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Abstract

The objective of this work is to study the role of shear on the rupture of ultra-
thin polymer films. To do so, a finite-difference numerical scheme for the
resolution of the thin film equation was set up taking into account capillary
and van der Waals (vdW) forces. This method was validated by comparing
the dynamics obtained from an initial harmonic perturbation to established
theoretical predictions. With the addition of shear, three regimes have then
been evidenced as a function of the shear rate. In the case of low shear
rates the rupture is delayed when compared to the no-shear problem, while
at higher shear rates it is even suppressed: the perturbed interface goes back
to its unperturbed state over time. In between these two limiting regimes,
a transient one in which shear and vdW forces balance each other, leading
to a non-monotonic temporal evolution of the perturbed interface, has been
identified. While a linear analysis is sufficient to describe the rupture time
in the absence of shear, the nonlinearities appear to be essential otherwise.

Keywords: Thin films, Lubrication, Polymers, Dewetting, Shear, Nanolayer
coextrusion

1. Introduction1

Nanolayer coextrusion, an innovative process allowing the combination2

of at least two polymers in a stratified film or membrane having a total3

thickness on the order of 100 µm but composed of thousands of alternating4

nanometric layers, has gained an increased interest in the past few years [1, 2].5

This process offers unique opportunities to explore fundamental questions on6

the effects of confinement on polymer properties, such as crystallization [3],7

chain mobility and structural relaxation [4, 5, 6] or interfacial phenomena8
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[7, 8, 9], as well as to design new nanostructured materials with novel or9

enhanced properties (mechanical, optical, conductive, gas barrier properties,10

etc.) [10].11

However, one strong limitation of the process lies in possible layer breakups,12

observed by several authors on different polymer pairs when reducing the13

layer thickness [11, 12, 13]. In a previous study, we investigated this phe-14

nomenon in polystyrene (PS)/poly(methyl methacrylate) (PMMA) nanolay-15

ered films [14] and evidenced the existence of a critical thickness around 1016

nm, below which the layers rupture spontaneously, independently of the pro-17

cessing conditions. We then proposed a mechanism responsible for this layer18

breakup, similar to the one leading to the dewetting of an ultra-thin polymer19

monolayer deposited on a solid substrate, as firstly observed by Reiter et al.20

[15] and subsequently explained by Brochard et al. [16].21

In nanolayer coextrusion, when the layer thickness is very small - typically22

below 100 nm-, attractive long-range forces (i.e. van der Waals forces) be-23

tween the two adjacent layers cannot be neglected. Below a critical thickness24

around 10 nm, they become dominant over the stabilizing capillary forces.25

In consequence, they may amplify any interfacial instability such as the one26

due to thermal fluctuations, eventually leading to the layer breakup. Sev-27

eral model experiments on spin-coated three-layer systems were subsequently28

proposed to confirm this scenario [17, 18]. Comparing the characteristic29

dewetting times in a model trilayer system to typical residence times in the30

nanolayer coextrusion process, we also suggested that the shear induced in31

the nanolayer process may delay the layer rupture, i.e. may stabilize the32

layers against rupture.33

Similar questions have been addressed for many years in the field of fluid34

mechanics, where the stability of ultra-thin liquid films has been a concern in35

several industrial applications, such as coating processes [19] or lithographic36

printing [20]. The stability of thin films has been the subject of many the-37

oretical and experimental studies (see for example the reviews of Oron et38

al. [21] and Craster et al. [22]). The pioneering works of Vrij [23] and39

Sheludko [24] focused on the mechanism of spontaneous rupture of a thin40

liquid film deposited on a solid substrate. Using slightly different approaches41

- thermodynamic treatment for Sheludko and diffusion equation for Vrij-,42

they showed for the first time that the amplification by vdW forces of small43

irregularities at the film’s free surface may lead to a decrease of the total free44

energy despite the increasing surface, and consequently induce film rupture.45

They proposed a critical thickness below which the destabilizing vdW forces46
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become dominant over the capillary forces, a critical wavelength of the initial47

irregularities above which the film is unstable, as well as a growth rate of the48

perturbation and a characteristic time for rupture.49

A more systematic and rigorous approach, developed by Ruckenstein and50

Jain [25], was based on a linear stability analysis of the Navier-Stokes equa-51

tions. They assumed that the amplification of small perturbations at the52

film interface generates a flow in the film. Due to its small thickness, the53

lubrication approximation was employed. The long-range vdW forces were54

accounted for through a disjoining pressure term as proposed by Derjaguin55

[26]. Even if this stability analysis is theoretically valid for small perturba-56

tions only, information about the conditions leading to film rupture could57

be obtained. In particular, Ruckenstein and Jain showed that the critical58

wavelength of the initial periodic disturbance leading to rupture was much59

larger than the film thickness. These results laid the groundwork for sub-60

sequent studies that investigated the nonlinear effects on thin film rupture61

using either a perturbative analysis [27] or numerical computations [28]. In62

the latter study, the authors derived a highly non-linear partial differential63

equation, a so-called thin film equation, that describes the evolution of the64

surface of a thin film subject to: i) viscous stresses, ii) a stabilizing Laplace65

pressure, and iii) a destabilizing disjoining pressure. The main qualitative66

features of the rupture in these nonlinear studies were similar to the ones in67

the linear analysis. Still, some quantitative differences were obtained con-68

cerning the breakup time in particular, that was found to be systematically69

inferior in the nonlinear studies compared to the linear analysis. This is likely70

due to the fact that the latter analysis underestimates the destabilizing effect71

of the long-range forces. Those various approaches were extended later to72

multilayer films [20, 29, 30].73

The effect of a shear flow on a thin film rupture was first explored by74

Kalpathy et al. [31] for a liquid-liquid interface in a stratified flow and by75

Davis et al. [32] in a thin liquid film. They showed that when shear is76

imposed, the film rupture is delayed and that above a critical shear rate,77

the rupture is even suppressed. Beyond purely hydrodynamic explanations,78

another possible effect in practical systems could be the shear-induced mod-79

ification of the seed thermal fluctuations [33, 34].80

In the present study, we investigate the impact of shear on the stability of81

a polymer thin film, using a numerical approach [35] inspired by Bertozzi82

and Zhornitskaya [36, 37]. In particular, by systematically studying various83

combinations of shear rates and Hamaker constants governing the intensity84
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of vdW forces, we discuss the existence of several regimes for the thin film85

stability.86

2. Problem position and model87

2.1. Problem position88

Figure 1: A viscous polymer film, of viscosity η and nominal thickness h0, is placed atop
a rigid substrate. External shear rate β, surface tension γ and van der Waals forces (with
Hamaker constant AH) compete with each other, and generate a viscous flow that can
either result in growth or damping of an initial interfacial perturbation. At horizontal
position x and time t the film profile is h(x, t). Invariance along y is assumed.

The problem studied is represented in Figure 1. A glassy polymer (such89

as PS) thin film of nominal thickness h0 typically below 100 nm is lying on90

a substrate and heated well above its glass transition temperature Tg. For a91

PS film, Tg is about 100◦C and the temperature of the study, similar to the92

processing temperature, would be close to 200◦C. At this temperature, the93

polymer can be considered as a Newtonian fluid with a constant viscosity94

η0, on the order of 104 Pa.s. The viscosity depends on molecular weight,95

but the value indicated here is typical of polymers used in extrusion [14].96

The surface tension of the polymer with air is noted γ (∼ 27.7 mN/m for97

PS at 200◦C [38]) and the Hamaker constant for the substrate/polymer/air98

system is noted AH. The value of the latter is difficult to measure experi-99

mentally, and though the typical order of magnitude of Hamaker constants100

is similar for most systems, i.e. ∼ 10−19 J, several values can be found101

in the literature. For an air/PS/SiO2 system, Seemann et al. [39] provide102

AHair/PS/SiO2
= 2.2 10−20 J, similar to the value obtained using material re-103

fractive indices and dielectric constants from the literature [40, 41]. In the104

present study, to limit the numerical rupture time which increases with de-105

creasing values of the Hamaker constant, we employ AH to values between 5106
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10−19 and 5 10−18 J. Shear, characterized by a shear rate β, is applied from107

right to left. Different values of shear rates will be explored, and their effect108

on an interfacial perturbation monitored through the evolution of the profile109

thickness h(x, t) over time t and space along the x-axis.110

2.2. Governing equation111

Taking into account the previous considerations and a spatial invariance112

along the horizontal direction y, the general thin film equation [21] is assumed113

to describe the dynamics of the thickness profile h(x, t) = h0 +δh(x, t), where114

δh(x, t) is the perturbation field with respect to h0. The thin viscous film115

is experiencing Laplace and disjoining pressures, as well as shear stresses.116

Neglecting gravitational forces, the thin film equation reads in our case:117

∂th+
γ

3η
∂x

(
h3∂3

xh+
3AH

6πγh
∂xh

)
− βh∂xh = 0 . (1)

Interfacial tension and viscosity are considered constant and possible118

changes as a function of the film thickness are also neglected in this study.119

To solve numerically the equation, one introduces the following dimensionless120

variables and parameters:121

H =
h

h0

; ∆H =
δh

h0

X =
x

h0

; T =
γt

3ηh0

; Λ =
λ

h0

K = kh0 =
2π

Λ
; A =

AH

6πγh2
0

; B =
3ηβh0

2γ
,

(2)

where λ is the wavelength of the initial harmonic perturbation (see below)122

and k is the associated angular wavenumber. Note that both A and B depend123

on the nominal film thickness and surface tension. The dimensionless thin124

film equation can then be written as:125

∂TH + ∂X
[
H3
(
∂3
XH + 3AH−1∂XH

)]
− 2BH∂XH = 0 . (3)

The parameters of the study and the ranges over which they have been126

varied are summarized in Table 1.127

128

5



Parameters Dimensionless parameters
h0 AH β A B
nm J s−1

[10–100] [5×10−19–5× 10−18] [0.2–200] [0.001–0.1] [10−5–1]

Table 1: Explored ranges for the parameters of the problem.

2.3. Numerical method and boundary conditions129

The numerical procedure used here is a finite-difference method for thin-130

film flows [35]. Specifically, we aim at following the temporal and spatial131

evolution of an initial harmonic perturbation of wavelength λ. In contrast132

to previous studies (Davis et al. [32] or Kalpathy et al. [31]), we do not133

use periodic lateral boundary conditions here, but a large spatial window134

size instead. To optimize the computational time and to limit the artificial135

lateral boundary effects, we consider a truncated initial perturbation, with136

1.5 periods, completed at its edges by a flat profile. We impose flat conditions137

at the boundaries of the numerical domain. Finally, we have checked that138

the chosen number of periods at the center and the size of the spatial window139

do not affect the results.140

At T = 0, the initial profile of the film is spatially discretized over M141

segments, with a fixed spatial step ∆X and a spatial index i ∈ [0,M −1], as:142

H [∆X(i− i0), 0] = 1 + ∆H cos [2π∆X(i− i0)/Λ] , (4)

where i0 is the index of the window center.143

The numerical integration of Equation (3) along time T is then performed144

using a 4th-order Runge-Kutta scheme [35]. In order to be self-consistent145

with the lubrication framework and with the window-size constraint above,146

we impose the following scale separation: ∆X � Λ�M∆X.147

3. Results148

3.1. Linear stability analysis149

The effect of shear on the stability of a thin film can be estimated, as
a first attempt, using a linear stability analysis. We stress that while such
an approach allows one in principle to predict whether an infinitesimal dis-
turbance at the surface is amplified or attenuated, it does not allow for the
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quantitative study of rupture, which is outside the scope of linearity. We
consider the evolution of an initial harmonic perturbation of small ampli-
tude ∆H0 around the nominal dimensionless thickness of the film (equals to
1). The perturbative field ∆H comprises a time-dependent factor eΓT , where
Γ is the growth rate of the perturbation (the perturbation is amplified if Γ
> 0 and damped if Γ < 0) and a space-dependent oscillatory factor eiKX :

H = 1 + ∆H (5a)

∆H = ∆H0e
ΓT eiKX . (5b)

This leads, after substitution in Equation (3), to the following dispersion150

relation:151

Γ = K2(3A−K2) + 2BiK . (6)

The growth rate of the perturbation is a complex number, with a real152

part ΓR and an imaginary part ΓI. The real part evaluates the actual rate at153

which the perturbation is amplified or damped. It appears to be independent154

of the shear and thus coincides with the solution of the no-shear case, i.e.155

for B = 0 (see [25, 28]). A consequence of such a feature is that a numerical156

treatment of the non-linear (i.e. beyond linear analysis) thin film equation157

will be needed in order to understand further the potential role of shear158

in the dewetting process. The evolution of ΓR as a function of K, obtained159

from Equation (6), is shown in Figure 2 and compared to numerical solutions160

of Equation (3), for different values of A, including ones outside the range161

studied later on with shear. It can be seen that in all cases the numerical162

results are self-consistently in quantitative agreement with the analytical163

prediction. Besides, one observes a maximum Γmax = Γ(Kmax), defined by:164

Kmax =

√
3A

2

Γmax =
9

4
A2 .

(7)

Note that the wavelength Λmax = 2π/Kmax of this fastest growing mode will165

be used as a wavelength Λ in all numerical computations below, in order to166

reduce the total computational time.167

Due to the imaginary part ΓI, the perturbation is transported and shifted168

in the shear direction. This shift is explicitly highlighted when injecting169

Equation (6) into Equation (5), leading to:170

∆H = ∆H0 e
ΓRT eiK(X+2BT ) . (8)
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Figure 2: Real part ΓR of the growth rate of the perturbation as a function of the angular
wavenumber K = 2π/Λ, as obtained from Equation (6) (lines), as well as from numerical
solutions of Equation (3) (symbols), for different values of the dimensionless Hamaker
constant A, as indicated.

Thus, the perturbation propagates along −X (i.e. the shear direction) with171

a speed equal to 2B.172

3.2. Rupture without shear173

Here, an initial harmonic perturbation with an amplitude ∆H0 = 0.1 is174

considered, and Equation (3) is solved with B = 0. Due to vdW forces,175

the film may undergo a possible rupture after a time which depends on the176

value of the dimensionless Hamaker constant A. Since the numerical scheme177

is only stable for strictly positive H values, a criterion for rupture has been178

set as the time TR at which the spatial minimum of H reaches 0.1. We have179

checked that other small-enough values of this arbitrary threshold do not180

change qualitatively the results.181

A typical evolution of the film profile is given in Figure 3 for A =182

0.01. It is seen that the amplitude of the interfacial perturbation increases183

monotonously over time, until the film ruptures (at TR = 4800 in this case,184

with our criterion above).185

We now turn to the detailed study of the rupture time. First, the ef-186

fect of the initial amplitude of the perturbation is presented in Figure 4a for187
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different values of A. Apart from a numerical prefactor of order unity, the de-188

crease of the dimensionless rupture time TR with increasing initial amplitude189

∆H0 as measured from our numerical solutions follows the linear-stability190

extrapolation law proposed by Sharma [27]:191

TR =
1

Γmax

ln

(
1

∆H0

)
. (9)

Figure 3: (top) Film profiles H(X,T ) versus the horizontal position X, at three different
times T as indicated, as obtained from the numerical solution of Equation (3) with A =
0.01 and B = 0, for an initial harmonic perturbation with ∆H0 = 0.1 and Λ = Λmax.
(bottom) Spatiotemporal diagram of the interfacial evolution, with X and T as axes, and
the magnitude of H represented using the color code indicated below.

We stress that the expression predicted by Sharma is equivalent to the192

one by Ruckenstein [25] provided that ∆H0 = 1/e. Indeed, the expression of193

Ruckenstein corresponds by definition to the time constant of the exponen-194

tial growth and is therefore independent of ∆H0. Similarly, Ruckenstein’s195
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expression is similar to the one predicted by Vrij [23], the two expressions196

quantitatively differing by a factor 2 only. These three theoretical estimates197

of TR come from a similar linear approximation, and differ only by the exact198

convention chosen.199

Putting back dimensions, Equation (9) is equivalent to:200

tR =
48π2γηh5

0

A2
H

ln

(
h0

δh0

)
, (10)

where δh0 is the initial amplitude of the perturbation.201

As a guide for practical purposes, and using the values of the physical param-202

eters η and γ provided above, the rupture time tR is plotted in Figure 4b as203

a function of the ratio h5
0/A

2
H, with real units, for the case where δh0/h0=0.1.204

Apart from the numerical prefactor of order unity already mentioned205

above, it appears that Sharma’s prediction describes well the data over 10206

decades. This suggests that non-linear effects are not essential to understand207

the main qualitative features of the film rupture process – under no shear.208

Figure 4: (a) Dimensionless rupture time TR as a function of the inverse of the dimen-
sionless perturbation amplitude ∆H0, for different values of the dimensionless Hamaker
constant A. The solid line is a best fit to Eq. (9). (b) Dimensioned version of the rupture
times obtained for δh0/h0=0.1 in panel a) with the values of interest presented in Table
1. The solid line is Eq. (10).
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3.3. Effects of shear209

3.3.1. Influence of the shear rate210

Various finite shear rates (B 6= 0) have been tested within the same nu-211

merical framework as the one described above. The low-shear-rate behavior212

(B << A) is presented in Figure 5a, while the high-shear-rate behavior (B213

>> A) is presented in Figure 5b. Over time, the perturbation moves along214

the x-axis in the direction in which the shear is applied, from right to left.215

At low shear rates, the behavior is similar to what is observed without shear:216

the perturbation grows with time and eventually leads to film rupture. At217

high shear rates, however, the perturbation is damped, leading to what could218

be described as a healing of the interface (i.e. going back to an unperturbed219

flat initial state) at long times.220

Figure 5: (top) Film profiles H(X,T ) versus the horizontal position X, at three differ-
ent times T as indicated, as obtained from the numerical solutions of Equation (3) with
A = 0.01, for an initial harmonic perturbation with ∆H0 = 0.1 and Λ = Λmax. The
dimensionless shear rates are fixed to B = 0.001 and B = 0.1, in panels (a) and (b) re-
spectively. (bottom) Corresponding spatiotemporal diagrams of the interfacial evolutions,
with X and T as axes, and the magnitude of H represented using the color codes indicated
below.

3.3.2. Critical shear rate221

To understand more quantitatively the effect of shear on the perturbed222

interface profile, the maximum Hmax and minimum Hmin of the latter are223

plotted in Figure 6 as functions of time, and for different shear rates. At low224
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shear rate, it is seen that the time of rupture increases compared to the case225

without shear. At high shear rate, healing is confirmed by the fact that both226

extrema converge to 1, i.e. towards the flat-interface situation.227

228

Figure 6: Temporal evolution of the maximum (Hmax) and minimum (Hmin) values of the
dimensionless film profile, for three applied dimensionless shear rates, B = 0, 0.005, 0.1, as
obtained from numerical evolutions such as the ones in Figure 5.

It is now interesting to examine what happens at intermediate shear rates,229

i.e. B close to A. Typical results are presented in Figure 7. Here, over the230

total computational time, no rupture is observed, but no healing either. As231

seen in the inset, the evolution of the perturbation, characterized as in Figure232

6, is not monotonic, suggesting the existence of a transient regime where vdW233

forces and shear compete with each other over times longer than the total234

time computed.235

We now investigate the influence of shear on the film rupture. Figure 8236

shows the dimensionless rupture time TR as a function of the dimensionless237

shear rate B. For low shear rates, the rupture time is only slightly higher238

than the value without shear. Then, for values of B higher than ∼ 0.005, TR239

increases sharply, and becomes higher than the total computational time for240

B > 0.014. For B > 0.03, perturbation damping and healing of the interface241

are observed. A so-called ”transient regime” is observed for 0.014 < B <242
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0.03. A similar trend was found in a previous numerical simulation (Davis243

et al. [32]) using periodic boundary conditions with a coarse calculation244

domain. Specifically, Davis et al. [32] observed that the rupture is suppressed245

for B ≈ 10A. The current systematic study allows us to construct a novel246

phase diagram, exhibiting in particular: i) perturbation damping for values247

as low as B = 3A; ii) the existence of a narrow transient regime with a non-248

monotonic variation of the interface profile along time, resulting in neither249

rupture nor healing within the accessed temporal and spatial window.250

Figure 7: (top) Film profiles H(X,T ) versus the horizontal position X, at four different
times T as indicated, as obtained from the numerical solution of Equation (3) with A =
0.01 and B = 0.019, for an initial harmonic perturbation with ∆H0 = 0.1 and Λ =
Λmax. Inset: temporal evolutions of the profile’s extrema, as in Figure 6. (bottom)
Corresponding spatiotemporal diagram of the interfacial evolution, with X and T as axes,
and the magnitude of H represented using the color code indicated below.

251
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Interestingly, a natural dimensionless critical shear rate Bc can be identi-252

fied in the model. Indeed, by balancing the Hamaker and shear contributions253

in Equation (3), recalling that we have set K = Kmax, and invoking Equa-254

tion (7), one gets:255

Bc ∼ 3AK ∼ 3

√
3

2
A3/2 . (11)

For A = 0.01, the latter estimate gives Bc ≈ 0.0037, which corresponds256

approximately to the onset value of B in Figure 8 after which TR sharply257

increases with B.258

Figure 8: Dimensionless rupture time TR as a function of the dimensionless applied shear
rate B, for a dimensionless Hamaker constant A = 0.01. When TR becomes larger than
the total computational time, no rupture is observed, and for large enough B healing of
the profile is even observed, as summarized by the colored areas. The vertical dashed line
indicates Bc ≈ 3.7 10−3, according to Equation (11).

The study above can be reproduced for several values of A. A similar259

trend is systematically recovered (not shown). Furthermore, a master curve260

is obtained in Figure 9, when plotting the ratio of the rupture time with shear261

and the rupture time without shear as a function of the ratio B/A. First, we262

recover the monotonic increase of the rupture time with shear rate. Secondly,263

the master rescaling is expected if, near a rupture event, one neglects the264
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capillary Laplace contribution over the Hamaker one in Equation (3), divide265

the whole equation by A, and absorb A in the definition of time.266

Figure 9: Rupture time rescaled with the no-shear rupture time as a function of the ratio
between dimensionless shear rate B and dimensionless Hamaker constant A, for different
values of A, as indicated.

Finally, let us discuss the layer stability in nanolayer coextrusion, from267

the results obtained here. In our study [14] on a PS/PMMA multilayer268

system, we made the hypothesis that rupture in multilayer films is induced269

by thermal fluctuations of amplitude
√
kBT/γ ∼ 10−9 m (where kB is the270

Boltzmann constant) [42] at the interface between adjacent layers, that are271

then amplified by vdW forces. Balancing capillary forces with vdW ones, the272

critical thickness was defined as:273

h∗ ∼
(
AH

3πγ

)1/2

. (12)

Using AH ∼ 10−18 J [40] and and γ ∼ 1 mN/m [43], we obtained h∗ ∼ 10−8
274

m, in good agreement with our experimental observations.275

In the present study, we showed that rupture can be suppressed for B ∼276

3A. Assuming that our simple model can be employed in the case of a277
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multilayer system too, and putting back dimensions through Equation (2),278

we get a critical shear rate for rupture suppression:279

βs ∼
AH

3πηh3
0

. (13)

Using h0 ∼ h∗ and the values of the physical parameters provided above,280

we obtain βs ≈ 10 s−1. Interestingly, the latter value is typical of shear rates281

occurring during nanolayer coextrusion [44]. Since βs decreases rapidly as h0282

increases, it may explain why stable layers with thicknesses as small as 20 nm283

can be formed via this process – despite a processing time (∼ 1 min) much284

larger than the rupture times predicted by Vrij, Ruckenstein and Sharma in285

a no-shear situation (∼ 1 s, see equation 10).286

4. Conclusion287

We have developed a numerical model to study the effect of shear on288

the stability of an ultra-thin polymer film, taking into account capillary and289

vdW forces. We identified three regimes: i) a rupture regime at low shear290

rates, with a rupture time systematically larger than the one in the no-shear291

case, the latter being in agreement with the expressions predicted by Vrij,292

Ruckenstein and Sharma; ii) a transient regime in which shear and Hamaker293

forces compete with each other over the whole time window, leading to a294

non-monotonic temporal variation of the perturbed interface; iii) a regime295

at high shear rates in which shear suppresses rupture: a perturbed interface296

will evolve towards a flat interface over time. Interestingly, while a linear297

analysis is sufficient to describe the rupture time in the absence of shear,298

the nonlinearities appear to be crucial in presence of moderate shear. This299

study paves the way to a better analysis and control of the stabilizing and300

destabilizing effects in nanocoextrusion processes.301
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