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To cite this version:
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Summary: We aim at modeling the mechanical behavior of a nonlinear viscoelastic hetero-
geneous material having an “inclusions-matrix” type microstructure. The different phases of
this material may experience differential shrinkages or swellings (like thermal expansion) and
we want to model the internal stresses induced by this loading. With homogenization, these
internal stresses are correctly estimated when the behavior of the constituents is linear elastic
or even aging linear viscoelastic. A modified secant formulation has been recently introduced
to deal with nonlinear viscoelastic behaviour. The general formulation can handle stress-free
strain. For a two-phase particulate composite, closed-form expressions of the time evolutions
of the effective behaviour as well as phase-averaged fields have also been reported. We propose
here to extend these closed-form expressions to three-phase particulate composites. Results of
this model are compared to full-fields computations of representative volume elements. The
effect of the third phase (inclusions) is particularly studied.

1. INTRODUCTION

This work is devoted to the modeling of composites made of a matrix reinforced by par-
ticles. When the phases have an elasto-viscoplastic behavior, [1] proposed a modified secant
approach. This approach conjugates the advantages of the internal variable representation of
linear viscoelasticity [2] with the linearization procedure developed initially by [3] and incor-
porating during the linearization process the time evolution of the fields fluctuations. It yields
estimates which are are consistent with the one given for non aging linear viscoelastic com-
posites (correspondence principle) while coinciding with the upper bound [4] in the purely
viscoplastic regime. For two-phases isotropic particulate composites, the time evolution of the
mechanical answer of the composite (overall and phase-averaged responses) has been shown to
be given by a set of first-order differential equations whose coefficients are explicitly given as a
function of the microstructural parameters [1].

Here the effect of a second family of inclusions on the mechanical answer is investigated.
These additional inclusions will also display an elasto-viscoplastic isotropic behaviour but their
mechanical properties may differ strongly from the two other phases.
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This extension to a three-phase model is presented in section 2.. The model predictions are
then compared to full-field computations by considering a composite material made of a ductile
matrix partially reinforced by rigid inclusions in section 3..

2. A modified secant model for three-phase isotropic particulate composites

Each phase of the three-phase composite obey an isotropic behavior: µ(r)
e and κ(r)e denote

the shear and bulk elastic moduli of each phase (r). The viscous strain rate ėv is given by :

ėv(x, t) =
∂U

(r)
v

∂s
(1)

where the dissipation potential U (r)
v of a given phase (r) is a convex function of the equivalent

stress σeq defined as usually by σeq =
√
3 (s : s)/2 with s = σ − σm δ the deviatoric stress, δ

the identity second-order tensor and σm = tr(σ)/3 the hydrostatic part of the stress.
In addition, the shape and the spatial distribution of the phases are also isotropic. In that

particular situation, if we adopt the modified secant linearization procedure, we show in the
following subsections that the overall elasto-viscoplastic behavior of the composite as well as
the time evolution of the phase-averaged strain and stress can be easily derived from the general
theory [1].

Hereafter, the strain and stress fields are nil for any time (t) lower or equal to the initial
loading time t = 0 while the loading time functions consisting of the overall stress (or the
overall strain) are continuous functions of time (no time discontinuities).

2.1 Three-phase isotropic composites, case of a non aging linear viscoelastic behavior

The Laplace-Carson transform (the correspondence principle [5]) can be used to solve this
problem1. This method leads to a fictitious elastic problem in the Laplace-Carson domain, the
symbolic elastic compliance of each phase (r) being isotropic.

Therefore, m(r)∗
d (p) =

1

2µ(r)∗(p)
=

1

2µ
(r)
e

+
1

p

1

2µ
(r)
v

and m(r)∗
m (p) =

1

3κ
(r)
e

denote respectively

the Laplace-Carson transforms of the shear and bulk components of the creep function of a given
phase (r). The usual homogenization methods can then be applied to estimate the Laplace-
Carson transform of the effective creep or relaxation functions while the time-responses are
deduced by the inversion of the Laplace-Carson transform.

2.1.1 Effective behavior

The overall behavior of the considered composites being isotropic, it depends also on only
two scalar functions of time, the bulk and shear creep functions whose Laplace-Carson trans-
form is expressed as the algebraic inverse of the bulk and shear components of the relaxation

1The Laplace-Carson transform of any function of time f(t) with respect to the parameter p is denoted by f∗(p)
and is defined by : f∗ (p) = p

∫ +∞
0

f (u) e−pu du
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functions, namely
(
m̃∗
d(p) =

1

2 µ̃∗(p)
, m̃∗

m(p) =
1

3 κ̃∗(p)

)
. In the following, (µ̃e, κ̃e) and µ̃v

respectively denote the effective moduli of the composites in the purely elastic (p → ∞) and
purely viscous (p ≈ 0) regimes.

As demonstrated in [1], the Laplace-Carson transforms of the effective shear m̃∗
d(p) and

bulk m̃∗
m(p) creep functions read (at least approximately) as Dirichlet series expansion :

m̃∗
d(p) =

1

2 µ̃e
+

1

p

1

2 µ̃v
+

i=Nd
c∑

i=1

m̃d(i)
1

p+ 1
τ̃d(i)

and m̃∗
m(p) =

1

3 κ̃e
+

i=Nm
c∑

i=1

m̃m(i)
1

p+ 1
τ̃m(i)

.

(2)
As a consequence, the macroscopic strain - stress relation can be expressed (at least approx-

imately) as the following internal variables formulation:

ė(t) =
1

2 µ̃e
ṡ(t) +

1

2 µ̃v
s(t) +

i=Nd
c∑

i=1

˙̃αd(i)(t) and ε̇m(t) =
1

3 κ̃e
σ̇m(t) +

i=Nm
c∑

i=1

˙̃αm(i)(t) (3)

where the Nd
c and Nm

c internal variables related to the shear and bulk overall behavior obey :
i = 1..Nd

c : ˙̃αd(i)(t) +
1

τ̃d(i)
α̃d(i)(t) = m̃d(i) s(t), α̃d(i)(0) = 0

i = 1..Nm
c : ˙̃αm(i)(t) +

1

τ̃m(i)

α̃m(i)(t) = m̃m(i) σm(t), α̃m(i)(0) = 0.
(4)

Relations (3) and (4) define entirely the effective behavior of the considered three-phase com-
posite. Of course, the effective elastic and viscous properties as well as the number of internal
variables will depend on the chosen homogenization model.

2.1.2 Time evolutions of the phase-averaged stresses

In [1], we took advantage of particular relations related to two-phases composites to derive
direct expressions of the Laplace-Carson transform of the stress localization tensors. Here, the
general expression (14)-left in [1] must be used but can still be considerably simplified given
that the composites under considerations are isotropic. Indeed, the Laplace-Carson transform of
the averages per phase of the stress localization tensor displays two independent components,
namely its shear and bulk components as given by (at least approximately) :

b̃(r)∗m (p) = b̃
(r)
m(e) +

i=Nm
c∑

i=1

b̃
(r)
m(i)

1
τ̃m(i)

p+ 1
τ̃m(i)

and b̃
(r)∗
d (p) = b̃

(r)
d(e) +

i=Nd
c∑

i=1

b̃
(r)
d(i)

1
τ̃d(i)

p+ 1
τ̃d(i)

(5)

In these last relations, the collocation times appearing in the two Prony series are the ones of the
shear and bulk creep functions in (4). This choice is indeed possible if these last relations are

3
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approximations but is also relevant for the particular Hashin-Shtrikman estimates considered
below.

Foremost, notice that the relation (13) in [1] can be considerably simplified in that isotropic
case. Therefore, the deviatoric phase-averaged stresses for a given phase (r) reads :

s(r)(t) = b̃
(r)
d(e) s(t) +

i=Nd
c∑

i=1

β̃
(r)
d(i)(t) (6)

with i = 1..Nd
c :

˙̃
β

(r)

d(i)(t) +
1

τ̃d(i)
β̃

(r)
d(i)(t) =

b̃
(r)
d(i)

τ̃d(i)
s(t), β̃

(r)
d(i)(0) = 0

the time evolution of the deviatoric part of the macroscopic stress s(t) being prescribed. As
explained in [1], if the macroscopic strain is prescribed, the macroscopic stress will be derived
from the macroscopic constitutive law - relations (3) and (4).
Concerning the hydrostatic component of the phase-averaged stresses, the time evolution reads :

σ(r)
m (t) = b̃

(r)
m(e) σm(t) +

i=Nm
c∑

i=1

β̃
(r)
m(i)(t) (7)

with i = 1..Nm
c :

˙̃
β
(r)

m(i)(t) +
1

τ̃m(i)

β̃
(r)
m(i)(t) =

b̃
(r)
m(i)

τ̃m(i)

σm(t), β̃
(r)
m(i)(0) = 0

Relations (6) and (7) define explicitly the time evolution of the phase-averaged stresses for a
three-phase linear viscoelastic composite, whatever the choice of the homogenization theory.

2.1.3 Hashin-Shtrikman estimates

If the Hashin-Shtrikman model is used, as already remarked in [2], the Laplace-Carson
transforms of the shear and bulk components of the effective properties – described in Ap-
pendix A – are rational function of the variable p. As a result, the Laplace-Carson of these
effective properties as well as the ones of the localization tensors express exactly as a Dirichlet
series expansion. In other words, the relations (3) and (4) define exactly the effective behavior
of the composite. For the considered 3-phases composite, the number of internal variables re-
lated to the time evolution of the shear and bulk creep functions equals Nd

c = 4 and Nm
c = 2,

respectively. The corresponding algebraic developments extend the ones given in [1] related to
two-phases isotropic composites as well as the ones obtained by [6] and related to homogeneous
elastic 3-phases viscoelastic composites.

The Laplace-Carson transforms of the effective shear and bulk creep functions can be writ-
ten as a function of the shear and bulk components of the Laplace-Carson transform of the
averages per phase of the stress localization tensor:

m̃∗
m(p) =

1

3

(
1

κ
(1)
e

+
r=3∑
r=2

c(r) b̃(r)∗m (p)

(
1

κ
(r)
e

− 1

κ
(1)
e

))
(8)

4
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m̃∗
d(p) =

1

2

(
1

µ(1)∗(p)
+

r=3∑
r=2

c(r) b̃
(r)∗
d (p)

(
1

µ(r)∗(p)
− 1

µ(1)∗(p)

))
(9)

where c(r) denotes the volume fraction of each phase (r),
r=3∑
r=1

c(r) = 1.

The elastic part of the effective shear and bulk and the viscous part of the effective shear can
then be written :

µ̃e =

(
1

µ
(1)
e

+
r=3∑
r=2

c(r) b̃
(r)
d(e)

(
1

µ
(r)
e

− 1

µ
(1)
e

))−1

, κ̃e =

(
1

κ
(1)
e

+
r=3∑
r=2

c(r) b̃
(r)
m(e)

(
1

κ
(r)
e

− 1

κ
(1)
e

))−1

µ̃v =

(
1

µ
(1)
v

+
r=3∑
r=2

c(r)

(
b̃
(r)
d(e) +

i=4∑
i=1

b̃
(r)
d(i)

)(
1

µ
(r)
v

− 1

µ
(1)
v

))−1

.

As we have a relation between stress localization tensor in the different phases, namely :
r=3∑
r=1

c(r) b̃(r)∗m (p) = 1 and
r=3∑
r=1

c(r) b̃
(r)∗
d (p) = 1,

we only need to calculate the stress localization tensor in the two inclusion phases. Also, be-
cause the two inclusion phases are interchangeable, we can easily deduce the expression of b̃(3)∗m

from b̃
(2)∗
m and b̃(3)∗d from b̃

(2)∗
d by replacing phase (2) with (3) and phase (3) with (2).

In what follows, the 31 scalar coefficients:(
τ̃m(i)

)
i=1,2

,
(
τ̃d(i)

)
i=1..4

,

(
b̃
(r)
m(e),

(
b̃
(r)
m(i)

)
i=1,2

)
r=2,3

,
(
b̃
(r)
d(e),

(
b̃
(r)
d(i)

)
i=1..4

)
r=2,3

,(
m̃m(i)

)
i=1,2

,
(
m̃d(i)

)
i=1..4

, µ̃e, κ̃e, µ̃v

are given as a function of the phase volume fractions and their elastic and viscous properties.

The hydrostatic part of the stress localization tensor in the inclusion phases yields (more
details can be found in Appendix A of [7]) :

b̃(2)∗m (p) = b̃
(2)
m(e)

i=2∏
i=1

(
p+

1

τ
(2)
m(i)

)
i=2∏
i=1

(
p+

1

τ̃m(i)

) (10)

Introducing κe the volume average of the elastic bulks and κ̂e as :

κe =
r=3∑
r=1

c(r)κ(r)e , κ̂e =

√
κ
(1)
e κ

(2)
e (c(1) + c(2)) + κ

(1)
e κ

(3)
e (c(1) + c(3)) + κ

(2)
e κ

(3)
e (c(2) + c(3)),

5
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the elastic part b̃(2)m(e) and the numerator roots are given as :

b̃
(2)
m(e) =

κ
(2)
e (4µ

(1)
e + 3κ

(1)
e ) (4µ

(1)
e + 3κ

(3)
e )

16
(
µ
(1)
e

)2
κe + 12µ

(1)
e (κ̂e)

2 + 9κ
(1)
e κ

(2)
e κ

(3)
e

τ
(2)
m(1) = τ (1)

(
1 +

4µ
(1)
e

3κ
(1)
e

)
, τ

(2)
m(2) = τ (1)

(
1 +

4µ
(1)
e

3κ
(3)
e

)
with τ (1) =

µ
(1)
v

µ
(1)
e

while the two relaxation times are deduced from the two real roots
(
−1/̃τm(i)

)
i=1,2

of the quadratic
polynomial : (

µ(1)
v

)2 (
16
(
µ(1)
e

)2
κe + 12µ(1)

e (κ̂e)
2 + 9κ(1)e κ(2)e κ(3)e

)
p2

+µ(1)
v µ(1)

e

(
12µ(1)

e (κ̂e)
2 + 18κ(1)e κ(2)e κ(3)e

)
p

+9
(
µ(1)
e

)2
κ(1)e κ(2)e κ(3)e = 0

(11)

Decomposing the rational fraction b̃(2)∗m (p) in simple poles as in (5) we can then deduce the coef-
ficients

(
b̃
(2)
m(i)

)
i=1,2

. Injecting b̃(2)∗m and b̃(3)∗m in (8), we obtain by identification with equation (2)

the expression of the
(
m̃m(i)

)
i=1,2

:

i = 1 . . . 2 : m̃m(i) =
1

3 τ̃m(i)

r=3∑
r=2

c(r)b̃
(r)
m(i)

(
1

κ
(r)
e

− 1

κ
(1)
e

)
The deviatoric part of the stress localization tensor for the phase (2) can be written as (more

details can be found in Appendix A of [7]) :

b̃
(2)∗
d (p) = b̃

(2)
d(e)

i=4∏
i=1

(
p+

1

τ
(2)
d(i)

)
i=4∏
i=1

(
p+

1

τ̃d(i)

) (12)

where the elastic part b̃(2)d(e) and two numerator roots
(
τ
(2)
d(i)

)
i=1,2

read :

b̃
(2)
d(e) =

5µ
(2)
e (4µ

(1)
e + 3κ

(1)
e )
(
µ
(1)
e (8µ

(1)
e + 12µ

(3)
e ) + κ

(1)
e (9µ

(1)
e + 6µ

(3)
e )
)

denom(̃b
(2)
d(e))

,

denom(̃b
(2)
d(e)) = 6µ(2)

e µ(3)
e (2µ(1)

e + κ(1)e )((20− 8 c(1))µ(1)
e + (15− 9 c(1))κ(1)e )

+ µ(1)
e (8µ(1)

e + 9κ(1)e )(6 c(1)(2µ(1)
e + κ(1)e )(µ(2)

e + µ(3)
e )

+ (20µ(1)
e + 15κ(1)e )(c(2)µ(2)

e + c(3)µ(3)
e ) + c(1)µ(1)

e (8µ(1)
e + 9κ(1)e )),

6
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τ
(2)
d(1) = τ (1)

(
1 +

4µ
(1)
e

3κ
(1)
e

)
, τ

(2)
d(2) = τ (1) with τ (1) =

µ
(1)
v

µ
(1)
e

,

while
(
−1/τ (2)

d(i)

)
i=3,4

are the two real roots of the quadratic polynomial :(
µ(1)
v

)2
µ(3)
v

[
(8µ(1)

e + 9κ(1)e )µ(1)
e + (12µ(1)

e + 6κ(1)e )µ(3)
e

]
p2

+µ(1)
v µ(1)

e

[
9µ(1)

e κ(1)e µ(3)
v +

(
(8µ(1)

e + 9κ(1)e )µ(1)
v + 12 (µ(1)

e + κ(1)e )µ(3)
v

)
µ(3)
e

]
p

+κ(1)e
(
µ(1)
e

)2
µ(3)
e

(
9µ(1)

v + 6µ(3)
v

)
= 0.

The four relaxation times are deduced from the four real roots
(
−1/̃τd(i)

)
i=1..4

of a quartic poly-
nomial which is not given here because of its complexity but which can be given on demand.
Decomposing the rational fraction b̃(2)∗d (p) in simple poles as in (5) we can then deduce the

coefficients
(
b̃
(2)
d(i)

)
i=1..4

.

Injecting b̃(2)∗d and b̃(3)∗d in (9), we obtain by identification with equation (2) the expression of
the
(
m̃d(i)

)
i=1..4

:

i = 1 . . . 4 : m̃d(i) =
1

2

r=3∑
r=2

c(r)b̃
(r)
d(i)

(
1

τ̃d(i)

(
1

µ
(r)
e

− 1

µ
(1)
e

)
−
(

1

µ
(r)
v

− 1

µ
(1)
v

))
.

2.2 Three-phase isotropic composites, case of a nonlinear viscoelastic behavior

For a nonlinear behavior, we adopt a secant linearization procedure in the three phases, the
linearized behavior is defined by the shear modulus of the matrix and the inclusion phases:

1

µ
(1)
v (t)

=
3

σ
(1)
eq (t)

∂U
(1)
v

∂σeq
(t, σ

(1)
eq (t)) and r = 2, 3 :

1

µ
(r)
v (t)

=
3

σ(r)
eq (t)

∂U
(r)
v

∂σeq
(t, σ(r)

eq (t)).

(13)
It’s emphasized that the shear modulus of the matrix phase is computed for the second-order
stress moment over this phase. Additionally, as the dissipation potential depends only on the
equivalent stress in the considered isotropic situation, only the (ijij) trace of this second or-
der moment is needed to calculate the shear modulus in the matrix. As the Hashin-Shtrikman
model is used, the stress in the inclusion phases is homogeneous (r = 2, 3 : σ

(r)
eq (t) = σ(r)

eq (t)).
Therefore, the shear modulus of the inclusion phases can simply be computed for their aver-
aged stresses. This property attached to Hashin-Shtrikman estimates have been used by [1]
to compute the second-order stress moment in the matrix phase for two-phase incompress-
ible Maxwellian composites by assuming that the hydrostatic stress field fluctuations can be
neglected in the matrix. This former result can be simply extended when two families of inclu-
sions are under consideration. Indeed, the scalar quantity S(1) related to the second-order stress
moment

S(1)(t) = 〈s(x , t) : s(x , t)〉(1) = 2

3

(
σ

(1)
eq (t)

)2
(14)

7
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is solution of the following first-order time differential equation :

1

4µ
(1)
e

Ṡ(1)(t) +
1

2µ
(1)
v

S(1)(t) =M(t), (15)

where the right-hand member M(t) is the following scalar time function :

M(t) =
1

c(1)

(
ε̇(t) : σ(t)−

r=3∑
r=2

c(r)
( 1

2µ
(r)
e

ṡ
(r)
(t) : s(r)(t) +

1

2µ
(r)
v

s(r)(t) : s(r)(t)
)

−
r=3∑
r=1

c(r)
( 1

κ
(r)
e

σ̇
(r)

m (t)σ(r)
m (t)

))
. (16)

2.3 Numerical implementation

The loading is defined by the time evolution of the macroscopic stress σ(t) on the interval
of time [0;T ] . At t = 0, this time function is nil. As a result, the mechanical fields as well as
the three unknown time functions

(
σ
(1)
eq (t), s

(2)(t), s(3)(t)
)

are also nil at t = 0. This system
of three nonlinear differential equations can be solved by classical methods like the Euler-
implicit scheme. The TFEL/MFRONT software (http://tfel.sourceforge.net/) was used for this
integration.

3. RESULTS

The model proposed in the previous section is now applied to three-phase particulate com-
posites with a moderate volume fraction of inclusions (≤ 30%), whose microstructures can be
idealized by the Hashin-Shtrikman model.

3.1 Material data

As [1] and [8], we consider a rate-dependent matrix reinforced by elastic inclusions. The
dissipation potentials of the matrix is supposed to be a power-law:

U (1)
v (s) =

ė
(1)
0 σ

(1)
0

n(1) + 1

(
[σeq − σ(1)

Y ]+

σ
(1)
0

)n(1)+1

(17)

where [x]+ denotes the positive part of the scalar x while ė(1)0 , σ
(1)
0 and n(1) > 1 are material

coefficients which characterize the intensity of the creep rate. But with this new contribution,
we take in consideration an additional phase. Due to the fabrication process or the aging of
the composites, the elastic moduli of this third phase are significantly lower as compared to
the ones of the reinforcements. These inclusions are called hereafter defective inclusions. The
total volume fraction of inclusions (reinforcements and defective inclusions) equals 17% but we
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consider different configurations ranging from a perfect fabrication process (no defective inclu-
sions, 17% of reinforcements) to a deficient one where all the reinforcements display defective
elastic properties (no reinforcements, 17% of the defective inclusions). The predictions of the
three-phase approach is therefore investigated when the reinforcements coexists with defective
inclusions in the composite.

We are considering two cases with two distinct behaviors, a linear viscoelastic one with
material data reported on table 1 as well as an elasto-viscoplastic with material data reported
on table 2. In both cases, the behavior of the third phase (index (3)) is purely elastic with
elastic moduli four times lower as compared to the ones of the reinforcements (index (2)). The
particles (elastic reinforcements and defective inclusions) have a spherical shape with the same
radius and are distributed isotropically.

c(2) + c(3) µ
(1)
e κ

(1)
e µ

(2)
e /µ(1)e = κ

(2)
e /κ(1)e

µ
(3)
e /µ(1)e = κ

(3)
e /κ(1)e ė

(1)
0 σ

(1)
Y n(1)

0.17 3 GPa 10 GPa 2 0.5 1 s−1 0 1
Table 1. Data used for linear viscoelastic simulations.

c(2) + c(3) µ
(1)
e κ

(1)
e µ

(2)
e /µ(1)e = κ

(2)
e /κ(1)e

µ
(3)
e /µ(1)e = κ

(3)
e /κ(1)e ė

(1)
0 σ

(1)
Y = σ

(1)
0 n(1)

0.17 3 GPa 10 GPa 2 0.5 1 s−1 100 MPa 10/3
Table 2. Data used for elasto-viscoplastic simulations.

This 3-phases composite is submitted to the following strain-controlled isochoric loading:

ε = ε33(t)
(
− 1

2
e1 ⊗ e1 −

1

2
e2 ⊗ e2 + e3 ⊗ e3

)
As explained above, the time t = 0 is chosen such that for t < 0 the outer boundary of the RVE
is stress free.

3.2 Full-field computations

Full-field computations with periodic boundary conditions are used to assess the model. The
RVE is a cubic domain which is generated using the random sequential addition (or adsorption,
RSA) algorithm [9]. With this method, RVEs have been generated with a volume fraction of
particles (elastic reinforcements and defective inclusions) equals to 17%.

Moreover, three realizations of this microstructure were generated in order to ensure that the
dispersion of the simulated responses (macroscopic behavior, first and second order moments
of the mechanical fields) is less than 0.5%. The computational method used for this analysis is
based on fast Fourier transforms, originally proposed by [10]. Next simulated results are weakly
dependent on the spatial resolution: when the number of voxels are increased from 643 to 5123,
the relative deviations between the simulated responses never exceed 1%. The results presented
in this paper are obtained with 2563 voxels which is a good compromise between computation
times and accuracy.
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3.3 Results

For a nil volume fraction of defective inclusions, as the inclusions are purely elastic with
elastic moduli higher than the one of the matrix, it acts as reinforcements such that the effective
response displays higher elastic properties as well as a higher yield stress when compared to
the ones of the matrix. Conversely, substituting reinforcements by defective inclusions will
decrease the overall answer of the composite.

We have reported on figures 1.a and 1.b, the overall strain - overall stress response at a
given speed load (the prescribed strain rates equals 12 10−3) for a linear viscoelastic and an
elasto-viscoplastic composite behavior. For these two figures, the volume fraction of particle
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100
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3
3

Full-field computation
Modified Secant

a. Linear elastoplastic case

0 1 2 3 4

·10−2

0

20

40

60
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porosity=5%porosity=10%porosity=17%

ε̄33

σ̄
3
3

Full-field computation
Modified Secant

b. Elasto-viscoplastic case
Figure 1. Macroscopic stress evolution with the prescribed macroscopic strain as predicted by
the modified secant model and the full-field calculations as a function of defective inclusions.

Material data are respectively given in table 1 and 2.

is kept constant (17%) but the fraction of defective inclusions varies from 0 (reinforcements
only) to 17% (no more reinforcements). For a nil volume fraction of defective inclusions, the
results agree perfectly well with the former results as given initially by [8] (FFT results) and [1]
(the proposed model for a two-phase composite). As expected and for a linear or a nonlinear
behavior, FFT simulations show that increasing the volume fraction of defective inclusions
decreases the strain-stress response.

In addition and as expected, the predictions of the model agree remarkably well with the
reference results when considering a linear viscoelastic behavior. For an elasto-viscoplastic
behavior, the model predicts correctly the decrease of the strain-stress response as a function
of the volume fraction of the defective inclusions. However, small deviations inherent to the
chosen linearization procedure remains, especially for the full reinforcements case.
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4. CONCLUSIONS

With this new contribution, we have extended the theoretical developments of [1] to the case
of a dispersion of two families of particles in a matrix. In the particular case of non aging linear
viscoelastic constituents (Maxwellian behaviour), the closed-form (temporal) expressions are
the exact solution provided by the correspondence principle and the Hashin-Shtrikman estimate.

The model predictions have been compared to full-field computations by considering par-
tially reinforced composites where a given fraction of the elastic reinforcements are defective
and modelled by inclusions with lower elastic moduli. These estimates well predict the effective
behaviour of the composite when the volume fraction of the defective inclusions increases.

Future works will be devoted to the computation of the full components of the stress fluc-
tuations in the matrix in order to make use of an improved linearization procedure like the
one proposed in [11]. This improvement seems mandatory to consider extreme situations like
partially voided composites.

Appendix A Hashin-Shtrikman model for a three-phase linear viscoelastic composite

If the Hashin–Shtrikman model is used, the Laplace-Carson transforms of the shear and
bulk components of the time relaxation function read:

µ̃∗(p) = µ(1)∗(p)+

r=3∑
r=2

c(r)
(
µ(r)∗(p)− µ(1)∗(p)

)
1 + 2 β∗(p) (µ(r)∗(p)− µ(1)∗(p))

c(1) +
r=3∑
r=2

c(r)

1 + 2 β∗(p) (µ(r)∗(p)− µ(1)∗(p))

, β∗(p) =
3
(
κ
(1)
e + 2µ(1)∗(p)

)
5µ(1)∗(p)

(
3κ

(1)
e + 4µ(1)∗(p)

)

κ̃∗(p) = κ(1)e +

r=3∑
r=2

c(r)
(
κ
(r)
e − κ(1)e

)
1 + 3α∗(p)

(
κ
(r)
e − κ(1)e

)
c(1) +

r=3∑
r=2

c(r)

1 + 3α∗(p)
(
κ
(r)
e − κ(1)e

) , α
∗(p) =

1

3κ
(1)
e + 4µ(1)∗(p)
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