E) where each node vj ∈ V cor-
responds to the j-th hand-joint trajectory (denoted as {p̂tj}t)
and an edge (vj , vi) ∈ E exists iff the j-th and the i-th
trajectories are spatially connected. Each trajectory in G is
processed using temporal chunking: first, the total duration
of a sequence is split into M equally-sized temporal chunks
(M = 4 in practice), then the trajectory coordinates {p̂tj}t are
assigned to the M chunks (depending on their time stamps)
prior to concatenate the averages of these chunks. This pro-
duces the raw description of vj , again denoted as ψ(vj).
Implementation details. We trained the GCNs end-to-end
using the Adam optimizer for 2,800 epochs with a batch
size equal to 600, a momentum of 0.9 and a global learning
rate (denoted as ν(t)) inversely proportional to the speed of



change of the cross entropy loss used to train our networks.
When this speed increases (resp. decreases), ν(t) decreases
as ν(t)← ν(t−1)×0.99 (resp. increases as ν(t)← ν(t−1)/
0.99). In all these experiments, we use a GeForce GTX 1070
GPU device (with 8 GB memory). We evaluate the perfor-
mances using the 1:1 setting proposed in [29] with 600 action
sequences for training and 575 for testing, and we report the
average accuracy over all the classes of actions.
Performances and comparison. We compare the perfor-
mances of our GCN design against two baselines: hand-
crafted and learned. In the first baseline (known as power
map), all the matrices {Ak}k are evaluated upon the adja-
cency matrix A (taken from the input skeletons) as Ak =
A(k) with A(k) = A(k−1)A, A(0) = I and this defines
nested supports for convolutions. In the second baseline, all
the adjacency matrices {Ak}k are learned using the objective
function (3) but w/o orthogonality and stochasticity con-
straints. Table 1 shows a comparison with these baselines and
an ablation study of our complete model and the impact of or-
thogonality (separately and combined) on the performances.
These results show that orthogonality has a clear and a consis-
tent positive impact on the performances while stochasticity
(when combined with orthogonality) provides lightweight
GCNs with an extra gain in accuracy. Clearly, these two
constraints act as regularizers that also reduce the number of
training parameters thereby leading to highly effective and
also efficient GCNs. In order to further investigate the impact
of these two constraints, we compare the underlying GCNs
against lightweight ones obtained differently, with magnitude
pruning; the latter consists first in zeroing the smallest param-
eters in the learned GCNs, and then fine-tuning the remaining
parameters. As shown in table 1, lightweight GCNs, trained
with orthogonality and stochasticity, clearly outperform those
obtained with magnitude pruning+fine-tuning. Finally, we
compare the classification performances of our GCN against
other related methods in action recognition ranging from se-
quence based such as LSTM to deep graph (non-vectorial)
methods, etc. (see table 2 and references within). From the
results in these tables, our GCN brings a noticeable gain w.r.t.
related state of the art methods.

4. CONCLUSION

We introduce in this paper a novel framework that designs
graph topology as a part of an “end-to-end” GCN learning.
This topology is captured using multiple adjacency matrices
whose optimization is constrained with orthogonality and
stochasticity. The former makes it possible to remove the
redundancy while the latter allows learning lightweight and
highly effective GCNs. These two constraints also act as reg-
ularizers that model structural relationships between network
parameters in order to enhance both their generalization and
lightweightness. Experiments conducted on the challenging
task of skeleton-based hand-gesture recognition, shows the

H L L+
or

th

L+
M

P

L+
or

th
+s

tc

L+
M

P

K
=
2 Accuracy (%) 84.17 83.30 84.52 84.52 83.65 81.56

Pruning rate (%) none none 50 50 95 95

K
=
4 Accuracy (%) 82.95 83.82 85.21 83.13 85.73 82.95

Pruning rate (%) none none 75 75 95 95

K
=
8 Accuracy (%) 72.69 83.82 85.04 83.65 86.78 84.00

Pruning rate (%) none none 87 87 95 95

Table 1: Detailed performances, for different K, using handcrafted and
learned connectivity w/o and with our constraints. We also compare these
results with those of GCNs obtained using magnitude pruning (for the same
pruning rates: b(1− 1

K
)×100c for L+orth vs. L+MP and b(1− 1

n
)×100c

for L+orth+stc vs. L+MP), here H, L, orth, stc and MP stands respectively
for handcrafted, learned, orthogonality, stochasticity and magnitude pruning.

Method Color Depth Pose Accuracy (%)
Two stream-color [31] 3 7 7 61.56
Two stream-flow [31] 3 7 7 69.91
Two stream-all [31] 3 7 7 75.30
HOG2-depth [32] 7 3 7 59.83

HOG2-depth+pose [32] 7 3 3 66.78
HON4D [33] 7 3 7 70.61

Novel View [34] 7 3 7 69.21
1-layer LSTM [36] 7 7 3 78.73
2-layer LSTM [36] 7 7 3 80.14
Moving Pose [37] 7 7 3 56.34

Lie Group [38] 7 7 3 82.69
HBRNN [39] 7 7 3 77.40

Gram Matrix [41] 7 7 3 85.39
TF [42] 7 7 3 80.69

JOULE-color [43] 3 7 7 66.78
JOULE-depth [43] 7 3 7 60.17
JOULE-pose [43] 7 7 3 74.60
JOULE-all [43] 3 3 3 78.78

Huang et al. [44] 7 7 3 84.35
Huang et al. [45] 7 7 3 77.57
Our best (table 1) 7 7 3 86.78

Table 2: Comparison against state of the art methods.

outperformance of the proposed lightweight GCNs against
different baselines as well as the related work.
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