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Structured Abstract 19 

BACKGROUND 20 

Tropical Pacific Decadal climate Variability and change (TPDV) affects the global climate system, 21 

extreme weather events, agricultural production, streamflow, marine and terrestrial ecosystems, and 22 

biodiversity. While major international efforts are underway to provide decadal climate predictions, 23 

there is still a great deal of uncertainty about the characteristics and causes of TPDV, and the 24 

accuracy to which it can be simulated and predicted. Here we critically synthesize what is currently 25 

known and what is not known, and provide recommendations to improve our understanding of 26 

TPDV and our ability to predict it. 27 

 28 

ADVANCES 29 

TPDV is evident in instrumental records, paleoclimate records over past millennia, and climate 30 

models. TPDV can occur spontaneously as "internal" variability, as is largely the case in the central 31 

equatorial Pacific, or in response to "external" forcing. While internal TPDV arises to a large extent 32 

as a residual of independent El Niño-Southern Oscillation events, it can also result from oceanic 33 

processes occurring at decadal timescales involving the upper-ocean overturning circulation 34 

known as subtropical-tropical cells, and in response to internal atmospheric variability in the extra-35 

tropical Pacific and changes in sea surface temperature in other ocean basins. "Externally-forced" 36 

TPDV, in the form of mean-state changes that unfold on decadal timescales or forced decadal 37 

variability, can be driven by anthropogenic (e.g., greenhouse gas (GHG) increases, sulphate 38 

aerosols changes) and natural processes (e.g., volcanic eruptions). External forcing can also affect 39 

the behavior and characteristics of internal TPDV. 40 

 41 
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In the western tropical Pacific, GHG-forced warming has reached levels that are unprecedented in 42 

the historical record. Further greenhouse warming in the equatorial Pacific will ensure that record-43 

setting high temperatures will be experienced for decades to come. Increases in equatorial 44 

precipitation and in precipitation variability in parts of the tropical Pacific, and a southward 45 

expansion of the southern hemisphere Hadley Cell, are projected by climate models with some 46 

confidence.  Yet projected changes in eastern equatorial Pacific surface temperature, and changes 47 

in the strength of the Walker Circulation and trade winds, remain very uncertain. 48 

 49 

Skill in decadal predictions of temperature in the western Pacific is apparent, though it appears to 50 

be largely underpinned by GHG warming. There are also indications of multiyear skill in 51 

predicting some biogeochemical quantities important for fisheries and the global carbon budget. 52 

 53 

The limited length of the instrumental records, the scarcity of paleoclimate data, and TPDV 54 

representation biases in climate models have so far prevented a complete characterization and 55 

understanding of TPDV and have limited our ability to predict TPDV. 56 

 57 

OUTLOOK 58 

While several mechanisms have been proposed to explain TPDV, their relative importance as 59 

sources of decadal prediction remains unclear. Issues in need of greater understanding include the 60 

role played by the upper ocean overturning circulation in controlling tropical Pacific sea surface 61 

temperatures at decadal timescales, the impact of external forcing on the Walker circulation and 62 

characteristics of internally-generated TPDV, and the extent to which sea surface temperature 63 

variability in other basins drives TPDV. A better understanding of the origin and spatial pattern of 64 
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current predictive skill is also needed. Improving predictions and projections requires 65 

improvements in the quality, quantity, and length of instrumental and paleoclimate records, in the 66 

performance of climate models and data assimilation methods used to make predictions.   67 
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Introduction 68 

Climate variability in the tropical Pacific affects global climate on a wide range of timescales. On 69 

interannual timescales, the tropical Pacific is home to the El Niño-Southern Oscillation (ENSO), 70 

the most energetic and influential climate phenomenon in the world (1). Less well known is that 71 

decadal variations and changes in the tropical Pacific, referred to here collectively as “Tropical 72 

Pacific Decadal Variability” (TPDV), also profoundly affects the climate system. In the following, 73 

we will use TPDV to refer to any form of decadal climate variability or change that occurs in the 74 

atmosphere, the ocean and over land within the tropical Pacific. “Decadal” is used here in a broad 75 

sense to encompass multiyear through multidecadal timescales, including variability about the 76 

mean–state on decadal timescales, externally forced mean-state changes that unfold on decadal 77 

timescales, and decadal variations in the behavior of higher-frequency modes like ENSO. 78 

 79 

Naturally occurring, spontaneously generated TPDV can arise in the absence of any change to 80 

external forcing (e.g., greenhouse gas (GHG) increases or volcanic eruptions). Climate scientists 81 

refer to such variability as “internally-generated” or “internal” variability, and will be referred to 82 

here as “internal TPDV” (2). Internal TPDV affected the rate at which globally-averaged surface 83 

air temperature rose over the past century. This was dramatically illustrated by the recent and highly 84 

publicized “global warming slow-down”, when decadal surface cooling in the eastern equatorial 85 

Pacific (shading in Fig. 1A) associated with a major redistribution of heat in the subsurface ocean 86 

offset the anthropogenic global warming trend at the turn of the 21st century (3, 4) (bottom curve 87 

on Fig. 1D). Trade winds intensification associated with this cooling also contributed to rapid sea-88 

level rise in the western Pacific during recent decades (5) (contours in Fig. 1A). More generally, 89 

internal TPDV has further been reported to modulate drought, wildfire, floods, extreme weather, 90 
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polar sea-ice extent (6, 7), decadal variations in the impact that ENSO has on rainfall, river flow 91 

and agricultural production, and the skill with which ENSO impacts can be predicted, as 92 

demonstrated for Australia (8). Uncertainty in the magnitude of internal TPDV simulated in global 93 

climate models may also be linked to uncertainty in simulated climate sensitivity (9) – a measure 94 

of the degree of global warming that occurs in response to anthropogenic increases in atmospheric 95 

GHG concentrations (10). 96 

 97 

The tropical Pacific also changes in response to external forcing, including GHG increases, volcanic 98 

eruptions and anthropogenic aerosols. This component of TPDV will be referred to as “external 99 

TPDV”. The observed low-frequency sea-surface temperature (SST) evolution over the western 100 

tropical Pacific warm-pool is dominated by a long-term warming trend similar to the global 101 

anthropogenic warming signal (bottom curves of Fig. 1D), that has been linked to a drying trend in 102 

the East Asian monsoon (11). Further warming in the region is also expected to reduce coastal fish 103 

populations, shift tuna distribution eastward, cause record-breaking high temperatures to occur 104 

more often (12) and fundamentally alter coral reefs, with major impacts on biodiversity, Pacific 105 

Island communities, and livelihoods (12, 13). 106 

 107 

Major international efforts are underway to provide decadal climate predictions that are intended to 108 

help decision makers plan for coming years and decades (14) that take both internally generated 109 

and externally-forced TPDV into account, as they will both influence future climate. The enormous 110 

challenges currently faced by groups producing decadal predictions demand a better understanding 111 

of the mechanisms of TPDV. To that end, here we synthesize our current understanding of TPDV, 112 

its spatial and temporal characteristics, its many proposed mechanisms – both natural and 113 
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anthropogenic and the interactions between them, and the current ability of state-of-the-art 114 

modeling and prediction systems to simulate and predict TPDV. A wide and diverse array of 115 

evidence is used, from historical records, instrumental and paleoclimate observations, mathematical 116 

models of Earth's climate, and decadal prediction systems, to assess the degree of confidence we 117 

have in proposed mechanisms and the extent to which those processes provide a degree of 118 

predictability (2, 14, 15). 119 

 120 

Advances 121 

Observed TPDV 122 

Decadal SST fluctuations peak in the equatorial central/eastern Pacific (contours in Fig. 1B), 123 

alternating between decadal periods of anomalously warm and cold phases (top panel of Fig. 1D). 124 

This evolution broadly matches the positive and negative phases of the Interdecadal Pacific 125 

Oscillation (8) (represented as vertical shading in Fig. 1D), characterized by opposite SST and sea-126 

level signals in the eastern and western tropical Pacific (Fig. 1A). While important on decadal 127 

timecales, this variability only modestly contributes to total SST variations in the equatorial eastern 128 

Pacific (shading in Fig. 1B), which are largely dominated by ENSO-related interannual SST 129 

fluctuations. The relative contribution of TPDV is considerably larger in the western Pacific, where 130 

the low-frequency SST signal is dominated by a long-term warming trend similar to the global 131 

anthropogenic warming signal (bottom curves of Fig. 1D). Consequently, internal TPDV, estimated 132 

here in the 8-40 years range, dominates in the central Pacific and in off-equatorial bands in the 133 

eastern part of the basin, especially in the northern Hemisphere. Internal TPDV has a weak signature 134 

in the western tropical Pacific (Fig. 1C), where the longer timescales of external TPDV prevail 135 

instead. 136 
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 137 

Confidently characterizing TPDV is complicated by the short historical record. Indeed, historical 138 

observations of the tropical Pacific are sparse before the mid-20th century, which creates 139 

uncertainty in tropical Pacific SST records prior to 1950. Paleoclimate records offer key 140 

complementary information extending further into the past (Fig. 1D). A recent synthesis of 141 

dozens of monthly- to annually-resolved Pacific coral records exhibit strong decadal variability 142 

over the last four centuries (16). In particular, isotopic measurements from corals in the central 143 

and southwest tropical Pacific (17, 18) (white dot and star in Fig. 1A) display a monotonic trend 144 

toward warmer and wetter conditions over the twentieth century (blue curves in Fig. 1D), 145 

supporting the central Pacific rainfall increase in response to anthropogenic forcing found in 146 

models. On shorter timescales, these timeseries display opposite signals, capturing the contrast 147 

between warm/wet and cold/dry regions related to the internal TPDV pattern (Fig. 1A). Recent 148 

advances in paleoclimate data assimilation have enabled the construction of gridded tropical 149 

Pacific SST fields extending through the last millennium (19), that match qualitatively well the 150 

observed SST evolution over the instrumental period (Fig. 1D). These reconstructions, however, 151 

exhibit increasing uncertainty as fewer records become available back in time (Fig. 1D, gray 152 

envelopes). 153 

 154 

Internal TPDV 155 

The dominant internal TPDV SST signal can be characterized by the leading empirical orthogonal 156 

function and related Principal Component of 8-40 year variability of tropical Pacific SST (Fig. 2, 157 

A and B), which accounts for about half of the tropical Pacific SST variability in the 8-40 year 158 

timescale (contours in Fig. 1C). The related SST pattern throughout the entire Pacific basin can then 159 
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be obtained through linear regression upon this principal component. This internal TPDV SST 160 

pattern (Fig. 2A; shading) strongly resembles the ENSO SST pattern in the tropics (Fig. 2E), but 161 

has a generally broader latitudinal extent (20, 21). This pattern is also associated with a zonal seesaw 162 

in tropical Pacific mean sea-level pressure, as described by the Southern Oscillation index (Fig. 163 

2B), a measure of the difference in sea level pressure between Tahiti and Darwin, leading to the 164 

anti-correlation between this index and the SST-based internal TPDV index at decadal timescales 165 

(Fig. 2B). The internal TPDV SST pattern (Fig. 2A) is consistent with the patterns of variability 166 

associated with the Interdecadal Pacific Oscillation (8) over the Pacific basin and the Pacific 167 

Decadal Oscillation in the North Pacific (22), highlighting the important role of the tropical Pacific 168 

in forcing and synchronizing decadal variability in both hemispheres (22). 169 

 170 

The simplest explanation for internal TPDV - the null hypothesis - is that it arises as a residual of 171 

largely independent ENSO events (21, 23, 24). We hence first establish the extent to which observed 172 

TPDV might result from decadal averages of ENSO events that are randomly distributed, without 173 

modification by independent decadal dynamics or decadal clustering through nonlinear interactions. 174 

In this view, the random occurrence of decadal epochs with a larger number of El Niño (La Niña) 175 

can be expected to result in an El Niño (La Niña)-like residual SST anomaly (21). The null hypothsis 176 

is supported by the good correspondence between the time series of the leading pattern of internal 177 

TPDV and the relative number of El Niño and La Niña events during partially-overlapping 8-year 178 

periods (Fig. 2B). In addition, each ENSO event is not a static pattern, but undergoes an evolution 179 

from a precursor phase (Fig. 2D), through a mature phase (Fig. 2E), to a decay phase (Fig. 2F), so 180 

that the average over this seasonal evolution across multiple events can result in a latitudinally 181 

broader pattern (Fig. 2C) very similar to the pattern in Fig. 2A (24). 182 
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 183 

This picture is further modified by ENSO asymmetries. For example: the strongest El Niño events 184 

are larger than the strongest La Niña events; La Niña events tend to last longer than El Niño events; 185 

and strong El Nino events tend to occur further east than strong La Niña events, impacting the 186 

details of TPDV (25). Differences in spatial patterns, with some events having greatest amplitude 187 

in the central or eastern tropical Pacific (1, 26) may result in mean pattern differences during 188 

different decadal epochs (25), which may themselves occur purely by chance (25, 27). 189 

 190 

Whether decadal changes in the background state, even if randomly forced, feedback and modulate 191 

ENSO characteristics is a focus of current research (28). To go beyond the null hypothesis, 192 

therefore, we would need evidence that slow oceanic processes provide sources of decadal 193 

predictability beyond the ENSO timescale. For example, the ocean integration of ENSO-related 194 

surface fluxes may result in low-frequency SST variations with enhanced decadal predictability, as 195 

illustrated in a modeling context (21). 196 

 197 

In addition, changes in the strength of the wind-driven upper-ocean overturning circulation, known 198 

as the Subtropical-Tropical Cells (STCs), which connect the subtropical and equatorial regions, 199 

have been related to decadal variations of equatorial SSTs in both observations (29) and models 200 

(30, 31). As schematically depicted in Fig. 3A, the STCs include subsurface equatorward flow, 201 

equatorial upwelling, and poleward flow in the surface Ekman layer, so that a strengthening 202 

(weakening) of the STCs results in enhanced (reduced) equatorial upwelling of cold subsurface 203 

waters, impacting equatorial SSTs. The adjustment of the STCs to changes in surface wind forcing 204 

is accomplished through the propagation of oceanic Rossby waves (30) that travel to the western 205 
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ocean boundary, and then along the boundary to the equator as coastal-trapped waves, where they 206 

alter the depth of the equatorial thermocline and influence SST anomalies (Fig. 3A) (32, 33). Since 207 

Rossby waves are more efficiently excited by wind anomalies with larger spatial scales and longer 208 

timescales, they can dynamically “filter” the wind forcing, and contribute to an enhancement of 209 

low-frequency power (34). 210 

 211 

Other modeling studies suggest that temperature anomalies subducted in the subtropics can reach 212 

the equatorial thermocline and influence equatorial SSTs (35), especially when they are density-213 

compensated by associated salinity anomalies (so-called “spiciness” anomalies) and can then 214 

propagate toward the equator along mean density surfaces with minimal dissipation (36). While 215 

the ability of spiciness anomalies to reach the equator from their source regions has been recently 216 

demonstrated in a modeling context (36), their impact on equatorial SSTs in nature remains to be 217 

determined. 218 

 219 

The above ocean processes occurring on decadal timescales are mostly wind-forced. In particular, 220 

modeling studies (31) indicate that subtropical winds play a key role in altering the strength of the 221 

STCs, but the origin of these anomalous winds is still unclear. Extra-tropical influences could be 222 

a source of sub-tropical wind variations. For example, internal atmospheric variability in the 223 

northern midlatitudes during winter can create subtropical SST and wind anomalies that persist 224 

through summer due to strong air-sea coupling (37), developing into a SST pattern that extends 225 

from the coast of California toward the central-western equatorial Pacific (Fig. 2D), known as the 226 

“North Pacific Meridional Mode” (38). Similarly, an anomalous SST pattern, known as the South 227 

Pacific Meridional Mode (39), can develop along the coast of South America (Fig. 2D). These 228 
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Meridional Modes are considered ENSO precursors, but their associated winds could also provide 229 

anomalous forcing for the slow tropical oceanic processes described above (40). As ENSO 230 

precursors, they are also part of a seasonal progression from the extra-equatorial ENSO precursor 231 

stage, to ENSO development, to extra-tropical ENSO teleconnections that can act as a filter of 232 

decadal variance in the Pacific basin (41). Climate model sensitivity experiments, where the North 233 

and South Pacific Meridional Modes were alternatively suppressed (42), suggest a potentially more 234 

important influence of the South Pacific on internal TPDV, consistent with other model-based 235 

studies (43, 44). SST anomalies in the Atlantic and Indian Oceans could also influence these 236 

tropical Pacific winds (45, 46), as discussed below. 237 

 238 

Finally, changes in subtropical-tropical winds may arise as a response to the equatorial SST 239 

anomalies themselves, as shown in some modeling studies (32, 47). In this view, atmospheric 240 

teleconnections triggered by the tropical SST anomalies at decadal timescales alter the extra-241 

equatorial atmospheric circulation and produce wind anomalies of the opposite sign that force a 242 

phase reversal of the decadal cycle. This view of internal TPDV as arising from low-frequency 243 

processes that are independent of ENSO, with important implications for decadal predictability, 244 

remains very challenging to demonstrate observationally, due to the insufficient duration of the 245 

instrumental record in the presence of climate noise that may obscure the various deterministic 246 

links. 247 

 248 

Representation of internal TPDV in climate models 249 

In practice, evaluating internal TPDV simulated by climate models is challenging because: (i) the 250 

instrumental record is relatively short (e.g., Fig. 1D); (ii) relatively few multi-century paleoclimate 251 
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records exist for the core regions of internal TPDV; (iii) internal TPDV in climate model 252 

simulations exhibits large changes from one century to the next (48); and (iv) the characteristics 253 

of internal TPDV vary markedly from model to model (Fig. 4). 254 

 255 

As illustrated in Fig. 4, climate models still display major deficiencies in simulating key aspects 256 

of internal TPDV (49, 50). For example, most models capture to first order the observed SST 257 

pattern but the equatorial Pacific warming extends too far to the west (compare shading in Fig. 4A 258 

and Fig. 4B; see also (49)), as do simulated ENSO SST patterns (51). Models also markedly 259 

underestimate sea-level signals in the tropical western Pacific and extra-tropical central Pacific 260 

associated with internal TPDV (compare contours on Fig. 4A and Fig. 4B). Similarly, the 261 

magnitude of simulated internal TPDV varies considerably from one model to another and is 262 

underestimated by a majority of models not only in terms of SST (Fig. 4C), but also in terms of 263 

trade wind strength (Figs. 4A vs. 4B) and associated mean-sea-level pressure gradients in the 264 

tropical Pacific atmosphere (4, 52). This underestimation partly arises because ENSO simulations 265 

in most models tend to be too quasi-biennial and not persistent enough (53), impeding the ability 266 

of models to generate decadal anomalies through the null hypothesis (52). As a consequence, while 267 

all models exhibit some link between ENSO decadal variability and internal TPDV, they strongly 268 

underestimate the strength of this relationship (Fig. 4D). 269 

 270 

Sources of externally-forced TPDV 271 

As mentioned above, external radiative forcing from natural (e.g., volcanic eruptions and solar 272 

variability) and anthropogenic (e.g., GHGs, ozone and sulfate aerosols) sources also contribute to 273 

TPDV. The resulting external TPDV is directly related to decadal variability in the forcing (e.g., 274 
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intermittent volcanic eruptions, slowly-increasing GHGs, varying anthropogenic aerosols 275 

emission), with possible contributions from the slow adjustment timescale of the ocean. Here, we 276 

examine the expected tropical Pacific responses from both anthropogenic and natural external 277 

forcing, which are represented schematically in Figure 3B. 278 

 279 

GHGs such as carbon dioxide are the major source of anthropogenic climate warming and have 280 

been increasing steadily over past decades. Despite the spatially uniform nature of well-mixed 281 

GHGs, the warming of the ocean surface simulated by climate models exhibits substantial spatial 282 

variations (54). Most models project an enhanced warming in the equatorial Pacific (Fig. 3B), 283 

giving rise to tropical rainfall changes (54) altering global teleconnection patterns, increasing the 284 

frequency of extreme ENSO events (55) and regulating the magnitude of climate sensitivity (56). 285 

One study concluded that a GHG-forced enhancement of oceanic stratification leads to increasing 286 

Rossby wave speed, which decreases the amplitude and shortens the period of internal TPDV (57), 287 

whereas another study using a single model found GHG enhanced the amplitude of internal 288 

decadal variability (56). 289 

 290 

Unlike GHGs, anthropogenic tropospheric aerosols display large spatio-temporal variations 291 

because of localised emission sources, and act to cool global surface temperature by reflecting 292 

sunlight. Models suggest that they induce SST and rainfall changes that are similar in pattern but 293 

opposite in sign to those of GHGs, especially in the tropical Pacific (59), hence weakening the 294 

GHG-induced warming. 295 

 296 
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Large volcanic eruptions can also contribute to external TPDV by injecting aerosols into the 297 

stratosphere. This cools the troposphere for a year or more (2) and the ocean for up to a decade - 298 

thereby temporarily reducing the rate of global thermosteric sea-level rise (60). While the impact 299 

of volcanic eruptions on global temperature is evident, their contribution to external TPDV is less 300 

clear (61, 62). Volcanic eruptions have been suggested to (i) influence ENSO (63) and, by 301 

inference, TPDV, and (ii) to contribute to cooling the western Pacific warm pool on decadal scales 302 

(64). Models tend to simulate enhanced, long-term cooling in the eastern equatorial Pacific, but 303 

observations are still too sparse to adequately test these model results (65). 304 

 305 

Confidence in the attribution of observed changes and future projections 306 

 307 

Although GHG forcing generally dominates external TPDV at multi-decadal and longer 308 

timescales, anthropogenic aerosols and volcanic eruptions may have significantly contributed to 309 

regional tropical SST variations over recent decades (61, 62). Relatively small decadal changes in 310 

top-of-atmosphere solar irradiance have presumably a smaller influence than GHG, although the 311 

11-yr solar cycle, amplified by coupled atmosphere-ocean processes, has been proposed to 312 

modulate the Walker Circulation on decadal timescales (66). Timescales involved in internal and 313 

external TPDV overlap, which makes them difficult to distinguish from one another, especially 314 

when considering the relatively short climate record and potential errors in models. As a result, 315 

there are varying degrees of confidence in the attribution of some of the observed trends to either 316 

internal or external forcing. 317 

 318 
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In the following section, we discuss key aspects of future model projections in the tropical Pacific, 319 

comparing them with the observational record. 320 

 321 

• Western Pacific warming 322 

The western Pacific exhibits a prominent warming trend since the 1950s (Fig. 1D; Fig. 5A), which 323 

dominates the evolution of SST in this region (Fig. 1B). This warming trend is accurately captured 324 

by historical simulations (compare Fig. 5A and Fig. 5B) and clearly stands out against the weak 325 

background natural variability in this region (Fig. 5C), reflecting the fact that the signal-to-noise 326 

ratio for this projected warming is among the highest in the world (12). Coral-based SST estimates 327 

indicate that such a warming period is likely unprecedented in the western Pacific region 328 

throughout the last 1,250 years (67). The warming trend for air temperatures over land in west 329 

Pacific island countries is so large that every year since the early 1990s has been warmer than all 330 

years prior to 1970 (68). The resulting increase of the western Pacific warm-pool size has 331 

confidently been attributed to GHG forcing arising from human activity (68, 69) although remote 332 

influence from the natural multidecadal climate variability in the Atlantic (70) and major volcanic 333 

eruptions (64) may also have modulated the SST warming rate there. 334 

 335 

• Hadley Cell 336 

While recent observational datasets significantly differ before the 1950’s, they consistently report 337 

a southward expansion of the southern edge of the Southern Hemisphere Hadley Cell since 1979 338 

(Fig. 5D; (71)). Although internal climate variability also contributed, this widening over the last 339 

40 years can confidently be attributed to the combined effect of ozone depletion and rising GHGs 340 

(Fig. 3B; Fig. 5D; (71)). The mechanism behind this widening is still subject to debate but likely 341 
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reflects how subtropical atmospheric baroclinic eddies respond to tropospheric (GHGs) and 342 

stratospheric (ozone) changes in the atmospheric background state (71). This southward expansion 343 

is associated with a lower rate of warming (Fig. 5AB) and ocean acidification (54, 72) in the 344 

southeastern tropical Pacific than in the rest of the tropics, probably driven by an intensification of 345 

the southeastern Pacific trade winds, which strengthen the Peru-Chile upwelling system near the 346 

coast, increase heat loss through air-sea fluxes and modulate the oceanic mixed layer offshore (68). 347 

Models also project a widening of the Northern Hemisphere Hadley Cell that is currently not yet 348 

detectable in observations due to a larger influence of internal climate variability (71, 73). 349 

 350 

• The Walker Circulation and equatorial SST gradients 351 

As illustrated in Fig. 5B, E and F, most state-of-the-art models project a weakening of the 352 

equatorial trade winds and Walker Circulation and a faster warming rate at the equator, in 353 

particular in the eastern equatorial Pacific (55). In agreement with instrumental observations and 354 

historical simulations (51, 74) central tropical Pacific corals also point to a wet trend over the 20th 355 

century (Fig. 1D), accompanied by even wetter periods during positive phases of the Interdecadal 356 

Pacific Oscillation (18). A leading explanation for the Walker Circulation weakening is that 357 

rainfall increases less in models than predicted by the Clausius-Clapeyron relation, implying 358 

increased atmospheric stability and a reduced mass-flux between the boundary layer and free 359 

atmosphere, resulting in a weakened Walker Circulation (75). The enhanced equatorial eastern 360 

Pacific warming has been explained by a feedback loop between the weaker evaporative cooling 361 

in the cold tongue (54) and reduced trade winds, and a limitation of the SST increase by cloud 362 

feedbacks over the West Pacific (55). Recent studies also suggest that the subtropical 363 

anthropogenic warming also contributes to the enhanced equatorial warming by slowly making its 364 
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way to the equatorial thermocline through the oceanic STCs (76, 77). There is, however, no 365 

consensus to date on the dominant mechanism responsible for the projected equatorial Pacific SST 366 

gradient changes. 367 

 368 

A key uncertainty of external TPDV is that simulated changes do not match recent observed 369 

historical trends over, e.g., 1981-2012 (4, 52), which are characterized by a marked strengthening 370 

of the Walker Circulation over this period. Such signals are typical of internal TPDV (Fig. 4AB). 371 

Indeed, recent studies attribute a large part of this recent observed evolution in the central 372 

equatorial Pacific to internal TPDV (4, 52, 78), which is a strong contributor to SST variations in 373 

this region (Fig. 1C). This is illustrated by the relatively large model ensemble spread displayed in 374 

Figures 5 E and F, which largely encompass the observed SST and surface wind evolution.  375 

 376 

On the other hand, many recent studies suggest plausible mechanisms by which external forcings 377 

might also have contributed to the recent strengthening. For example, model results indicate that 378 

the reduction in tropospheric sulfate aerosol emissions from North America and Europe and the 379 

concurrent increase in China - perhaps augmented by changes driven by volcanic eruptions (62, 380 

79) – might have contributed to the recent tropical Pacific cooling (61). Other modeling studies 381 

suggest that the observed faster warming in the Indian and/or Atlantic relative to the Pacific Ocean 382 

are conducive to enhanced trades in the Pacific and reinforced the recent tropical Pacific cooling 383 

(46). Increasing GHGs likely contributed to this observed Indian-Pacific differential warming, but 384 

their contribution to the enhanced Atlantic warming is unclear (80). Finally, some models 385 

reproduce the observed Walker Circulation strengthening and equatorial cooling (81), with a 386 

plausible mechanism related to the poleward export of the added equatorial Pacific heat by the 387 
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sustained meridional divergence of the near-equatorial upper-ocean currents (82, 83). Model-based 388 

studies further suggest that the fast equatorial cooling related to this oceanic thermostat mechanism 389 

will be followed by a slower transition to an enhanced equatorial warming and Walker Circulation 390 

weakening, in response to subtropical warm anomalies advected into the equatorial thermocline 391 

by the STCs (76, 77). 392 

 393 

It is thus unclear from current literature if the recent observed Walker Circulation and cold tongue 394 

strengthening is a response to external forcing that is only reproduced by a few models, or if it 395 

simply arises from internal variability hiding a subtle opposite secular trend (78). This results in a 396 

rather low confidence in the projected weakening of the Walker Circulation and related enhanced 397 

equatorial eastern Pacific warming in climate models. Several studies indeed argue that the 398 

enhanced equatorial warming in most climate projections may arise from common present-day 399 

climate model biases within the tropical Pacific (84) or from an underestimation of interbasin 400 

interactions (45, 46, 84). Confidence in these projections is further reduced by the large 401 

uncertainties on the impact of aerosols on radiation, cloud microphysics and SST (85). These 402 

caveats imply that it is currently not possible to conclude with confidence whether GHG forcing 403 

has weakened, strengthened, or had no effect on the Walker Circulation and equatorial upwelling. 404 

 405 

• Changes in ENSO  406 

Improving the reliability of these projections is key, partly because projected changes in the 407 

equatorial zonal SST gradient strongly influence ENSO in climate models (55). The projected 408 

warming pattern in the equatorial Pacific in most climate models indeed increases ENSO-driven 409 

and decadal precipitation anomalies in part of the tropical Pacific (51, 55, 74), and is tied to an 410 
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increase in the amplitude of ENSO anomalies (55). Recent paleo-climatic evidence suggests that 411 

the increase in ENSO variability since the 1950s stands out in the context of the past millennia 412 

(86), lending support to the inter-model agreement on increased ENSO-driven precipitation 413 

variability under greenhouse warming. These findings have significant implications, given the 414 

large societal impacts of projected changes in ENSO, and the fact that any increase in ENSO-415 

driven precipitation variability (51) or the frequency of extreme ENSO states (55) may energize 416 

internal TPDV through the various forms of our null-hypothesis (21, 24, 25). 417 

 418 

Outlook 419 

Predicting the climate of the tropical Pacific over the next decade and beyond, including 420 

precipitation, temperature, sea-level, and biogeochemistry, would have far-reaching societal and 421 

environmental benefits. However, because of the partially chaotic nature of the climate system, 422 

decadal predictions can, at best, provide an outlook of annual to multi-year average conditions or 423 

risks, rather than a more detailed picture of daily or seasonal conditions (2). A decadal prediction 424 

would be typically expressed in terms of probabilities, such as the probability that temperature in 425 

the tropical Pacific averaged over the next five years will exceed the temperature in the tropical 426 

Pacific averaged over the past 30 years. While the changes in average conditions may be small, 427 

they can produce marked differences in the probability of extremes (12). 428 

 429 

Experimental prediction systems have been developed (2, 14) to exploit any predictability arising 430 

from the mechanisms discussed in the previous sections. Results from an ensemble prediction 431 

system suggests that initialisation with observations in much of the tropical Pacific tends to 432 

contribute towards predictive skill for surface temperature, for forecast lead times only up to 433 
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approximately two years (Fig. 6A) and is mostly associated with predictability arising from ENSO 434 

(87), though another study concluded that trans-basin climate variability connected with TPDV 435 

can be predicted up to three years ahead (46). It might also be that climate models underestimate 436 

the degree of skill that actually exists in the real world (88). At longer lead times, skill arises mainly 437 

from external forcing (2, 89) (Fig. 6A). 438 

 439 

While predictive skill of decadal average SST is found in most of the tropical Pacific (15, 87) (Fig. 440 

6B), it is not evident everywhere. In particular, there is limited skill in the central tropical Pacific 441 

north of the equator, extending to the northeast Pacific (Fig. 6B). This is an important region 442 

because SST variability there can impact climate in many parts of the world. This low skill may 443 

be because the intrinsic predictability of internal variability beyond two years is genuinely low 444 

there and any predictable forced response is weak compared with unpredictable internal variability. 445 

Alternatively, the combined impact of internal variability and the externally-forced signal may be 446 

predictable but the models might miss or misrepresent key mechanisms underpinning the 447 

predictability. If this is the case, then the impact of TPDV on ENSO behaviour might also be 448 

currently underestimated. 449 

 450 

A significant advancement identified in this review is that skill in decadal predictions of SST in 451 

the western Pacific is apparent in the last two generations of dynamical decadal prediction systems 452 

(2) (Fig. 6B). While it is likely that this primarily arises from anthropogenic warming, climate 453 

models also simulate substantial externally-forced decadal variability in this region about the long-454 

term warming trend (Fig. 5C). This suggests that other types of external forcing have also 455 

contributed to TPDV in west Pacific SSTs. Whether this enhances predictability in West Pacific 456 

SSTs or not is still unclear. 457 
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 458 

There are indications that in the tropical Pacific, multi-year variability in some biogeochemical 459 

quantities important for fisheries and the global carbon budget such as net primary production and 460 

carbon dioxide uptake can be predicted with greater skill than SST (90, 91). This may be because 461 

the biogeochemical quantities are more influenced by subsurface and spatially integrated 462 

quantities, which tend to exhibit greater predictability than does SST (21). Limited evidence also 463 

suggests that there may be some skill in predicting atmospheric sea-level pressure and sea-surface 464 

height (92), changes in the phase of the Interdecadal Pacific Oscillation (e.g.; (93, 94), related 465 

precipitation averaged over the Asian-Australian monsoon, Australia more broadly, and western 466 

North America (95), and soil moisture – with implications for drought and wildfire – over parts of 467 

the southwestern U.S. (6). 468 

 469 

In summary, our review of TPDV predictability finds that although responses to anthropogenic 470 

GHG increases offer predictability in some variables (e.g., Fig. 5C; Fig. 6A and B), confidence in 471 

the modeled response in the tropical Pacific is generally low; predictability from tropospheric 472 

aerosols is still debated; volcanic eruptions likely provide predictability immediately after the 473 

eruption has occurred (63); changes in anthropogenic aerosols (e.g., due to industrial growth and 474 

pollution aerosols) provide longer-timescale forcing; and TPDV arising from solar forcing likely 475 

exists but is small in models compared with other sources of external forcing and unlikely to be a 476 

significant source of predictability. 477 

 478 

The Way Forward 479 
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This review has highlighted some important advances in our understanding of the tropical Pacific 480 

climate variability and change at decadal and longer timescales. It has also highlighted the 481 

complexity of the interactions between variations that occur naturally and those that are forced by 482 

external factors of both natural and anthropogenic origin, and the knowledge gaps and 483 

uncertainties associated with both components and their interactions. While several plausible 484 

mechanisms for both internal and externally-forced TPDV have been proposed, their relative 485 

importance and relevance to predictability needs to be further clarified. Specific open science 486 

questions include: 487 

1. How important are oceanic processes involving the STCs in driving predictable decadal 488 

climate variations? Do the mechanisms involving STC variability and the associated wind 489 

forcing arise independently of ENSO? How large is the predictability associated with these 490 

oceanic processes? 491 

2. How robust are climate model projections in the tropical Pacific and what are the dominant 492 

processes driving these changes? In particular, how will the Walker Circulation, equatorial 493 

SST and internal variability respond to future greenhouse gas increases? 494 

3. Why do forecast systems appear to offer predictive skill in the western and southern 495 

tropical Pacific, but not in the north-eastern tropical Pacific? 496 

Improvements in the quality, quantity, and length of observational records available for 497 

characterizing decadal variability are critical to address these science questions, and to initialize 498 

and verify decadal prediction systems. This will require sustaining and enhancing the ocean and 499 

climate observing systems, data rescue efforts to recover historical observations from data-sparse 500 

regions, and the development of new monthly- to annually-resolved paleoclimate records from 501 
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TPDV centers of action, with a focus on obtaining multiple records in those regions to enhance 502 

signal-to-noise ratios. Continued advances in paleoclimate data assimilation (19) will also be 503 

critical for the integration of paleoclimate and instrumental observations with models to obtain 504 

more complete and reliable fields. 505 

While substantial model improvements have been made in recent decades for some features of the 506 

climate system (10), models are still limited in their ability to accurately represent observed TPDV 507 

and there are large model-to-model differences in the magnitude of simulated TPDV. As noted in 508 

the Introduction, there is evidence suggesting that there may be a link between these differences 509 

and model-to-model differences in global climate sensitivity. Improving the simulation of TPDV 510 

might therefore yield a narrower range in climate sensitivities and greater clarity on our climatic 511 

future. 512 

Despite their shortcomings, climate models are essential tools for advancing our ability to 513 

understand and predict future change in the tropical Pacific. The underlying causes of the 514 

shortcomings are still elusive and dedicated efforts using novel approaches are required to identify 515 

the major sources of errors in both local and remote feedbacks. Enhanced efforts on the specific 516 

role of the STCs in driving TPDV in models may facilitate improved understanding of the 517 

mechanisms involving variability of the STCs and their associated wind forcing. In the longer 518 

term, improving climate models will be essential for achieving more realistic simulations, as well 519 

as more reliable predictions and projections, of TPDV. Advances are expected from improvements 520 

in: the representation of subgridscale processes; data assimilation into forecast systems; and 521 

computing technology enabling higher spatial resolution, less reliance on parameterizations, 522 

longer model runs, and larger ensemble sizes. 523 
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Figure captions 851 

 852 

Fig. 1. Observed decadal variability in the tropical Pacific. (A) 1992-2009 linear trend of 853 

annual SST (shading, 0.1°C decade-1) and sea surface height (black contours, 2cm decade-1, dashed 854 

contours indicate negative trends, solid contours denote positive trends, and the zero contour is 855 

omitted). (B) 8 yr lowpass and (C) 8-40 yr bandpass filtered SST variance (black contours, in 102 856 

°C2) and ratio of the filtered SST variance to total SST variance (shading). (D) 8 yr lowpass filtered 857 

timeseries of SST averaged over the Niño34 region (5°N-5°S; 170°W-120°W), the western 858 

tropical Pacific (10°N-10°S; 120°E-150°E) and over the globe from instrumental observations 859 

(black lines) and Last Millennium Reconstruction ((19); mean: grey line; interquartile range: light 860 

grey shading) and of δ18O at Palmyra and Fiji islands (plain and dashed blue lines; positions 861 

indicated in (A); (17, 18)). Vertical red and blue bands indicate positive and negative phases of the 862 

Interdecadal Pacific Oscillation. SST data: HadISST (96). SSH data: ORAS4 dataset (97). 863 

 864 

Fig. 2. Internal TPDV - the null hypothesis. (A) Pacific SST pattern associated with internal 865 

TPDV, obtained by regressing the 8-40 year band-pass filtered SST anomalies onto the internal 866 

TPDV index. The latter is obtained as the time series (or Principal Component) of the leading EOF 867 

of SST anomalies in the 8-40 year band, over the tropical Pacific (24°S-24°N; 120°E-80°W). 868 

(B) Timeseries of SST anomalies averaged in the Niño34 region (5°S-5°N, 170°W-120°W; N3.4), 869 

a commonly used SST ENSO index; the Southern Oscillation Index (SOI; (18)), a measure of the 870 

Walker Circulation strength; the internal TPDV index, and the E-L index, defined as the number 871 
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of El Niño years minus the number of La Niña years over 8-year running periods. ENSO events 872 

are identified using the December Niño3.4 index and an amplitude threshold of 1 standard 873 

deviation. Thick black lines in (B) indicate the 8-40year band-pass filtered time series. (C) Average 874 

of ENSO-related SST anomalies over the year preceding the peak of an El Niño event (year 0) and 875 

the year following the El Niño event (year 1), defined by computing lagged regressions of SST 876 

onto the November-December-January averaged N3.4 index from lags of -11mo to +12mo, and 877 

averaging over all 24 resulting maps. (D), (E), and (F) show individual SST maps from these 878 

monthly regressions, illustrating precursor anomalies during the February-March-April (FMA, D) 879 

prior to the peak of an event, peak anomalies during October-November-December (OND, E) of 880 

the ENSO event, and anomalies during the decay phase in June-July-August (JJA, F) of the years 881 

following the peak of an ENSO event. The SST data are from HadISST (96) over the period 1900-882 

2020. Filtering was performed using 5 and 53 point Hanning filter weights. 883 

 884 

Fig. 3. Mechanisms of internal and external TPDV. (A) Schematic representation of the ocean 885 

processes associated with internal TPDV. The climatological upper ocean overturning circulation 886 

(the Subtropical-Tropical Cells, transparent blue arrows) consists of a subtropical subduction 887 

component, equatorward subsurface transport, equatorial upwelling, and a poleward surface return 888 

flow driven by the equatorial easterly trade winds (large blue arrow), which are the surface 889 

component of the Walker Circulation. A positive phase of internal TPDV with warm SST in the 890 

tropical Pacific (shading) is associated with a weaker Walker Circulation, reduced equatorial 891 

winds, and weaker oceanic overturning circulation. Extra-equatorial wind anomalies may play an 892 

important role in driving the changes in the Subtropical-Tropical Cells, whose adjustment is 893 



 35 

accomplished through the westward propagation of oceanic Rossby waves. After reaching the 894 

western boundary, Rossby waves can continue along the boundary to the equator as coastal Kelvin 895 

waves and along the equator as equatorial Kelvin waves. The extra-equatorial wind anomalies may 896 

be purely stochastic, arise from extra-tropical influences, or as a response to equatorial SST 897 

anomalies (see text for details). (B) Schematic representation of projected changes associated with 898 

external TPDV. The map shows the late 21st century multi-model-mean change in CMIP6 SST, 899 

which is dominated by increases in greenhouse gases. High (low) confidence in these projected 900 

changes is indicated by solid (dashed) lines. Icons indicate the major external forcings involved in 901 

these changes. Greenhouse gas increases and ozone changes induce a robust southward expansion 902 

of the Hadley Cell in the southern hemisphere and reduced southern subtropical Pacific warming, 903 

in both model projections and observations. The prominent western Pacific warming and the 904 

central Pacific rainfall increase detected in models and observations can confidently be attributed 905 

greenhouse gas increases. While the projected weakening and enhanced tropical warming is 906 

evident in most CMIP6 models, confidence in these projections is low because of inconsistent 907 

signals in observations, model biases and the complexity of the mechanisms involved. Volcanic 908 

eruptions and changes in solar insolation may also cause decadal variations in the tropical Pacific, 909 

though their amplitude is likely small. 910 

 911 

Fig. 4. Evaluation of internal TPDV in CMIP models. Maps of the 1st EOF of 8-40yrs bandpass 912 

filtered SST over the tropical Pacific (shading), and associated sea-level (contours) and 2m wind 913 

(vectors) variability for (A) observations (96, 98, 99) and (B) a multi-model mean of (10). Box 914 

plot showing median, interquartile range, maximum and minimum of CMIP6 historical 915 

simulations for (C) the standard deviation of the TPDV index, and (D) the correlation coefficients 916 
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between E-L and the internal TPDV index. E-L is a measure of the extent to which El Niño 917 

dominates each 8-yr period and is defined as n(EN) - n(LN), where n(EN)= the number of El Niño 918 

years and n(LN)=the number of La Niña years in eight-year blocks. ENSO events are defined using 919 

a threshold of 1 STD of Nino3.4 SST. The TPDV index is defined here as the first principal 920 

component of the 8-40yrs bandpass filtered SST EOF analysis. Observations are shown as a red 921 

star. 922 

 923 

Fig. 5. Detection and attribution of long-term trends in the tropical Pacific. (A) Observed (96, 924 

98, 99) and (B) multi-model mean (10) maps of 1900-2009 linear trends of SST (shading) and 925 

surface winds (vectors) over the Tropical Pacific. Annual time series for CMIP6 historical 926 

simulations (grey) and observations (colored) of the SST averaged over (C) over the Niño34 region 927 

(5°N-5°S; 170°W-120°W) and (E) the western tropical Pacific (10°N-10°S; 120°E-150°E), the 928 

latitude of southern hemisphere Hadley Cell's poleward edge (D) and the strength of equatorial 929 

zonal (east-west) winds (F). The latitude of southern hemisphere Hadley Cell's poleward edge the 930 

latitudinal anomalies of the latitude where zonal mean precipitation-evaporation is zero while the 931 

strength of equatorial zonal (east-west) winds is diagnosed from the 10 m zonal wind anomalies 932 

in the Niño3.4 region (positive values indicate a weakening Walker Circulation). CMIP6 results: 933 

ensemble mean (black lines); 60% (dark blue shading) and 90% (light blue shading) confidence 934 

intervals using a t-distribution. Reanalysis: NOAA-20C (red) (99) and ERA-20C (blue) (100); red 935 

lines: annual anomalies (thin lines); and 8-yr running averages (thick lines). SST data: HadISST 936 

(96). Notice how the spread of model simulations is larger in the Niño3.4 region than in the western 937 

Pacific. The Hadley Cell is calculated over all longitudes, not just the Pacific. 938 

 939 
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Fig. 6. Predicting TPDV. (A) Actual (solid lines) and potential (dashed lines) correlation skill for 940 

the surface air temperature averaged over the tropical Pacific as a function of lead time, for 941 

initialized forecasts (red) and for uninitialized simulations (blue), estimated using methods 942 

described previously (15). The difference between the initialized and uninitialized simulations is 943 

an indication of the potential for forecast improvement (15).	(B) Correlation skill score using 8-944 

year running mean observations of near-surface air temperature and forecast years 2-9 from 945 

initialised multi-model decadal predictions. Skill is measured using the mean of 71 ensemble 946 

members from seven modelling systems (89). Darker red indicates higher estimated skill. 947 

Hindcasts (2) starting every year from 1960 to 2005, with observations described previously (89). 948 

Stippling: outside 95% confidence interval. 949 
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