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ARBITRARY ORDER PRINCIPAL DIRECTIONS AND HOW TO
COMPUTE THEM

JULIE DIGNE∗, SÉBASTIEN VALETTE † , RAPHAËLLE CHAINE ‡ , AND YOHANN

BÉARZI §

Abstract. Curvature principal directions on geometric surfaces are a ubiquitous concept of
Geometry Processing techniques. However they only account for order 2 differential quantities,
oblivious of higher order differential behaviors. In this paper, we extend the concept of principal
directions to higher orders for surfaces in R3 by considering symmetric differential tensors. We
further show how they can be explicitly approximated on point set surfaces and that they convey
valuable geometric information, that can help the analysis of 3D surfaces.

Key words. Shape Analysis, Principal directions

1. Introduction. The computation of informative tangent vector quantities on
surfaces is a widely studied topic. The most standard vector quantities one can
consider are the principal directions that can be estimated via differential geometry
tools. However these do not necessarily serve all Computer Graphics purposes: in
case of umbilical surface parts, or at monkey saddles, this vector field becomes locally
irrelevant. Further, it only accounts for an edge like structure of the shape which
is limited. Our approach considers per point vector quantity estimation, adopting
a differential analysis point of view. We strive to go beyond the differential order
2 usually considered when analysing surfaces and extend the definition of principal
directions to higher orders. We show experimentally why this definition, beyond its
theoretical interest is appealing for surface analysis.

To summarize, our contributions are as follows:
• The mathematical definition of arbitrary order principal directions and their

link with symmetric tensor eigenvalues.
• A theoretical analysis of their properties.
• A practical way of computing the directions on a sampled surface.

2. Related Work. In this section we review recent works on tangent vector
quantities that can be set or estimated on a meshed or sampled surface be they
guided by differential properties or designed by a global optimization process with
user-prescribed constraints.

Differential quantities estimation. Estimating differential quantities on surfaces
has been at the core of Geometry Processing Research. However, surface analysis
restricts very often to order 1 and 2 differential properties and has seldom tackled
higher order properties. Among order 2 quantities, the most famous one may be the
Laplace-Beltrami operator, whose design has gathered a lot of works both from a
theoretical analysis (e.g. [19, 30]) and practical analysis through the Manifold Har-
monics Basis (e.g. [28]). Related to the Laplace-Beltrami operator are the principal
curvatures and curvature directions (or equivalently the curvature tensor) estimation,
either on a point set surface [13, 12] or on meshes [6], with applications to curvature
lines tracking among others.

It is however possible to get access to high order derivatives of the local surface
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Fig. 1: Examples of principal directions of arbitrary orders on the Armadillo and
Fandisk point sets. Blue: order 2; green: order 3; cyan: order 4; pink: order 5;
brown: order 6.

using local regression, in the context of Moving Least Squares [17]. Among those
methods, Osculating Jets [5] express the surface locally as a truncated Taylor expan-
sion wrt to a local planar parametrization. The coefficients can be estimated through
a linear system solve and give then a direct access to high order cross derivatives.
Interestingly, this approach proved that the error on order k differential quantities
estimation in a neighborhood of radius r using a Taylor expansion of order K was
in O(rK−k). In other words, and quite counter-intuitively, to increase the accuracy
of an order 2 estimation, one should still consider a large Taylor expansion order.
Several other basis have been proposed following this trend, including the Wavejets
basis [2] which is less sensitive to the choice of the local reference frame in the param-
etrization plane. When the surface is described as a point set, the regression relies on
Iteratively Reweighted Least Squares in the presence of noise and/or outliers. Going
further than order 2 Rusinkiewicz [26] introduces a way to compute curvatures and
curvature derivatives but does not go beyond this order.

All these methods essentially perform per point estimation and do not take into
account any global regularization constraints. For example, on planar or spherical sur-
faces curvature directions are erratic in the absence of smoothness constraints, which
is required by many computer graphics applications. Hence researchers have turned
to the design of consistent vector fields more suited to some application purposes.

Tangent Vector Field Design. The problem of tangent vector field design is to
compute a smooth tangent vector field with user prescribed constraints at given points
of the surface, while optimizing some regularity criterion. We only review some of the
seminal papers of this field and we refer the reader to [29] for an extensive review.
Many vector field design methods focus on smooth N -symmetric vector fields, also
known as rotationally-symmetric direction fields (N-RoSy). N-symmetry directions
are defined as the sets of directions invariant by 2π/N rotations. Ray et al. [25] gen-
eralize the notion of singularity and singularity index to these fields, and provide a
way of controlling singularities on surface meshes. Lai et al. [16] focus on casting the
vector field design as a Riemannian metric design problem. Further smoothness con-
straints [7, 14] and global symmetry enforcing constraints [21] were proposed. N-RoSy
were also extended to non necessarily orthogonal nor rotationally symmetric vector
fields [8] with appropriate differential operators [9] and application to Chebyshev nets
computation [27].

The generalization of the Laplace-Beltrami operator to tangential vector fields
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and the subspace raised by its eigenvectors up to a given order may be used for
regularizing vector field design [3]. Following this development of subspace methods
for tangent field design [4], Nasikun et al. [20] consider tangent vector field design and
processing via locally-supported tangential fields leading to fast approximation and
design algorithms.

Application of Tangent Vector Fields. Applications of tangential vector fields
range from texture mapping and texture synthesis on surfaces (e.g. [31, 15]) to fluid
simulation (e.g. [1]). Shape reconstruction and quad-meshing have been tackled by
combining a position field and a N-RoSy [11] yielding an extremely fast interactive
algorithm.

In this paper we are also interested in computing per point sets of directions that
are neither necessarily orthogonal nor rotationally symmetric but these directions
stem from arbitrary order differential properties of the surface. Hence smoothness is
obtained by continuity of the underlying mathematical surface.

3. Arbitrary order symmetric tensor. Our work makes extensive use of sym-
metric tensors and the theory developed by Qi for their spectral analysis [22, 23, 24].

Definition 3.1. An m-dimensional symmetric tensor T of order k is a k-dimensional
array such that given a set of indices I = (ij)j∈J0,kK with 1 ≤ ij ≤ m, for any permu-
tation p on I, TI = Tp(I)

Notice that in Qi’s work, a distinction is made between a tensor and a supermatrix,
that is a tensor’s representation in a given basis. For clarity sake, here we rather use
the tensor term for both the object and its representation in a basis.

From now on, we will always consider m = 2 since we are interested in tensors
of differential properties related to surfaces of dimension 2. In this case, a symmetric
tensor of order k can be seen as a k − 1-dimensional array of vectors of length 2. By
convention, we define any vector to be a symmetric tensor of order 1. Given a vector
v = (x, y)T , we note vk the symmetric tensor of order k generated by multiplying v
k times using the Cartesian product. In particular, we set v0 = 1 by convention.

Multiplying a symmetric tensor by a vector v produces a symmetric tensor of
order lowered by 1. Let T be a symmetric tensor of order k, it is composed of two
symmetric tensors of order k − 1 Tx and Ty and can be written T = (Tx, Ty). Then
Tv is the symmetric tensor of order k − 1 such that :

(3.1) Tv = xTx + yTy

The product Tv reduces the order of T by contracting on an arbitrary index. Since
T is symmetric, any index used for the contraction yields the same list of numbers in
Tv. While eigendecomposition of matrices is a well understood theory with important
applications in Geometry Processing among others, the generalization to arbitrary
order tensors is highly nontrivial. Qi introduced a new definition extending eigenvalues
and eigenvectors to symmetric tensors [22, 23, 24], as follows:

Definition 3.2. E-eigenvalues [22] Given T a symmetric tensor of order k, if
there exists λ ∈ C and a vector v ∈ R2 such that:

(3.2)

{
Tvk−1 = λv
vTv = 1

Then λ is called an E-eigenvalue of T and v is called an E-eigenvector of T . The set of
λ satisfying (3.2) are the roots of a polynomial called the E-characteristic polynomial.
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4. Arbitrary order principal directions.
Differential tensor. Tensors can be used to write Taylor expansions. As an ex-

ample, one can write the two first terms of a bivariate Taylor expansion. Given
v = (x, y)T an arbitrary vector, n the normal at (0, 0) and H the Hessian of a func-
tion defined on R2 with values in R and twice continuously differentiable at (0, 0):

(4.1) f(v) = f(0, 0) + nTv +
1

2
vTHv + o(‖v‖2)

Note that H is symmetric, and so is n since its order is 1. This expression can
be generalized to higher orders Taylor expansions using tensors.

The Taylor expansion of order K of a function f from R2 to R is:

(4.2) f(x, y) =

K∑
k=0

k∑
i=0

1

i!(k − i)!
∂kf

∂xi∂yk−i
(0, 0)xiyk−i + o(‖(x, y)‖K)

The differential tensor is now defined as:

Definition 4.1. For a function f defined on R2 with values in R, k times dif-
ferentiable, the kth order differential tensor Tk at (0, 0) is a kth order 2-dimensional
tensor whose coefficients are:

(4.3) (Tk)i1···ik =
∂kf

∂xi1 · · · ∂xik
(0, 0)

with ij ∈ {1, 2}, for j ∈ {1 · · · k}, and x1 = x, x2 = y

If f is differentiable then the order in which the differentiation is done is irrelevant
and thus Tk is symmetric. Using Definition 4.1 and v = (x, y)T , we have:

(4.4) Tkv
k =

k∑
i=0

(
k
i

)
∂kf

∂ix∂k−iy
(0, 0)xiyk−i

and:

(4.5)
1

k!
Tkv

k =

k∑
i=0

1

i!(k − i)!
∂kf

∂ix∂k−iy
(0, 0)xiyk−i

Hence using Equation 4.2, we get the Taylor formula for a K times differentiable
function:

(4.6) f(v) =

K∑
k=0

1

k!
Tkv

k + o(‖v‖K)

The following Lemma shows that the gradient of each of the terms involved in
the Taylor expansion can be obtained by contracting the corresponding tensor k − 1
times, i.e. one time less than in the expansion. This will then allow us to search for
extrema at different orders.

Lemma 4.2. Let T be a 2-dimensional symmetric tensor. Let v = (x, y)T ∈ R2

be a vector.

∂Tvk

∂v
= kTvk−1(4.7)
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Proof. For k = 1, v1 = v = (x, y)T and:

∂Tv1

∂v
= (

∂xTx + yTy
∂x

,
∂xTx + yTy

∂y
) = (Tx, Ty) = T(4.8)

Assume that for k, we have ∂Tvk

∂v = kTvk−1, then:

∂Tvk+1

∂v
=
∂Tvkv

∂v

= Tvk +
∂Tvk

∂v
v

= Tvk + kTvk−1v

= (k + 1)Tvk

(4.9)

By induction, the property is true for all k ≥ 1.

Theorem 4.3. Given a K times continuously differentiable function f and 1 <
k ≤ K, Tk is the real symmetric kth order differential tensor of f and the set of vectors
v = (r cos θ, r sin θ)T such that ∂

∂θTkv
k = 0 and ‖v‖ = 1 are real E-eigenvectors of

Tk, i.e.:

(4.10)

{
Tkv

k−1 = vTkv
k

‖v‖ = 1

Proof. First one can notice using equation 4.5, with v = (r cos θ, r sin θ)T that:

(4.11)
1

k!
Tkv =

k∑
i=0

ak,ir
k cosi θ sink−i θ

where ak,i = 1
i!(k−i)!

∂kf
∂xi∂yk−i (0, 0).

Differentiating Tkv
k w.r.t. radius r gives:

∂

∂r
Tkv

k =
∂

∂r
k!

k∑
i=0

ak,ir
k cosi θ sink−i θ

= k(k!)

k∑
i=0

ak,ir
k−1 cosi θ sink−i θ

=
k

r
k!

k∑
i=0

ak,ir
k cosi θ sink−i θ

=
k

r
Tkv

k

(4.12)

Since r ∂∂r = x ∂
∂x + y ∂

∂y we get:

x
∂Tkv

k

∂x
+ y

∂Tkv
k

∂y
= r

∂Tkv
k

∂r
= kTkv

k
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Differentiating w.r.t angle θ to look for extrema:

∂Tkv
k

∂θ
= 0⇔ −y ∂Tkv

k

∂x
+ x

∂Tkv
k

∂y
= 0

which yields the following equations:

{
−y ∂Tkv

k

∂x + x∂Tkv
k

∂y = 0

x∂Tkv
k

∂x + y ∂Tkv
k

∂y = kTkv
k

⇔

{
−y2 ∂Tkv

k

∂x − x2 ∂Tkv
k

∂x = −xkTkvk

x2 ∂Tkv
k

∂y + y2 ∂Tkv
k

∂y = ykTkv
k

⇔

{
‖v‖2 ∂Tkv

k

∂x = xkTkv
k

‖v‖2 ∂Tkv
k

∂y = ykTkv
k

⇔∂Tkv
k

∂v
=

v

‖v‖2
kTkv

k

⇔kTkvk−1 =
v

‖v‖2
kTkv

k

⇔Tkvk−1 =
Tkv

k

‖v‖2
v

(4.13)

Since we look for real unitary vectors, we add the constraint that r = ‖v‖ = 1.
Moreover, setting λ = Tkv

k, we get Tkv
k−1 = λv and v is a real E-eigenvalue of Tk.

The reverse holds using the same equations.

Definition 4.4. Given a K times continuously differentiable function f defined
on R2 with values in R, the principal directions of order k (1 < k ≤ K) of f at (0, 0)
are defined as the real E-eigenvectors of its kth order differential tensor Tk.

One should notice that Qi et al. defined several types of eigenvalues and eigen-
vectors [22, 23, 24]. In particular, if an E-eigenvector v is real and if its corresponding
E-eigenvalue λ is also real, then v is a Z-eigenvector and λ is a Z-eigenvalue. Then
our E-eigenvalues are also Z-eigenvalues in this setting.

Figure 2 illustrates the principal directions of order 3 and 8 for some illustrative
functions at (0, 0).

The above form is not very amenable to find the zero-crossings of the derivative
of Tkv

k with respect to θ. Instead we propose to use its expression in the Wavejets
basis (consisting of all functions (r, θ) → rkeinθ for k ∈ N,−k ≤ n ≤ k) [2], hence
using polar coordinates:

(4.14) f(r, θ) =

K∑
k=0

k∑
n=−k

φk,nr
keinθ + o(rK)

with φk,n the Wavejets decomposition coefficients. Among other properties,
φk,n = φ∗k,−n and φk,n = 0 is k and n do not share the same parity (see [2] for
more details).

By identification of the coefficients in front of the powers of r with the coefficients
of the Taylor expansion using tensors, we have:
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(4.15)
1

k!
Tkv

k =

k∑
n=−k

φk,nr
keinθ

Corollary 4.5. Given a function f defined on R2 with values in R, K times
differentiable at (0, 0), the principal directions of order k of f correspond to the real
E-eigenvectors of Tk and they can be retrieved out of the Wavejets decomposition of
f by looking at the zeros of:

(4.16)
∂

∂θ

k∑
n=−k

φk,ne
inθ =

k∑
n=−k

inφk,ne
inθ

Proof. As shown in Theorem 4.3, the E-eigenvectors directions correspond to
the zeros of the angular derivative of Tkv

k. Thus, a direct angular differentiation of
Equation 4.15 yields the result.

Since coefficients φk,n = φ∗k,−n in the Wavejet decomposition of a real function,
the zero-crossings of Equation 4.16 can be obtained by solving the following equation:

(4.17)

k∑
n=1

n(Im(φk,n) cos(nθ) +Re(φk,n)sin(nθ)) = 0

A more convenient form to find roots, for example using Newton’s method.
So far, we defined the principal directions as the eigenvectors of a tensor which

we linked to the extrema of a function gk(θ). The eigenvalues of the tensor can be
also linked to this function. Calling θe an angle corresponding to an extremum of gk,
the corresponding eigenvalue λe can be recovered as:

gk(θe) =
λe
k!

This follows directly from the last equality in 4.13.

Definition 4.6. Among all principal directions, we call Maximum principal di-
rections (resp. minimum principal directions) the directions that correspond to lo-

cal maxima (resp. local minima) of gk(θ) =
∑k
n=−k φk,ne

inθ = Tkv
k

k!rk
with v =

(r cos θ, r sin θ).

5. Properties of the principal directions.
Constraints on the principal directions. The functions gk (Definition 4.6) can be

rewritten as gk(θ) = φk,0 + 2
∑k
n=1(Re(φk,n) cos(nθ) − Im(φk,n)sin(nθ)). From the

periodicity of cosine and sine functions, we deduce that:
• If k is even then gk(θ) = gk(θ + π), hence if θ0 corresponds to a maximum

principal direction, θ0 + π is also a maximum principal direction.
• If k is odd, gk(θ) = −gk(θ + π), hence if θ0 corresponds to a maximum

principal direction then θ0 +π corresponds to a minimum principal direction.
Number of principal directions. There are at most 2k principal directions of or-

der k, since finding the zeros of ∂gk
∂θ amounts to finding the 1-norm roots of a real

polynomial of order 2k (obtained by multiplying Equation 4.16 by eikθ). Since two
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Fig. 2: Two synthetic surfaces with relevant principal directions of order 3 (monkey
saddle, left) and order 8 (octopus saddle, right). Other orders vanish and exhibit no
principal directions.

maximum principal directions should be separated by one minimum principal direc-
tion and conversely, the number of maximum principal directions and the number of
minimum principal directions should be equal and their maximum number is thus
k. Following the parity constraints on the location of maxima and minima above,
for an even order, the number of maximum principal directions is necessarily even.
For similar reasons, for an odd order, the number of maximum principal directions is
necessarily odd.

Order 2 principal directions. The principal directions of order 2 correspond to
the classical principal curvature direction, however the maximum (resp. minimum)
principal directions might not correspond to the maximum (resp. minimum) curvature
directions.

Regularity and link with N-RoSy. Order k principal directions can turn into a k-
RoSy, if and only if φk,n = 0 for all n 6= ±k. The principal direction distribution can
however not be arbitrary: this can be seen by considering order 3 principal directions,
fixing their 3 angles and trying to solve for the coefficients yielding a 0 derivative for
these 3 angles. This amounts to considering 4 unknowns corresponding to the real
and imaginary parts of the coefficients φ3,1 and φ3,3 (since φ3,n = φ∗3,−n), linked by 6
equations given by θi and θi+π with i = 1 · · · 3. A rank analysis yields that the system
is sometimes invertible and hence yields only the trivial solution of all coefficients set
to 0. Sometimes the system has rank 2 or 3 depending on the chosen angles and hence
yields a nontrivial solution. Hence not all kind of irregularities can be represented by
the principal directions of the tensor. On Figure 2 we show a monkey saddle and an
octopus saddle, whose respective order 3 and 8 principal directions correspond to 3
and 8-RoSy when considering only maximum (alternatively only minimum) principal
directions.

6. Directions Computation per point. We now propose to compute these
directions on point set surfaces by using a local parametrization around each point.
In most Geometry Processing applications, surfaces are known only through a set
of points, sometimes connected into a mesh, and the surface in between should be
inferred by regression to estimate principal directions.

In practice, to compute principal directions, we perform a local Wavejets surface
regression with a high enough order (K = 10 in our experiments). More precisely,
let p be a point of the point set, let (pi)i=1···N be its neighbors within some user-
defined radius r. We compute a local tangent plane by robust PCA and deduce a
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local parametrization plane on which we choose an arbitrary tangent direction which
serves as the origin direction for computing the local polar coordinates (ri, θi, zi) for
each pi. Then we solve for the Wavejets coefficients φk,n by minimizing:

(6.1)

N∑
i=1

wi‖zi −
K∑
k=1

k∑
n=−k

φk,nr
k
i e
inθi‖pp

with wi = 1
C exp−‖p−pi‖

2

2∗σ2 and σ = r
3 . This Gaussian weight avoids sharp bound-

ary effects and makes the Wavejets estimation smoother in the ambient space.
Depending on the type of data, we can use the `1-norm (p = 1) when there is

noise and outliers, or the `2 norm (p = 2) if the data has low noise. As shown by
Levin [17, 18], the coefficients obtained by Moving Least Squares are continuously
differentiable if a `2 norm is used. The use of the `1 norm does not provide such a
guarantee. Hence depending on the required smoothness one should use a different
norm in the estimation procedure of Equation 6.1.

7. Experiments.
Synthetic data. To illustrate the behavior of arbitrary order principal directions,

we compute order 3 principal directions on a synthetic surface controlled by its Wave-
jets coefficients (Figure 3). The number of maximum directions is either 1 or 3 (hence
either 1 or 3 minimum principal directions).

Fig. 3: Order 3 principal directions on a synthetic surface controlled by its Wavejets
coefficients..

On Figure 4 we show order 2 and 3 principal directions on a smooth synthetic
surface evolving from a ridge to a smooth T-junction. One can see that order 3 takes
slowly over order 2, with a preferred direction.

Figure 5 illustrates the behavior of orders 2 to 7 principal directions on a sharp
feature created by 5 intersecting planes. No order alone captures all intersection
directions, but orders 5 and 7 contain the correct directions. Interestingly, order 7
degenerates to create only 5 maximum principal directions.

On Figure 6, we show the behavior of order 2 and 3 principal directions along
the edges and corners of a synthetic cube. The length of the directions reflects the
amplitude of the extremum. Order 3 accounting for some antisymmetry vanishes for
edge points (which are symmetric) and order 2 vanishes on the corners (which are
antisymmetric).

Real world models. Figures 1 and 7 show some of the principal directions com-
puted by our method on the Armadillo model sampled with 5M points. The principal
directions orders are chosen manually according to local geometric features. As ex-
pected order 2 accounts well for valleys, order 4 for valley crossings, and order 3 for
some antisymmetry and monkey-saddle like features.
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Fig. 4: Order 2 (top) and 3 (bottom) principal directions on a surface evolving from
a ridge (left) to a smooth T-junction (right). The amplitude of the eigenvector corre-
sponds to the corresponding absolute function value.

(a) Order 2 (b) Order 3 (c) Order 4 (d) Order 5 (e) Order 6 (f) Order 7

Fig. 5: Five intersecting planes, the intersection distribution being irregular. Order 5
itself fails to capture this irregularity fully, but the proper intersection directions can
be found among orders 5 and 7 directions.

Fig. 6: Order 2 and 3 principal directions on the edges and corners of a cube: Order
2 vanishes at the corner points, while order 3 vanishes on the edges of the cube.

10



Fig. 7: Principal directions of various orders on the torso and leg of the Armadillo
(see also Fig.1). The orders are chosen manually as the most relevant geometrically
(order 2 in blue; order 3 in green; order 4 in cyan). For clarity sake only the maximum
directions are shown.

Fig. 8: Vector fields for order 2 and 3 on the David head. Left: order 2 principal di-
rections, Right: order 3 principal directions. For clarity sake only maximum principal
directions are shown for order 3.

Figure 8 shows the principal directions of orders 2 and 3 computed at various
locations. While it is obvious that sometimes order 2 is enough (side of the nose),
order 3 is meaningful between the eyebrows and around the lips.

Figures 9 and 10 show some principal directions computed on some more geomet-
ric shapes. Here order 3 becomes especially meaningful near corners, at the intersec-
tion between 3 smooth surfaces.

Fig. 9: Some principal directions computed on the Rockerarm model, order 2 (blue),
and 3 (green).
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Fig. 10: Some principal directions computed on the Fandisk, order 2 (blue), and 3
(green). For clarity sake only maximum directions are shown (see also Fig. 1).

Fig. 11: Principal directions of order 2 and 3 computed on a cube with added Gaussian
noise on the positions. From left to right: Noiseless, σ = 0.01%; σ = 0.05% and
σ = 0.1% (percentages are given with respect to the shape diagonal)

Robustness. To show the robustness of our principal directions estimation we add
some Gaussian noise to the data. Figure 11 shows examples of principal directions
estimation of order 2 and 3 on a cube with various noise levels. Importantly enough,
this robustness does not stem from the principal direction decomposition itself but
from the coefficients estimation. Once the coefficients are estimated the principal di-
rections are obtained through function maximum and minimum computations, which
can only introduce numerical errors.

(a) r = 50 (b) r = 80 (c) r = 100 (d) r = 200

Fig. 12: Detection of order 6 principal directions with increasing radius (the neigh-
borhood is shown in green).
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8. Limitations. Our definition of principal directions is an extension of the
principal curvature directions to higher orders, and as such are continuous on generic
surfaces. For surfaces that are umbilical at every order such as a sphere or a plane, the
directions will simply vanish (since no extremum will be found). Further smoothness
constraints could be set locally to enforce some consistency, however this goes beyond
the scope of this paper. Our approach also shares a limitation common to many local
estimation methods: a radius should be chosen so that the analysis is local enough
but also such that the neighborhood encloses enough points. The radius has indeed a
direct impact on what is captured by the principal directions as illustrated on Figure
12. Importantly enough, our method does not perform better for curvature principal
directions estimation than Osculating Jets [5] or APSS [10]. Our contribution lies
rather on the extension to arbitrary orders than on the estimation accuracy itself.
Finally, while it is appealing to consider that order-3 principal directions capture three
ridges meeting at a single point, some precautions ought to be taken: if the ridges
meet at a perfect T-junction, the maximum (or minimum) principal directions will
not capture the 3 ridges directions because two maximum order-3 principal directions
cannot be opposite. Figure 13 illustrates this behavior (see also Figure 5).

Fig. 13: Order 3 directions computed on a perfect T-junction. The directions can
mathematically not take a perfect T shape.

9. Conclusion. In this paper we introduced an extension of principal curvature
directions to arbitrary differential orders and showed the link with the eigenvectors
and eigenvalues of differential tensors. We showed that these new intrinsic direction
fields are relevant on several shapes and can be computed efficiently even with sharp
features. As a future work, some global smoothness constraints could be added,
to enforce some surrogate direction computations on surfaces where the directions
vanish. Many more applications of this new type of principal directions remain to be
explored.
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