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Abstract 

The prediction of the effective thermal conductivity of composites filled with carbon fibers requires the knowledge 
of the microstructure and composition of the composite, the orientation of nonisometric filler, the thermal 
conductivities of both phases and the thermal contact resistances between fibers and also between fibers and 
matrix. Due to the anisotropy of carbon fibers, one should know both their axial and radial thermal conductivities. 
Contrary to the axial thermal conductivity of carbon fiber, there are not much work on the radial one. The present 
work describes the characterization of the thermal conductivity of carbon fiber in the radial direction using the 3 
omega method with a constant current source. One key point is the use of de-ionized water around the carbon 
fibers to enhance radial heat transfer. An appropriate thermal model is required in order to estimate the radial 
thermal conductivity. Therefore, analytical 1D and 2D thermal models are developed using quadrupole methods 
to describe heat transfer in the carbon fiber using periodic regime and are compared with a 2D numerical model. 
It appeared that the use of a 1D heat transfer model induces some bias until 50.3 % on the estimation of the radial 
thermal conductivity showing that residual axial heat transfer still occurs. Therefore the 2D thermal model is more 
appropriate and is used with the experimental data to estimate the radial thermal conductivity. In addition, a 
detailed sensitivity analysis of the unknown parameter is performed that allows to find the best range of operating 
conditions especially the frequency range and the effect of the type of surrounding material. Measurements are 
performed with PAN type carbon fiber (FT300B) of 6 to 8 micrometers diameter and various lengths from 0.5 to 
2.5 mm embedded in de-ionized water. Finally, radial thermal conductivity values are shown to be about 10 times 
smaller than the axial one, revealing strong anisotropy of the studied carbon fiber.  

Keywords: radial thermal conductivity; carbon fiber; 3omega method; quadrupole method 

Nomenclature: 

𝐶𝐶 Heat capacity, Jkg-1K-1 

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 Intensity of the current, A 
𝑓𝑓 Frequency (f=2πω-1), Hz 
𝑘𝑘𝑟𝑟 Fiber radial therm. conduct., Wm-1K-1

 
𝑘𝑘𝑤𝑤 Water thermal conductivity, Wm-1K-1 
𝑘𝑘𝑍𝑍 Fiber axial therm. conduct., Wm-1K-1 
𝐿𝐿 Fiber length, m 
𝑅𝑅 Radius of the fiber, m 
R0 Elec. resistance of the fiber, Ω 
𝑇𝑇 Temperature, °C 

𝑇𝑇�� Average transf. temperature, °Cm 
𝑉𝑉3𝜔𝜔 Voltage at 3omega, V 
𝑋𝑋𝑢𝑢𝑝𝑝 Sensitivity coefficient, °C 
Greek letters: 
𝛼𝛼𝑒𝑒 Temp. coeff. of the resistance R, °C-1 
ω Pulsation, rad.s-1 
𝜃𝜃� Transformed temperature,°Cm 
𝜌𝜌 Density, kg.m-3 

𝜎𝜎 Standard deviation on kr, Wm-1K-1 

 

1. Introduction 

Carbon fibers has reached a great place in many high-performance industries such as aerospace or automotive 
structures [1]. This is because carbon fiber has very specific characteristics such as high strength, light weight 
which makes polymeric material reinforced with carbon fiber good candidate to replace metallic parts for structural 
components. As during their use composite material are subject to thermal gradient, it is of interest to predict their 
effective thermal conductivity. For this purpose, the knowledge of thermal property of carbon fiber are required. 
A lot of research focused on the measurement of the axial thermal conductivity of single carbon fiber mainly 
because it is the primary thermal conductivity to be measured. However as mentioned by Huang [2], carbon fibers 
are rather anisotropic material depending on the type of precursors and on the thermal processing method. 
Therefore the knowledge of radial thermal conductivity is quite often required. The problem of the measurement 
of the radial thermal conductivity of a carbon fiber is very difficult because of its small diameter typically less than 
10µm. 
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In literature dealing with thermal characterization of carbon fiber, several researches were focused on the 
measurement of the axial thermal conductivity and very few on the radial one. Table 1 shows axial and radial 
thermal conductivity values for several type of carbon fibers. For the radial thermal conductivity, one have found 
works only from Huang [2], Wang [3] and Liang [5] showing radial values mainly smaller than the axial ones. In 
these works, various techniques are used. Huang [2] has used molecular dynamic simulation to compute the radial 
conductivity kr of pitch based carbon fiber but no checking with measurement was proposed. Wang [3] has used 
Raman method to measure kr but a very large variation of measured values (from 0.11 to 8 Wm-1K-1) was obtained 
according to the location of the laser beam, this was explained by variation in the microstructure of the carbon 
fiber but it could also be due to the too low sensitivity of the temperature measurement to kr. Liang [5] has used 
the 3 omega method and a 1D radial thermal model to obtain kr but as we will see later a 2D model is more 
appropriate. Therefore it appears that the correct measurement of radial thermal conductivity of carbon fiber is still 
challenging. 

Table 1. Radial (𝑘𝑘𝑟𝑟), axial (𝑘𝑘𝑧𝑧) thermal conductivities and volumetric heat capacity (𝜌𝜌𝐶𝐶) of various types of carbon 
fibers from the literature (RT= room temperature) 

Carbon 
Fiber 

Commercial 
Ref. 

kr  
Wm-1K-1 

kz 
Wm-1K-1  

ρC 
Jm-3K-1 

Temperature 
K 

Method Ref. 

Lignin - 0.11 - 8 1.4-2.15 - 77 - RT FET-Raman + TET tech. [3] 
Pitch YSH-60A 12 - - RT MD simulation [2] 
Pitch - - 490 - RT T-type [4] 
PAN T650 1.5 13.7 1.97 106 RT 3ω [5] 
PAN FT300B - 10.47 1.37 106 RT 3ω [6] 
PAN FT300B  8.5  RT Hot guarded plate [7] 
Rayon TC2 - 5-12.5 - 850-1800 Periodic heating [8] 

 

In our work one have used the 3ω method. The working principle of this technique is the following. An additional 
metallic layer or the specimen itself serves as a heater and at the same time as a temperature sensor. As its electrical 
resistance varies linearly with temperature, its average temperature over its length and thickness (or diameter) can 
be measured through the measurement of voltage between its two extremities. The Joule heating is modulated 
thanks to an alternating current with a pulsation ω. The current will create a heating with a volumic power and 
therefore temperature fluctuation at 2ω, this further leads to voltage fluctuation across the metallic layer or 
specimen with both ω and 3ω pulsations. Only the voltage at 3ω noted V3ω contains the information of the average 
temperature of the sensor. It is therefore important to reduce the contribution of the voltage at 1ω by a specific 
device in the setup such as a Wheatstone bridge or differential amplifiers. Then the voltage V3ω is used with an 
appropriate thermal model to estimate the unknown such as the thermal conductivity of the sample. This 3ω 
method was developed for thin film characterization (Cahill [9]) and was successfully used to measure thermal 
conductivity of metallic micro or nanowires (Lu [10], Xing [11], Ding [12]) or carbon fibers (Liu [13], Mishra 
[6]). It is also possible to estimate simultaneously the axial thermal conductivity and the volumic heat capacity of 
wires or carbon fibers since these two parameters does not show correlation within the frequency range used during 
the 3ω measurement [6], typically from 1 to 1000Hz. 

The objective of this work is to develop a method to provide radial thermal conductivity of carbon fiber. First the 
proposed measurement principle is presented then analytical thermal models are developed in order to compute 
V3ω values useful for the kr estimation procedure. First a 1D thermal model and then a 2D one are developed using 
analytical methods and both are compared with a 2D numerical model (finite elements). The sensitivity analysis 
versus frequency shows the interest of using de-ionized water for radial thermal conductivity measurement. 
Finally, kr measurements are performed with three different carbon fibers of PAN type. 

 

2. Radial thermal conductivity measurement principle 

Figure 1 shows the sample holder with the carbon fiber to be characterized radially. The carbon fiber of a few 
millimeter length (typically between 0.5 and 2 mm) is connected to two copper blocks using silver paste as for 
previous axial thermal conductivity measurement (Mishra [6]). However, instead of placing the sample holder 
under vacuum (for axial characterization), it is immersed in deionized water, the aim being the increase of the 
radial thermal gradient inside the carbon fiber and also the decrease of the axial one.  Then as for classical 3omega 
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measurement a modulated current is applied between the two extremities of the sample that are connected to two 
differential amplifiers then to a lock-in amplifier. The interest of the use of deionized water will be detailed in the 
section 3.3 dedicated to sensitivity analysis. Next section will describe the thermal models needed to estimate kr 
from the knowledge of the amplitude of the average temperature of the carbon fiber and we will show the 
relationship between the latter and the measured voltage V3ω. 

 

 

 

 

 

 

 

Fig. 1. Carbon fiber radial thermal conductivity measurement principle using 3ω method 

 

3. Thermal models 

3.1. 1D analytical model 

This section provides an analytical 1D radial thermal model for the self-heating of carbon fiber surrounded by de-
ionized water. Fig. 2 shows the geometry that has been considered. A volumic power P due to Joule effect is 
located within the carbon fiber and the surrounding material (water) is considered as a semi –infinite medium. In 
our work P can be assumed constant since the current is prescribed and the electrical resistance of the carbon fiber 
has a very small temperature coefficient. For the other cases, Ding [12] has proposed a criterion to check if the 
hypothesis P constant can be considered. 

 

 

 

 

 

 

Fig. 2. Geometry for the 1D thermal model with a carbon fiber surrounded by de-ionized water 

Therefore, the corresponding radial heat equations for carbon fiber and deionized water can be expressed as follow: 

𝑘𝑘𝑟𝑟 �
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝑇𝑇
𝑑𝑑𝑟𝑟

 � − 𝜌𝜌𝜌𝜌
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

=  −𝑃𝑃 
(1) 

 

𝑘𝑘𝑤𝑤 �
𝜕𝜕2𝑇𝑇𝑤𝑤
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝑇𝑇𝑤𝑤
𝑑𝑑𝑟𝑟

 � −  𝜌𝜌𝑤𝑤𝜌𝜌𝑤𝑤
𝜕𝜕𝑇𝑇𝑤𝑤
𝜕𝜕𝜕𝜕

= 0 
(2) 

 
where T and Tw are the temperature inside respectively the carbon fiber and the water,  ρc is the volumetric heat 
capacity of carbon fiber, kw and ρwcw are the thermal conductivity and the volumetric heat capacity of water. 

The internal and external boundary conditions and initial conditions are: 

Carbon fiber 

I=I0 cos(ωt) Copper block 

De-ionized water 

V∼ Towards differential amplifiers and lock–in amplifier 
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⎩
⎨

⎧ at 𝑟𝑟 = 𝑅𝑅 ∶  𝑇𝑇 = 𝑇𝑇𝑤𝑤  and  𝑘𝑘𝑟𝑟
𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟
�
𝑅𝑅

= 𝑘𝑘𝑤𝑤
𝜕𝜕𝑇𝑇𝑤𝑤
𝜕𝜕𝑟𝑟

�
𝑅𝑅

 (perfect contact)

at 𝑟𝑟 = 0 ∶  𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 ;𝑎𝑎𝜕𝜕 𝑟𝑟 →  ∞ ∶  𝑇𝑇𝑤𝑤 = 0
at 𝜕𝜕 = 0 ∶  𝑇𝑇 = 𝑇𝑇𝑤𝑤 = 0 

 
(3) 

 
To solve the system of equations (1) to (3) for a steady periodic regime, one have used Fourier’s transformation 
introducing complex number j:  𝑇𝑇 =  𝑇𝑇�𝑒𝑒2𝜔𝜔𝜔𝜔𝑓𝑓 for the temperature and 𝑃𝑃 =  𝑃𝑃�𝑒𝑒2𝜔𝜔𝜔𝜔𝑓𝑓 for the volumic power. 
Therefore the partial differential equations (1) and (2) are transformed into second order differential equations with 
a source term that can be solved easily. The corresponding solution for the average temperature within the carbon 
fiber is finally: 

𝑇𝑇�� =
𝑃𝑃�𝑅𝑅2

𝛼𝛼12𝑘𝑘𝑟𝑟
�1 −

2
𝜀𝜀𝛼𝛼1𝑅𝑅

� (4) 

where: 

𝛼𝛼1 =
1 + 𝑗𝑗
𝛿𝛿1

 ,     𝛼𝛼2 =
1 + 𝑗𝑗
𝛿𝛿2

 ,     𝛿𝛿1 = �
𝑘𝑘𝑟𝑟
𝜔𝜔𝜌𝜌𝜌𝜌

 ,    𝛿𝛿2 = �
𝑘𝑘𝑊𝑊

𝜔𝜔𝜌𝜌𝑤𝑤𝜌𝜌𝑤𝑤
 

and 𝜀𝜀 =
𝑘𝑘𝑟𝑟𝛼𝛼1𝐾𝐾0(𝛼𝛼2𝑅𝑅)
𝑘𝑘𝑤𝑤𝛼𝛼2𝐾𝐾1(𝛼𝛼1𝑅𝑅)

+
𝐼𝐼0(𝛼𝛼1𝑅𝑅)
𝐼𝐼1(𝛼𝛼1𝑅𝑅)

 

 

(5) 

 

In Eq.5, the quantities 𝐼𝐼0, 𝐼𝐼1 are modified Bessel functions of first kind and 𝐾𝐾0,𝐾𝐾1 modified Bessel functions of 
second kind.  

The relationship between the measured rms value of the voltage V3ω and the amplitude  �𝑇𝑇���of the average 
temperature of the fiber 𝑇𝑇��   (Eq.4) is given by: 

𝑉𝑉3𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅0𝛼𝛼𝑒𝑒�𝑇𝑇��� (6) 

where the product 𝑅𝑅0𝛼𝛼𝑒𝑒�𝑇𝑇��� comes from the effect of the temperature on the electrical resistance RX of the carbon 
fiber (𝑅𝑅𝑋𝑋 = 𝑅𝑅0(1 + 𝛼𝛼𝑒𝑒𝑇𝑇)). The temperature coefficient αe=2.4 10-4 K-1 of the PAN/FT300B carbon fiber is more 
than 10 times smaller than the ones of metallic wires. 

 

3.2. 2D analytical model 

In fact as show on Fig.1, heat conduction might be 2D with not only radial but also with axial heat transfer within 
the carbon fiber. Therefore we have also developed a 2D axisymmetric thermal model as shown on Fig. 3 
describing axial and also radial heat transfer within the whole fiber surrounded by de-ionized water. In order to 
take into account the anisotropy of the fiber one have considered two thermal conductivity components the radial 
one kr and also the axial one kz. As previously a Joule heating with a volumic power P is within the carbon fiber 
and the deionized water is considered as a semi-infinite medium. In addition for the 2D model, a temperature (T=0) 
is prescribed on both sides at z=0 and z=2L. 

 

Fig. 3. Geometry for the 2D thermal model with a carbon fiber surrounded by de-ionized water  

The governing heat conduction equations inside the fiber and the de-ionized water have the following form: 
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𝑘𝑘𝑟𝑟 �
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝑇𝑇
𝑑𝑑𝑟𝑟

 � + 𝑘𝑘𝑧𝑧
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

−  𝜌𝜌𝜌𝜌
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

=  −𝑃𝑃 (7) 

𝑘𝑘𝑤𝑤 �
𝜕𝜕2𝑇𝑇𝑤𝑤
𝜕𝜕𝑟𝑟2

+
1
𝑟𝑟
𝜕𝜕𝑇𝑇𝑤𝑤
𝑑𝑑𝑟𝑟

 � + 𝑘𝑘𝑤𝑤
𝜕𝜕2𝑇𝑇𝑤𝑤
𝜕𝜕𝑧𝑧2

−  𝜌𝜌𝑤𝑤𝜌𝜌𝑤𝑤
𝜕𝜕𝑇𝑇𝑤𝑤
𝜕𝜕𝜕𝜕

= 0 
(8) 

 
 

where T and TW are the temperatures inside the fiber and water respectively and kz is the axial thermal conductivity 
of the fiber.  

The internal and external boundaries conditions are: 

⎩
⎪
⎨

⎪
⎧ at 𝑟𝑟 = 𝑅𝑅: 𝑇𝑇 = 𝑇𝑇𝑤𝑤 and 𝑘𝑘𝑟𝑟

𝜕𝜕𝑇𝑇
𝜕𝜕𝑟𝑟�𝑅𝑅

= 𝑘𝑘𝑤𝑤  
𝜕𝜕𝑇𝑇𝑤𝑤
𝜕𝜕𝑟𝑟 �𝑅𝑅

 (perfect contact)

at 𝑟𝑟 = 0 ∶   𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒  ; 𝑎𝑎𝜕𝜕 𝑟𝑟 =  ∞ ∶  𝑇𝑇𝑤𝑤 = 0

at 𝑧𝑧 = 0 ∶  𝑇𝑇 = 𝑇𝑇𝑤𝑤 = 0 ;𝑎𝑎𝜕𝜕 𝑧𝑧 = 𝐿𝐿 ∶  
𝜕𝜕𝑇𝑇
𝜕𝜕𝑧𝑧 =

𝜕𝜕𝑇𝑇𝑤𝑤
𝜕𝜕𝑧𝑧 = 0

 
(9) 

 

 

To solve this problem, one have used a double transformation of the temperature T (and also for Tw). First a 
complex Fourier transformation was used:  𝑇𝑇 =  𝑇𝑇�𝑒𝑒2𝜔𝜔𝜔𝜔𝑓𝑓for the temperature and 𝑃𝑃 =  𝑃𝑃�𝑒𝑒2𝜔𝜔𝜔𝜔𝑓𝑓 for the volumic 
power. Secondly we applied the following finite sine transformation defined as [14]: 

𝜃𝜃� = � 𝑇𝑇�  sin (𝛽𝛽𝑓𝑓𝑧𝑧)𝑑𝑑𝑧𝑧
𝐿𝐿

0
 

(10) 

 
The appropriate transformation is of sinus type because of the type of boundary condition (prescribed temperature) 
on both sides of z-axis [15]. 

With these two transformations, the temperature of the fiber in the transform space can be expressed as: 

𝜃𝜃� = 𝑎𝑎1𝐼𝐼0(𝛾𝛾𝑓𝑓𝑟𝑟) +
𝑃𝑃�

𝛽𝛽𝑓𝑓𝑘𝑘𝑟𝑟𝛾𝛾𝑓𝑓2
          with 

⎩
⎨

⎧ 𝛽𝛽𝑓𝑓 = �𝑛𝑛 +
1
2
�
𝜋𝜋
𝐿𝐿

  and 𝑛𝑛 = 0,1,2 …∞

𝛾𝛾𝑓𝑓2 =
𝑘𝑘𝑧𝑧
𝑘𝑘𝑟𝑟

(𝛼𝛼𝑧𝑧2 + 𝛽𝛽𝑓𝑓2) with 𝛼𝛼𝑧𝑧2 =
2𝜌𝜌𝜌𝜌𝑗𝑗𝜔𝜔
𝑘𝑘𝑧𝑧

   
  (11) 

where 𝜃𝜃� is the temperature transformed twice and 𝐼𝐼0 represents a modified Bessel function. In Eq. 11, 𝑎𝑎1 is a term 
which will be computed further using boundary conditions. 

Then after a first integration of 𝜃𝜃� over the radius r from 0 to R, one have used a quadrupole formulation [1] to 
take into account the bilayer shown in Fig. 3: 

�𝜃𝜃�̅
𝑄𝑄�
� =  �𝐴𝐴 𝐵𝐵

𝐶𝐶 𝐷𝐷�  �𝜃𝜃
�𝑅𝑅
Φ�𝑅𝑅

� 
(12) 

 
where A, B, C, D and 𝑄𝑄�  are defined as: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝐴𝐴 = 1

𝐵𝐵 =
𝐼𝐼0(𝛾𝛾𝑓𝑓𝑅𝑅)

2𝜋𝜋𝑘𝑘𝑟𝑟𝐿𝐿𝛾𝛾𝑓𝑓𝑅𝑅𝐼𝐼1(𝛾𝛾𝑓𝑓𝑅𝑅) −
1

𝜋𝜋𝐿𝐿𝑘𝑘𝑟𝑟𝑅𝑅2𝛾𝛾𝑓𝑓2
𝐶𝐶 =  𝜋𝜋𝑅𝑅2𝐿𝐿𝑘𝑘𝑟𝑟𝛾𝛾𝑓𝑓2𝛽𝛽𝑓𝑓

𝐷𝐷 =
𝐼𝐼0(𝛾𝛾𝑓𝑓𝑅𝑅)𝛾𝛾𝑓𝑓𝛽𝛽𝑓𝑓𝑅𝑅

2𝐼𝐼1(𝛾𝛾𝑓𝑓𝑅𝑅)
𝑄𝑄� =  𝜋𝜋𝑅𝑅2𝐿𝐿𝑃𝑃�

      (13) 

In Eq. 12, 𝜃𝜃�𝑅𝑅and 𝛷𝛷�𝑅𝑅 are the temperature and heat flux located at r=R in the transform space and are linked by the 
following relationship since water is considered as a semi-infinite medium [14]: 

𝜃𝜃�𝑅𝑅 = 𝑍𝑍∞𝛷𝛷�𝑅𝑅 with 𝑍𝑍∞ =
𝐾𝐾0(𝛾𝛾𝑤𝑤𝑓𝑓𝑅𝑅)

2𝜋𝜋𝑅𝑅𝐿𝐿𝑘𝑘𝑤𝑤𝛾𝛾𝑤𝑤𝑓𝑓𝐾𝐾1(𝛾𝛾𝑤𝑤𝑓𝑓𝑅𝑅) (14) 

where: 
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�
𝛾𝛾𝑤𝑤𝑓𝑓2 =  𝛼𝛼𝑤𝑤2 + 𝛽𝛽𝑓𝑓2

𝛼𝛼𝑤𝑤2 =
2𝜌𝜌𝑤𝑤𝜌𝜌𝑤𝑤𝑗𝑗𝜔𝜔

𝑘𝑘𝑤𝑤
 

(15) 

 
 

Finally, using the relationship for the inverse of the finite sine transformation which introduces the solution as a 
serie from n =0 to ∞ and by space integration along the axis of the fiber from 0 to L, one can obtain the complex 
value of the average temperature of the fiber: 

𝑇𝑇�� = �
2
𝐿𝐿2
�

θ��

𝛽𝛽𝑓𝑓

∞

𝑓𝑓=0

�   with 𝜃𝜃�̅ = �
𝐴𝐴 𝑍𝑍∞ + 𝐵𝐵
𝐶𝐶 𝑍𝑍∞ + 𝐷𝐷

�𝑄𝑄�   
(16) 

 
 

where 𝐼𝐼0, 𝐼𝐼1 are modified Bessel functions of first kind and 𝐾𝐾0,𝐾𝐾1 modified Bessel functions of second kind. 

The relationship between the measured rms value of the voltage V3ω and the amplitude  �𝑇𝑇���of the average 

temperature of the fiber 𝑇𝑇�� (Eq. 16) is similar to the one given by Eq.6. 

One should not that the 2D problem represented by Eq. 12 can be seen (see Fig.4) as an equivalent electrical 
network using the following two impedances defined by [14]: 

𝑍𝑍2 = 𝐷𝐷−𝛽𝛽𝑛𝑛
𝐶𝐶

  and 𝑍𝑍3 = 𝛽𝛽𝑛𝑛
𝐶𝐶 

 (17) 

where in the bottom line of Eq.12 the quantities C, D and 𝑄𝑄�  have been divided by βn since the determinant AD-
BC of the matrix is not equal to 1 (AD-BC=βn).  

 

 

 

 

 

 

Fig. 4. Representation of the 2D thermal model using impedances 

 

4. Comparison between analytical 1D, 2D models and a 2D numerical model 

The values of voltage V3ω predicted with the two previous 1D and 2D thermal models are now compared with a 
2D numerical model computed with finite element (COMSOL software). For this simulation, one have considered 
a modulated current of 1mA amplitude crossing a carbon fiber of 1.7mm length, 7µm diameter and of 900 Ω 
electrical resistance with a αe=2.4 10-4 K-1temperature coefficient. The thermal properties are axial thermal 
conductivity of 10.47 Wm-1K-1 and volumic heat capacity of 3.9 106 Jm-3K-1, both are coming from Mishra [6]. In 
addition a radial thermal conductivity of 0.8 Wm-1K-1 was chosen.  

𝜃𝜃�𝑅𝑅[K m] 
θ� �[K m] 

𝑄𝑄� 𝛽𝛽𝑓𝑓⁄  [W. m] 

𝑍𝑍∞ [K W−1] 

𝑍𝑍2 [K W−1] 

𝑍𝑍3 [K W−1] 

  φ�𝑅𝑅[W. m] 
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Fig 5. Voltage V3ω versus frequency for the analytical 1D and 2D models and comparison with a 2D numerical 
model computed with finite elements. 

Results in Fig. 5 shows a good agreement between the 2D analytical and 2D numerical models (less than 0.1% 
discrepancy). One can notice that the 1D analytical thermal model does not fit the 2D ones especially at low 
frequency between 1 and 100 Hz, the discrepancy is about 8% at 1 Hz. As the 1D model was used in a previous 
work [5] one has tried to estimate the bias when estimating the radial thermal conductivity using only the 1D 
thermal model. For this purpose one have simulated data (V3ω vs f) using the 2D analytical model and a value of 
radial thermal conductivity was estimated using the 1D analytical model. The estimation of kr was performed under 
MATLAB software using simplex method. The results are presented in Fig.6 for kr =1 Wm-1K-1and kz = 10 Wm-

1K-1and in Table 2 with various sets of kr and kz values. 

 

Fig. 6. Computation of the bias ekr1D on the estimated radial conductivity by using the 1D analytical model 
(simulated data using the 2D analytical model with kz =10 Wm-1K-1and kr=1 Wm-1K-1) 

 

Table 2. Bias on the estimation of kr using the 1D analytical model, data are simulated using the 2D analytical 
model and various set of kr and kz values 

kr 
Wm-1K-1 

kz 
Wm-1K-1 

kz / kr 
 

ekr1D 

% 

0.1 5 50 0.48 
0.2 10 50 1.93 
0.5 5 10 8.03 
1.0 10 10 50.32 

 

Fig. 5 shows the agreement between calculated V3ω value using 1D analytical model for the estimation of kr value 
and simulated data V3ω using the 2D analytical model. The agreement between V3ω values after the estimation 
process is correct and the bias ekr1D is very large (50.32%). Table 2 shows more values of the bias ekr1D for various 
sets of kr and kz values. For small values of kr, the bias ekr1D is quite small which is probably due to high value of 
the radial thermal gradient compared to the axial one. For higher values of kr (which will be the case in our 
experimental results shown in section 7) the bias ekr1D is large. This suggest that despite the use of water around 
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the fiber in order to increase radial heat transfer, there exists still some axial heat transfer responsible for the 
observed bias ekr1D obtained using only a 1D model. As a conclusion of this section, in order to estimate kr value, 
it is much more appropriate to use the 2D model (Eq.16) than the 1D one. 

5. Sensitivity analysis  

The measurement of the radial thermal conductivity is not easy and it is important to perform a sensitivity analysis 
which is very useful to choose the best operating conditions in order to perform parameter estimation with the 
lowest uncertainty. Sensitivity coefficients of the measured temperature T with respect to the parameter up (in our 
case kr or kz) are defined by: 

𝑋𝑋𝑢𝑢𝑝𝑝 = 𝑢𝑢𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝑢𝑢𝑝𝑝

 or  𝑋𝑋𝑢𝑢𝑝𝑝
∗ =

𝑢𝑢𝑝𝑝
𝑇𝑇𝑟𝑟𝑚𝑚𝑚𝑚

𝜕𝜕𝑇𝑇
𝜕𝜕𝑢𝑢𝑝𝑝

  with 𝑢𝑢𝑝𝑝 = 𝑘𝑘𝑟𝑟 ,𝑘𝑘𝑧𝑧 
(18) 

 
The derivative ∂T/∂up was computed using the 2D analytical model described previously and the geometry and 
thermal properties values considered at the beginning of previous section. 

Fig. 7 is very interesting since it compares the sensitivities to kr and to kz. In addition, we have added the value of 
the sensitivity to kz during axial thermal conductivity of fiber (under vaccum) as done by Mishra [6], the latter is 
indicated with the notation “with kw = 0” corresponding to an adiabatic condition. One can show that the use of 
deionized water around the carbon fiber greatly reduces the sensitivity to kz almost to 0 and increases the one to kr 
which was expected. However, the sensitivity to kr still remains modest (Xkr = 0.29 ° C) which will induce larger 
uncertainty on kr compared to the one for kz estimation under vacuum [6]. One can also notice that the sensitivity 
to kr does not depend much on the frequency within the 1 to1000 Hz range. 

 

Fig. 7. Sensitivity analysis of the 3ω voltage to the radial and axial thermal conductivities 

A question which arises is whether we can further increase the sensitivity to kr by replacing water with another 
fluid or material around the carbon fiber? Fig. 8 shows the effect of thermal conductivity of the surrounding 
material on the sensitivity coefficient of the fiber temperature with respect to kr. There is clearly a gain with a 6 
times increase of the sensitivity coefficient to kr for a 10 times increase of the thermal conductivity kw of the 
surrounding material (from 0.59 to 5.9 W.m-1.K-1). However, practically it is difficult to find a fluid or a material 
with such properties while ensuring good thermal contact with the carbon fiber. By cooling the water one could 
obtain ice with a much higher thermal conductivity (2.1 Wm-1K-1 at 0 ° C) than the one of water but the specific 
heat capacity would drop (from 4.22 kJkg-1K-1 at room temperature to 2.06 kJ kg-1K-1 at 0 ° C) which would not 
bring much gain in terms of sensitivity to kr. Indeed the relevant quantity for choosing a surrounding medium 
providing a heat sink effect is its thermal effusivity which is the square root of the kwρwcw product. Therefore we 
haven’t found yet better than de-ionized water. 
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Fig. 8. Effect of the thermal conductivity kw of the surrounding material on the sensitivity coefficient of the fiber 
temperature with respect to its radial thermal conductivity kr  

 

6. Experimental setup, samples and uncertainty analysis  

6.1 Experimental setup  

In the 3ω method, the average temperature of the sensor or of the sample itself is measured thanks to the variation 
of its electrical resistance versus temperature. However this variation is small and a specific electronic device is 
required to isolate this contribution before enhancing the signal using a lock-in amplifier (LIA). For this purpose, 
the electronic device can be a Wheatstone bridge or a circuit with differential amplifiers. The Wheatstone bridge 
works fine for sensor or sample of low electrical resistance (less than 400Ω) not so far from the input impedance 
of LIA [6]. For higher electrical resistance the use of  differential amplifiers is required which corresponds to our 
case , the electrical resistance of PAN type carbon fiber of 1.5 mm length being about 900 Ω. In our device as 
shown in Fig. 9, two differential amplifiers (AD624) are used to get the difference of voltage between the resistance 
RX of the sample and the one RV of a reference resistance (adjustable until 5kΩ). The adjustment of the latter is 
performed with a 1ω pulsation using the LIA (Ametek 7265) and then V3ω measurement which contains the 
temperature information is performed with a 3ω pulsation. 

Fig. 9. Schematic electrical setup for 3ω voltage measurement. 
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The sample holder is built using two small sections of an FR4 electronic circuit board covered with 15 µm of 
copper which are glued on a polycarbonate block (Fig. 10). The ends of the carbon fiber are held on the copper 
parts with silver paste insuring the required prescribed temperature boundary condition at z=0 and z=2L (see Eq. 
9), then the whole is immersed in deionized water. 

Fig. 10. Sample holder and zoom on the carbon fiber implementation  

The electrical resistance of the fiber is measured before and after been submerged to ensure there is no electrical 
leakage due to any contamination of the deionized water. Table. 4 presents the geometric and electrical 
characteristics of the three carbon fibers used for performing the experiments. These values are presented as a 
range in order to perform the uncertainty analysis on kr estimation (see next section). 

Table 4. Characteristics of the PAN type carbon fibers FT300B used for kr measurements 

 

 

 

The V3ω voltage measurements are carried out over a wide frequency range (1 to 800 Hz) with approximately 42 
frequency values with moreover a few higher frequencies (around 5 kHz) to obtain the asymptotic values.  

6.2. Uncertainty analysis 

There are many sources of uncertainty when measuring kr. One can cite the quantities such as length, diameter of 
fibers, electric current and voltage as well as the thermal parameters assumed to be known kz, ρc… The principle 
of calculating the overall uncertainty on the estimated radial thermal conductivity kr is issued from previous 
reference books dealing with parameter estimation [16, 17]. The absolute uncertainties 1.96 σkr on the estimated 
kr with 95% confidence bands comes from the computation of the matrix of variance–covariance Sfinal at the final 
iteration as proposed by Milosevic [18] and defined by: 

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 = [𝑋𝑋𝑇𝑇𝑊𝑊𝑋𝑋]−1 with 𝑊𝑊 = �𝜎𝜎𝑉𝑉3𝜔𝜔2 + ��𝜎𝜎𝑟𝑟𝑃𝑃

𝜕𝜕𝑉𝑉3𝜔𝜔
𝜕𝜕𝑚𝑚𝑃𝑃

�
2

𝑃𝑃

�
−1

  
(19) 

 
where X is the sensitivity coefficient matrix, W is the variance covariance matrix, σV3ω is the standard deviation  
of the measured voltage V3ω, 𝜎𝜎𝑟𝑟𝑃𝑃 is the standard deviation  of the known parameters mp. The values of the standard 
deviation σmp are found from the relative error emp on the known parameters listed in Table 5 (emp=1.96 σmp/mp). 

Table 5.  Known parameters and their relative uncertainties used for uncertainty calculation over 𝑘𝑘𝑟𝑟  

Parameters mp Relative error emp/ % 
Current I0 0.1 

Electrical resistivity R0 0.2 
Temp. coeff. of resistance  αe 3 
Length of the carbon fiber L 9 
Radius of the carbon fiber R 13 

Axial thermal conductivity of the carbon fiber kz 8.1 
Volumic heat capacity of the carbon fiber ρc 4.9 

Carbon fiber  Diameter /µm Length/mm Electr. resistance R0 / Ω 
Sample 1 6.39-8.52 1.68-1.71 1043.2 
Sample 2 7.66-9.51 1.73-1.74 867.6 
Sample 3 6.33-8.59 0.74 494.8 
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Finally, the typically value of the error for the estimated value of radial thermal conductivity is 24%. This error is 
higher than the one obtained for the axial thermal conductivity (about 8.1% [6]) because heat transfer is studied 
along a much shorter distance which is measured with lower accuracy. 

 

7. Experimental results 

The estimation of the radial thermal conductivity was carried out using the 2D analytical thermal model validated 
previously. The estimation procedure has consisted in minimizing the sum of square of the difference between 
computed and measured voltage V3ω and this using simplex method. The value of kz and ρc for the studied fiber 
were considered known (coming from a previous work [6]).  

Fig. 11a shows a good agreement between the measured and calculated values of the voltage V3ω after the 
estimation of the radial thermal conductivity kr. To improve the estimation, we have in fact considered from an 
experimental point of view the differences between measured voltages and their asymptotic value obtained at high 
frequencies around 5 kHz, the asymptotic value should in theory be zero. Indeed, it was found that from one test 
to another this asymptotic value was not always equal to zero, indicating the presence of a slight electronic "offset". 

Fig. 11b shows the residuals between measured and computed V3w values after the estimation of kr. It appears that 
the maximum value of the residuals is about 0.06 mV for a maximum voltage of 2.3 mV which in relative 
magnitude gives residuals smaller than 2.6% which remains low. 

 

(a) 

 

(b) 

Fig 11. (a) Measured and computed V3ω voltages after the estimation of the radial thermal conductivity 
(sample#1, FT300B carbon fiber) (b) V3ω residuals  

 

Table 6 shows the results for three different PAN / FT300B type carbon fibers with similar geometric 
characteristics. The estimated values of the radial thermal conductivity ranges from 0.4 to 0.8 Wm-1K-1, they are 
more than 10 times lower than the axial value equal to 10.5 Wm-1K-1 of the same batch of fiber [6], this shows the 
highly anisotropic structure of such PAN type carbon fibers. These results are in agreement with discussion in 
paper from Hind [19] where a thermal conductivity ratio from 5 to 10 is mentioned for PAN type carbon fibers. 
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Table 6. Measured radial thermal conductivity kr for a PAN type carbon fiber FT300B  

Radial thermal 
conductivity Sample 1 Sample 2 Sample 3 

kr , Wm-1K-1 0.549 0.435/0.652* 0.801 
* Two measurements have been performed on the same carbon fiber 

 

Effect of thermal contact resistance and of the convection in water 

The numerical and analytical models used above works under two strong hypotheses: 1. perfect contact between 
carbon fiber and electrode copper, 2. negligible convection losses. The first hypothesis is justified by the fact that 
the heat exchanges would occur mainly in the radial direction of the fiber thanks to the presence of deionized 
water, then the heat flow towards the extremities of the fiber decreases strongly. While the second hypothesis is 
supported by the argument that the heat generated is not constant, it oscillates according to the frequency at which 
the system is exposed, these oscillations do not allow the medium to heat up constantly, so that its temperature 
rises are drastically reduced, thus preventing convection in the water. In order to justify those hypothesis, a 
numerical study is dedicated to the verification of those hypothesis. 

The value of the thermal contact resistance between the copper block / carbon fiber connection (fiber type: PAN 
FT300B) was measured in a previous investigation giving a value of 8.83 10-6 m2 K W-1 (Mishra et al. [6]). This 
value was taken into account in a numerical model with the aim of estimating the influence of this thermal 
resistance on the final value of the radial thermal conductivity. The induced bias on the radial thermal conductivity 
was finally about of 6.4% with is less that the relative uncertainty on kr measurement.  

Then, two studies have been carried out with the aim of estimating the influence of convection under steady state 
conditions and then subject to harmonic heating. 

For this purpose, we have performed finite element calculations using Comsol software. Two different types of 
simulations were carried out in each study, the first under the influence of (only) conduction in water and the 
second subject to the convective phenomenon in water. The conduction was performed using the “Heat transfer in 
solids” module of Comsol and the convection using the “Conjugate heat transfer fluid-solid” module which allows 
the interaction between the energy equation and the Navier-Stokes equations.  The harmonic and convective study 
was performed using transient regime and very small time steps, each time period being discretized with 10 time 
steps. 

As a first step, the steady state study showed a difference in the mean temperature of the carbon fiber. With 
convection inside the water, this mean temperature is about 1.46% lower than the one obtained with only 
conduction (see Table 7 below). As in section 4, a bias on the V3ω voltage with a few percentage might induce a 
substantial bias in the estimated radial thermal conductivity. Thus we have performed the harmonic study which 
is closer to our experimental conditions for kr measurement. As shown in Table 7 below, the discrepancy between 
the average temperature of the fiber between conduction and convection in water is much smaller typically less 
than 0.23% for a frequency higher than 1Hz.  At this level the induced bias on the kr measurement is small. Indeed, 
by changing the average temperature of the carbon fiber about 0.23% we have obtained a kr variation about 4% 
which is smaller than the computed relative uncertainty of kr measurement (24% see section 6.2). In addition this 
0.23% change of temperature which would involve a 0.23% change of the V3ω voltage is not detectable with the 
lock in amplifier as for voltage about 1mV the accuracy is less than 0.3% as mentioned in the datasheet of our 
lock-in Amplifier [20]). 
 

Table 7 Average temperature of the carbon fiber with a) only conduction and b) with convection in water. 

f  
Hz 

𝑇𝑇�𝐶𝐶𝐶𝐶𝑓𝑓𝐶𝐶𝑒𝑒𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝑓𝑓 
K 

𝑇𝑇�𝐶𝐶𝐶𝐶𝑓𝑓𝐶𝐶𝑢𝑢𝐶𝐶𝑓𝑓𝑓𝑓𝐶𝐶𝑓𝑓 
K 

e% 
 

Steady state 2.17023 2.20244 1.46 
1 3.73542 3.74401 0.23 
5 2.99306 2.99927 0.21 

10 2.66869 2.67273 0.15 
with   𝑒𝑒 = 100 ∗ 𝑇𝑇

�𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−𝑇𝑇�𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
𝑇𝑇𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛
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Also in Table 7 we can see that the convective effect leads always to smaller temperatures as expected. In addition, 
as the frequency increases, the bias e on average temperatures decays bringing the mean temperature values of the 
fiber subject to conduction and convection closer to each other.  

One have also computed the value of Rayleigh number for the steady state case. The Rayleigh number is less 
than 1 1 which is much lower that the threshold value of 1100 under which we can neglect convective effect [21] 

Conclusions 

An analytical 2D thermal model in steady periodic regime has been developed and validated in order to estimate 
the radial thermal conductivity of carbon fiber. It appeared that the use of a 1D thermal model as mentioned in the 
work of Liang’s work [5] could lead to bias on kr value of the order of 50%. In addition, the presence of water 
around the carbon fiber has been shown to induce much higher sensitivity of the measured V3ω voltage with respect 
to the radial conductivity kr while decreasing the one with respect to the axial conductivity kz. 

Three different samples of PAN type carbon fibers (FT300B) with a diameter between 7.4 and 8.6 µm were 
characterized and the estimated radial thermal conductivity values were found between 0.43 and 0.80 Wm-1K-1. 

The induced bias on the radial thermal conductivity produced by the thermal contact resistance between the copper 
block / carbon fiber connection was finally about of 6.4% with is less that the relative uncertainty on kr 
measurement. 

Under steady state conditions, convection could generate some variations in the mean temperature of the carbon 
fiber of around 1.4%. however, a have performed harmonic study which is closer to our experimental conditions 
for kr measurement shows a discrepancy between the average temperature of the fiber between conduction and 
convection in water is much smaller typically less than 0.23% which would involve a 0.23% change of the V3ω 
voltage for a frequency higher than 1Hz, a value thath is not detectable with the lock in amplifier. 

Knowing the axial and radial of thermal conductivities of anisotropic carbon fibers of PAN type, future work will 
concern the measurement of the thermal contact resistance (TCR) between two carbon fibers. This would allow to 
provide all small scale information in order to predict or calculate the effective conductivity of polymer matrix 
composites reinforced with carbon fiber, but the measurement of fiber / fiber TCR is another challenge. 
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