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Abstract. Similarity plays a crucial role in many research fields. Similarity 
serves as an organization principle by which individuals classify objects, form 
concepts. Similarity can be computed at different layers of abstraction: at data 
layer, at type layer or between the two layers (i.e. similarity between data and 
types). In this paper we propose an algorithm context path similarity, which 
captures the degree of similarity in the paths of two elements. In our approach, 
this similarity contributes to determine the structural similarity measure 
between XML schemas, in the domain of schema matching. We essentially 
focus on how to maximize the use of structural information to derive mappings 
between source and target XML schemas. For this, we adapt several existing 
algorithms in many fields, dynamic programming, data integration, and query 
answering to serve computing similarities..  
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1 Introduction 

This Schema matching is a schema manipulation process that takes as input two 
heterogeneous schemas and possibly some auxiliary information, and returns a set of 
dependencies, so called mappings that identify semantically related schema elements 
[13]. In practice, schema matching is done manually by domain experts [12], and it is 
time consuming and error prone. As a result, much effort has been done toward 
automating schema matching process. This is challenging for many fundamental 
reasons. According to [6], schema elements are matched based on their semantics. 
Semantics can be embodied within few information sources including designers, 
schemas, and data instances. Hence schema matching process typically relies on 
purely structure in schema and data instances [5]. Schemas developed for different 
applications are heterogeneous in nature i.e. although the data they describe are 
semantically similar, the structure and the employed syntax may differ significantly 
[1]. To resolve schematic and semantic conflicts, schema matching often relies on 
element names, element datatypes, structure definitions, integrity constraints, and data 
values. However, such clues are often unreliable and incomplete. Schema matching 
cannot be fully automated and thus requires user intervention, it is important that the 
matching process not only do as much as possible automatically but also identify 
when user input is necessary. 
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Contrary to current structural matching algorithms, we emphasize the notion of 
context of an element. The main goal of our works is to propose a novel approach for 
structural matching based on the notion of structural node context. The context of an 
element is given by combination of its root context, its intermediate context and its 
leaf context. In this paper we propose a structural algorithm that can be used for 
computing such context. For this, we introduce the notion of path comparison using 
algorithms from dynamic programming and path query answering.  

The rest of paper is organized as follows. In section 2, we summarize some 
examples of recent schema matching algorithms that incorporate XML structural 
matching. Section 3 gives a brief overview of the features of XML schemas, and our 
formal model for XML schema (XML Schema graph). This graph is used in the 
matching process for the measure of node context similarity. Section 4 presents the 
core of this paper. We detail the different metrics necessary for computing the path 
similarity. After these similarities is used to determine the similarities between 
contexts for such elements. Section 5 concludes the paper. 

2 Related Work 

Schema matching is not a recent problem for the community of databases. [4] 
developed the ARTEMIS system employ rules that compute the similarity between 
schemas as a weighted sum of similarities of elements names, data types, and 
structural position. With the growing use of XML, several matching tools take into 
consideration the hierarchical and deal essentially with DTDs. In the following, we 
present some examples of recent schema matching algorithms that incorporate XML 
structural matching. 

We do not present here of exhaustive manner all existing systems for schema 
matching, but those that appeared us interesting for the problematic that they raise or 
for the considered solutions. 

2.1 Cupid 

    Cupid is a hybrid matcher combining several matching [10]. It is intended to be 
generic across data models and has been applied to XML and relational data sources. 
Cupid is based on schema comparison without the use of instances. Despite these 
extensions, Cupid does not exploit all XML schema features such as substitution 
groups, abstract types, etc that could give a significant clue in solving XML schema 
matching problem. 

2.2 LSD 

The LSD (Learning Source Description) system [5] uses machine-learning 
techniques to match a new data source against a previously defined global schema. 
LSD is based on the combination of several match result obtained by independent 
learners. This approach presents several limitations since it does not fully exploit 



XML structure. Besides, the only structural relationship considered within the LSD 
system is the parent-child relationship, which is not sufficient to describe the context 
of elements to matcher. 

2.3 Similarity Flooding 

In [11], authors present a structure matching algorithm called Similarity Flooding 
(SF). The SF algorithm is implemented as part of a generic schema manipulation tool 
that supports, in addition to structural SF matcher, a name matcher, schema converters 
and a number of filters of choosing the best match candidates from the list of ranked 
map pairs returned by the SF algorithm. SF ignores all type of constraints while 
performing structural matching. Constraints like typing and integrity constraints are 
used at the end of the process to filter mapping pairs with the help of user. 

2.4 SemInt 

     SemInt [8], [9] represents a hybrid approach exploiting both schema and 
instance information to identify corresponding attributes between relational schemas. 
The schema-level constraints, such as data type and key constraints are derived from 
the DBMS catalog. Instance data are exploited to obtain further information, such as 
actual value distributions, numerical averages, etc. For each attribute, SemInt 
determines a signature consisting of values in the interval [0,1] for all involved 
matching criteria. The signatures are used first to cluster similar attributes from the 
first schema and then to find the best matching cluster for attributes from the second 
schema. The clustering and classification process is performed using neural networks 
with an automatic training, hereby limiting pre-match effort. The match result consists 
of clusters of similar attributes from both input schemas, leading to m:n local and 
global match cardinality. 

3 Data Model 

As we already mention in section 2, up to now few existent XML schema matching 
algorithms focus on structural matching exploiting all W3C XML schemas [14] 
features. In this section, we propose an abstract model that serves as a foundation to 
represent conceptually W3C XML schemas and potentially other schema languages. 
We model XML schemas as a directed labelled graph with constraint sets; so-called 
schema graph. Schema graph consists of series of nodes that are connected to each 
other through directed labelled links. In addition, constraints can be defined over 
nodes and links. In [15], we detail the proposed model for XML schemas in order to 
define a formal framework for solving matching problem. Figure 1 illustrates a 
schema graph example. 



 

3.1 Features of XML Schema 

The XML schema language incorporates the following features. 
The structure of an XML document is defined in an XML schema in terms of 

predefined hierarchical relationships between XML elements and/or attributes to 
which specific constraints concerning ordering, cardinality and participation are 
imposed (e.g., xs:element, xs:attribute, xs:sequence, xs:all, xs:choice, xs:minOccurs, 
xs:use, etc.). 

The content of an XML document as found in elements or attributes can be 
restricted in an XML schema by defining it to take values from a domain of a 
predefined or user-defined datatype (e.g., xs:string, xs:simpleType, xs:restriction, 
xs:union, etc.).  

Semantic invariants can be enforced in XML schema by imposing referential 
integrity or uniqueness constraints (e.g., xs:key, xs:keyref, xs:unique, etc.).  

Features supporting modularity and reusability in XML schema enable rapid 
schema development and reuse of, possibly adjusted, predefined schemas (e.g., 
xs:import, xs:include, xs:group, xs:extension, etc.). 

Finally, documentation features facilitate human and machine understanding of an 
XML schema (e.g., xs:annotation, xs:documentation, etc.). 

3.2 XML Schema Graph 

 
 

Figure 1: An EXS schema graph example. 

Schema graph nodes 
 
We categorize nodes into atomic nodes and complex nodes. Atomic nodes have no 

edges emanating from them. They are the leaf nodes in the schema graph. Complex 
nodes are the internal nodes in the schema graph. Each atomic node has a simple 



content, which is either an atomic value from the domain of basic data types (e.g., 
string, integer, date, etc.). The content of a complex node, called complex content, 
refers to some other nodes through directed labeled edges. In figure 1, nodes 
laboratory and library are complex nodes, while nodes name and location are atomic 
nodes. 

Schema graph edges 
 
Each edge in the schema graph links two nodes capturing the structural aspects of 

XML schemas. We distinguish two kinds of edges: (i) implicit edges (e.g. the 
parent/child relationships between elements), they are depicted with a solid line 
edges. (ii) explicit edges defined in XML schema by means of xs:key and xs:keyref 
pairs or similar mechanisms . They are represented using a pair of reverse parallel 
edges (generally bidirectional, specifying that both nodes are conceptually at the same 
level: association relationship). In figure 1, an implicit edge links the two nodes 
laboratory and library. An explicit edge between journal and article specifies a 
key/keyref relation. 

Schema graph constraints 
 
Different constraints can be specified with XML Schema language. These 

constraints can be defined over both nodes and edges. Typical constraints over an 
edge are cardinality constraints. Cardinality constraints over a containment edge 
specify the cardinality of a child with respect to its parent. Cardinality constraints 
over an implicit edge imply for example an optional or mandatory attribute for a 
given node. The default cardinality specification is [1,1]. We also distinguish three 
kinds of constraints over a set of edges: (i) ordered composition, defined for a set of 
containment relationships and used for modelling XML Schema “sequences” and all 
mechanisms; (ii) exclusive disjunction, used for modelling the XML Schema choice 
and applied to containment edges; and (iii) referential constraint, used to model XML 
schema referential constraints. Referential constraints are applied to association 
edges. Other constraints are furthermore defined over nodes. Examples include 
uniqueness and domain constraints. Domain constraints are very broad. They 
essentially concern the content of atomic nodes. They can restrict the legal range of 
numerical values by giving the maximal/minimal values; limit the length of string 
values, or constrain the patterns of string values. 

Node Context definition 
 
Our aim of structural matching is the comparison of the structural contexts in 

which nodes in the schema graph appear. Thus, we need a precise definition on what 
we mean by node context. We distinguish three kinds of node contexts depending on 
its position in the schema graph: 

The root-context: of a node n is defined as the path (going through containment 
edges) having n as its ending node and the root of the schema graph as its starting 
node. Example, the root-context of node publication in figure 1 is given by the path 



 

node laboratory/publication indicating that the node publication describes the 
publications belonging to a laboratory. The ancestor-context of the root node is empty 
and it is assigned a null value. 

The intermediate-context: of a node n includes its attributes and its immediate 
subelements. The intermediate-context of a node reflects its basic structure and its 
local composition. The intermediate-context of an atomic node is assigned a null 
value. Example, the intermediate-context of node publication in the schema graph of 
figure 1 is given by (article, journal). The intermediate-context of an atomic node is 
assigned a null value. 

The leaf-context: leaves XML documents represent the atomic data that the 
document describes. The leaf-context of a node n includes the leaves of the subtrees 
rooted at n. Example; the leaf-context of node publication in the schema graph of 
figure 1 is given by (street, city, zip, num, name, editor). The leaf-context of an 
atomic node is assigned a null value. 

The context of a node is defined as the union of its root-context, its intermediate-
context and its leaf-context. Two nodes are structurally similar if they have similar 
contexts. To measure the structural similarity between two nodes, we compute 
respectively the similarity of their root, intermediate and leaf contexts [16]. The 
notion of context similarity has been used in Cupid and SF; however none of them 
relies on the three kinds of contexts. To measure the structural similarity between two 
nodes, we compute respectively the similarity of their root, intermediate and leaf 
contexts. In the following we describe the basis needed to compute such similarity. 

4 Path Similarity measure 

Structural node context defined in the previous section relies on the notion of path. 
In order to compare two contexts, we essentially need to compare two paths. Path 
comparison has been widely used in answering conjunctive queries.  

Let us consider two paths ph1〈G1, sequence1〉=〈G1, ni1,…nim〉 and ph2〈G2, 
sequence2〉=〈G2, nj2,…njl〉. A mapping between ph1 and ph2 is an assignment 
functionϕ: ph1→ ph2 that associates a node in ph1 to a node in ph2. An assignment ϕ is 
a strong matching if it satisfies the two following conditions: 

- Root constraint: Source nodes in ph1 and ph2 are similar. Two nodes are 
considered similar if their similarity exceeds a specified threshold with respect to a 
predefined function. 

- Edge constraint: For directed edge μ→υ, where μ,υ ∈〈G1, ni1,…nim〉, there exist d 
directed edge μ'→υ', where μ',υ' ∈〈G2, nj2,…njl〉 such that nodes μ, μ' are similar nodes 
and υ, υ' are similar nodes. 

The definition of strong matching reminds us the classical view of a conjunctive 
query and an answer to it. Under such conditions paths such as author/publication and 
publication/author are no matched however they convey same semantics. Other 
unmatchable paths under such conditions are author/contact/address and 
author/address. Based on such observations, it is more appropriate to go beyond the 
strong matching by relaxing the above conditions. One can think of several ways of 
relaxing strong matching: for example allow matching paths even when nodes are not 



embedded in a same manner or in the same order. Several works in query answering 
have proposed relaxation issues to approximate answering of queries (including path 
queries) [2]. Inspired by [3] work in answering XML queries we made the following 
relaxations: 

- Root constraint relaxation: Paths can be matched even if their source nodes do 
not match, for example author/publication may match 
staff/authors/author/publication. 

- Edge constraint relaxation: Paths can be matched even if their nodes appear in 
different order author/publication and publication/author. Paths can also be matched 
even if there are additional nodes within the path (e.g. author/contact/address match 
author/address) meaning that the child-parent edge constraint is relaxed into 
ancestor-child constraint. 

Relaxations may give raise to multiple match candidates. For this reason, authors 
in [3] define a path resemblance measure between a given path query Q and a path in 
the source tree. Such measure is used for ranking match candidates. We extend these 
definitions by allowing two elements within each path to be matched, even if they are 
not identical but their linguistic similarity exceeds a fixed threshold. We define a path 
resemblance measure, denoted pr, which determines the similarity between two given 
paths. The values of phSim range between 0 and 1. Match candidates can then be 
ranked according to pr measure. Consider two paths ph1 and ph2 being matched 
(when ph1 is a target path and ph2 is a source path), ph2 is the best match candidate for 
ph1 if it fulfills the following criteria: 
 The path ph2 includes most of the nodes of ph1 in the right order. 
 The occurrences of the ph1 nodes are closer to the beginning of ph2 than to the 

tail, meaning that the optimal matching corresponds to the leftmost alignment. 
 The occurrences of the ph1 nodes in ph2 are close to each other, which mean that 

the minimums of intermediate non-matched nodes in ph2 are desired. 
 If several match candidates that match exactly the same nodes in ph1 exist, ph2 is 

the shortest one.  
To calculate phSim (ph1, ph2), we first represent each path as a set of string 

elements; each element represents a node name (e.g., the path Author/Publication is a 
string composed two string elements Author and Publication). We used the four 
scores established in [3] and borrowed from dynamic programming for string 
comparison; each of which corresponds to one of the above criteria. 

4.1 Longest Common Subsequence 

To answer the first criterion, we use a classical dynamic programming algorithm in 
order to compute the Longest Common Subsequence (LCS) [7], between ph1 and ph2. 
More the length of the longest common subsequence is high; more ph2 includes ph1 
nodes in the right order. 

A word w is a longest common subsequence of x and y if w is a subsequence of x, a 
subsequence of y and its length is maximal. Two words x and y can have several 
different longest common subsequences. The set of the longest common subsequences 
of x and y is denoted by LCS(x, y). The (unique) length of the elements of LCS(x, y) is 
denoted by lcs(x, y). For comparing two words x and y of size m and n respectively, 



 

we reuse a classical dynamic programming algorithm that relies on two-dimensional 
table T[0..m, 0..n]. We then exhibit the longest common subsequence tracing back in 
table from T[m-1, n-1] to T[-1, -1]. Finally, to obtain a score in [0,1], we normalize 
the length of the longest common subsequence by the length of target path ph1 as 
following: 

lcsn(ph1, ph2) =|lcs(ph1, ph2)|/| ph1 | 
 
Example. Consider ph1 to be publication/book/author and ph2 as 

author/publication/book, the longest common subsequence between the two paths as 
publication/book, lcs(ph1, ph2)|=2, thus lcsn=2/3=0.66. 

4.2 Average positioning 

To answer the second criterion, we first compute, according to lcs (ph1, ph2) what 
would be the average positioning of the optimal matching of ph1 within ph2. The 
optimal matching is the match that starts on the first element of ph1 and continues 
without gaps. Consider ph1 = author/publication/book and ph2 = 
staff/author/publication/book, since the optimal matching corresponds to the leftmost 
alignment, the average optimal position, denoted optPos is (1+2+3)/3 =2. We then 
evaluate using the LCS algorithm, the actual average positioning (avgPos). avgPos 
takes the value 3 in our example ((2+3+4)/3). Last, we compute pos coefficient 
indicating how far the actual positioning is from the optimal one, using the following 
formula:  

 
pos(ph1, ph2) = 1 – [(avgPos – optPos) / (| ph2 |- 2 x optPos + 1)] 

4.3 LCS with minimum gaps 

To answer the third criterion, we use another version of the LCS algorithm in order 
to capture the LCS alignment with minimum gaps. If ph1=person/address and ph2= 
person/contact/address, we count a gap of length 1 between the two paths, thus g =1. 
To ensure that we obtain a score inferior to 1, we normalize the obtained gap using 
the following formula: 

 
gap(ph1, ph2) = g/(g + lcs(ph1, ph2)) 

4.4 Length difference 

Finally, in order to give higher values to source paths whose length is similar to the 
target path, we suggest to compute the length difference ld between a source path ph1 
and lcs(ph1, ph2) normalized by the length of ph1 as follow:  

 
ld(ph1, ph2)= (|ph2| -  lcs(ph1, ph2)) / | ph2| 
 



To obtain the path similarity score, all the above metrics are combined as follow: 
phSim (ph1, ph2) = α lcsn (ph1, ph2) + ß pos(ph1, ph2) – λ gap(ph1, ph2) – δ ld(ph1, 

ph2) 
 
Where α, ß, λ and δ are positive parameters ranging between 0 and 1 that represent 

the comparative importance of each factor. They can be tuned but must satisfy α + ß 
= 1, so that phSim(ph1, ph2)=1 in case of a perfect match, and λ and δ must be chosen 
small enough so that pr cannot take a negative value. The following algorithm 
summarizes the computation of path similarity measure using the above formulas. 

 
1. Input: ph1, ph2, α, β, λ, δ 
2. Outpout: phSim (ph1, ph2) 
3. Begin   
4.            //score 1: computation of the longest common  subsequence 
5.            lcs(ph1, ph2) ← TRACE-BACK (LSC(ph1, ph2) ) 
6.            lcsn(ph1, ph2) ← lcs(ph1, ph2) /ph2 
7.            // score 2: computation of average positioning 
8. pos(ph1, ph2)=1 – [(avgPos – optPos) /  (ph2 –  2× optPos + 1)] 
9.             //score 3: computation of  LCS with minimum gaps 
10. gap(ph1, ph2)= g /( g + lcs(ph1, ph2)) 
11.           //score 4: computation of length difference 
12. ld(ph1, ph2)=( ph2 – lsc(ph1, ph2)) /ph2 
13           //computation of path similarity 
14. phSim(ph1, ph2)= α lsc(ph1, ph2) + β pos(ph1, ph2)  – λ gap(ph1, ph2) – δ ld(ph1, ph2) 
15. return phSim   
16. Fin. 
 

Example. Let ph1 = laboratory/ author/ publication/book/description/title/subtitle 
and ph2= author/book/title.  

We have lcs(ph1, ph2) = (2+3+4)/3 = 3,  
avgPos = (2+4+6)/3 = 4, g =2, and                 ld= 7-3/7=4/7.  
Taking α, ß, λ and δ and d to respectively 0.75, 0.25, 0.25, 0.2. Note though that 

more extensive experimentation is needed to decide on the ideal parameters. We 
obtain a path similarity score equal to 0.68.  

5 Conclusion 

In this paper we have interested on schema matching, and focused on the notion 
of path context for comparing the structural context similarity. The context element in 
our approach is given by the combination of three structural contexts. 

We began by an analysis of problems involved in the matching, and we proposed 
a new solution taking into account of heterogeneity of the schema sources. We 
outlined the limitations of current solutions through the study of Cupid and Similarity 
Flooding systems and SemInt. Then we proposed a structural matching technique that 
considers the context of schemas nodes (defined by their roots, intermediates and 
leafs contexts in schema graph). By the way, we suggest a simple algorithm based on 
the previous ideas and exploit the three types of contexts for capturing the similarity 



 

between elements of schema graph. For this we combine a classical dynamic 
programming algorithm and four scores established: The longest common 
subsequence, the average positioning, LCS with gaps and length difference to serves 
computing this path similarity measure.  

For future work, we would like to improve the matching process, while taking 
into account the optimisation of the process in order to determine a set of semantic 
equivalences between schemas (source and target). That will facilitate the generation 
of operators based on the primitive of transformations between elements of XML 
schemas.  
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