
HAL Id: hal-03430686
https://hal.science/hal-03430686v1

Submitted on 16 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Path Similarity Relevant to XML Schema
Matching

Amar Zerdazi, Myriam Lamolle

To cite this version:
Amar Zerdazi, Myriam Lamolle. Computing Path Similarity Relevant to XML Schema Matching. On
the Move to Meaningful Internet Systems: OTM 2008 Workshops, 5333, Springer Berlin Heidelberg,
pp.66-75, 2008, Lecture Notes in Computer Science, �10.1007/978-3-540-88875-8_25�. �hal-03430686�

https://hal.science/hal-03430686v1
https://hal.archives-ouvertes.fr

Computing Path Similarity relevant to XML Schema
Matching

Amar ZERDAZI, Myriam Lamolle
LINC – Laboratory of Paris VIII

IUT of Montreuil – 140, rue de la Nouvelle France 93000 - Montreuil, France

{a.zerdazi, m.lamolle}@iut.univ-paris8.fr

Abstract. Similarity plays a crucial role in many research fields. Similarity
serves as an organization principle by which individuals classify objects, form
concepts. Similarity can be computed at different layers of abstraction: at data
layer, at type layer or between the two layers (i.e. similarity between data and
types). In this paper we propose an algorithm context path similarity, which
captures the degree of similarity in the paths of two elements. In our approach,
this similarity contributes to determine the structural similarity measure
between XML schemas, in the domain of schema matching. We essentially
focus on how to maximize the use of structural information to derive mappings
between source and target XML schemas. For this, we adapt several existing
algorithms in many fields, dynamic programming, data integration, and query
answering to serve computing similarities..

Keywords: Node context, path similarity, schema matching, XML schema.

1 Introduction

This Schema matching is a schema manipulation process that takes as input two
heterogeneous schemas and possibly some auxiliary information, and returns a set of
dependencies, so called mappings that identify semantically related schema elements
[13]. In practice, schema matching is done manually by domain experts [12], and it is
time consuming and error prone. As a result, much effort has been done toward
automating schema matching process. This is challenging for many fundamental
reasons. According to [6], schema elements are matched based on their semantics.
Semantics can be embodied within few information sources including designers,
schemas, and data instances. Hence schema matching process typically relies on
purely structure in schema and data instances [5]. Schemas developed for different
applications are heterogeneous in nature i.e. although the data they describe are
semantically similar, the structure and the employed syntax may differ significantly
[1]. To resolve schematic and semantic conflicts, schema matching often relies on
element names, element datatypes, structure definitions, integrity constraints, and data
values. However, such clues are often unreliable and incomplete. Schema matching
cannot be fully automated and thus requires user intervention, it is important that the
matching process not only do as much as possible automatically but also identify
when user input is necessary.

mailto:@iut.univ-paris8.fr

Contrary to current structural matching algorithms, we emphasize the notion of
context of an element. The main goal of our works is to propose a novel approach for
structural matching based on the notion of structural node context. The context of an
element is given by combination of its root context, its intermediate context and its
leaf context. In this paper we propose a structural algorithm that can be used for
computing such context. For this, we introduce the notion of path comparison using
algorithms from dynamic programming and path query answering.

The rest of paper is organized as follows. In section 2, we summarize some
examples of recent schema matching algorithms that incorporate XML structural
matching. Section 3 gives a brief overview of the features of XML schemas, and our
formal model for XML schema (XML Schema graph). This graph is used in the
matching process for the measure of node context similarity. Section 4 presents the
core of this paper. We detail the different metrics necessary for computing the path
similarity. After these similarities is used to determine the similarities between
contexts for such elements. Section 5 concludes the paper.

2 Related Work

Schema matching is not a recent problem for the community of databases. [4]
developed the ARTEMIS system employ rules that compute the similarity between
schemas as a weighted sum of similarities of elements names, data types, and
structural position. With the growing use of XML, several matching tools take into
consideration the hierarchical and deal essentially with DTDs. In the following, we
present some examples of recent schema matching algorithms that incorporate XML
structural matching.

We do not present here of exhaustive manner all existing systems for schema
matching, but those that appeared us interesting for the problematic that they raise or
for the considered solutions.

2.1 Cupid

 Cupid is a hybrid matcher combining several matching [10]. It is intended to be
generic across data models and has been applied to XML and relational data sources.
Cupid is based on schema comparison without the use of instances. Despite these
extensions, Cupid does not exploit all XML schema features such as substitution
groups, abstract types, etc that could give a significant clue in solving XML schema
matching problem.

2.2 LSD

The LSD (Learning Source Description) system [5] uses machine-learning
techniques to match a new data source against a previously defined global schema.
LSD is based on the combination of several match result obtained by independent
learners. This approach presents several limitations since it does not fully exploit

XML structure. Besides, the only structural relationship considered within the LSD
system is the parent-child relationship, which is not sufficient to describe the context
of elements to matcher.

2.3 Similarity Flooding

In [11], authors present a structure matching algorithm called Similarity Flooding
(SF). The SF algorithm is implemented as part of a generic schema manipulation tool
that supports, in addition to structural SF matcher, a name matcher, schema converters
and a number of filters of choosing the best match candidates from the list of ranked
map pairs returned by the SF algorithm. SF ignores all type of constraints while
performing structural matching. Constraints like typing and integrity constraints are
used at the end of the process to filter mapping pairs with the help of user.

2.4 SemInt

 SemInt [8], [9] represents a hybrid approach exploiting both schema and
instance information to identify corresponding attributes between relational schemas.
The schema-level constraints, such as data type and key constraints are derived from
the DBMS catalog. Instance data are exploited to obtain further information, such as
actual value distributions, numerical averages, etc. For each attribute, SemInt
determines a signature consisting of values in the interval [0,1] for all involved
matching criteria. The signatures are used first to cluster similar attributes from the
first schema and then to find the best matching cluster for attributes from the second
schema. The clustering and classification process is performed using neural networks
with an automatic training, hereby limiting pre-match effort. The match result consists
of clusters of similar attributes from both input schemas, leading to m:n local and
global match cardinality.

3 Data Model

As we already mention in section 2, up to now few existent XML schema matching
algorithms focus on structural matching exploiting all W3C XML schemas [14]
features. In this section, we propose an abstract model that serves as a foundation to
represent conceptually W3C XML schemas and potentially other schema languages.
We model XML schemas as a directed labelled graph with constraint sets; so-called
schema graph. Schema graph consists of series of nodes that are connected to each
other through directed labelled links. In addition, constraints can be defined over
nodes and links. In [15], we detail the proposed model for XML schemas in order to
define a formal framework for solving matching problem. Figure 1 illustrates a
schema graph example.

3.1 Features of XML Schema

The XML schema language incorporates the following features.
The structure of an XML document is defined in an XML schema in terms of

predefined hierarchical relationships between XML elements and/or attributes to
which specific constraints concerning ordering, cardinality and participation are
imposed (e.g., xs:element, xs:attribute, xs:sequence, xs:all, xs:choice, xs:minOccurs,
xs:use, etc.).

The content of an XML document as found in elements or attributes can be
restricted in an XML schema by defining it to take values from a domain of a
predefined or user-defined datatype (e.g., xs:string, xs:simpleType, xs:restriction,
xs:union, etc.).

Semantic invariants can be enforced in XML schema by imposing referential
integrity or uniqueness constraints (e.g., xs:key, xs:keyref, xs:unique, etc.).

Features supporting modularity and reusability in XML schema enable rapid
schema development and reuse of, possibly adjusted, predefined schemas (e.g.,
xs:import, xs:include, xs:group, xs:extension, etc.).

Finally, documentation features facilitate human and machine understanding of an
XML schema (e.g., xs:annotation, xs:documentation, etc.).

3.2 XML Schema Graph

Figure 1: An EXS schema graph example.

Schema graph nodes

We categorize nodes into atomic nodes and complex nodes. Atomic nodes have no

edges emanating from them. They are the leaf nodes in the schema graph. Complex
nodes are the internal nodes in the schema graph. Each atomic node has a simple

content, which is either an atomic value from the domain of basic data types (e.g.,
string, integer, date, etc.). The content of a complex node, called complex content,
refers to some other nodes through directed labeled edges. In figure 1, nodes
laboratory and library are complex nodes, while nodes name and location are atomic
nodes.

Schema graph edges

Each edge in the schema graph links two nodes capturing the structural aspects of

XML schemas. We distinguish two kinds of edges: (i) implicit edges (e.g. the
parent/child relationships between elements), they are depicted with a solid line
edges. (ii) explicit edges defined in XML schema by means of xs:key and xs:keyref
pairs or similar mechanisms . They are represented using a pair of reverse parallel
edges (generally bidirectional, specifying that both nodes are conceptually at the same
level: association relationship). In figure 1, an implicit edge links the two nodes
laboratory and library. An explicit edge between journal and article specifies a
key/keyref relation.

Schema graph constraints

Different constraints can be specified with XML Schema language. These

constraints can be defined over both nodes and edges. Typical constraints over an
edge are cardinality constraints. Cardinality constraints over a containment edge
specify the cardinality of a child with respect to its parent. Cardinality constraints
over an implicit edge imply for example an optional or mandatory attribute for a
given node. The default cardinality specification is [1,1]. We also distinguish three
kinds of constraints over a set of edges: (i) ordered composition, defined for a set of
containment relationships and used for modelling XML Schema “sequences” and all
mechanisms; (ii) exclusive disjunction, used for modelling the XML Schema choice
and applied to containment edges; and (iii) referential constraint, used to model XML
schema referential constraints. Referential constraints are applied to association
edges. Other constraints are furthermore defined over nodes. Examples include
uniqueness and domain constraints. Domain constraints are very broad. They
essentially concern the content of atomic nodes. They can restrict the legal range of
numerical values by giving the maximal/minimal values; limit the length of string
values, or constrain the patterns of string values.

Node Context definition

Our aim of structural matching is the comparison of the structural contexts in

which nodes in the schema graph appear. Thus, we need a precise definition on what
we mean by node context. We distinguish three kinds of node contexts depending on
its position in the schema graph:

The root-context: of a node n is defined as the path (going through containment
edges) having n as its ending node and the root of the schema graph as its starting
node. Example, the root-context of node publication in figure 1 is given by the path

node laboratory/publication indicating that the node publication describes the
publications belonging to a laboratory. The ancestor-context of the root node is empty
and it is assigned a null value.

The intermediate-context: of a node n includes its attributes and its immediate
subelements. The intermediate-context of a node reflects its basic structure and its
local composition. The intermediate-context of an atomic node is assigned a null
value. Example, the intermediate-context of node publication in the schema graph of
figure 1 is given by (article, journal). The intermediate-context of an atomic node is
assigned a null value.

The leaf-context: leaves XML documents represent the atomic data that the
document describes. The leaf-context of a node n includes the leaves of the subtrees
rooted at n. Example; the leaf-context of node publication in the schema graph of
figure 1 is given by (street, city, zip, num, name, editor). The leaf-context of an
atomic node is assigned a null value.

The context of a node is defined as the union of its root-context, its intermediate-
context and its leaf-context. Two nodes are structurally similar if they have similar
contexts. To measure the structural similarity between two nodes, we compute
respectively the similarity of their root, intermediate and leaf contexts [16]. The
notion of context similarity has been used in Cupid and SF; however none of them
relies on the three kinds of contexts. To measure the structural similarity between two
nodes, we compute respectively the similarity of their root, intermediate and leaf
contexts. In the following we describe the basis needed to compute such similarity.

4 Path Similarity measure

Structural node context defined in the previous section relies on the notion of path.
In order to compare two contexts, we essentially need to compare two paths. Path
comparison has been widely used in answering conjunctive queries.

Let us consider two paths ph1〈G1, sequence1〉=〈G1, ni1,…nim〉 and ph2〈G2,
sequence2〉=〈G2, nj2,…njl〉. A mapping between ph1 and ph2 is an assignment
functionϕ: ph1→ ph2 that associates a node in ph1 to a node in ph2. An assignment ϕ is
a strong matching if it satisfies the two following conditions:

- Root constraint: Source nodes in ph1 and ph2 are similar. Two nodes are
considered similar if their similarity exceeds a specified threshold with respect to a
predefined function.

- Edge constraint: For directed edge μ→υ, where μ,υ ∈〈G1, ni1,…nim〉, there exist d
directed edge μ'→υ', where μ',υ' ∈〈G2, nj2,…njl〉 such that nodes μ, μ' are similar nodes
and υ, υ' are similar nodes.

The definition of strong matching reminds us the classical view of a conjunctive
query and an answer to it. Under such conditions paths such as author/publication and
publication/author are no matched however they convey same semantics. Other
unmatchable paths under such conditions are author/contact/address and
author/address. Based on such observations, it is more appropriate to go beyond the
strong matching by relaxing the above conditions. One can think of several ways of
relaxing strong matching: for example allow matching paths even when nodes are not

embedded in a same manner or in the same order. Several works in query answering
have proposed relaxation issues to approximate answering of queries (including path
queries) [2]. Inspired by [3] work in answering XML queries we made the following
relaxations:

- Root constraint relaxation: Paths can be matched even if their source nodes do
not match, for example author/publication may match
staff/authors/author/publication.

- Edge constraint relaxation: Paths can be matched even if their nodes appear in
different order author/publication and publication/author. Paths can also be matched
even if there are additional nodes within the path (e.g. author/contact/address match
author/address) meaning that the child-parent edge constraint is relaxed into
ancestor-child constraint.

Relaxations may give raise to multiple match candidates. For this reason, authors
in [3] define a path resemblance measure between a given path query Q and a path in
the source tree. Such measure is used for ranking match candidates. We extend these
definitions by allowing two elements within each path to be matched, even if they are
not identical but their linguistic similarity exceeds a fixed threshold. We define a path
resemblance measure, denoted pr, which determines the similarity between two given
paths. The values of phSim range between 0 and 1. Match candidates can then be
ranked according to pr measure. Consider two paths ph1 and ph2 being matched
(when ph1 is a target path and ph2 is a source path), ph2 is the best match candidate for
ph1 if it fulfills the following criteria:
 The path ph2 includes most of the nodes of ph1 in the right order.
 The occurrences of the ph1 nodes are closer to the beginning of ph2 than to the

tail, meaning that the optimal matching corresponds to the leftmost alignment.
 The occurrences of the ph1 nodes in ph2 are close to each other, which mean that

the minimums of intermediate non-matched nodes in ph2 are desired.
 If several match candidates that match exactly the same nodes in ph1 exist, ph2 is

the shortest one.
To calculate phSim (ph1, ph2), we first represent each path as a set of string

elements; each element represents a node name (e.g., the path Author/Publication is a
string composed two string elements Author and Publication). We used the four
scores established in [3] and borrowed from dynamic programming for string
comparison; each of which corresponds to one of the above criteria.

4.1 Longest Common Subsequence

To answer the first criterion, we use a classical dynamic programming algorithm in
order to compute the Longest Common Subsequence (LCS) [7], between ph1 and ph2.
More the length of the longest common subsequence is high; more ph2 includes ph1
nodes in the right order.

A word w is a longest common subsequence of x and y if w is a subsequence of x, a
subsequence of y and its length is maximal. Two words x and y can have several
different longest common subsequences. The set of the longest common subsequences
of x and y is denoted by LCS(x, y). The (unique) length of the elements of LCS(x, y) is
denoted by lcs(x, y). For comparing two words x and y of size m and n respectively,

we reuse a classical dynamic programming algorithm that relies on two-dimensional
table T[0..m, 0..n]. We then exhibit the longest common subsequence tracing back in
table from T[m-1, n-1] to T[-1, -1]. Finally, to obtain a score in [0,1], we normalize
the length of the longest common subsequence by the length of target path ph1 as
following:

lcsn(ph1, ph2) =|lcs(ph1, ph2)|/| ph1 |

Example. Consider ph1 to be publication/book/author and ph2 as

author/publication/book, the longest common subsequence between the two paths as
publication/book, lcs(ph1, ph2)|=2, thus lcsn=2/3=0.66.

4.2 Average positioning

To answer the second criterion, we first compute, according to lcs (ph1, ph2) what
would be the average positioning of the optimal matching of ph1 within ph2. The
optimal matching is the match that starts on the first element of ph1 and continues
without gaps. Consider ph1 = author/publication/book and ph2 =
staff/author/publication/book, since the optimal matching corresponds to the leftmost
alignment, the average optimal position, denoted optPos is (1+2+3)/3 =2. We then
evaluate using the LCS algorithm, the actual average positioning (avgPos). avgPos
takes the value 3 in our example ((2+3+4)/3). Last, we compute pos coefficient
indicating how far the actual positioning is from the optimal one, using the following
formula:

pos(ph1, ph2) = 1 – [(avgPos – optPos) / (| ph2 |- 2 x optPos + 1)]

4.3 LCS with minimum gaps

To answer the third criterion, we use another version of the LCS algorithm in order
to capture the LCS alignment with minimum gaps. If ph1=person/address and ph2=
person/contact/address, we count a gap of length 1 between the two paths, thus g =1.
To ensure that we obtain a score inferior to 1, we normalize the obtained gap using
the following formula:

gap(ph1, ph2) = g/(g + lcs(ph1, ph2))

4.4 Length difference

Finally, in order to give higher values to source paths whose length is similar to the
target path, we suggest to compute the length difference ld between a source path ph1
and lcs(ph1, ph2) normalized by the length of ph1 as follow:

ld(ph1, ph2)= (|ph2| - lcs(ph1, ph2)) / | ph2|

To obtain the path similarity score, all the above metrics are combined as follow:
phSim (ph1, ph2) = α lcsn (ph1, ph2) + ß pos(ph1, ph2) – λ gap(ph1, ph2) – δ ld(ph1,

ph2)

Where α, ß, λ and δ are positive parameters ranging between 0 and 1 that represent

the comparative importance of each factor. They can be tuned but must satisfy α + ß
= 1, so that phSim(ph1, ph2)=1 in case of a perfect match, and λ and δ must be chosen
small enough so that pr cannot take a negative value. The following algorithm
summarizes the computation of path similarity measure using the above formulas.

1. Input: ph1, ph2, α, β, λ, δ
2. Outpout: phSim (ph1, ph2)
3. Begin
4. //score 1: computation of the longest common subsequence
5. lcs(ph1, ph2) ← TRACE-BACK (LSC(ph1, ph2))
6. lcsn(ph1, ph2) ← lcs(ph1, ph2) /ph2
7. // score 2: computation of average positioning
8. pos(ph1, ph2)=1 – [(avgPos – optPos) / (ph2 – 2× optPos + 1)]
9. //score 3: computation of LCS with minimum gaps
10. gap(ph1, ph2)= g /(g + lcs(ph1, ph2))
11. //score 4: computation of length difference
12. ld(ph1, ph2)=(ph2 – lsc(ph1, ph2)) /ph2
13 //computation of path similarity
14. phSim(ph1, ph2)= α lsc(ph1, ph2) + β pos(ph1, ph2) – λ gap(ph1, ph2) – δ ld(ph1, ph2)
15. return phSim
16. Fin.

Example. Let ph1 = laboratory/ author/ publication/book/description/title/subtitle
and ph2= author/book/title.

We have lcs(ph1, ph2) = (2+3+4)/3 = 3,
avgPos = (2+4+6)/3 = 4, g =2, and ld= 7-3/7=4/7.
Taking α, ß, λ and δ and d to respectively 0.75, 0.25, 0.25, 0.2. Note though that

more extensive experimentation is needed to decide on the ideal parameters. We
obtain a path similarity score equal to 0.68.

5 Conclusion

In this paper we have interested on schema matching, and focused on the notion
of path context for comparing the structural context similarity. The context element in
our approach is given by the combination of three structural contexts.

We began by an analysis of problems involved in the matching, and we proposed
a new solution taking into account of heterogeneity of the schema sources. We
outlined the limitations of current solutions through the study of Cupid and Similarity
Flooding systems and SemInt. Then we proposed a structural matching technique that
considers the context of schemas nodes (defined by their roots, intermediates and
leafs contexts in schema graph). By the way, we suggest a simple algorithm based on
the previous ideas and exploit the three types of contexts for capturing the similarity

between elements of schema graph. For this we combine a classical dynamic
programming algorithm and four scores established: The longest common
subsequence, the average positioning, LCS with gaps and length difference to serves
computing this path similarity measure.

For future work, we would like to improve the matching process, while taking
into account the optimisation of the process in order to determine a set of semantic
equivalences between schemas (source and target). That will facilitate the generation
of operators based on the primitive of transformations between elements of XML
schemas.

References

1. Abiteboul, S., Cluet, S., Milo, T., 1997. Correspondence and Translation for heterogeneous
 data. In Proceeding of The international Conference on Database Theory (ICDT). 351-363.
2. Amer-Yahia, A., Cho, S. and Srivastava, D. 2002. Tree Pattern Relaxation. In Proceedings of
 DBT’02.
3. Carmel, D., Efraty, G., Landau, G.M.,Maarek, Y.S. and Mass, Y. 2002. An Extension of the
 vector space model for querying XML documents via XML fragments. Second Edition of the
 XML and IR Workshop, In SIGIR Forum.
4. Castano, S. and De Antonellis, V., 1999. A schema analysis and Reconciliation Tool
 Environment For Heterogeneous Databases. In Proceedings of International Database
 Engineering and Applications Symposium.
5. Doan, A., Madhavan, J., Domingos, P., Halevey, A., 2001. Reconciling schemas of disparate
 data sources: A machine Learning Approach. In Proceedings ACM SIGMOD conference.
 509-520.
6. Drew, P., King, R., McLeod, D., Rusinkiewicz, M., Silberschatz, A., 1993. Report of the

Workshop on Semantic Heterogeneity and Interoperation in Multidatabase Systems. In
Proceedings ACM SIGMOD record, 47-56.

7. Hirschberg, D.S., 1975. A Linear Space Algorithm for Computing Maximal Common
Subsequences. Communications of the ACM.

8. Li, W.S. and Clifton, C., 1994, Semantic Integration in Heterogeneous Databases Using
Neural Networks. VLDB.

9. Li, W.S. and Clifton C., 2000, SemInt: A Tool for Identifying Attribute Correspondences in
Heterogeneous Databases Using Neural Network. Data and Knowledge Engineering.

10. Madhavan, J., Bernstein, P., Rahm, E., 2001. Generic schema matching with cupid. VLDB.
11. Melnik, S., Garcia-Molina, H., Rahm, E., 2002. Similarity Flooding: A versatile Graph

Matching and its Application to Schema Matching. Data Engineering.
12. Miller, A.G., Hass, L., Hernandez, M.A., 2000. Schema mapping as query discovery.

VLDB. 77-88.
13. Rahm, E., Bernstein, P., 2001 A survey of approaches to automatic schema matching. In

VLDB Journal. 334-350.
14. XML Schema, W3C Recommendation, 2001. XML-Schema Primer, W3 Consortium, 2001.

Available at http://www.w3.org/TR /xmlschema-0.
15. Zerdazi, A. and Lamolle, M., 2005. Modélisation des schémas XML par adjonction de

métaconnaissances sémantiques. ASTI’05.
16. Zerdazi, A. and Lamolle, 2007. M. Matching of Enhanced XML Schema with a measure of

structural-context similarity. In Proceeding of The 3rd International Conference on Web
Information Systems and Technologies (WEBIST’07).

http://www.w3.org/TR

