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Modelling of compressible single-phase flows using a stochastic approach

Outline

The stochastic modelling of incompressible single-phase flows has been widely adressed [START_REF] Pope | Turbulent Flows[END_REF], assessing turbulence modelling and chemical reactions. Nonetheless, in some of the situations that we meet in our industrial context, the effects of the compressibility can not be neglected. As an example, the compressibility of the fluid is important in cavitation simulation or in two-phase homogeneous approach used to simulate flows in PWR components.

The above two domains rely on two-phase flows, but the corresponding mean-field models are based on an Euler-type system of equations [START_REF] Audebert | Contribution à l' analyse de l'interaction onde de choc -couche limite[END_REF][START_REF] Favre | La turbulence en mécanique des fluides[END_REF][START_REF] Louis | Modélisation numérique de la turbulence compressible[END_REF]. Hence the construction of a stochastic model consistent with the latter in a single-phase framework is a first step to account for more complex situations. Moreover, a simple compressible two-phase flow model has been proposed in [START_REF] Hurisse | Modélisation stochastique d'écoulements diphasiques avec changement de phase[END_REF] using a stochastic formalism, and following previous work [START_REF] Peirano | The pdf approach to polydispersed turbulent two-phase flows[END_REF] for incompressible two-phase flows. The thermodynamical part of this compressible two-phase model remains very crude and the present work might provide a good improvement of the work presented in [START_REF] Hurisse | Modélisation stochastique d'écoulements diphasiques avec changement de phase[END_REF].

More precisely, it aims at building a compressible single-phase flow model using a stochastic approach and following the lagrangian point of view. Since the Euler system of equations represents a reference for compressible single-phase flow mean-field models, the stochastic model will be chosen so that the evolution of its first moments matches a complete Euler-type system (with energy).

The turbulence is accounted for by a simple one-equation model, and the thermodynamical part of the model is finally very close from the previous work of [START_REF] Delarue | Application of PDF methods to compressible turbulent flows[END_REF]. The main difference is related to the choice of the variables and to the way the turbulence is taken into account. The model proposed herein is explicitely written for a perfect gas law. It thus fulfils the first law of thermodynamics, the volume conservation, and ensures the positivity of the density and internal energy. The complete analysis of the behaviour of the stochastic model is not possible, and a partial analysis is performed.

The section 2 of the present note is devoted to a rather general class of models for compressible flows. The definition of these terms is made of two steps : in section 3 the dynamical behaviour is first assessed, whereas the themodynamical behaviour is taken into account in section 4. The section 5 concludes this work.

A general stochastic model

This section is devoted to the presentation of a general class of stochastic models for compressible singlephase flows. Some modelling terms will be left undetermined in this section, and will be treated sections 3 and 4.

The flow is described using particles, so that we adopt the lagrangian trajectory point of view. The latter represents a rather natural choice when dealing with particles, and one can benefit from some facilities in the treatment of the convection or complex local phenomena (chemical reactions for example).

The variables and the instantaneous equations

We retain only 8 variables to describe the flows. The position x(t) is a vector and (x i (t)) i = 1..3 are its components, the velocity u(t) is a vector and (u i (t)) i = 1..3 are its components, the volume v(t) and the internal energy e(t) are scalar positive variables. The position and the velocity describe the dynamics of the center of mass of each particles, whereas the volume and the internal energy model the thermodynamics. Moreover, all the particles have the same mass m, which remains constant. Any other quantity, such as the density or the pressure for example, is defined as a function of the variables above. The density ρ and the pressure p respectively read :

ρ = m v and p = P(e, v),
where P is the Equation Of State (EOS). For the sake of simplicity, we choose to deal with perfect gas EOS, that is : vP(e, v) = me(γ -1), where γ > 1 is a given contant. The dynamical and thermodynamical aspects of the particle description are coupled through the Stochastic Differential Equations given below. These equations define the time evolution of the variables. We assume the following equations :

dx(t) = u(t)dt, ( 1 
)
du(t) = (-Π + a u ) dt + B u dw u t , ( 2 
)
dv(t) = v(t)∆dt + v(t)a v dt + v(t)B v dw v t , ( 3 
)
de(t) = - p m dv(t) + ( d + a e )dt. (4) 
All the modelling terms Π, a u , B u , ∆, a v , B v , d and a e will be discussed thoroughly in this paper. The Wiener processes for the velocity components w u i,t and for the volume w v t are independent. Obviously, the equations ( 1)-( 4) are not completely general, some modelling choices have already been done to guess this system. These choices relate to physical consistencies and are discussed in the sequel.

Some definitions.

We thus consider the physical vector-valued variables

Z L (t) = {x 1 (t), x 2 (t), x 3 (t), u 1 (t), u 2 (t), u 3 (t), v(t), e(t)} and Z E (t) = {u 1 (t), u 2 (t), u 3 (t), v(t), e(t)} ,
which correspond respectively to a lagrangian and an eulerian point of view. Their counterparts in the samplespace are respectively

Z * L = {x * 1 , x * 2 , x * 3 , u * 1 , u * 2 , u * 3 , v * , e * }, and 
Z * E = {u * 1 , u * 2 , u * 3 , v * , e * }.
The Probability Density Function (PDF) for the vector-valued process defined by ( 1)-( 4) is denoted by f L (t; Z * L ). It is a non-negative function whose integral over the whole sample-space yields 1 :

f L (t; Z * L )dZ * L = 1, ∀t.
Following the same ideas as those presented in [START_REF] Hurisse | Modélisation stochastique d'écoulements diphasiques avec changement de phase[END_REF], we now define the eulerian density function f E (t, x; Z * E ) by :

f E (t, x; Z * E ) def = f L (t; Z * L )δ(x * -x)dx * ,
where δ(.) stands for the Dirac measure. For each time t and for each position in the physical space x, this function describes the distribution of the values of the process Z * L in the Eulerian sample-space, whereas the PDF f L describes this distribution for any time t in the whole sample-space. Thus f E corresponds to an eulerian point of view.

It is noteworthy that the sum of the eulerian density function over Z * E does not yield 1. We define the volumic fraction α(t, x) and the mean density ρ R (t, x) using the eulerian density function :

α(t, x) def = v * f E (t, x; Z * E )dZ * E , (5) 
α(t, x) ρ R (t, x) def = mf E (t, x; Z * E )dZ * E = ρ * v * f E (t, x; Z * E )dZ * E . ( 6 
)
We can then extend the definition of the average . R used for the mean density [START_REF] Louis | Modélisation numérique de la turbulence compressible[END_REF] to any function H(Z * E ) :

α(t, x) H R (t, x) def = H(Z * E )v * f E (t, x; Z * E )dZ * E . ( 7 
)
We also define an other average for any quantity H(Z * E ), denoted by H F , and which reads :

α(t, x) ρ R (t, x) H F (t, x) def = H(Z * E )mf E (t, x; Z * E )dZ * E . ( 8 
)
By setting H = ρG in the definition [START_REF] Peirano | The pdf approach to polydispersed turbulent two-phase flows[END_REF], we get the usefull consistency relation between the two averages :

ρG R = ρ R G F , ( 9 
)
and in particular we get 1 = ρ R 1/ρ F or thanks to our choice of a constant uniform mass

m = ρ R v F .
The two statistics averaging operators . R and .

F are often respectively called the Reynolds average and the Favre average [START_REF] Favre | Equations des gaz turbulents compressibles[END_REF][START_REF] Favre | La turbulence en mécanique des fluides[END_REF].

Mean-field equations.

Following the results of [START_REF] Hurisse | Modélisation stochastique d'écoulements diphasiques avec changement de phase[END_REF], it is possible to demonstrate that the time-space evolution of the average H F of any quantity H(Z * E ) is governed by the Partial Derivative Equation (PDE) :

∂ ∂t α ρ R H F + ∇ x • α ρ R uH F = α ρ R 3 i=1 [-Π i (t, x; Z * E ) + a u i (t, x; Z * E )] ∂ ∂u * i (H(Z * E )) F +α ρ R 3 i=1 (B u (t, x; Z * E )) 2 2 ∂ 2 ∂u * i 2 (H(Z * E )) F +α ρ R v * [∆(t, x; Z * E ) + a v (t, x; Z * E )] ∂ ∂v * (H(Z * E )) F + α ρ R (v * B v (t, x; Z * E )) 2 2 ∂ 2 ∂v * 2 (H(Z * E )) F +α ρ R {-(γ -1)e * [∆(t, x; Z * E ) + a v (t, x; Z * E )] + ( d (t, x; Z * E ) + a e (t, x; Z * E ))} ∂ ∂e * (H(Z * E )) F +α ρ R ((γ -1)e * B v (t, x; Z * E )) 2 2 ∂ 2 ∂e * 2 (H(Z * E )) F , ( 10 
)
where the arguments (t, x) have been omitted for the averages.

Volume conservation constraint.

For

H(Z * E ) = 1/ρ(Z * E ) = v * /m
, the equation (10) leads to the following equation for the volumic fraction :

∂ ∂t (α) + ∇ x • α u R = α ∆(t, x; Z * E ) + a v (t, x; Z * E ) R . ( 11 
)
In fact the volumic fraction represents the volume per unit of volume occupied by the fluid. When the volume fraction is not equal to one, it means that the fluid does not occupy the whole volume.

Provided that the initial condition is such that α(t = 0, x) = 1, and provided that for all time t we have α(t, s) = 1 for all point s on the boundary of the spacial domain, a necessary and sufficient condition for α to remain equal to 1 is that the modelling terms ∆ and a v fulfil :

∇ x • u R = ∆(t, x; Z * E ) + a v (t, x; Z * E ) R , ∀(t, x). ( 12 
)
To ensure this constraint, we choose to set :

∆(t, x; Z * E ) = ∇ x • u R ,
So that the property (12) holds if and only if a v (t, x; Z * E ) R = 0. In the following, we assume that a v is such that the volume conservation holds.

Other mean-field equations.

The equation ( 10) is used to write the equations for the mean mass, with H(Z * E ) = 1, for the mean momentum, with H(Z * E ) = u * i , i = 1, 2, 3, and for the mean total energy

E = e + u • u/2, with H(Z * E ) = E(Z * E ).
The three corresponding equations are :

∂ ∂t ρ R + ∇ x • ρ R u F = 0, (13) 
∂ ∂t ρ R u F + ∇ x • ρ R u ⊗ u F = -ρΠ(t, x; Z * E ) R + ρ R a u (t, x; Z * E ) F (14) ∂ ∂t ρ R E F + ∇ x • ρ R uE F = -ρΠ(t, x; Z * E ) • u R + ρ R a u (t, x; Z * E ) • u F + ρ R 3(B u (t, x; Z * E )) 2 2 F -p * [∆(t, x; Z * E ) + a v (t, x; Z * E )] R + ρ R d (t, x; Z * E ) + a e (t, x; Z * E ) F (15) 
In the set of equations ( 13)-( 15), all the modelling terms appear. In the following sections, closure laws are proposed for these terms on the basis of a mean-field Euler-type system. The latter represents a reference to model the mean behaviour of non-viscuous compressible single-phase flows, and our aim is to provide a stochastic model (i.e. to define the modelling terms in ( 1)-( 4)) whose mean behaviour mimics the Euler-type system (16) :

             ∂ ∂t ρ R + ∇ x • ρ R u F = 0, ∂ ∂t ρ R u F + ∇ x • ρ R u ⊗ u F + ∇ x p R = 0, ∂ ∂t ρ R E F + ∇ x • ρ R uE F + up R = 0. ( 16 
)
In compressible flows, dynamics and termodynamics are closely intricated. But, for the sake of simplicity, and in order to account for all the models already proposed for the dynamics of incompressible flows, we separate these two aspects. Hence, in section 3 a definition of the modelling terms for the momentum equation is proposed and then the thermodynamical terms involved in the energy equation are investigated in section 4.

Remark.

It is an important point to be noted that the mean mass equation (13) does not contain any modelling terms, so that it is already equivalent to the mass continuuity equation of (16).

Remark. The system (16) has been obtained by applying the Reynolds average . R to the instantaneous Euler system of equations. In mean-field models based on the Euler system, the last term in the energy equation is sometimes simplified in :

∇ x • u F p R .
Moreover, the average pressure p R = P(e, v) R is approximated by P( e F , m/ ρ R ), thus neglecting the fluctuations of ρ and e. Excepted for linear EOS, as perfect gas EOS, this approximation for the average pressure is rather rough. Eventually, when using these closures, the only term that must be specified is u ⊗ u F .

The dynamical behaviour

We first pay attention to the dynamical part of the model, which means that we define the modelling terms arising in the velocity equation ( 2) : Π, a u and B u .

We first make a choice to ensure that equation ( 14) is equivalent to the momentum equation in (16). We then set :

Π = 1 ρ R ∇ x p R ,
and, consequently, the term a u must be chosen such that a u F = 0. This choice [START_REF] Peirano | The pdf approach to polydispersed turbulent two-phase flows[END_REF][START_REF] Pope | Turbulent Flows[END_REF] separates the force due to the pressure into two parts : the force due to the average pressure Π and the force due to the fluctuating pressure which is modeled by a u . In fact, the terms a u and B u rely on the modelling of the turbulence. Despite the existence of complex and sophisticated models for the incompressible turbulence (see [START_REF] Pope | Turbulent Flows[END_REF] among other), we choose a very simple manner to account for the turbulence. We then set φ" = φ -φ F the fluctuation of any quantity φ around the average φ F , the Reynolds stress tensor (R ij ) i,j is a symetric semi-definite positive matrix defined as : R ij = u i "u j " F . The half of the trace of the Reynolds stress tensor is called the turbulent kinetic energy, and will be denoted by K = u" • u" F /2. For the model ( 1)-( 4), the equation for K reads :

∂ ∂t ρ R K + ∇ x • ρ R u F K + ρ R 3 i,j=1 R ij ∂ ∂x j u i F +∇ x •   ρ R u" 3 i=1 (u i ") 2 2 F   + u".(ρΠ) R = 3 2 ρ R (B u ) 2 F + ρ R a u (t, x; Z * E ) • u F . ( 17 
)
Appendix 2 details the calculation of the Reynolds stress tensor, from which equation ( 17) can be obtained. It is obtained using the equation (10) and the decomposition :

R ij = u i u j F -u i F u j F .
The right hand side of equation ( 17) appears in equation ( 15). This is due to the fact that the total energy E gathers the contributions of the mean internal energy and of the mean kinetic energy u • u/2 F , which can be decomposed as :

u • u F 2 = u F • u F 2 + K.
A possible model for K corresponds to the choice :

3 2 ρ R (B u ) 2 F + ρ R a u (t, x; Z * E ) • u F = -ρ R d F .
This choice enables to retrieve a classical form of the kinetic turbulent energy : when considering homogeneous turbulence, the decay of the kinetic turbulent energy corresponds to the mean dissipation. In the relation above, the modelling term d is chosen to be propotionnal to K :

d = K τ ,
where τ is a positive time scale, which is assumed to be a statistical constant (i.e. τ F = τ R = τ ) Despite its physical simplicity, the resulting model (and the resulting mean-field model for the mean behaviour) inherits good mathematical properties. We choose for a u a return to zero form for the velocity fluctuations :

a u = - u" τ u ,
where τ u is a positive time scale and a statistical constant. Hence it verifies a u F = 0. This choice is classical [START_REF] Peirano | The pdf approach to polydispersed turbulent two-phase flows[END_REF][START_REF] Pope | Turbulent Flows[END_REF], it dictates that each instantaneous velocity tends towards the average velocity u F . This model satisfies the property of momentum conservation, and the modelling term B u is then defined as :

(B u ) 2 F = K 4 3τ u - 2 3τ .
The term B u is thus defined if and only if the time scales are such that τ u ≤ 2τ . Once again, we choose a simple model for B u :

B u = K 4 3τ u - 2 3τ
We have now defined all the modelling terms for the dynamics, except the time scales. The turbulence has been modeled according to the simple mean-field K-model, in an isotropic form (in the sense that a u and B u are isotropic).

The thermodynamical behaviour

The modelling of the dynamics, carried out in section 3, has benefited from the models that have already been developped during the 3 preceeding decades for compressible and incompressible flows. Unfortunately, no such developments can be found when looking for models for the thermodynamics. Very few works or results are available concerning the thermodynamical behaviour of compressible turbulent flows. Nonetheless, the reader can refer to [START_REF] Delarue | Application of PDF methods to compressible turbulent flows[END_REF] where a complete model for turbulent compressible flows can be found. Our approach here is almost similar to those of [START_REF] Delarue | Application of PDF methods to compressible turbulent flows[END_REF]. In this section, some closure laws for a v , B v and a e are investigated.

According to the choices of the section 3 for the modelling terms Π, a u and B u , the equation (15) now reads :

∂ ∂t ρ R E F + ∇ x • ρ R uE F + ∇ x • u R p R = -p * a v (t, x; Z * E ) R + ρ R a e (t, x; Z * E ) F . ( 18 
)
Hence, in order to recover the energy equation of system (16), the modelling terms a v and a e have to be chosen such that :

ρ R a e (t, x; Z * E ) F = p * a v (t, x; Z * E ) R -∇ x • u p R ,
where φ stands for the fluctuation of the quantity φ around its average φ R , or φ = φ -φ R . We choose the following definiton for a e :

ρa e = pa v - ρe ρ R e F ∇ x • u p R . ( 19 
)
At last, the terms a v and B v must be defined to obtain a closed stochastic lagrangian model. In order to achieve this, we consider the equation for the volume (3) and for the energy (4) in an homogeneous box : in other words, we assume that all the space-derivative terms vanish but the velocity and its fluctuations are not neglected, that is :

dv(t) = v(t)a v dt + v(t)B v dw v t , ( 20 
)
de(t) = -(γ -1)e(t)B v dw v t . ( 21 
)
We intend now to describe the thermodynamical behaviour of a statistical collection of particles located at the same place. Our choice is to model a v and B v in order to obtain a return to equilibrium of the instantaneous pressures. Nevertheless, since the kinetic turbulent energy is non-zero and since the velocity fluctuations rely on the pressure fluctuations, K has to be accounted for in the model for a v and B v . We first give a v such that the instantaneous pressures tend to the mean pressure P(e, v) R :

a v = p p R τ v ,
where p = P(e, v) -P(e, v) R and with τ v a positive statistically-constant time scale. This closure obviously ensures the conservation of the volume as exposed in section 2.

The resulting equations ( 20 

∂ ∂t (f e,v (t; e * , v * )) = - ∂ ∂v * (v * (a v ) * f e,v (t; e * , v * )) + ∂ 2 ∂v * 2 1 2 (v * (B v ) * ) 2 f e,v (t; e * , v * ) + ∂ 2 ∂e * 2 1 2 (e * (γ -1)(B v ) * ) 2 f e,v (t; e * , v * ) . ( 22 
)
This equation yields to the following ODE, which describes the time evolution of the average value of any function G depending on the internal energy and the volume :

d dt ρG(e, v) R = ρva v ∂ ∂v (G(e, v)) R + ρ 1 2 (vB v ) 2 ∂ 2 ∂v 2 (G(e, v)) R + ρ 1 2 (e(γ -1)B v ) 2 ∂ 2 ∂e 2 (G(e, v)) R . ( 23 
)
The mean density ρ R and the mean internal energy e F are then constant :

d dt ρ R = 0 and d dt e F = 0.
These results are straight consequences of closure (19). Thanks to the perfect gas EOS, follows that the mean pressure p R is also a constant :

d dt p R = 0,
and since the mass m is constant and uniform we also have :

d dt v F = 0.
Hence the time evolution of the mean behaviour of the thermodynamics depicted by ( 20) and ( 21) is straightforward.

Using the equation ( 23) (or the Fokker-Plank equation for PDF of the pressure of the Appendix 1), the time evolution of the pressure variance can be found. It reads :

d dt (p ) 2 R = - 2 τ v (p ) 2 R + γ (pB v ) 2 R - 1 τ v p R (p ) 3 R . ( 24 
)
For the sake of simplicity, we then assume that B v is deterministic and belongs to L(R + ). Hence the equation ( 24) can be simplified in :

d dt (p ) 2 R = γ(B v ) 2 - 2 τ v (p ) 2 R + γ(B v ) 2 p R 2 - 1 τ v p R (p ) 3 R . ( 25 
)
As a consequence, the time evolution of the variance (p ) 2 R depends on : B v (t), p R (0) and (p ) 3 R (t). Considering a Cauchy problem based on equation (25), a necessary condition to get a bounded solution is that (B v ) 2 and (p ) 3 R must belong to L 1 (R + ). In that case, if (B v ) 2 and (p ) 3 R are continuous, there exists a unique solution to the Cauchy problem.

The difficulty arising in the analysis of equation ( 25) is related to (p ) 3 R . An equation on (p ) 3 R could be exhibited, but the latter would depend on (p ) 4 R , and so on. In fact, the pressure behaviour should be analysed through the Fokker-Planck equation for the PDF of the pressure (which is available in appendix 1). This remains a very difficult task, so we perform now a partial analysis by truncating the PDF : we assume that (p ) 3 R is equal to zero in (25), so that it now reads :

d dt (p ) 2 R = γ(B v ) 2 - 2 τ v (p ) 2 R + γ(B v ) 2 p R 2 . ( 26 
)
The equation ( 26) has a classical form since the mean pressure is constant. The term B v make the instantaneous pressures deviate from the equilibrium, and it appears as positive contribution in the equation for the pressure variance. We choose a simple model for B v which depends on the turbulent kinetic energy :

(B v ) 2 = 1 τ d K K(0)
,

where τ d is a positive statistically-constant time scale. When considering an homogeneous box, the dynamical model depicted in section 3, and the corresponding equation for the turbulent kinetic energy (17), lead to the exponential decrease in time of K to zero. Hence, if 1/τ d belongs to L ∞ (R + ), the expression of (B v ) 2 given above belongs to L 1 (R + ). Thus, the solution of the Cauchy problem based on (26) for an homogeneous box reaches a stationnary state such that :

lim t→∞ B v = 0 and lim t→∞ (p ) 2 R = 0.
In order to ensure a stable behaviour of the pressure variance even for small times, one can choose τ v and τ d such that first term of the right-hand-side of (26) remains positive for every times, that is :

γ τ d K K(0) < 2 τ v .
Finally, the complete equations ( 3) and ( 4) now read :

dv(t) = v(t) ∇ x • u R + p p R τ v dt + v(t) 1 τ d K(t) K(0) dω v t , ( 27 
)
de(t) = e(t) -(γ -1)∇ x • u R - 1 ρ R e F ∇ x • u p R dt + d dt -(γ -1)e(t) 1 τ d K K(0) dω v t . ( 28 
)
These equations ensure the positivity of the volume and the internal energy, provided that the spatial derative terms remain bounded.

Conclusion

The stochastic model proposed above remains simple and can only deal with perfect gas equation of states. Nonetheless, the system of PDEs governing the time-space evolution of the mean-fields for the density, momentum, total energy and turbulent kinetic energy [START_REF] Louis | Modélisation numérique de la turbulence compressible[END_REF] corresponds to an Euler-type system of equation supplemented by an equation for the turbulent kinetic energy. It is an important point to be noted that this mean-field model is realizable. Moreover, the stochastic model naturally ensures the positivity of the density and the energy.

Hence, the stochastic model owns mathematical properties that are necessary conditions to get physical relevance, and that allow to build stable and robust numerical schemes [START_REF] Pope | Turbulent Flows[END_REF]. Since the complete behaviour of the model can not be studied analytically, it seems necessary to pursue this analysis using numerical simulations.

The results of the present work could be extended to two-phase flow stochastic models, (see for instance the model proposed in [START_REF] Hurisse | Modélisation stochastique d'écoulements diphasiques avec changement de phase[END_REF]) where the thermodynamical model was left out. The extension to more complex equations of state remains a tricky question since the linearity of the perfect gas equation of state helps in obtaining a complete model in closed form. This point is important for industrial applications with water. The turbulence model is quite simple, but more sophisticated models could be considered. In fact, the difficulty arises in determining a compressible turbulence mean-field model which is physically relevant [START_REF] Audebert | Contribution à l' analyse de l'interaction onde de choc -couche limite[END_REF].

An effort could be made to build a stochastic model without the use of a reference mean-field model ; the latter would then stem directly from the stochatic model as a consequence of the different modelling choices. Nevertheless, the main difficulty remains : the modelling of turbulence for compressible flows lacks of theoritical and physical works. As an example, the different time scales involved in the model have not been specified. This specification requires a sharp physical knowledge of the compressible turbulent flows.

6 Appendix 1 : The fokker-Planck equation for the pressure We consider the thermodynamical sub-system of section 4, composed of the two equations for the volume and the internal energy (20)-( 21) with the closures of section 4 :

a v (p) = p -p R p R τ v .
For the term B v , we only assume that it belongs to L 2 (R + ). The equation for the instantaneous pressure then reads :

dp(t) = -p(t) (a v -γ(B v ) 2 )dt + γB v dω v t . ( 29 
)
The Fokker-Planck equation for the PDF of the process {e(t), p(t)} can be written on the sample-space :

∂ ∂t (f e,p (t; e * , p * )) + ∂ ∂p * -p * a v (p * ) -γ(B v (t) 2 f e,p (t; e * , p * ) = ∂ 2 ∂p * 2 [p * γB v (t)] 2 f e,p (t; e * , p * ) + ∂ 2 ∂e * 2 [e * (γ -1)B v (t)]
2 f e,p (t; e * , p * ) .

(

) 30 
The PDF f p stands for the PDF for the pressure, obtained by averaging f e,p on the ernergy :

f p (t; p * ) = f e,p (t; e * , p * )de * .
We assume that f e,p (t; e * , p * ) tends to zero when e * tends to zero or to infinity. Hence, integrating (30) over e * yields the following Fokker-Planck equation for the PDF f p : 

∂ ∂t (f p (t; p * )) + ∂ ∂p * -p * a v (p * ) -γ(B v (t)) 2 f p (t; p * ) = ∂ 2 ∂p * 2 [p * γB v (t)] 2 f p (t; p * ) , (31) 
with :

A(t, p * ) = -p * a v (p * ) -γ(B v (t)) 2 + 4 [γB v (t)] 2 , B(t, p * ) = 2 [γB v (t)] 2 + ∂ ∂p * (p * a v (p * )) , C(t, p * ) = [p * γB v (t)] 2 .
The term involving A represents the convection, the term involving B is a source term and since C is positive it corresponds to a diffusion term. This diffusion terms tends to spread f p over the sample-space. For B v = 0, the coefficients above are :

A(t, p * ) = -p * a v (p * ) = -p * (p * -p R ) 1 τ p R , B(t, p * ) = ∂ ∂p * (p * a v (p * )) = p * - p R 2 2 τ p R , C(t, p * ) = 0.
We can then make a quantitative analysis of the evolution of the corresponding PDF. The convection term A tends to concentrate the PDF at p * = p R (note that the pole p * = 0 is repulsive). The source term B increases the PDF on the interval p * ∈ [ p R , +∞[ and decreases the PDF on p * ∈]0, p R ]. Since the diffusion term is null, the PDF is not spread. Hence, the PDF tends to a Dirac function located at p * = p R .

7 Appendix 2 : Equations for the co-variance terms : application to the Reynolds stress tensor This appendix presents an example of calculus of the time variation of co-variance terms. The formulae obtained are then applied to the Reynold stress tensor.

Let us assume that φ and ψ are two variables associated to a particle with an instantaneous velocity u. The SDEs for this variables are then written : dφ = A φ dt + B φ dω φ , and dψ = A ψ dt + B ψ dω ψ , where we assume that dω φ dω ψ F ∼ dt δ(dω φ , dω ψ ), with δ(dω φ , dω ψ ) equal to zero if the processes dω φ and dω ψ are uncorrelated and δ(dω φ , dω ψ ) equal to one otherwise. The fluctuation φ" are defined with respect to the average of φ F : φ = φ F + φ". For an average quantity, say φ F , the derivative d φ F corresponds to the derivative operator :

d φ F = dt ∂ ∂t φ F + u • ∇ x φ F ,
where the convection velocity is the instantaneous velocity u, and not an average value. It represents the derivative of the average of φ along the instantaneous trajectory of the particle. We can thus define the SDE for the fluctuation :

dφ" = A φ dt + B φ dω φ -dt ∂ ∂t φ F + u • ∇ x φ F . ( 33 
)
Thanks to equation (10), we have :

∂ ∂t α ρ R φ F + ∇ x • α ρ R φu F = α ρ R A φ F , ( 34 
)
∂ ∂t α ρ R + ∇ x • α ρ R u F = 0, (35) 
By using the mean mass equation (35), equation ( 34) is equivalent to :

∂ ∂t φ F + u F • ∇ x φ F = A φ F - 1 α ρ R ∇ x • α ρ R φ"u" F , (36) 
thus equation (33) reads :

dφ" = (A φ )" -1

α ρ R ∇ x • α ρ R φ"u" F -u" • ∇ x φ F dt + B φ dω φ . ( 37 
)
From the Itô's formula, we can find the SDE for the product of the fluctuations. If the second order terms in o(dt 2 ) are omitted, the latter reads :

d(φ"ψ") = ψ" (A φ )" - 1 α ρ R ∇ x • α ρ R φ"u" F -u" • ∇ x φ F dt + ψ"B φ dω φ +φ" (A ψ )" - 1 α ρ R ∇ x • α ρ R ψ"u" F -u" • ∇ x ψ F dt + φ"B ψ dω ψ + B φ B ψ dω ψ dω φ .
Since it has been assumed that dω φ dω ψ F ∼ dt δ(dω φ , ω ψ ), the last term of the SDE is involved in the average behaviour of φ"ψ". So that, thanks to the results of section 2, we get the following PDE for the co-variance φ"ψ" F :

∂ ∂t α ρ R φ"ψ" F + ∇ x • α ρ R uφ"ψ" F +α ρ R u"ψ" F • ∇ x φ F + u"φ" F • ∇ x ψ F = α ρ R (A φ )"ψ" F + (A ψ )"φ" F + B φ B ψ F δ(dω φ , dω ψ ) . ( 38 
)
Let us now apply these results to the Reynolds stress tensor u" ⊗ u" F . By applying the equation (38) for φ = u i and ψ = u j , we get an equation for R ij = u i "u j " F :

ρ R ∂ ∂t (R ij ) + u F • ∇ x (R ij ) + u"u j " F • ∇ x u i F + u"u i " F • ∇ x u j F +∇ x • ρ R u"u i "u j " F = ρ R (A u i )"u j " F + (A u i )"u j " F + B u i B u j F δ ij ,

  )-(21) leads to McKean SDEs for which very few theoritical results exist. The McKean equation for the joint PDF f e,v (t; e * , v * ) for the couple of variables (e * , v * ) is :
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where A u = -Π + a u and B u j = B u . We obviously have :

The turbulent kinetic energy if defined as half the sum of the trace of the Reynolds stress tensor :

Hence, the equation for R ij allows to exhibit the PDE for the evolution of the turbulent kinetic energy used in section 3.