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ASYMMETRIC ATTRACTIVE ZERO-RANGE PROCESSES WITH PARTICLE DESTRUCTION AT

THE ORIGIN

CLÉMENT ERIGNOUX, MARIELLE SIMON, AND LINJIE ZHAO

ABSTRACT. We investigate the macroscopic behavior of asymmetric attractive zero-range processes on Z
where particles are destroyed at the origin at a rate of order Nβ , where β ∈ R and N ∈ N is the scaling
parameter. We prove that the hydrodynamic limit of this particle system is described by the unique entropy

solution of a hyperbolic conservation law, supplemented by a boundary condition depending on the range
of β . Namely, if β ¾ 0, then the boundary condition prescribes the particle current through the origin,
whereas if β < 0, the destruction of particles at the origin has no macroscopic effect on the system and no
boundary condition is imposed at the hydrodynamic limit.

1. INTRODUCTION

Asymmetric and conservative particle systems are among the most interesting microscopic dynamics
currently under investigation in statistical physics. Their macroscopic behavior, due to the microscopic
asymmetry of the particles’ motion, is generally expected to be described by hyperbolic equations,
whose solutions may be visualized as propagating waves. When the system is nonlinear, jump discon-
tinuities, known as shocks, can arise in finite time, even if the initial profile is smooth. Even for linear
systems, discontinuities can appear in presence of boundary effects. Therefore, when asymmetric par-
ticle systems are subject to strong boundary mechanisms, their macroscopic behavior is much less
understood. In a general setting, imposing given boundary conditions at the macroscopic level start-
ing from a given microscopic model is far from trivial. Because of discontinuities, hyperbolic equations
do not in general have a unique solution; in order to fully describe the macroscopic limit of a given
microscopic asymmetric system, one needs to rule out the non-physical solutions. The unique relevant
one, called entropy solution, can be characterized in several different ways, and exhibits physically
consistent behavior after the shocks (see the reference book [13], in particular Chapters 2.6 and 2.7
for the existence and uniqueness of solutions to hyperbolic conservation laws in bounded domains).

The characterization of the macroscopic behavior of asymmetric particle systems by hyperbolic equa-
tions has been initiated by Rezakhanlou in [15]. In the latter, the author derives the hydrodynamic limit

–the law of large number characterizing a particle system’s macroscopic behavior in terms of a given
PDE– in cases where the microscopic dynamics are attractive. He proves in particular that the macro-
scopic density ρ(t,u) of the Asymmetric Simple Exclusion Process (ASEP), in the hyperbolic time scale
is given by the unique entropy solution to the hydrodynamic equation ∂tρ = ∂u(ρ(1−ρ)) on the full
line R. Twenty years later Bahadoran [2] considered the open ASEP, where particles are created and
absorbed at two boundaries with given rates, and obtained the convergence to the unique entropy so-
lution on a bounded domain, satisfying the Bardos-Leroux-Nédélec boundary condition [3] in the sense
of Otto [14]. Very recently, De Masi et al. [4] have carried on with the study of the open ASEP, and
considered its quasi-static hydrodynamic limit with time dependent boundary rates changing on a slow
time scale (w.r.t. the hyperbolic one). The quasi-static limit they obtain characterizes the slow transi-
tion between non-equilibrium stationary states due to the influence of the boundary. They prove in [4]
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that the density profile converges to the entropy solution of the quasi-static Burgers equation with the
corresponding time dependent boundary condition.

In the case of asymmetric zero-range processes, the law of large numbers for the particle density on
the full line has also been obtained in the attractive case by Rezankhanlou in [15]. Then, Landim in
[12] focused on the totally asymmetric case and introduced a boundary effect at the origin by slowing
down the jump rate at 0. He proves the convergence of the density profile towards the unique entropy
solution of the hyperbolic conservation law with mass creation/annihilation at the origin.

In this work, we explore the effect of boundary conditions on asymmetric zero-range processes. We
consider general asymmetric zero-range processes on Z and we introduce a microscopic mechanism
which destroys particles at the origin: if there are ωx ∈ N particles at site x ∈ Z, then one of these
particles jumps to its right (resp. left) neighbour at rate pg(ωx ) (resp. (1− p)g(ωx )), and moreover,
at the origin x = 0, one particle is destroyed at rate αNβ g(ω0). Here g : N→ R+ is the rate function,
α ¾ 0 and β ∈ R are two parameters that adjust the intensity of the destruction dynamics, N ∈ N
being the hydrodynamic limit’s scaling parameter. Our main result is the derivation of a family of
hyperbolic equations on the one-dimensional space R. The destruction mechanism enforces different
boundary conditions at the origin, depending on the value of β : if β < 0, then the particle destruction
has no macroscopic effect and the hydrodynamic equation is given by the hyperbolic conservation
law on the full line R with no boundary condition; if β ¾ 0, then the hyperbolic conservation law is
now supplemented by a boundary condition which prescribes the particle current allowed through the
origin. This current vanishes at the macroscopic scale if β > 0, and is an explicit function of the density
left of the origin if β = 0 (see Theorem 2.3 for a precise statement).

All the results mentioned above [2, 4, 12, 15] strongly rely on the attractiveness property of both
the ASEP and zero-range processes. Here, we keep attractiveness as a crucial assumption. Indeed,
attractive zero-range processes have nice features which allow us to introduce the notion of second-class

particles and to use coupling techniques. Similarly to [4] we need to control the microscopic boundary
entropy flux and we use the notion of boundary entropy-entropy flux pairs introduced by Otto [14]
and used in [12] in order to characterize the boundary conditions in the scalar hyperbolic equations.
For non-attractive asymmetric processes, very little is known: in fact, Yau’s classical relative entropy

approach [16] is the unique method that derives the hydrodynamic behavior of such purely asymmetric
processes in general, but it requires the solution to the hydrodynamic equation to be smooth. For this
reason, it can usually only be applied to asymmetric systems up to the time of the first shock, and
furthermore fails completely in the presence of boundary conditions such as those considered in this
work.

Another option, which would allow to derive non-attractive hydrodynamic limits for asymmetric
systems in the presence of discontinuities (past the first shock, in particular) would be to adapt Fritz’s
compensated compactness arguments [8, 9]. This technique, however, is not without its own shortcom-
ings, and in particular requires to perturb the underlying microscopic dynamics by some symmetric
stirring dynamics. This perturbation needs to be strong enough to ensure that one recovers at the
hydrodynamic limit the entropy (or vanishing viscosity) solution to the hyperbolic equation, but weak
enough so that the symmetric part of the dynamics does not appear in the limiting equation. This work
is currently in progress in order to drop the attractiveness assumption in our model.

The article is organized as follows: in Section 2 we introduce the microscopic model and state
the main result of the paper, namely the hydrodynamic limit for our attractive zero-range process with
destruction of particles at the origin. In Section 3 we prove preliminary results on second-class particles
and present the coupling argument, which will be used in Section 4 to prove the main theorem. In
Appendix A we present a short alternative proof in the specific case where the jump rate is linear, using
duality arguments, and in Appendix B we prove a technical result on the equivalence of two notions
of entropy solutions.
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2. DEFINITIONS, NOTATIONS AND RESULTS

2.1. Zero-range process with source dynamics. Let N be a positive integer and Ω = NZ be the
state space of the Markov process (ω(t))t¾0 which will be the focus of this article. its dynamics is
characterized below by its infinitesimal generatorLN . Given a configuration of particlesω ∈ Ω,ωx ∈ N
represents the number of particles at site x ∈ Z. Before defining the generator LN , let us fix:

• two parameters α ¾ 0 and β ∈ R, which adjust the intensity of the particle destruction at the
origin;
• the asymmetry parameter p 6= 1

2 . Without loss of generality, we assume 1
2 < p ¶ 1.

• a function g : N→ R+ which represents the rate at which one particle leaves a site. This rate
function satisfies g(0) = 0, g(k) > 0 for any k ¾ 1, and is assumed to be Lipschitz: there is a
constant a0 > 0 such that

sup
k¾0
|g(k + 1)− g(k)| ¶ a0 ; (2.1)

We consider in the present work the attractive case, which means that we further assume that

the function g is non-decreasing, i.e. g(k) ¶ g(k + 1) for all k ¾ 0. (H1)

We say that a function f : Ω → R is local if it depends on ω = {ωx}x∈Z ∈ Ω only through a finite
number of coordinates (ωx1

, . . . ,ωxk
), and a local function f : Ω→ R is Lipschitz if there is a constant

c > 0 and a finite subset Λ ⊂ Z such that

| f (η)− f (ζ)|¶ c
∑

x∈Λ
|η(x)− ζ(x)|, for all η, ζ ∈ Ω.

The generatorLN of the zero-range process considered here acts on local Lipschitz functions f : Ω→ R
by

LN f (ω) =L ZR
N

f (ω) +L α,β
N f (ω). (2.2)

The generator L ZR
N

of the asymmetric zero-range dynamics is given by

L ZR
N

f (ω) =
∑

x∈Z
g(ωx )
¦

p∇x ,x+1 f (ω) + (1− p)∇x ,x−1 f (ω)
©

(2.3)

where forω ∈ Ω and x , y ∈ Z, we denote∇x ,y f (ω) = f (ωx ,y)− f (ω) andωx ,y ∈ Ω is the configuration
obtained from ω after a particle jumps from site x to site y ,

ωx ,y
z
=






ωx − 1 if z = x ,
ωy + 1 if z = y,

ωz if z 6= x , y.

The generator L α,β
N of the source dynamics is given by

L α,β
N f (ω) = αNβ g(ω0)

¦
f (ω(0))− f (ω)
©

,

where ω(0) ∈ Ω is the configuration obtained from Ω after the destruction of one particle at the origin

ω(0)
x
=ωx − 1{x = 0},

β ∈ R, and α > 0 is a positive parameter, fixed throughout. We refer the readers to [1] for a rigorous
construction of this infinite-volume dynamics, when α = 0. The general case α 6= 0 is a straightforward
adaptation of [1].
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2.2. Invariant measures. We now describe the invariant measures for the zero-range process without

particle destruction. To that aim, following [11, Chapter 2], let us introduce the partition function
Z : R+→ R+ given by

Z(ζ) =
∑

k¾0

ζk

g(k)!
, for 0¶ ζ < ζ∗,

where ζ∗ is the radius of convergence of the above summation and g(k)! :=
∏k

ℓ=1 g(ℓ) with the con-
vention g(0)! = 1. For each 0 ¶ ζ < ζ∗, let νζ be the product measure on Ω with marginals given
by

νζ(ωx = k) =
1

Z(ζ)

ζk

g(k)!
, x ∈ Z, k ∈ N.

It is easy to check that νζ, 0¶ ζ < ζ∗, are invariant measures for the generatorL ZR
N

. Furthermore, the
particle density R(ζ) =

∫
ω0νζ(dω) is strictly increasing in ζ, hence has an inverse denoted by Φ(·).

To index by density the invariant measures of the generator L ZR
N

, we denote νρ = νΦ(ρ) and note that

Φ(ρ) =

∫
g(ω0)νρ(dω). (2.4)

Under our assumptions, Φ : R+→ R+ is smooth and non-decreasing, where R+ = [0,+∞). Through-
out, when 0 needs to be excluded from R+, we will write (0,+∞).

The invariant measures for the full process generated by LN will be given in Section 3.1. In the
following, for a probability measure ν on a state space Ω, we denote by Eν[ f ] the expectation of a
function f defined on Ω with respect to ν.

2.3. Entropy solutions. To state our main result, we first need to introduce the notion of entropy

solutions to the hydrodynamic limit in the various cases for the parameter β . We start with the standard
definition when no boundary condition is imposed, and then we define the entropy solution to initial-

boundary value problems, as given for instance in [2, 12]. In the following we denote by C
k,ℓ
K (U × V )

the set of functions H : U × V → R which are compactly supported, and Ck-regular (resp. Cℓ) in the
first (resp. second) variable.

Definition 2.1 (Hydrodynamic equation on R for β < 0). Assume that ρ 7→ Φ(ρ) is a smooth function.

We say that ρ ∈ L∞(R+ ×R) is an entropy solution to
¨
∂tρ(t,u) + (2p− 1)∂uΦ(ρ(t,u)) = 0, t > 0,u ∈ R,

ρ(0,u) = ρ0(u), u ∈ R,
(2.5)

if

• for any non-negative test function H ∈ C
1,1
K ((0,+∞)×R), and any constant c ¾ 0,

∫ ∞

0

∫

R

�
∂t H(t,u)
��ρ(t,u)− c
��+ (2p − 1)∂uH(t,u)

��Φ(ρ(t,u))−Φ(c)
��	 du d t ¾ 0, (2.6)

• for every A> 0,

lim
t→0

∫ A

−A

��ρ(t,u)−ρ0(u)
�� du= 0.

Remark 2.1. It is known that entropy solutions are continuous in (t,u) for all but at most a countable

number of shock lines (t,u) (see [13, Chapter 2] for example). Therefore there exists a version ρ solution

to (2.5) which is continuous at (t, 0) for all but a countable number of t. Then it is easy to check
∫

R+

�
ρ(t,u)−ρ0(u)
	

du=

∫ t

0

(2p − 1)Φ(ρ(s, 0)) ds
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so that in particular

∂t

∫

R+

�
ρ(t,u)−ρ0(u)
	

du = (2p− 1)Φ(ρ(t, 0))

and t 7→ Φ(ρ(t, 0)) is almost everywhere continuous on R+.

In the cases where β ¾ 0, we will need to separate both parts of the real line because of the boundary
condition at the origin.

Definition 2.2 (Hydrodynamic equation on R+ for β = 0). Assume that ρ 7→ Φ(ρ) is a smooth non-

decreasing function. Let ̺ : R+ → R+ be an almost-everywhere continuous function. We say that ρ ∈
L∞(R+ ×R+) is an entropy solution to






∂tρ(t,u) + (2p− 1)∂uΦ(ρ(t,u)) = 0, t > 0,u > 0,

ρ(t, 0) = ̺(t), t > 0,

ρ(0,u) = ρ0(u), u ∈ R+,

(2.7)

if

• there exists M > 0 such that for any non-negative test function H ∈ C
1,1
K ((0,∞) ×R) and any

constant c ¾ 0,

∫ ∞

0

∫ ∞

0

�
∂t H(t,u)(ρ(t,u)− c)± + (2p − 1)∂uH(t,u)(Φ(ρ(t,u))−Φ(c))±

	
du d t

+M

∫ ∞

0

H(t, 0)(̺(t)− c)± d t ¾ 0,

(2.8)

where for r ∈ R, r+ =max{r, 0} and r− =max{−r, 0};
• for every A> 0

lim
t→0

∫ A

0

��ρ(t,u)−ρ0(u)
�� du = 0.

Definition 2.3 (Hydrodynamic equation on R+ for β > 0). Assume that ρ 7→ Φ(ρ) is a smooth non-

decreasing function. Let f : R+ → R+ be an almost-everywhere continuous function. We say that ρ ∈
L∞(R+ ×R+) is an entropy solution to






∂tρ(t,u) + (2p− 1)∂uΦ(ρ(t,u)) = 0, t > 0,u > 0,

∂t

∫
R+
ρ(t,u)du = f (t), t > 0,

ρ(0,u) = ρ0(u), u ∈ R+,

(2.9)

if

• for any non-negative test function H ∈ C
1,1
K ((0,∞)× (0,∞)) and any constant c ¾ 0,

∫ ∞

0

∫ ∞

0

�
∂t H(t,u)
��ρ(t,u)− c
��+ (2p− 1)∂uH(t,u)

��Φ(ρ(t,u))−Φ(c)
��	 du d t ¾ 0; (2.10)

• for every A> 0 and every T > 0,

lim
t→0

∫ A

0

��ρ(t,u)−ρ0(u)
�� du= 0, (2.11)

lim
u→0

∫ T

0

��(2p − 1)Φ(ρ(t,u))− f (t)
�� d t = 0. (2.12)
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Remark 2.2 (Uniqueness of the entropy solution). By Kružkov’s uniqueness Theorem [10, Theorem
A.2.5.3], the entropy solution to (2.5) is unique. We refer the readers to [2, Theorem 2.1] for the unique-

ness of the entropy solution to (2.7), and to [12, Theorem A.1] for (2.9).

We adress in Appendix B the equivalence of Definitions 2.2 and 2.3. We are now ready to state the
main result of this paper.

2.4. Statements of main results. Fix an initial density profile ρ0 on R, we assume that ρ0 is bounded
and Riemann-integrable on any finite segment of R, and we define

µN (dω) =
⊗

x∈Z
Pρ0(x/N )

(dωx )

the product measure with marginal at site x given by the Poisson distribution Pρ0(x/N )
on N, with

parameter ρ0(x/N).

We consider the process (ω(t))t¾0 in the hyperbolic scaling, i.e. driven by the accelerated generator
NLN , and with initial distribution given by µN on Ω. Denote by PµN

the distribution of this process
(ω(t))t¾0 on Ω, and EµN

the corresponding expectation. We are now ready to state our main result.

Theorem 2.3 (Hydrodynamic limit). For any compactly supported and continuous function H : R→ R,

for any t ¾ 0 and for any δ > 0,

lim
N→∞
PµN

�����
1

N

∑

x∈Z
H
�

x
N

�
ωx (t)−
∫

R

H(u)ρ(t,u) du

���� > δ
�
= 0,

where

(i) if β < 0, then ρ(t,u) is the unique entropy solution to (2.5);
(ii) if β = 0, then ρ(t,u) = ρL(t,u)1{u < 0} + ρR(t,u)1{u ¾ 0}, where ρL is the unique entropy

solution to (2.5) and ρR is the unique entropy solution to (2.7) with

̺(t) = R

�
2p− 1

2p− 1+α
Φ

�
ρL(t, 0)
��

, (2.13)

where the function R is the inverse of Φ (recall (2.4));

(iii) if β > 0, then ρ(t,u) = ρL(t,u)1{u < 0} + ρR(t,u)1{u ¾ 0}, where ρL is the unique entropy

solution to (2.5) and ρR is the unique entropy solution to (2.9) with f (t) = 0.

Remark 2.4. Note that from Remark 2.1, ̺ defined in (2.13) is almost everywhere continuous, so that

ρR is well defined, as given in Definition 2.2.

Remark 2.5 (Linear case). If we assume g(k) = k for all k ¾ 0, namely the linear case, then the solution

can be explicitly computed. To that aim, let us introduce eα = eα(β) as

eα =






1 if β > 0,

α/(α+ 2p− 1) if β = 0,

0 if β < 0.

(2.14)

Then, ρ(t,u) is a weak solution to the formal equation
¨
∂tρ(t,u) + (2p − 1)∂uρ(t,u) = −eαρ(t, 0)δ0(u), t > 0,u ∈ R,

ρ(0, ·) = ρ0, u ∈ R,

and is given, for any (t,u) ∈ R+ ×R, by:

ρ(t,u) =
�
1− eα 1{0¶ u< (2p − 1)t}

�
ρ0(u− (2p − 1)t). (2.15)

We provide in Appendix A an alternative (short) proof of Theorem 2.3 in the linear case, using duality

tools.
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The rest of the paper is devoted to the proof of Theorem 2.3.

3. PRELIMINARY RESULTS

In this section we give some preliminary results which will be crucial to prove Theorem 2.3. We
start in Section 3.1 by defining the invariant measures for the zero-range process with destruction at
the origin. Then, in Section 3.2 we introduce the notion of second-class particles. In Section 3.3 we
prove an entropy inequality at the microscopic level using coupling techniques.

3.1. Invariant measures for the process with destruction. For a function m : Z→ R+, let νm(·) be
the product probability measure on Ω with marginals given by

νm(·)(ωx = k) = νm(x)(ωx = k), x ∈ Z, k ∈ N. (3.1)

In order for νm(·) to be invariant for the whole process generated by LN , the function m needs to solve
some discrete system, as stated by the following lemma:

Lemma 3.1. Assume that m : Z→ R+ is solution to
¨

pmx−1 + (1− p)mx+1 −mx = 0 for x 6= 0,

pm−1 + (1− p)m1 − (1+αNβ )m0 = 0.
(3.2)

Then the product measure νm(·) is invariant for the dynamics generated by LN .

Remark 3.2. (i) If p = 1, namely the totally asymmetric case, the solution to (3.2) is

mx =

¨
m−, if x ¶ −1,

m+, if x ¾ 0,

where m−, m+ are non-negative and satisfy m− = (1+αNβ )m+.

(ii) If 1
2 < p < 1, then any solution to (3.2) has the following form:

mx =





c1

px

(1−p)x
+ c2 if x ¶ 0,

c3
px

(1−p)x
+ c4 if x ¾ 0,

where {ci}1¶i¶4 are real numbers such that mx ¾ 0 for all x ∈ Z, and moreover they satisfy
¨

c1 + c2 = c3 + c4,

c1(1− p) + c2p+ c3p+ c4(1− p) = (1+αNβ )(c1 + c2).

Solving the above equations, we have




c3 = c1 +

αNβ

(2p−1) (c1 + c2),

c4 = c2 − αNβ

(2p−1) (c1 + c2).

Proof of Lemma 3.1. We need to show that for any local function f such that
∫

f dνm(·) = 0, we have
∫
LN f (ω)νm(·)(dω) = 0.

Direct calculations show that the left hand side equals
∫ ∑

x∈Z

¦
pg(ωx )
�

f (ωx ,x+1)− f (ω)
�
+ (1− p)g(ωx+1)

�
f (ωx+1,x)− f (ω)

�©
νm(·)(dω)

+

∫
αNβ g(ω0)
�

f (ω(0))− f (ω)
�
νm(·)(dω). (3.3)
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Since, by change of variables,

mx+1 g(ωx )νm(·)(dω) = mx g(ωx+1 + 1)νm(·)(dω
x ,x+1),

mx g(ωx+1)νm(·)(dω) = mx+1g(ωx + 1)νm(·)(dω
x+1,x),

making the transformations ωx ,x+1 7→ω andωx+1,x 7→ω respectively, we rewrite the first line of (3.3)
as ∫ ∑

x∈Z

§
(1− p)mx+1 − pmx

mx

g(ωx )−
(1− p)mx+1 − pmx

mx+1
g(ωx+1)

ª
f (ω)νm(·)(dω)

=

∫ ∑

x∈Z

(1− p)mx+1 + pmx−1 −mx

mx

g(ωx ) f (ω)νm(·)(dω)

=

∫
αNβ g(ω0) f (ω)νm(·)(dω).

In the first identity above we have reindexed the second sum, whereas in the second identity, we have
used that m is a solution to (3.2). Similarly, using the change of variable

g(ω0)νm(·)(dω) = m0 νm(·)(dω
(0)),

and using the fact that f has mean 0 w.r.t. νm(·), the second line of (3.3) equals
∫
αNβ
�
m0 − g(ω0)
�

f (ω)νm(·)(dω) = −
∫
αNβ g(ω0) f (ω)νm(·)(dω).

Therefore (3.3) vanishes. This proves the result. �

3.2. Second-class particles. We now consider an auxiliary process (ζ(t))t¾0 composed of second-class

particles. Instead of killing a particle at the origin, we turn the killed particle into a second-class particle,
as explained below. The process (ω(t), ζ(t))t¾0 evolves as follows:

• at site x 6= 0, an ω-particle jumps at rate N g(ωx ), and a ζ-particle jumps at rate

N(g(ωx + ζx )− g(ωx )) ;

• when a particle jumps, it jumps to the right with probability p and to the left w.p. 1− p;
• at site x = 0, an ω-particle is transformed into a ζ-particle at rate αN1+β g(ω0).

It is easy to see that the process (ω(t) + ζ(t))t¾0 evolves as the usual zero-range process according to
the generator NL ZR

N
, and (ω(t))t¾0 according to the generator NLN . Denote by PµN

the law of the
process (ω(t),ζ(t)), with no second-class particle at the initial time, i.e. (ω(0),ζ(0)) ∼ µN ⊗δ; where
δ; is the Dirac measure on the empty configuration. Denote by EµN

the corresponding expectation.

We first state a lemma to bound the number of second-class particles up to time t. The following
lemma is sufficient to prove the hydrodynamic limit in the case β < 0.

Lemma 3.3. Assume that the initial distribution µN is stochastically dominated by νρ⋆ for some density

ρ⋆ ∈ (0,+∞). Let Kt :=
∑

x∈Z ζx (t) be the number of second-class particles up to time t. Then there

exists a finite constant C > 0 independent of N such that

EµN
[Kt]¶ C t min{αN1+β , N}.

Proof. Since Kt −
∫ t

0
αN1+β g(ω0(s)) ds is a mean zero martingale and since the process (ω(t))t¾0 is

attractive and stochastically dominated by νρ⋆ ,

EµN
[Kt]¶ αN1+β tEνρ⋆ [g(ω0)]¶ a0ρ

⋆αN1+β t.

where a0 is the Lipschitz constant of g, introduced in (2.1), which satisfies g(k) ¶ a0k. We now show
that EµN

[Kt] ¶ CN t for some constant C > 0. Observe that Kt is bounded by the number of particles
visiting the origin up to time t. Let Yt be a homogeneous Poisson point process on R with intensity
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a0N . Then the displacement of a typical first-class particle up to time t is bounded stochastically by
Yt . Dividing Z into the unions of [ ja0N t, ( j + 1)a0N t], j ∈ Z, we have

EµN
[Kt]¶

∞∑

j=3

2a0ρ
⋆N tPµN

[Yt > ja0N t] + 6a0ρ
⋆N t.

Above, the first term on the right hand side comes from the total number of particles which are initially
at Z\[−3a0N t, 3a0N t] and visit the origin before time t, and the second term from the total initial
number of particles in the interval [−3a0N t, 3a0N t]. Since PµN

[Yt > ja0N t] ¶ exp{−a0( j − 2)N t},
the first term on the right hand side vanishes as N →∞. This is enough to complete the proof. �

The following lemma will be used to identify the limiting density profile to the left of the origin in
the case β ¾ 0.

Lemma 3.4. For any t ¾ 0 and for any β ∈ R,

lim
N→∞
EµN

�
1

N

∑

x¶0

ζx (t)

�
= 0. (3.4)

Proof. We only need to prove

lim
N→∞
EµN

�
1

N

∑

x¶−
p

N

ζx (t)

�
= 0

since by attractiveness of the process, we have

EµN

�
1

N

∑

−
p

N¶x¶0

ζx (t)

�
¶ ρ⋆N−1/2.

Recall that Kt is the number of second-class particles at time t. Denote the positions of the second-class
particles by X i(t), for 1¶ i ¶ Kt . Then

1

N

∑

x¶−
p

N

ζx (t) =
1

N

Kt∑

i=1

1{X i(t) ¶ −
p

N}.

Let Sk be a discrete time simple random walk which jumps to the right with probability p and to the
left with probability 1− p. Then

PµN

�
X1(t) ¶ −

p
N
�
=

∞∑

j=0

PµN
(X1(t) jumps j times up to time t)× PµN

(S j ¶ −
p

N)

¶ sup
j¾
p

N

PµN
(S j ¶ −

p
N ) ¶ sup

j¾
p

N

j

((2p − 1) j +
p

N )2
¶ CN−1/2

for some finite constant C independent of N . Together with Lemma 3.3, we have

EµN

�
1

N

Kt∑

i=1

1{X i(t) ¶ −
p

N}
�
¶ CN−3/2EµN

[Kt]¶ CN−1/2.

This completes the proof. �

Since the process (ω(t)+ζ(t))t¾0 is the usual asymmetric attractive zero-range process, we conclude
this paragraph with a well-known result concerning the hydrodynamic limit of (ω(t)+ζ(t))t¾0, which
has been proved in [15].
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Theorem 3.5 ([15, Theorem 1.3]). Suppose the initial density profile ρ0 is bounded. For any compactly

supported and continuous function H : R→ R, for any t ¾ 0, δ > 0, β ∈ R,

lim
N→∞
PµN

�����
1

N

∑

x∈Z
H
�

x
N

�
(ωx (t) + ζx (t))−

∫

R

H(u)ρ(t,u) du

���� > δ
�
= 0,

where ρ(t,u) is the unique entropy solution to (2.5).

3.3. Microscopic entropy inequality. In this subsection, we shall couple two copies of our Markov
process, denoted by ω(t) and ̟(t). Recall that the process is supposed to be attractive (Assumption
H1). If both processes have the same number of particles on a given site, a particle at this site will
perform at the normal rate a particle jump/destruction, identical in both processes. If the processes do
not have the same number of particles at a given site, at the minimal rate g(ωx ) ∧ g(̟x ), a particle
will perform the same jump/destruction in both processes. To make up for the loss of jump rate, the
process with the highest number of particles will make a particle jump/destruction while the other one
will remain unchanged at a compensated rate |g(̟x )− g(ωx )|. The generator of the coupled process
is given by its action on local Lipschitz functions f : Ω×Ω→ R by

fLN f (ω,̟) =
∑

x∈Z

�
g(ωx )∧ g(̟x )

� �
p f (ωx ,x+1,̟x ,x+1) + (1− p) f (ωx ,x−1,̟x ,x−1)− f (ω,̟)

	

+
∑

x∈Z

�
g(ωx )− g(ωx )∧ g(̟x )

��
p f (ωx ,x+1,̟) + (1− p) f (ωx ,x−1,̟)− f (ω,̟)

	

+
∑

x∈Z

�
g(̟x )− g(ωx )∧ g(̟x )

��
p f (ω,̟x ,x+1) + (1− p) f (ω,̟x ,x−1)− f (ω,̟)

	

+αNβ
�
g(ω0)∧ g(̟0)
� �

f (ω(0),̟(0))− f (ω,̟)
	

+αNβ
�
g(ω0)− g(ω0)∧ g(̟0)

� �
f (ω(0),̟)− f (ω,̟)

	

+αNβ
�
g(̟0)− g(ω0)∧ g(̟0)

� �
f (ω,̟(0))− f (ω,̟)

	
.

One can easily check that under this coupling, if the process (ω,̟) evolves according to fLN , then both
marginal processesω(t) and̟(t) evolve according toLN . For a probability measure eµN on Ω×Ω, let
ePeµN

be the distribution on D([0, T ],Ω×Ω) of the process (ω(t),̟(t)) with generator N fLN and with
initial distribution eµN .

For x ∈ Z and a positive integer ℓ, denote by ωℓ
x
= (2ℓ + 1)−1
∑
|y−x |¶ℓωy the average number

of particles in a box of size 2ℓ + 1 around x . Given the coupling above, we now state a microscopic
version of entropy inequality.

Lemma 3.6 (Microscopic entropy inequality). Fix β < 1. Let eµN be a probability measure on Ω × Ω
with both marginals stochastically dominated by νρ⋆ for some ρ⋆ > 0. Then for any ǫ > 0 and for any

non-negative smooth function H with compact support in (0,∞)×R,

lim
ℓ→∞

lim inf
N→∞
ePeµN

�∫ ∞

0

N−1
∑

x∈Z

¦
∂t H(t,

x
N )
��ωℓ

x
(t)−̟ℓ

x
(t)
��

+ (2p − 1)∂uH(t, x
N
)
��Φ(ωℓ

x
(t))−Φ(̟ℓ

x
(t))
��©d t ¾ −ǫ
�
= 1.

(3.5)

Remark 3.7. Using the same argument, we could prove

lim
ℓ→∞

lim inf
N→∞
ePeµN

�∫ ∞

0

N−1
∑

x∈Z

¦
∂t H(t,

x
N )
�
ωℓ

x
(t)−̟ℓ

x
(t)
�±

+ (2p− 1)∂uH(t, x
N
)
�
Φ(ωℓ

x
(t))−Φ(̟ℓ

x
(t))
�±©

d t ¾ −ǫ
�
= 1.

(3.6)
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We will use (3.5) in the case β > 0, and (3.6) in the case β = 0. Note that the case β < 0 is a direct

consequence of the hydrodynamic limit stated in Theorem 3.5, because then the particle destruction at the

origin is too weak to affect the macroscopic density.

Proof of Lemma 3.6. We follow the strategy presented in [10, Chapter 8] and [12, Proposition 5.1].
For this reason we only sketch the proof here.

Step 1. The first step is to prove that in the limit N ↑∞ the configurations ω and ̟ are ultimately
locally ordered. To be precise, for any A> 0, any t > 0, and any y ∈ Z,

lim
N→∞
eEeµN

�∫ t

0

N−1
∑

|x |¶AN

Gx ,x+y(ω(s),̟(s)) ds

�
= 0, (3.7)

where Gx ,x ′(ω,̟) = 1{ωx <̟x ,ωx ′ >̟x ′}+1{ωx >̟x ,ωx ′ <̟x ′}. The idea is to investigate the
mean zero martingale defined as

1

N

∑

|x |¶AN

|ωx (t)−̟x (t)| −
1

N

∑

|x |¶AN

|ωx (0)−̟x (0)| −
∫ t

0

∑

|x |¶AN

fLN

�
|ωx (s)−̟x (s)|

�
ds.

By calculating directly the term involving the generator fLN , we show that

lim
N→∞
eEeµN

�∫ t

0

N−1
∑

|x |¶AN

¦
pGx ,x−1(ω(s),̟(s))

��g(ωx−1(s))− g(̟x−1(s))
��

+ (1− p)Gx ,x+1(ω(s),̟(s))
��g(ωx+1(s))− g(̟x+1(s))

��©+αNβ−1
��g(ω0(s))− g(̟0(s))

�� ds

�
= 0.

By an induction argument as in the proof of [10, Lemma 8.2.2], one is able to prove (3.7) from the
above formula.

Step 2. For any non-negative smooth function H with compact support in (0,∞)×R, consider the
mean zero martingale

M
N
t

:=
1

N

∑

x∈Z
H(t, x

N
)|ωx (t)−̟x (t)| −

∫ t

0

(∂s + N fLN )

�
1

N

∑

x∈Z
H(s, x

N
)|ωx (s)−̟x (s)|

�
ds. (3.8)

Direct calculations show that if β < 1, then limN→∞ eEeµN
[sup0¶s¶t(M

N
s
)2] = 0. Since H has compact

support in (0,∞)×R, we can take t large enough for the first term on the right hand side to vanish.
By direct calculations, we bound the term

∑
x∈ZH(s, x

N
)fLN |ωx −̟x | from above by

∑

x∈Z
H(s, x

N )
�
p|g(ωx−1)− g(̟x−1)|+ (1− p)|g(ωx+1)− g(̟x+1)| − |g(ωx )− g(̟x )|

�
.

An integration by parts allows us to write the first term above as

1

N

∑

x∈Z
(2p − 1)∂uH(s, x

N
)|g(ωx )− g(̟x )|+ oN (1).

Therefore, for any ǫ > 0,

lim
N→∞
ePeµN

�∫ ∞

0

N−1
∑

x∈Z

¦
∂t H(t,

x
N
)
��ωx (t)−̟x (t)

��

+ (2p− 1)∂uH(t, x
N )
��g(ωx (t))− g(̟x (t))

��©d t ¾ −ǫ
�
= 1.

(3.9)

Step 3. Due to the smoothness and compactness of H, in (3.9) we can replace |ωx −̟x | and
|g(ωx )− g(̟x )| with their spatial averages over sites in a box of size 2ℓ+ 1 around x . Moreover, by
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(3.7) and repeating the proof of [10, Lemma 8.2.3], we can replace

(2ℓ+ 1)−1
∑

|y−x |¶ℓ
|g(ωy (t))− g(̟y (t))| resp. (2ℓ+ 1)−1

∑

|y−x |¶ℓ
|ωy (t)−̟y (t)|

i.e. the average of the absolute value, by
����(2ℓ+ 1)−1
∑

|y−x |¶ℓ
g(ωy(t))− g(̟y (t))

���� resp. |ωℓ
x
(t)−̟ℓ

x
(t)|

i.e. the absolute value of the average. Therefore, we have

lim
N→∞
ePeµN

�∫ ∞

0

1

N

∑

x∈Z

§
∂t H(t,

x
N )
��ωℓ

x
(t)−̟ℓ

x
(t)
��+ (2p− 1)∂uH(t, x

N )

×
���(2ℓ+ 1)−1
∑

|y−x |¶ℓ
g(ωy (t))− (2ℓ+ 1)−1

∑

|y−x |¶ℓ
g(̟y (t))

���
ª

d t ¾ −ǫ
�
= 1.

(3.10)

We complete the proof by using the one-block estimate as stated in Lemma 3.8 below. �

Lemma 3.8 (One-block estimate). If β < 1, then for any ǫ > 0, any A> 0 and any t > 0,

limsup
ℓ→∞

limsup
N→∞
ePeµN

�∫ t

0

1

N

∑

|x |¶AN

τx Vℓ(ω(s)) ds ¾ ǫ

�
= 0,

where

Vℓ(η) =

���(2ℓ+ 1)−1
∑

|y |¶ℓ
g(ωy)−Φ(ωℓ0)
���.

The same result obviously holds with ω(t) replaced by̟(t).

The proof of the above lemma is quite standard, we omit the proof here. We refer the readers to
[12, Lemma 5.4] for its detailed implementation.

4. PROOF OF THEOREM 2.3

In this section we give the proof of Theorem 2.3. We distinguish four cases, namely β < 0, β = 0,
0< β < 1 and β ¾ 1.

4.1. The case β < 0. By Lemma 3.3, if β < 0, then for any compactly supported smooth function H,

EN

� 1
N

∑

x∈Z
H
�

x
N

�
ζx (t)
�
¶
||H||∞

N
EN [Kt]¶ C ||H||∞αtNβ −−−→

N→∞
0,

where ζ is the process of second-class particles introduced in Section 3.2. In particular, both processes
ω(t) and ω(t) + ζ(t) have the same macroscopic limit. Theorem 2.3 therefore follows from Theorem
3.5.

4.2. The case β = 0. We now prove Theorem 2.3 in the case β = 0. Several results proved in this
subsection will also be used in the case β < 1, we will make it explicit in the statements. We first
introduce some notation. Denote byM+(R) the space of positive Radon measures on R endowed with
the vague topology. For each configuration ω ∈ Ω, define the empirical measure αN ∈M+(R) as

αN (ω) =
1

N

∑

x∈Z
ωxδx/N ,

where δu is the Dirac measure at u ∈ R, and denote αN
t
= αN (ω(t)). Fix a time T > 0. Let QN be the

distribution on the path space D
�
[0, T ],M+(R)
�

of the path (αN
t
), where αN

0 is distributed according
to the pushforward distribution µN ◦ (αN )−1.
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Lemma 4.1 (Tightness). Suppose the initial measure µN is stochastically dominated by νρ⋆ for some

ρ⋆ > 0. If β < 1, then the sequence (QN )N∈N is tight. Moreover, all limit points are concentrated on

weakly continuous paths which are absolutely continuous with respect to the Lebesgue measure and with

density bounded by ρ⋆.

Proof of Lemma 4.1. The proof of tightness is quite standard, see [15, Lemma 4.1] for example. To
prove Lemma 4.1, it is enough to show that for any H ∈ Cc(R),

lim
δ→0

limsup
N→∞

EµN

�
sup
|t−s|¶δ

���N−1
∑

x∈Z
H
�

x
N

��
ωx (t)−ωx (s)
����
�
= 0.

The only difference with [15] is that Dynkin’s formula has an extra term coming from the destruction
part of the dynamics, so that we only detail how the Glauber contribution is controlled, and refer to
[15] for the other estimates. For any function f ,

f (ω(t)) = f (ω(0)) +

∫ t

0

NLN f (ω(s))ds +Mt , (4.1)

where Mt is a martingale whose quadratic variation is given by

EµN

�
M

2
t

�
= EµN

�∫ t

0

N
�
LN f 2 − 2 fLN f

�
(ω(s))ds

�
. (4.2)

Choosing f (ω) = N−1
∑

H( x
N )ωx , in addition to the proof performed in [15] we have two extra terms

to control:

(i) first, in (4.1), the contribution of the Glauber dynamics is given by
∫ t

0

NL α,β
N f (ω(s))ds =

∫ t

0

H(0)L α,β
N ω0(s) ds

=
H(0)

N
(ω0(t)−ω0(0))−H(0)

∫ t

0

L ZR
N
ω0(s) ds +N0,t ,

where N0,t is a martingale whose quadratic variation has order max{Nβ−1, N−1}. All terms
but the third term on the right hand side vanish in L2(PN ). To control the third term, since

L ZR
N
ω0 = pg(ω−1) + (1− p)g(ω1)− g(ω0),

and the function g is Lipschitz, it remains to prove

lim
δ→0

limsup
N→∞

EµN

�
sup
|t−s|¶δ

����
∫ t

s

ωx (τ)dτ

����
�
= 0. (4.3)

for any x ∈ Z. Using the Cauchy-Schwarz inequality twice, the expectation above is bounded
by

δ1/2 ×
�
EµN

�∫ T

0

ω2
x
(τ)dτ

��1/2
.

Since the initial measure is bounded by νρ⋆ and the process is attractive, the quantity above
is uniformly bounded in N . This concludes the proof of (4.3).

(ii) second, in the integral in (4.2) appears the Glauber contribution

EµN

�∫ t

0

�
NL α,β

N f 2 − 2N fL α,β
N f
�
(ω(s))ds

�
= O (Nβ−1)

which vanishes in the limit as N →∞ since β < 1.

�

We now characterize the macroscopic density profile to the left of the origin.
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Lemma 4.2 (Hydrodynamic limit to the left of the origin). Assume β < 1. For any continuous function

H with compact support included in (−∞, 0], and for any t ¾ 0, δ > 0,

lim
N→∞
PµN

�����
1

N

∑

x∈Z
H
�

x
N

�
ωx (t)−
∫

R

H(u)ρ(t,u) du

���� > δ
�
= 0,

where ρ(t,u) = ρL(t,u) is defined in Theorem 2.3 as the unique entropy solution to (2.5).

Proof. Recall the second-class particle’s process introduced in Section 3.2. We start by proving

lim
N→∞
EµN

�
1

N

∑

x∈Z
|H
�

x
N

�
|ζx (t)

�
= 0. (4.4)

Since H has its support included in (−∞, 0], we bound

EµN

�
1

N

∑

x∈Z
|H
�

x
N

�
|ζx (t)

�
¶ ‖H‖∞

1

N

∑

x¶0

EµN
[ζx (t)]

and the right hand side vanishes from Lemma 3.4. Note that the function H is not necessarily con-
tinuous on R, however by maximum principle (applied to the vanishing viscosity limit, see e.g. [13,
Lemma 4.46, p. 73]), and since ω is stochastically dominated by an equilibrium measure νρ⋆ , H can
be approximated in L1(R) by a sequence of smooth, compactly supported functions Hǫ . We can now
use straightforwardly Theorem 3.5 and (4.4) to complete the proof. �

We now characterize the macroscopic density profile to the right of the origin. LetM+(R2
+
) be the

space of positive Radon measures on R2
+

endowed with the vague topology. For any integer ℓ and any
configurationω ∈ Ω, the Young measure πN ,ℓ(du, dλ) ∈M+(R2

+
) is defined by its action on continuous

function G : R2
+
→ R with compact support as

〈πN ,ℓ, G〉 := N−1
∑

x>ℓ

G
�

x
N ,ωℓ

x

�
.

Denote πN ,ℓ
t = πN ,ℓ(ωt). The mapping ωt 7→ (αN

t
,πN ,ℓ

t ) induces a probability measure QN ,ℓ on the
space D([0, T ],M+(R)×M+(R2

+
)). It is not hard to show that if β < 1, then the sequence of measures

QN ,ℓ is tight (cf. e.g. [10, Lemma 8.1.2]). Denote byQ∗ any limit point of the sequenceQN ,ℓ as N →∞
then ℓ→∞. To prove the hydrodynamic limit in our setting, the main step is to prove the following
microscopic version of (2.8).

Lemma 4.3. Let β = 0. Assume the initial measure µN is stochastically bounded by νρ⋆ for some ρ⋆ > 0.

There exists M > 0 such that for any non-negative test function H ∈ C
1,1
K ((0,∞) ×R) and any constant

c ¾ 0, Q∗-almost surely,

∫ ∞

0

∫ ∞

0

∫ ∞

0

�
∂t H(t,u)(λ− c)± + (2p − 1)∂uH(t,u)(Φ(λ)−Φ(c))±

�
πt(du, dλ) d t

+M

∫ ∞

0

H(t, 0)
�
̺(t)− c
�±

d t ¾ 0.

Proof. Fix c ¾ 0. We couple two processes (ω(t),̟(t)) according to the generator N fLN as described
in Subsection 3.3. Denote by eµN ,i , i = 1,2, the i-th marginal of eµN . Take the first marginal eµN ,1 of eµN

to be the initial measure µN defined in Subsection 2.4, and the second marginal eµN ,2 to be the invariant
measure of the process with generator LN , with the four parameters {ci}1¶i¶4 as stated in Remark 3.2
given by

c1 = −
αNβ

2p− 1
Φ(c), c2 =

αNβ + 2p− 1

2p− 1
Φ(c), c3 = 0, c4 = Φ(c).
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It is easy to check

lim
N→∞
EeµN ,2

[ω[Nu]] =

¨
R
� 2p−1
α+2p−1Φ(c)
�

if u< 0,

c if u> 0,

where R is the inverse function of Φ. Since the process̟(t) is time invariant, by law of large numbers,
for any ǫ > 0 and for any non-negative test function H with compact support in (0,+∞)×R, we have

lim
ℓ→∞

limsup
N→∞
ePeµN

�∫ ∞

0

1

N

∑

x¶0

H(t, x
N
)
��̟ℓ

x
(t)− R
� 2p−1
α+2p−1Φ(c)
���d t ¾ ǫ

�
= 0,

lim
ℓ→∞

limsup
N→∞
ePeµN

�∫ ∞

0

1

N

∑

x¾0

H(t, x
N )|̟ℓ

x
(t)− c|d t ¾ ǫ

�
= 0.

For any δ, γ > 0, define Hγ,δ(t,u) = ψγ ∗ 1{· > −δ}(u)H(t,u), where ψγ is an approximation of the

identity, so that Hγ,δ(t,u) converges as γ → 0 to H(t,u)1{u > −δ}. Taking Hγ,δ as test function in
(3.6), and letting γ→ 0, we have Q∗-almost surely,
∫ ∞

0

∫ ∞

0

∫ ∞

0

§
∂t H(t,u)
�
λ− c
�±
+ (2p− 1)∂uH(t,u)

�
Φ(λ)−Φ(c)
�±ª

πt(du, dλ) d t

+

∫ ∞

0

∫ 0

−δ

§
∂t H(t,u)
�
ρL(t,u)− R
� 2p−1
α+2p−1Φ(c)
��±
+ (2p − 1)∂uH(t,u)

�
Φ(ρL(t,u))− 2p−1

α+2p−1Φ(c)
�±ª

du d t

+

∫ ∞

0

(2p − 1)H(t,−δ)
�
Φ(ρL(t,−δ))− α+2p−1

2p−1 Φ(c)
�±

d t ¾ 0.

Since ρL(t,u) is bounded, the second line above is bounded from above by Cδ for some finite constant
C . Furthermore, because Φ is increasing and Lipschitz continuous, |Φ(u)−Φ(v)|¶ a0|u− v|, we have
�
Φ(ρL(t,−δ))− α+2p−1

2p−1 Φ(c)
�±
¶

a0(α+ 2p − 1)

2p− 1

�
R
� 2p−1
α+2p−1Φ(ρL(t,−δ))

�
− c
�±

.

We conclude the proof by letting δ→ 0. �

The rest of the proof is quite standard [15, Section 5], and we only sketch the proof here. We first
introduce the concept of measure-valued entropy solutions. Let πt ,u(dλ) be a measurable map from R2

+

into the spaceM+(R+). We say πt ,u(dλ) is bounded if there exists a finite constant C such that πt ,u(dλ)

is supported in [0, C] for a.e. (t,u) ∈ R2
+

. We say πt ,u(dλ) is a measure-valued entropy solution to (2.7)
if

• there exists M > 0 such that for any non-negative test function H ∈ C
1,1
K ((0,∞)×R) and any

constant c ¾ 0,
∫ ∞

0

∫ ∞

0

§
∂t H(t,u)

∫ ∞

0

(λ− c)±πt ,u(dλ) + (2p − 1)∂uH(t,u)

∫ ∞

0

(Φ(λ)−Φ(c))±πt ,u(dλ)

ª
du d t

+M

∫ ∞

0

H(t, 0)(̺(t)− c)± d t ¾ 0; (4.5)

• for every A> 0

lim
t→0

∫ A

0

∫ ∞

0

|λ−ρ0(u)|πt ,u(dλ) du = 0. (4.6)

It is obvious that if ρ(t,u) is an entropy solution to (2.7), then δρ(t ,u)(dλ) is a bounded measure-
valued entropy solution. By [2, Theorem 2.1], the converse is also true: there exists a unique bounded
measure-valued entropy solution πt ,u(dλ) to (2.7), which is of the form πt ,u(dλ) = δρ(t ,u)(dλ), ρ(t,u)
being the unique entropy solution.
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We now state a lemma concerning the properties of the limiting measure Q∗.

Lemma 4.4. Assume the initial measure µN is stochastically bounded by νρ⋆ for some ρ⋆. For all β ∈ R,

we have Q∗-almost surely,

(i) αt (du) and πt(du, dλ) are both absolutely continuous with respect to the Lebesgue measure du,

whose densities are denoted by ρ(t,u) and πt ,u(dλ) respectively. Moreover,

∫ ∞

0

λπt ,u(dλ) = ρ(t,u);

(ii) πt ,u(dλ) is bounded, with support on [0,ρ⋆] for almost every (t,u) ∈ R2
+

.

The above lemma is an analogue of [15, Lemma 5.5]. We omit the proof here. The main ingredi-
ents are attractiveness of the process and the following observation: for any continuous function with
compact support H : R+→ R,

〈αN , H〉 = 〈πN ,ℓ, Hλ〉
plus error terms that vanish uniformly as N →∞.

Now we are ready to prove Theorem 2.3 for β = 0.

Proof of Theorem 2.3 in the case β = 0. We lay out the main arguments, but omit some technical de-
tails, for which we refer the reader to [15, Lemma 5.2]. Fix a smooth function H with compact support,
that we decompose as H(u) = H(u)1{u ¾ 0}+H(u)1{u< 0}. The part corresponding to H(u)1{u < 0}
is treated in Lemma 4.2, so that we only need to prove that for any function H which is continuous
and compactly supported in R+,

lim
N→∞
PµN

�����
1

N

∑

x¾0

H
�

x
N

�
ωx (t)−
∫ +∞

0

H(u)ρ(t,u) du

���� > δ
�
= 0,

where ρ = ρR is the unique entropy solution to (2.7) with boundary condition given by (2.13). the
proof is divided into several steps.

Step 1. We first assume the initial density profile ρ0 restricted to R+ is a Lipschitz continuous
function with compact support, so that we can use the proof of [15, Lemma 5.6]. From the latter,
it follows straightforwardly that the initial condition (4.6) holds Q∗-almost surely. By Lemmas 4.3
and 4.4, πt ,u(dλ) is bounded and the inequality (4.5) holds Q∗-almost surely. This implies the limit
Q∗ is concentrated on trajectories such that πt ,u(dλ) is a bounded measure-valued entropy solution
to (2.7). Since there exists a unique bounded measure-valued entropy solution, which is given by
a Dirac measure δρ(t ,u)(dλ), and by Lemma 4.4, Q∗ is concentrated on trajectories such that ρ(t,u)
is entropy solution to (2.7). By the uniqueness of the entropy solution, we conclude the proof for
Lipschitz continuous initial density profile ρ0 with compact support.

Step 2. Now we assume the initial density profile ρ0 is integrable on R+ and bounded. On R+, we
approximate ρ0 by ρ0,ǫ ∈ C∞

K
(R+) such that

lim
ǫ→0

∫

R

��(ρ0,ǫ −ρ0)(u)
��du= 0,

and leave ρ0,ǫ = ρ0 unchanged on (−∞, 0). We shall use the coupling introduced in Subsection 3.3.
We take the initial measure eµǫ

N
of the coupled process to be such that

eµǫ
N ,1 = µN , eµǫ

N ,2(dω) =
⊗

x∈Z
Pρ0,ǫ (x/N )

(dωx)

and that

ωx ¶̟x if ρ0(
x
N ) ¶ ρ0,ǫ(

x
N ), and ωx ¾̟x if ρ0(

x
N ) ¾ ρ0,ǫ(

x
N )
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for all x ∈ Z and with probability one with respect to eµǫ
N

. Since under the coupling, the number of
discrepancies only decreases in time, for any t > 0,

lim
N→∞
eEeµǫN
�

1

N

∑

x¾0

��ωt(x)−̟t (x)
��
�
¶ lim

N→∞
eEeµǫN
�

1

N

∑

x∈Z

��ω0(x)−̟0(x)
��
�
¶

∫ +∞

0

��ρ0,ǫ(u)−ρ0(u)
��du,

which vanishes as ǫ→ 0. Let eQN ,ǫ be the law of the pair (αN
t

,αN ,ǫ
t ) when (ω(t),̟(t)) starts from eµǫ

N
,

where

αN ,ǫ
t
=

1

N

∑

x∈Z
̟x (t)δx/N (du).

Let eQǫ be any limit point of eQN ,ǫ as N →∞, whose support is concentrated on absolutely continuous
measures (αt ,α

ǫ
t
) = (δρ(t ,u)du,δρǫ(t ,u)du). Passing to the limit in the last inequality, we have

lim
ǫ→0
EeQǫ

�∫ ∞

0

��ρ(t,u)−ρǫ(t,u)
��du

�
¶ lim
ǫ→0

∫

R

��ρ0,ǫ(u)−ρ0(u)
��du = 0, (4.7)

where, as a consequence of the first step ρǫ(t,u) is the unique entropy solution to (2.7) with initial
datum ρ0,ǫ and with boundary condition (2.13) independent of ǫ. To justify the last statement, note
that the boundary condition (2.13) only depends on the density left of the origin, which is initially
independent from ǫ. By the L1-contraction principle (see [13, Theorem 7.28] for instance) ρǫ con-
verges in L1 to the solution of (2.7) with boundary condition given by (2.13) and initial condition ρ0.
We conclude the proof by using (4.7) which proves that ρ(t,u) must be the solution of (2.7) with b.c.
(2.13).

Step 3. To extend the result to bounded initial datum ρ0, we use the approximated functions
ρ0,k(u) = ρ0(u)1{|u| ¶ k} and let k → ∞. See [15, Theorem 5.1] for details. This concludes the
proof for the case β = 0. �

4.3. The case 0< β < 1. In this subsection we prove Theorem 2.3 for the case 0< β < 1. Following
the same steps presented in the last subsection, we only need to prove the following lemma.

Lemma 4.5. Assume 0 < β < 1. Every limit point Q∗ of the sequence QN ,ℓ is concentrated on paths

πt ,u(dλ) such that

lim
u→0

∫ T

0

∫ ∞

0

Φ(λ)πt ,u(dλ) d t = 0.

Proof. To prove this result, we adapt the arguments laid out in [12, Lemma 6.4]. Fix c ¾ 0. We couple
two processes (ω(t), ̟(t)) according to the generator N fLN as stated in Subsection 3.3. Let eµN ,1 = µN .
We take the second marginal eµN ,2 of eµN to be the invariant measure as stated in Remark 3.2, with the
four parameters given by

c1 = −
αNβ

2p− 1+αNβ
Φ(c), c2 = Φ(c), c3 = 0, c4 =

2p − 1

2p− 1+αNβ
Φ(c).

With the above choice,

lim
N→∞
EeµN ,2

[ω[Nu]] =

¨
c if u< 0,

0 if u> 0.

Since the process ̟(t) is time invariant, by law of large numbers, for any ǫ > 0 and for any non-
negative test function H with compact support in (0,∞)×R, we have

lim
ℓ→∞

limsup
N→∞
ePeµN

�∫ ∞

0

N−1
∑

x¶0

H(t, x
N
)
��̟ℓ

x
(t)− c
��d t ¾ ǫ

�
= 0,

lim
ℓ→∞

limsup
N→∞
ePeµN

�∫ ∞

0

N−1
∑

x¾0

H(t, x
N
)̟ℓ

x
(t)d t ¾ ǫ

�
= 0.
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By Lemma 3.6,

∫ ∞

0

∫ ∞

0

¦
∂t H(t,u)

∫ ∞

0

λπt ,u(dλ) + (2p− 1)∂uH(t,u)

∫ ∞

0

Φ(λ)πt ,u(dλ)
©

du d t

+

∫ ∞

0

∫ 0

−∞

¦
∂t H(t,u)|ρL(t,u)− c|+ (2p − 1)∂uH(t,u)|Φ(ρL(t,u))−Φ(c)|

©
du d t ¾ 0

(4.8)

with Q∗-probability one. The proof of Lemma 4.5 is adapted from [5, Theorem 4.1]. In order not to
burden with technical details, we now present a formal argument, and refer to the latter for additional
technical details. From (4.8), we first obtain formally, for any c, t, u,

〈∂tπt ,u1{u ¾ 0},λ〉+ (2p − 1)〈∂uπt ,u1{u ¾ 0},Φ(λ)〉
+ 〈∂tπt ,u1{u ¶ 0}, |λ− c|〉+ (2p− 1)〈∂uπt ,u1{u¶ 0}, |Φ(λ)−Φ(c)|〉 ¶ 0 (4.9)

in the sense of distributions, where we define πt ,u1{u ¶ 0} = δρL(t ,u)1{u¶ 0}. Observe that

0= ∂t 〈πt ,u1{u¶ 0}, |λ−ρL(t,u)|〉+ (2p− 1)∂u〈πt ,u1{u¶ 0}, |Φ(λ)−Φ(ρL(t,u))|〉
= 〈∂tπt ,u1{u¶ 0}, |λ−ρL(t,u)|〉+ (2p− 1)〈∂uπt ,u1{u¶ 0}, |Φ(λ)−Φ(ρL(t,u))|〉
+ 〈πt ,u1{u¶ 0},∂t |λ−ρL(t,u)|+ (2p− 1)∂u|Φ(λ)−Φ(ρL(t,u))|〉
¶ 〈∂tπt ,u1{u¶ 0}, |λ−ρL(t,u)|〉+ (2p− 1)〈∂uπt ,u1{u¶ 0}, |Φ(λ)−Φ(ρL(t,u))|〉

in the sense of distributions. In the last inequality, we use the fact that ρL(t,u) satisfies the entropy in-
equality and thus the penultimate line is non-positive in the sense of distributions. Therefore, choosing
c = ρL(t,u) in (4.9) yields

〈∂tπt ,u1{u¾ 0},λ〉+ (2p− 1)〈∂uπt ,u1{u¾ 0},Φ(λ)〉 ¶ 0

in the sense of distributions. More explicitly, this identity yields for any non-negative test function H

that
∫ ∞

0

∫ ∞

0

§
∂t H(t,u)

∫ ∞

0

λπt ,u(dλ) + (2p− 1)∂uH(t,u)

∫ ∞

0

Φ(λ)πt ,u(dλ)

ª
du d t ¾ 0 (4.10)

with Q∗-probability one. Fix δ > 0. Using the same strategies presented in the proof of Lemma 4.3, we
approximate H(t,u) = 1{t ¶ T} × 1{u ¶ δ} by smooth functions with compact support, and together
with (4.10), we obtain that there exists C > 0 such that

∫ T

0

∫ ∞

0

Φ(λ)πt ,δ(dλ) d t ¶ Cδ (4.11)

with Q∗-probability one. This completes the proof by letting δ→ 0. �

4.4. The case β ¾ 1. To indicate the dependence of the process on the parameter β , let ω(β)(t) be
the process with generator N(L ZR

N
+L α,β

N ). Without confusions and to make notations simple, in this
subsection we denote ω(t) := ω(1/2)(t) and η(t) = ω(∞)(t). In other words, in η any particle that
reaches the origin is destroyed. We still denote by PµN

the distribution of the coupled processes, and by
EµN

the corresponding expectation. We shall couple η(t) and ω(t) together such that if ω(0) = η(0)
at the initial time, then

limsup
N→∞

1

N

∑

x∈Z
EµN

���ηx (t)−ωx (t)
���= 0. (4.12)

This is enough to prove Theorem 2.3 for the case β ¾ 1, since the case β = 1/2 has already been
proved. Indeed, since the process is attractive, for any compactly supported and continuous function
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H : R→ R and for any β ¾ 1,

EµN

���� 1
N

∑

x∈Z
H
�

x
N

�
(ω(β)

x
(t)−ωx (t))

���
�
¶
||H||∞

N

∑

x∈Z
EµN

���ω(β)
x
(t)−ωx (t)
���

¶
||H||∞

N

∑

x∈Z
EµN

���ηx (t)−ωx (t)
���→ 0 as N →∞.

We now describe the coupling. We label the η-particles by Y k,i(t), and theω-particles by Zk,i(t), where
k ∈ Z, i = 1,2, . . . ,ηk(0). Let

ηx(t) =
∑

k∈Z

ηk(0)∑

i=1

1{Y k,i(t) = x}, ωx (t) =
∑

k∈Z

ηk(0)∑

i=1

1{Zk,i(t) = x}.

If Y k,i and Zk,i are at the same site, then we say these two particles are coupled; otherwise they are
uncoupled. We shall see that η(t) ¶ ω(t) for all t ¾ 0 and that Y -particles are always coupled with
Z-particles. The dynamics is as follows:

• at rate N g(ηx (t)), a pair of coupled particles is chosen uniformly from the coupled particles
at site x , and jumps to site x + 1 with probability p, or to site x − 1 with probability 1− p;
• at rate N(g(ωx (t))− g(ηx (t))), an uncoupled Z-particle is chosen uniformly from the uncou-

pled Z-particles at site x , and jumps to site x + 1 with probability p, or to site x − 1 with
probability 1− p;
• at the origin, Y -particles die instantaneously and at rate (N +αN3/2)g(ω0(t)), a Z-particle is

chosen uniformly from those particles at the origin, then it jumps to site x+1 with probability
p/(1+ αN1/2), or to site x − 1 with probability (1− p)/(1 + αN1/2), or dies with probability
αN1/2/(1+αN1/2).

With the above coupling, we have

∑

x∈Z

��ηx(t)−ωx (t)
�� =
∑

k∈Z

ηk(0)∑

i=1

1{Zk,i visits the origin before time t and survives by time t}.

Using the same argument as in the proof of Lemma 3.3, we can restrict the above summation to a large
box {k : k ∈ [−AN ,AN]} for some A> 0. Depending on whether Zk,i is at the origin or not at time t,
we can bound the expectation of the last expression by

EµN
[ω0(t)] +
∑

k∈[−An,An]

EµN
[ηk(0)]

1

1+αN1/2
,

which divided by N converges to zero as N →∞. This proves (4.12).

APPENDIX A. THE LINEAR CASE

In this section, we provide a simpler, alternative proof of the hydrodynamic limit (Theorem 2.3)
in the linear case where the jump rate is given by g(k) = k. Note that in this case, (cf. Remark 2.5),
the hydrodynamic limit follows a linear advection equation, and thus does not develop shock. Proving
existence and uniqueness of weak solutions is then straightforward. The alternative proof of Theorem
2.3 we propose in the linear case follows the duality approach already used in [6, 7] for symmetric
exclusion processes. However, it is significantly easier for the linear asymmetric zero-range process,
because the estimation of the two-points correlations of the system is straightforward.

For any sites x , y ∈ Z, any t ¾ 0, we define the following discrete density field

ρN
x
(t) := EµN

�
ωx (t)
�
, (A.1)

as well as the two-points correlation field

ϕN
x ,y(t) := EµN

�
(ωx (t)−ρN

x
(t))(ωy (t)−ρN

y
(t))
�
. (A.2)
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As detailed in [6], the hydrodynamic limit in the linear case is a straightforward consequence of Lem-
mas A.1 and A.2 below. The first lemma states that the discrete density field, once properly rescaled,
converges to the hydrodynamic limit.

Lemma A.1. The density field ρN defined in (A.1) converges as N →∞ towards the function ρ defined

in (2.15), in the sense that: for any t ¾ 0, any u ∈ R,

lim
N→∞

ρN
⌊Nu⌋(t) = ρ(t,u), (A.3)

where the convergence is uniform in u over compact subsets of R \ {0, (2p − 1)t}. In the identity above,

the function ρ is the linear hydrodynamic limit defined by (2.15). In particular, for any H ∈ CK (R),

lim
N→∞

1

N

∑

x∈Z
H
�

x
N

�
ρN

x
(t) =

∫

R

H(u)ρ(t,u) du.

The second lemma states that the two-points correlation field vanishes away from the diagonal.

Lemma A.2. For any ǫ > 0, and any t ¾ 0,

lim
N→∞

sup
x ,y∈Z
|x−y |¾ǫN

|ϕN
x ,y(t)|= 0. (A.4)

We will not detail the proof that the hydrodynamic limit follows from these two estimates, we simply
sketch the main steps and refer the interested reader to [6, Section 5] for a detailed implementation.
The main argument comes from the straightforward bound

E

��
1

N

∑

x∈Z
H
�

x
N

�
ωx (t)−
∫

R

H(u)ρ(t,u)
�2�

¶
2

N2

∑

x ,y∈Z
H
�

x
N

�
H
�

y

N

�
ϕN

x ,y(t) + 2
�

1

N

∑

x∈Z
H
�

x
N

�
ρN

x
(t)−
∫

R

H(u)ρ(t,u) du

�2
,

which is obtained by adding and subtracting N−1
∑

x H(x/N)ρN
x
(t) inside the parenthesis. The second

term in the right hand side vanishes according to Lemma A.1. The first term can be split, for any ǫ > 0
into a term that vanishes as N → ∞ according to Lemma A.2, and a second sum which contains
O ((ǫN)2) terms. Because the process is stochastically dominated by some equilibrium distribution
νρ⋆ , the ϕN

x ,y(t) are bounded, uniformly in x , y, t, by some constant C(ρ⋆). In particular, each of the

terms in the sum are of order C(H,ρ⋆)/N2, and this last contribution vanishes as N →∞ and ǫ→ 0,
which proves the hydrodynamic limit.

Proof of Lemma A.1. By Dynkin’s formula, the values ρN
x
(t) := ρN (t, x

N
) are the solutions of the fol-

lowing system:
(

d
dt
ρN

x
(t) = N
�
(1− p)ρN

x+1(t) + pρN
x−1(t)−ρN

x
(t)
�
, x 6= 0

d
dtρ

N
0 (t) = N
�
(1− p)ρN

1 (t) + pρN
−1(t)− (1+ αNβ )ρN

0 (t)
�
.

(A.5)

The main ingredient to prove Lemma A.1 is a duality relationship that expresses the density field
ρN (t) as a function of an asymmetric random walk X on Z. Define a cemetery state d, and consider a
continuous-time random walk X t on Z, killed at rate αN1+β at the origin, at which point it goes to the
cemetery state d. The random walk is asymmetric, and jump at rate N p to the left and N(1− p) to the
right, i.e., its drift is inverted w.r.t. the particles in our zero-range process. Denote byL †

N the generator
of this process, acting on local functions f : Z∪ {d} → R as

(L †
N f )x = N p { fx−1 − fx}+ N(1− p) { fx+1 − fx}+αN1+β { fd − fx}1{x = 0}. (A.6)
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We denote by τ ∈ [0,+∞] the time at which the random walk is killed, namely τ = inf{t > 0, X t = d},
by Px the distribution of X t started from x , and by Ex the corresponding expectation. For convenience,
we let the random walk run after it is killed by letting it jump at infinite rate from d to 0, but keep
track that it died.

With these notations, (A.5) yields





d
dtρ

N
x
(t) =L †

Nρ
N
x
(t) x ∈ Z, t > 0,

ρN
d
(t) = 0 t > 0,

ρN
x
(0) = ρ0(

x
N ) x ∈ Z,

(A.7)

so that by Feynman-Kac’s formula, we have the dual identity

ρN
x
(t) = Ex

�
ρ0

�X t

N

�
1{τ > t}
�

. (A.8)

We now consider the behavior of the random walk X t . Define pN , qN , rN as

pN =
αNβ

1+αNβ
, qN =

2p− 1

1+αNβ
and rN =

2− 2p

1+αNβ
= 1− pN − qN ,

which are the probabilities that: the random walk X , initially at the origin, gets killed before jumping
out (pN ), the random walk is not killed and escapes to infinity without ever coming back to the origin
(qN ), and the random walk is not killed immediately but eventually comes back to the origin (rN ).

From this, we deduce that the probability that, starting at the origin, the probability that X t gets
killed before escaping to infinity is

eαN := P0(τ <∞) = pN

∑

k¾0

rk
N
=

αNβ

αNβ + 2p− 1
−→

N→∞
eα. (A.9)

where eα was defined in (2.14).

Fix now u ∈ R, and assume that X0 = ⌊Nu⌋. Recall that we let the random walk X jump asymmet-
rically after it dies, we further claim that

P⌊Nu⌋

�
sup
s¶t

���Xs

N
− u+ (2p− 1)s
��� ¾ 2N−1/4
�
= O (N−1/8). (A.10)

We define the martingale Ms := Xs−⌊Nu⌋+N(2p−1)s, which is a martingale w.r.t. the natural filtration
of X ·. Fix t > 0, by Doob’s inequality

P⌊Nu⌋

�
sup
s¶t

|Ms|¾ N3/4
�
¶ E⌊Nu⌋ [|Mt |]N−3/4 ¶ N−3/4

�
1+

∫ ∞

1

P⌊Nu⌋(|Mt |¾ v)dv

�
. (A.11)

Fix K > 0, we define for k ¶ N

Yk =
�
Mt(k+1)/N −Mtk/N

�
1
�
|Mt(k+1)/N −Mtk/N |¶ K

	
.

By Azuma’s inequality,

P⌊Nu⌋

����
N−1∑

k=0

Yk

��� ¾ v

�
¶ 2e−v2/2N K2

.

In particular,

P⌊Nu⌋(|Mt |¾ v) ¶ 2e−v2/2N K2
+ N max

k∈{0,...,N−1}
P⌊Nu⌋
�
|Mt(k+1)/N −Mtk/N |¾ K

�
.

Assume that K > 2t, the probability in the right hand side is less than the probability that the random
walk X jumps at least K/2 times in the time interval [t(k + 1)/N , tk/N], which is less than Ce−K/t

since the number of jumps in this interval is distributed as a Poisson random variable of parameter t.
This finally yields

P⌊Nu⌋(|Mt |¾ v) ¶ 2e−v2/2N K2
+ NCe−K/t ,
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so that, choosing K = (log N log v)2/t, (A.11) yields

P⌊Nu⌋

�
sup
s¶t

|Ms|¾ N3/4
�
= O (N−1/8), (A.12)

which proves (A.10).

We now get back to (A.8). For any u /∈ [0, (2p − 1)t], for any N large enough, according to (A.10),
P⌊Nu⌋(τ < t) ¶ P⌊Nu⌋(∃ s ¶ t, Xs = 0) = O (N−1/8). In particular, recall from (2.15) the definition of ρ,
and recall that we assumed ρ0 to be uniformly c0-Lipschitz, (A.8) yields

��ρN
⌊Nu⌋(t)−ρ(t,u)

�� ¶ 2N−1/4c0 + O (N−1/8) −→
N→∞

0.

We now consider u ∈ (0, (2p − 1)t), for which we can write, using the same bounds,

��ρN
⌊Nu⌋(t)−ρ(t,u)P⌊Nu⌋(τ ¾ t)

��¶ 2N−1/4c0 + O (N−1/8) −→
N→∞

0.

To conclude the proof, we only need to show that P⌊Nu⌋(τ ¾ t) converges to 1− eα as N →∞. To do
so, we show that P⌊Nu⌋(τ ¾ t) = P0(τ=∞) + oN (1). We start by writing

P⌊Nu⌋(τ ¾ t) = P⌊Nu⌋(τ=∞) + P⌊Nu⌋(t ¶ τ <∞).
By Markov property, the first term in the right hand side is P0(τ=∞) because an asymmetric random
walk X started from x > 0 hits the origin a.s. in finite time. Regarding the second term, we can write
using (A.10) that for some negative u′,

P⌊Nu⌋(t ¶ τ <∞) ¶ P⌊nu′⌋(τ <∞) + O (N−1/8).

Indeed, at time t the random walk has not died, and is w.h.p. of order 1 − O (N−1/8) to the right of
⌊nu′⌋, where u′ = (u− (2p−1)t)/2 < 0. However, the random walk being asymmetric, the probability
P⌊Nu′⌋(τ <∞) is O (e−cN ) since it visits the origin with probability O (e−cN ) for some positive constant
c = c(u′, p). Finally (A.9) yields as wanted

P⌊Nu⌋(τ¾ t) = P0(τ=∞) + O (N−1/8) = 1− eα+ O (N−ǫ),
where ǫ = |β | ∧ 1/8.

All estimates above are uniform away from the boundary points u = 0, u = (2p − 1)t, so that the
second statement of the lemma is now clear. The last statement of the lemma is straightforward, we
do not detail it. �

Proof of Lemma A.2. In the asymmetric case, the proof of Lemma A.2 is straightforward, we simply
sketch it. In the same way that we obtained (A.7), one can write using Dynkin’s formula






d
dt
ϕN

x ,y(t) =L
†,2
N ϕN

x ,y(t) x , y ∈ Z, |x − y |> 1, t > 0,

ϕN
d,y(t) = ϕ

N
x ,d(t) = 0 t > 0, x , y ∈ Z,

ϕN
x ,y(0) = 0 x , y ∈ Z,

(A.13)

where L †,2
N is the generator of a two-dimensional asymmetric random walk X = (X , Y ) on Z2, where

both X and Y are driven by the generator L †
N defined in (A.6). In other words, under L †,2

N , X jumps
from (x , y) to either (x + 1, y) or (x , y + 1) at rate 1 − p, to (x − 1, y) or (x , y − 1) at rate p, and
jumps from (x , 0) or (0, y) to the cemetery state (x ,d), (d, y) at rate αN1+β . Note that not to burden
the proof, we say nothing about the behavior of the random walk X = (X , Y ) close to the diagonal,
i.e. when |X − Y |¶ 1. When the random walk gets close to the diagonal, we will simply use the crude
bound yielded by attractiveness, namely

sup
x ,y∈Z
t¾0

|ϕN
x ,y(t)|¶ C(ρ⋆).
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Once again, by Feynman-Kac’s formula, one can write for any |x − y |> 1, t ¾ 0,

ϕN
x ,y(t) = Ex ,y

�
ϕXτ′ (t − τ

′) 1{τ′<t∧τ}
�
¶ C(ρ⋆)Px ,y (τ

′ < t), (A.14)

where Px ,y , Ex ,y denotes the distribution of the random walk Xt = (X t , Yt ) started from X0 = (x , y),
and the corresponding expectation. In the identity above, τ′ is the first time the random walk Xt

hits the set |x − y | ¶ 1, whereas τ = τ(X ) ∧ τ(Y ) is the first time either X or Y hits the cemetery
state. Equation (A.14) comes from the fact that we have three boundaries to the system (A.13) : if
either X or Y hits the cemetery state, ϕN vanishes. If the random walk reaches time t, then we query
the initial time correlations, which also vanish. The only non-zero contribution therefore comes from
getting close to the diagonal. However, given ǫ > 0, uniformly in |x − y | ¾ ǫN , Px ,y(τ

′ < t) vanishes
as N → ∞, because X t and Yt will be respectively close (up to a fluctuation of order O (

p
N )) to

x + (2p − 1)N t and y + (2p − 1)N t and x and y are far apart. This proves (A.4).
�

APPENDIX B. EQUIVALENCE OF DEFINITIONS 2.2 AND 2.3

In Definition 2.2 the boundary condition is given by the density ̺(t) at the origin, while in Definition
2.3 the boundary term is given by the flux f (t) into the system. In this section, we show that the two
definitions coincide if f (t) = (2p − 1)Φ(̺(t)).

Indeed, assuming ρ is an entropy solution to (2.7), we shall prove it is also an entropy solution
to (2.9) with f (t) = (2p − 1)Φ(̺(t)). Then by uniqueness of the weak entropy solutions, these two
definitions are the same. Taking H ∈ C

1,1
K ((0,∞) × (0,∞)) in (2.8) proves that ρ satisfies (2.9). It

remains to prove ρ also satisfies (2.12). Fix T > 0. We also need to assume furthermore that ̺ has a
finite number of discontinuities on the time interval [0, T ]. For any interval [t i , t i+1] and a > 0, taking
H(t,u) = 1[t i ,t i+1]

(t)× 1[−a,a] and c = ̺(t i) in (2.8), we have

∫ a

0

�
|ρ(t i ,u)−̺(t i)| − |ρ(t i+1,u)−̺(t i)|

	
du+M

∫ t i+1

t i

|̺(t)−̺(t i)|d t

¾

∫ t i+1

t i

(2p− 1)
��Φ(ρ(t, a))−Φ(̺(t i))

��d t

¾

∫ t i+1

t i

(2p− 1)
��Φ(ρ(t, a))−Φ(̺(t))

��d t −
∫ t i+1

t i

(2p− 1)
��Φ(̺(t))−Φ(̺(t i))

��d t.

(B.1)

Since Φ is smooth,
∫ t i+1

t i

(2p− 1)
��Φ(̺(t))−Φ(̺(t i))

��d t ¶ C(Φ)δ̺(t i, t i+1)(t i+1 − t i),

where δ̺(t i , t i+1) = supt∈(t i,t i+1)
|̺(t)−̺(t i )|. Similarly, the second term on the left hand side of (B.1)

is bounded by Mδ̺(t i , t i+1)(t i+1− t i). Taking a partition {t i} of the time interval [0, T0] and summing
over the partition in (B.1), we have

∑

t i

∫ a

0

�
|ρ(t i ,u)−̺(t i)| − |ρ(t i+1,u)−̺(t i)|

	
du+ (C(Φ) +M)T0 sup

i

δ̺(t i , t i+1)

¾

∫ T0

0

(2p − 1)
��Φ(ρ(t, a))−Φ(̺(t))

��d t.

Since inf{t i} supi δ̺(t i , t i+1) = 0 and ρ(t,u) is bounded,
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Ca ¾ inf
{t i}

∑

t i

∫ a

0

�
|ρ(t i ,u)−̺(t i)| − |ρ(t i+1,u)−̺(t i)|

	
du

¾

∫ T

0

(2p− 1)
��Φ(ρ(t, a))−Φ(̺(t))

��d t.

We conclude the proof by letting a→ 0.
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