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Highlights 13 

• A lithological layer coupled to SWAT Hydrological Response Units has been introduced. 14 

• A simple model has been implemented to assess daily cation and anion fluxes.  15 

• Daily geochemical loads have been estimated using SWAT water balance. 16 

Abstract 17 

The increase in water salinisation in catchments has led to increased concern in assessing major ion loadings 18 

in freshwater environments. In this study, we couple a globally fitted model on chemical weathering to the 19 

Soil and Water Assessment Tool (SWAT) for the estimation of daily geochemical loadings at the catchment 20 

scale, “SWATLitho”. The enhancements include i) a modification on the discretisation of the catchment area 21 

by integrating a layer describing lithology (QSWATLitho), and ii) the development of an extra module to 22 

compute the ionic loads derived from the chemical weathering of rocks.  The model is sensitive to input data 23 

resolution, yielding the best results when including local data. Larger spatial and temporal discrepancies are 24 

found in one tributary, associated with point sources impacting the loadings; while these discrepancies are 25 

lower at headwater subbasins. Results suggest that, despite of these discrepancies, the average simulation of 26 

the daily ionic loadings is reasonable. 27 
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1 Introduction 30 

Chemical quality assessment of river waters is crucial for understanding and assessing the potential impacts of 31 

threats to biodiversity, drinking water safety, and crop yields (Cañedo-Argüelles et al., 2018, Kaushal et al., 32 

2017). One of these threats is the rise in major ion concentration, i.e. salinisation (Meybeck and Helmer, 33 

1989), which, despite having a relevant role in efficient ecosystem management (Cañedo-Argüelles et al., 34 

2018), has received little attention in the past. Traditionally, two approaches tackling freshwater chemical 35 

assessments exist: the analysis of water samples framed within a monitoring program (e.g. Martínez-Santos et 36 

al., 2015), and the use of hydrogeochemical models to simulate the study area and possible scenarios (e.g. 37 

M’Nassri et al., 2019). Water sampling is a common practice in many places, yielding real valuable data, but 38 

spatially and temporally homogeneous information is obtained through modelling. The integration of these 39 

two approaches complements the assessment of chemical threats. 40 

Models may be based on physical laws or data-regression equations for representing the system object of the 41 

study, being classified as mechanistic or empirical, respectively. Nowadays, there exists a number of 42 

mechanistic hydrogeochemical models, such as PHREEQC (Version 3 in Parkhust and Appelo, 2013), 43 

MINTEQA2 (Allison et al., 1991), or WITCH (Goddéris et al., 2006), but their applicability is commonly 44 

limited to areas where extensive necessary data (mineral abundance, the chemical profile of soil water, initial 45 

boundary condition, etc.) is available as input. In other cases, simplifications or assumptions are needed in 46 

order to apply this kind of model, increasing the model’s prediction uncertainty. A different solution is to 47 

develop simpler models to replace these complex configurations (Schoups et al., 2006). 48 

As an alternative to mechanistic models, several empirical models focusing on single-processes have been 49 

built, such as the Global Erosion Model for CO2 (GEM-CO2, Amiotte-Suchet and Probst, 1995), the Chemical 50 

Weathering Rate model (CWR, Hartmann et al., 2014) and Ionic fluxes derived from Chemical Weathering of 51 

Rocks model (ICWR, Lechuga-Crespo et al., 2020a), which have yielded a static output over worldwide scale 52 

assessments, i.e. the annual average result, regarding chemical weathering rates and associated products 53 

(atmospheric CO2 consumption, P-release, ionic loadings to rivers, etc.). To date and to the best of the 54 

authors’ knowledge, none of them have been tested on a local scale and under a dynamic approach, while 55 

management decisions are usually taken at a catchment scale and need the temporal evolution within a year.  56 

In the present study, an empirically-based model has been coupled to a physically-based hydrological model 57 

to compute daily geochemical loadings from the chemical weathering of rocks. The SWAT model has long 58 

been used to quantify the loads and concentrations of matter and nutrients from land to the catchment’s outlet 59 

(Arnold et al., 2012, Fu et al., 2019), as well as its evolution at different time scales. However, it is not 60 

possible to estimate the geochemical loadings with this model, as there is no subroutine or module 61 

implemented with this purpose. In this sense, the ICWR model (Lechuga-Crespo et al., 2020a) has been 62 

applied to the global scale. It has yielded the first map on average annual ionic fluxes, derived from the 63 
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chemical weathering of rocks to rivers. Nevertheless, its ability to simulate the dynamics of chemical 64 

weathering derived ionic loads and its performance on local catchments have not been tested yet.  65 

In this sense, the coupling of the SWAT and ICWR models poses an opportunity to evaluate spatially-explicit 66 

geochemical fluxes, since a basin’s hydrology in SWAT is described using the Hydrological Response Unit’s 67 

(HRU) semi-distributed approach . Consequently, ionic loadings from chemical weathering may be assessed 68 

and, if the atmospheric contribution is known, this tool may work with observed data to estimate how much 69 

anthropogenic saline effluent found in a catchment. It is important to note that a similar approach has been 70 

recently published by Bailey et al. (2019), where they present the coupling of a mechanistic model for major 71 

ion chemical partitioning within the SWAT hydrological code. Such mechanistic methodology presents the 72 

same constraints in application as the other mechanistic approaches: the availability of input data and the 73 

establishment of boundary conditions for simulation. 74 

The objective of this study is to downscale the ICWR model spatially and temporally as well as explore the 75 

performance in a case study where a geochemistry monitoring program has been taken. This case is 76 

exploratory, and the model objectives are to simulate the daily geochemical loads of major ions and their 77 

spatial distribution. Given the modelling framework and the constraints of both models, the processes to be 78 

simulated are chemical weathering of rocks, mass transport, and routing from catchment subbasins to the 79 

outlet. The model’s spatial definition is conditioned by the HRU delimitation of the modified model (which is 80 

explained in Section 2.2), while the simulation’s time-step is daily. A chemical equilibrium is assumed 81 

between rock and water at the temporal scale of simulation. Then, loadings are expected to be dependent on 82 

the discharge distribution among groundwater, lateral, and surface fluxes; the lithological groups in the 83 

underlying rock; and the soil types. 84 

2 Methods 85 

2.1 Overview of the SWAT and the ICWR models 86 

The Ionic fluxes derived from Chemical Weathering of Rocks (ICWR, Lechuga-Crespo et al., 2020a) model is 87 

empirically based and its parameters have been fitted at a global scale for the estimation of spatially explicit 88 

fluxes of chemical weathering of rocks F, measured in mol·m-2·y-1 for each major ion Ca2+, Mg2+, Na+, K+, 89 

SO4
2-, Cl-, and alkalinity (commonly associated with HCO3

-). The model configuration is based on the 90 

multivariable regression shown in Equation 1. The input data needed for this model includes the specific 91 

discharge qann measured in mm, the lithological composition of the rocks Li expressed as the percentage of the 92 

catchment area covered by a lithological group, the soil covering the bedrock layer for the estimation of the 93 

soil shielding effect factor fsx, which is different for each ion x, and the parameter of the equation Cxi, 94 

representing the water concentration on every ion. Further explanation of the development, calibration, and 95 

limitations of the model can be seen in Lechuga-Crespo et al. (2020a). The output of this model is an annual 96 

average specific flux of major ion loads originating from the chemical weathering of rocks to rivers, which, 97 
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together with atmospheric deposition and anthropogenic inputs, is the main reservoir of saline exports of a 98 

basin. 99 

F� = q��� · f	
 · ∑L
 · C�� Equation 1 100 

The SWAT is a physically based and semi-distributed model developed to assess water, sediments, and 101 

nutrients in agronomic catchments at yearly, monthly, daily, and sub-daily time steps (Arnold et al., 1998). 102 

Water, matter, and nutrient balances are simulated in homogeneous spatial units, HRUs, a combination of 103 

unique slope, land use, and soil type areas, which are then aggregated to the subbasin scale and routed through 104 

tributaries and channels towards the outlet of the catchment. The HRUs, together with the weather data (at 105 

least precipitation and temperature time series), provide the input data for the simulation. A more detailed 106 

description of the model is available in the SWAT2012 theoretical handbook (Neitsch et al., 2011). 107 

2.2 Coupling the ICWR model to SWAT  108 

The approach to spatially discretising the catchment area in the SWAT model has been modified to include a 109 

fourth layer in the definition of the HRUs: the lithological groups. This modification has been performed in 110 

the QGIS geographic information system plugin used to set up the model, QSWAT (Dile et al., 2016); the 111 

modified version is hereby called QSWATLitho. The SWAT code has not been modified to maintain the 112 

possibility of using external software, such as SWAT CUP (Abbaspour et al., 2007), for autocalibration. 113 

Instead, an extra module (SWATLitho.py) has been written to read the QSWATLitho and SWAT outputs and 114 

compute the geochemical fluxes and loads. The workflow of the model’s configuration is shown in Figure 1. 115 

116 
Figure 1. Workflow summary of the ICWR model implemented on the modified QSWAT. The modifications 117 

accomplished in the input data, model steps, and output data are highlighted in yellow (the reader is referred to 118 
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the online version for the colour appreciation). Bold arrows indicate the input data for the SWATLitho module 119 

for the estimation of the geochemical loads. On the right side, there is a conceptual representation of the new 120 

delimitation of the HRUs.  121 

2.2.1 QSWATLitho 122 

Traditionally, a QSWAT model setup consists of three main phases: the delineation of the watershed and 123 

subbasins, the delimitation of the HRUs, and the write of the input tables for SWAT modelling. For the 124 

QSWATLitho implementation, the second step has been modified by changing the hrus.py, DBUtils.py, and 125 

QSWATUtils.py files in the original plugin, causing the inclusion of a new layer to the delimitation of the 126 

HRUs. Now, every HRU contains a unique combination of slope, land use, soil type, and lithological group, 127 

and the water balance is defined for each one of them. The first consequence of this change is an increased 128 

number of HRUs when setting up a project, causing a finer definition on the spatial distribution of the model 129 

outputs and an increase in the time used for the SWAT simulation. The QSWATLitho may be found and 130 

downloaded at https://swat.tamu.edu/software/swat-litho/. 131 

2.2.2 ICWR module - SWATLitho 132 

Once a QSWATLitho project has been set up, the calibration of the hydrology is needed, since this is the main 133 

dynamic input data for the ICWR model. Because the chemical weathering process occurs mainly in the 134 

vadose zone of the water cycle, the main water fluxes to be considered are groundwater (qgw) and lateral flows 135 

(qlf). The ICWR model has been adapted to include them (qlf+qgw) instead of the total average specific 136 

discharge (qann), which would also include runoff. Here, the runoff is considered as the main driver for the 137 

dilution of the total load rather than including it in the calculation of the daily geochemical loads. A new 138 

module has been created so that the user can use the SWAT results, in combination with the QSWATLitho 139 

tables, to obtain geochemical loadings’ daily time series. The module consists of six main steps that are 140 

integrated into two loops. For each HRU, data like area, lithological group, and soil type is extracted from the 141 

hrus_lithology.csv file (a modified version of the hrus file in the Project.mdb) and, if necessary, used to set the 142 

soil shielding effect, fsx (cf. Lechuga-Crespo et al., 2020a). Then, the output.hru file is read to obtain the 143 

specific discharge in the lateral and groundwater fluxes to the river. With this information, together with the 144 

globally fitted parameters, the geochemical loads are calculated for each time step of the simulation and each 145 

HRU. This process generates a table with the loads of each HRU to the river stream for each time step. Then, 146 

all of the loadings are summarised at the subbasin scale in each time step and saved as output. The 147 

geochemical loadings are routed by adding the upstream loadings (if such exists) to the contribution of each 148 

subbasin draining area. A workflow summary is shown in Figure 2, and the modified version of the ICWR 149 

regression (Equation 1) is shown in Equation 2, where Lx represents the loading of ion x in each HRU (in 150 

Mg·d-1), A is the area of the catchment in m2, qGW+LT accounts for lateral and groundwater-specific discharge 151 

(mm), respectively, fsx represents the soil shielding effect (dimensionless), and CLit,x is the globally fitted 152 
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parameter for each lithological unit and ion (mol·L-1). Note that units are adjusted depending on the ion that is 153 

being considered and that this modification considers each HRU to be a monolithic unit to the river stream. 154 

�� = ���� · �������� · �� · !�"#   Equation 2 155 

The lithological groups used in the ICWR model development study are kept unaltered in the present 156 

development: evaporites (ev), metamorphics (mt), plutonic acid (pa), plutonic basic (pb), plutonic 157 

intermediate (pi), pyroclastics (py), sediment carbonates (sc), sediment mixed (sm), sediment siliciclastic (ss), 158 

sediment unconsolidated (su), volcanic acid (va), volcanic basic (vb), volcanic intermediate (vi), water bodies 159 

(wb), ice and glaciers (ig), and no data (nd), according to the description presented in Hartmann and Moosdorf 160 

(2012) and Dürr et al. (2005). 161 

 162 

Figure 2. Workflow of the algorithm used to estimate the chemical weathering loadings from the outputs of the QSWATLitho project 163 
calibrated for discharge. Ellipses indicate the start and end of the algorithm. The diamonds represent the loops: one for each HRU in 164 
the project and another for each time step (Δt) simulated (year, month, day). The arrows indicate the action sequence. 165 

2.3 Case study: Deba River catchment 166 

A case study is set up to explore the model’s application.  The validation comprises three steps: first, the 167 

annual comparison of the results to evaluate the model’s sensitivity and select the input data among different 168 

combinations; second, the analysis of geochemical loadings in all subbasins derived from the QSWATLitho + 169 

SWATLitho combination (spatial downscaling); and last, the comparison of the daily representation in three 170 

gauging stations (temporal downscaling). The case study selected for this purpose is the Deba River catchment 171 

(Figure 3), on which numerous studies related to urban and industrial pollution on its sediments and waters 172 

have been conducted (Martínez-Santos et al., 2015; García-García et al., 2019; Unda-Calvo et al., 2019; 173 

Lechuga-Crespo et al., 2020b). There are eleven sampling locations along its main channel and tributaries, 174 
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where a monitoring campaign was established between April 2014 and January 2017. Samples were taken in a 175 

monthly or bi-monthly time step. In addition, there are three gauging stations measuring, among other 176 

variables, discharge and electrical conductivity every 10 minutes.  177 

2.3.1 Study area 178 

The Deba River Basin has a complete drainage area of 538 km2 and 60 km of main stream, a maximum slope 179 

of 40%, and an elevation varying from 0 at sea level to 1,320 m in Botreatiz (the highest mountain), which is 180 

located in the northern part of Spain, in the Gipuzkoa Province in the Basque Country (Figure 3). Regarding 181 

its hydrometeorology, there is a strong variation between humid and dry years, as well as a strong seasonal 182 

variability: about 30% of the total annual water volume is exported in December and January, and in dry 183 

summers, the specific discharge can reach 0.6 mm. The average annual precipitation is estimated to be 1,613 184 

mm, while the mean temperature is 12.7ºC, leading to the highest potential evapotranspiration (ETP) of the 185 

surrounding catchments at 871 mm. In terms of the occupation of this catchment, there is a strong presence of 186 

industries, with a population of 135 000 inhabitants grouped into four important villages (Arrasate, Oñati, 187 

Bergara, Eibar, and Deba); 37% of the area is occupied by Pinus spp; 27% is covered by autochthonous forest, 188 

and 11% is given to farmlands and pastures. This catchment is commonly located over evaporitic rocks 189 

(gypsum and anhydrite deposits) included in detrital rocks, which, according to the classification proposed by 190 

Hartmann and Moosdorf (2012) and Dürr et al. (2005), correspond to a mix of siliciclastic, carbonate and 191 

mixed sediments, together with other lithological groups. A detailed description of the geology of the zone is 192 

addressed in Ábalos et al. (2008) and Iribar and Ábalos (2011). Historically, this catchment has suffered a 193 

strong urban and industrial pressure (Gipuzkoa Council, accessed on October 2019), and previous studies on 194 

the pollution in this catchment (Martínez-Santos et al., 2015; García-García et al., 2019; Unda-Calvo et al., 195 

2019) have highlighted the inputs of urban and (residual) industrial effluents treated through wastewater 196 

treatment plants (WWTP) located in the middle of the catchment, where phosphorus is eliminated using Cl3Fe 197 

(only from May 1st to October 15th), resulting in the presence of metals in the water and sediment matrixes. 198 

The analysis of this anthropogenic influence has been monitored from April 2014 to January 2017 in 11 199 

sampling locations in the main channel and tributaries, highlighting the nutrients and metal input of urban and 200 

industrial effluents. Furthermore, a recent study on this catchment has focused on the major ion chemistry of 201 

its waters, assessing the main geochemical processes input in relation to the anthropogenic input (Lechuga-202 

Crespo et al., 2020b) while emphasising the influence of an evaporitic saline spring in the southwest part of 203 

the catchment, which exerts a great impact on the water chemistry downstream to the outlet of the catchment. 204 

2.3.2 Set up of the QSWATLitho project 205 

A local Digital Elevation Map (DEM, 25m resolution cell) was used to create the stream network, locate the 206 

outlet of the catchment, and delimit the drainage area. Subbasins were merged to obtain their draining to the 207 

sampling locations of the monitoring campaigns. A European land use map from the CORINE Land Cover 208 

project (100m resolution), a soil map from the Harmonized World Database (a 30 arc-second resolution), and 209 
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a local lithological map reclassified for the categories found in Hartmann and Moosdorf (2012) were 210 

combined with the DEM-derived slope map to create the HRUs (the description and source of the datasets 211 

may be seen in Table 1, Table 2, and Figure 3). While setting up the model, three slope ranges were 212 

established (0%-5%, 5%-10%, >10%) and no simplification was performed to reduce the number of HRUs. 213 

The weather input data was obtained from a hydrometeorological station located close to the outlet (Figure 3), 214 

consisting of precipitation as well as maximum and minimum temperature daily time series from January 215 

1994 to December 2017. The observed data for discharge was covered from January 2004 to December 2017 216 

for three gauging stations located close to the outlet and near the outlet of the two major subbasins of this 217 

catchment (see Figure 3). SWAT has been used to compute the hydrological representation of the case study, 218 

using the QSWATLitho HRU definition for the spatial discretization, but using the same water balance as the 219 

SWAT model.  220 

Observed data for riverine chemical concentration ranged from April 2014 to January 2017. A monitoring 221 

program samples the river waters monthly or bimonthly using a pre-washed polypropylene bottle which was 222 

carried to the laboratory at 4ºC and filtered through 0.45µm filters. One replicate was acidified to 0.2% with 223 

HNO3 (68%) for base cations (Ca2+, Mg2+, Na+, and K+) using ICP-OES (Perkin Elmer Optima 2000). The 224 

other non-acidified replicate was used to analyse anions (Cl-, NO3
-, SO4

2-) through ion chromatography 225 

(DIONEX ICS 3000). Alkalinity was measured using a Total Organic Carbon Analyzer (TOC-L Shimadzu). 226 

The ionic charge balance (ICB) was within ±10% for all samples used in this study. For the modelling of the 227 

geochemical loads, groundwater and lateral flows from the SWAT hydrological representation have been used 228 

as a source of lithological chemical weathering derived loads, while runoff has been attributed to lower 229 

concentrations, inducing dilution in the stream’s concentration. 230 

Following the recommendations of ASABE (2017), three periods were defined in this project: a warmup 231 

period to reduce the effect of state variables’ initial values (six years, January 1998-December 2003), a 232 

calibration period to optimise the parameters (ten years, January 2004-December 2013), and a validation 233 

period to test the model capabilities in an independent dataset (four years, January 2014-December 2017). The 234 

model’s performance evaluation has been carried out for the calibration and validation periods independently, 235 

using graphical methods (time series between observed and simulated), and relative statistical measures 236 

(coefficient of determination, r2, Nash-Sutcliffe Efficiency, NSE, PBIAS, and Kling-Gupta, KGE). The 237 

Moriasi et al. (2015) standard has been considered in this study to evaluate the model’s performance. 238 

However, the authors have found no reference when comparing the daily loads of major ions, so the 239 

exploration of the results would yield the first reference for future similar analysis. 240 

Table 1. Input data type, description and sources for the case study set up project used in the present study. 241 

Input Data Type  Description Source 

Digital Elevation 
Model (DEM) 

Raster A raster representing the 
elevations at 25x25m 
resolution 

www.geoeuskadi.eus 
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Land Use Raster A raster representing the 
land uses of the catchment, 
at a resolution of 100x100m 

https://land.copernicus.eu/pan-european/corine-land-cover 

Soil Type Raster A raster representing the 
main types of catchment soil 

http://webarchive.iiasa.ac.at/Research/LUC/External-
World-soil-database/HTML/index.html?sb=1 

Lithology Raster A derived raster representing 
the lithological classes of the 
catchment 

www.geoeuskadi.eus 

Precipitation and 
Temperature 

Text File Time series at one station 
with daily precipitation, 
maximum and minimum 
temperature 

Spanish Agency of Meteorology (AEMET) 

Table 2. Lithological distribution of the Deba River basin and its subbasins. Data derived from the Lithological Map of Euskadi 242 
(www.geoeuskadi.eus), reclassified for Hartmann and Moorsdorf’s (2012) lithological categories. Original map and lithological 243 
classification are available in Supplementary Information (Figure S1 and Table S1).   244 

Main channel Tributaries 

Lithology D1 D2 D3 D4 D5 D6 D7 M1 O1 E1 E2 

Area 

[km2] 
6.2 62.4 121.1 321.0 329.2 419.0 485.7 3.5 129.6 2.4 55.5 

ev 4% 3% 7% 7% 7% 6% 7% 11% 
mt 25% 27% 11% 11% 9% 7% 3% 
pi 1% 
py 2% 2% 5% 5% 5% 
sc 19% 11% 9% 16% 16% 15% 18% 3% 18% 2% 14% 
sm 77% 54% 51% 60% 61% 61% 58% 97% 66% 98% 78% 
ss 1% 1% 1% 1% 
su 6% 5% 3% 3% 2% 2% 3% 
vb 1% 1% 2% 3% 3% 
wb 1% 
Lithological clases: evaporites (ev), metamorphics (mt), plutonic intermediate (pi), pyroclastics (py), carbonate sediments (sc), mixed 
sediments (sm), siliciclastic sediments (ss), unconsolidated sediments (su), volcanic basic (vb), water bodies (wb) 
 245 

 246 

Figure 3. Deba River catchment description: a) localisation, main channel and tributaries, sampling locations, gauging stations and 247 
subbasins used in the present study; b) land use; c) digital elevation map; d) lithological units; e) soil types. Figures b), c), d), and e) 248 
are used for the setup of the model. 249 
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2.3.3 Discharge parameterisation 250 

The geochemical reactions responsible for ionic loads derived from rocks to the river are assumed to be in 251 

equilibrium at daily scales; however, other sources like human input or atmospheric deposition are expected to 252 

vary in these temporal ranges. Thus, the simulation (both calibration and validation) has been done at a daily 253 

time step. The first step is to calibrate the discharge (in surface runoff, lateral flow, and groundwater flow), 254 

which will be the main drivers in the temporal application of the ICWR model. The discharge has been 255 

calibrated using the parameters found in Table 3, through both manual calibration and autocalibration with the 256 

SUFI-2 algorithm in SWAT-CUP (Abbaspour et al., 2007). Three gauging stations have been used to evaluate 257 

the model performance on discharge calibration using four statistical criteria: the coefficient of determination 258 

(r2), the Nash & Sutcliff Efficiency (NSE), the percent of bias (PBIAS), and the Kling-Gupta efficiency 259 

(KGE). All the statistics are applied to the simulated and observed values: r2 focuses in the fit between the 260 

trends, varying from 0 (no fit) to 1 (perfect fit); PBIAS calculates the global over- (negative value) or 261 

underestimation (positive value); NSE evaluates the trends (similar to r², but varying from -∞ to 1, perfect fit); 262 

and KGE is based on Pearson’s coefficient “r”, including bias and variability, ranging from -∞ to 1 (perfect 263 

fit), where values > -0.41 could be considered as a reasonable performance (Knoben et al. 2019). 264 

Table 3. Parameters modified for calibration, type of change (v: value change, r: relative change), description and change adopted. 265 

File Change type Parameter name Description Best fit Minimum Maximum 
gw v GW_DELAY Groundwater delay time 240.5 200 500 

v ALPHA_BF Baseflow alpha factor 0.27 0.05 0.3 
v GWQMN Threshold depth of water in shallow aquifer 

required for return flow to occur 
1081 600 1500 

hru v LAT_TTIME Lateral flow travel time 3.31 1 7 
r HRU_SLP Average HRU slope ↓15% ↓30% 0 
v CANMX Maximum canopy storage 17.8 5 20 

mgt r CN2 Curve number for moisture condition II ↓26% ↓30% 0 
sol r SOL_AWC Available water capacity ↓11% ↓20% ↑30% 

r SOL_K Soil hydraulic conductivity ↑5% - ↑30% 
 266 

2.3.4 Downscaling the ICWR model 267 

The original ICWR model (Lechuga-Crespo et al., 2020a) was developed for an annual average specific flux 268 

output for which only the average specific discharge was needed for hydrology. To explore the possibilities of 269 

applying this model at lower spatial and temporal scales, three assessments have been performed: a model’s 270 

sensitivity analysis, a spatial evaluation, and a temporal assessment. The model’s sensitivity to input data was 271 

evaluated by testing different global and local datasets combinations. Two lithological maps, one clipped from 272 

the Global Lithological Map (GLiM, Hartmann and Moosdorf, 2012), and a local one obtained from the 273 

Gipuzkoa Council (geoeuskadi.eus), together with two annual average specific discharges, one obtained from 274 

a global dataset (UNH/GRD, Fekete et al., 2002) and other from the Gipuzkoa Council Hydrological 275 

Department (www.gipuzkoa.eus), were combined to obtain four output datasets. The comparison with 276 

observed data indicated the best input data setup for building the QSWATLitho project. These results are 277 
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shown and discussed in section 3.1.1 Model’s sensitivity to input data. Before applying the SWATLitho 278 

module, it is necessary to calibrate the water balance. The model setup and the calibration of hydrology are 279 

discussed in section 3.1.2 Case study. Once the model was built and hydrology was calibrated, a simulation 280 

was conducted (period: January 2014 to December 2017). The application of the SWATLitho module allowed 281 

the evaluation of the model’s spatial and temporal performance. No calibration of the ICWR parameters has 282 

been done, and globally fitted values were used (Lechuga-Crespo et al., 2020a). The model’s spatial 283 

downscaling evaluation was done by contrasting simulated geochemical loadings at the subbasin outlet with 284 

observed loadings at the corresponding sampling location (see Figure 3a). Results are presented in section 285 

3.1.3 Spatial downscaling. The temporal downscale was evaluated at three gauging stations, where daily 286 

loadings were derived from punctual data and continuous registries integration. The results are shown in 287 

section 3.1.4. Temporal downscaling. Finally, model limitations, improvement suggestions, and alternatives 288 

are presented in section 3.1.5 SWATLitho limitations and alternatives. Even though the wide applicability of 289 

the model makes this approach versatile, its setup may be constrained by input data availability. 290 

 A proposed alternative approach is the use of digital filters to deconvolute the hydrological signal between 291 

surface and groundwater fluxes. In this sense, we computed the hydrological deconvolution using the 292 

Eckhardt digital filter (Eckhardt 2005; Xie et al., 2020). This test has been performed at the three gauging 293 

stations of the catchment. 294 

3 Results and discussion 295 

3.1.1 Model’s sensitivity to input data 296 

Average annual loadings obtained for the four input data combinations are shown in Table 4. The original 297 

ICWR model (Lechuga-Crespo et al., 2020a) was calibrated and validated using global data (method 298 

UNH+GLIM in Table 4) and data on rivers worldwide from the GLORICH database. The highest values 299 

among all methods considered are found for the UNH+GLIM method, and the greatest differences are found 300 

not between the two hydrological datasets but between the lithological maps. This confirms that the 301 

lithological representation has a major impact on the loadings computed by the model. Regarding the values 302 

obtained with the four datasets in comparison with the observed values (Gauging station in Table 4), the 303 

closest values are found for the EUS+GEUS method, the local data for hydrology and lithology. Nevertheless, 304 

the difference between the observed and the modelled values are different between ions and gauging stations. 305 

Both the Altzola and San Prudentzio gauging stations present the highest differences in Ca2+, Na+, K+ and Cl-, 306 

while the differences between the observed and the simulated values are lower for other ions. Such differences 307 

are not found in the Oñati tributary, where the highest difference is found for Mg2+, Cl-, and SO4
2-, but which 308 

is still lower than the Altzola and the San Prudentzio bias for the previously noted ions. The common pattern 309 

in the differences found for Altzola and San Prudentzio and the difference for the Oñati stream suggest that 310 
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there is a common phenomenon not captured by the model’s performance in the San Prudentzio draining 311 

basin, which affects downstream at the outlet of the catchment. 312 

The monitoring program and previous studies in the area (Iribar and Ábalos 2011; Martínez-Santos et al., 313 

2015) have shown that the southeastern part of the catchment has the highest values of Ca2+, Na+, K+, and Cl-, 314 

which is related to the presence of gypsum intrusions and a spring, altering the local water’s composition. In 315 

both lithological maps used, the intrusion of gypsum (evaporites) in the southwest part of the catchment seems 316 

to be underestimated. In addition, according to Iribar and Ábalos (2011), the southern part of the catchment 317 

contains a combination of different geological registries (Albian and Aptian-Albian) where there is a common 318 

presence of springs with saline waters. Within this catchment, the Leintz-Gatzaga spring contains one of the 319 

most concentrated effluents to the streams (230.6 g·L-1 according to Iribar and Ábalos, 2011). This suggests 320 

that the impact of the saline is not properly mapped in either the global or the local lithological maps, but that 321 

it exerts a strong influence on the chemical characteristics of this area downstream (Lechuga-Crespo et al., 322 

2020b). For this reason, the observed data on Na+, K+, and Cl- are higher than those modelled, especially in the 323 

San Prudentzio subbasin. The inclusion of a local lithological map, with a finer spatial resolution of lithology, 324 

has decreased the loads to around half of those obtained with the previous map. These new values are closer to 325 

reality when considering Mg2+, HCO3
-, and SO4

2-, which are the elements less affected by the spring inputs. 326 

The inclusion of a spatially distributed lithology has improved the results of the model, leading to the 327 

conclusion that increasing the spatial resolution of the lithology input data has a major effect on the output of 328 

the model. 329 

From the model’s sensitivity analysis, we conclude that when applying the ICWR model to local studies, local 330 

lithological data should be applied. Moreover, consideration of saline springs should be taken into account 331 

when evaluating the model’s performance. 332 

Table 4. The table demonstrates the average annual loadings that were obtained using the ICWR model in the Deba River catchment, 333 
with different input data. UNH represents the global hydrological dataset (UNH/GRDC, Fekete et al., 2002), the EUS indicates the 334 
local average data from the Gipuzkoa Council Hydrological Department (www.gipuzkoa.eus), the GLIM denotes the global 335 
lithological map (GLIM, Hartmann and Moosdorf, 2012), the GEUS implies the local lithological map (www.geoeuskadi.eus), 336 
Gauging station represents the data obtained from each gauging station. All values expressed as mean annual load in [Mg·y-1]. 337 

Method Ca2+ Mg2+ Na+ K+ Cl- HCO3
- SO4

2- 

Altzola 

UNH+GLIM 24783 5923 3707 755 6675 104465 20457 

EUS+GLIM 22393 5352 3349 682 6031 94389 18484 

UNH+GEUS 10492 2262 1991 348 3272 45897 14792 

EUS+GEUS 9480 2044 1799 314 2957 41470 13365 

Gauging station 20777 1755 6358 1050 10485 55244 14513 

Oñati 

UNH+GLIM 6918 1651 1019 210 1842 28922 5640 

EUS+GLIM 7233 1726 1066 220 1926 30238 5897 

UNH+GEUS 2852 589 525 78 881 12565 4152 

EUS+GEUS 2981 616 549 82 921 13137 4341 
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Gauging station 3894 294 314 84 381 10918 1861 

San Prudentzio 

UNH+GLIM 5353 1287 861 164 1513 23340 4646 

EUS+GLIM 4237 1019 681 130 1198 18473 3677 

UNH+GEUS 2034 416 384 70 642 8871 2971 

EUS+GEUS 1610 330 304 56 508 7021 2351 

Gauging station 5691 497 2526 394 4266 14865 4381 

 338 

3.1.2 Case study set-up and discharge calibration  339 

The combination of slope, land use, soil types, and lithological classes in this catchment leads to a spatial 340 

discretisation consisting of 11 subbasins and 985 HRUs. When building the same project considering land use, 341 

soil type, and slope layers in the HRU definition step, the number of spatial units reaches 286 HRUs. A more 342 

detailed project regarding spatial distribution increases the computation time, but the water balance calibration 343 

is more comprehensive, which is a key input for the geochemical loads’ computation, and the model’s 344 

temporal downscaling. 345 

Regarding the calibration of hydrology at the daily time step (Figure 4), most of the parameterisation has been 346 

focused on calibrating groundwater and lateral flow, which account for almost 96% of the annual discharge at 347 

the catchment’s outlet. The parameterisation of the model has yielded the results summarised in Table 5, and 348 

Moriasi et al. (2015) qualifies the simulation as “Satisfactory” for calibration and validation. According to 349 

these results, the model has been considered enough to represent the hydrology of the catchment studied. 350 

NSE is used based on its performance, which is better when the variable’s range of variation is large. 351 

However, in low flows, the denominator tends towards 0, leading to higher values when the errors are small 352 

(Oeurng et al., 2011). The higher values for r2 in comparison to the NSE suggest a good representation of the 353 

dynamic, but a worse depiction of the exact discharge value, indicating a difference between observed and 354 

simulated values which is stronger in lower flow periods. This can also be seen in the PBIAS, where the 355 

calibration for San Prudentzio has yielded a value classified as “Non-Satisfactory” according to Moriasi et al. 356 

(2015). A negative value of the PBIAS proposes an underestimation of the model, which is attributed to peaks 357 

in the drier period of the simulation. Fluctuations are related to the way groundwater is calculated in SWAT, 358 

not using a spatially diffused flow, but pulses in each HRU (Bailey et al., 2019). Improvements in the model 359 

performance for hydrology may be expected by incorporating a more detailed soil map, as the present 360 

resolution seems too coarse for the needs of this modelling. 361 

The most sensible parameters are the SCS curve number (CN2.mgt), which was decreased to adjust the peak 362 

discharge in combination with the maximum canopy storage (CANMX.hru), the baseflow recession constant 363 

(ALPHA_BF.gw) and the lateral flow travel time (LAT_TTIME.hru).The lateral flow has a relevant role in 364 

the hydrology of this catchment. Baseflow was adjusted using the delay of water passing through the last soil 365 
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layer (GWDELAY.gw) and the water threshold in the shallow aquifer needed for groundwater flow to occur 366 

(GWQMIN.gw). All specific changes are shown in Table 3. 367 

 368 

 369 

Figure 4. Time series of daily simulation and observation discharge in three sampling locations in the catchment. A dashed line 370 
separates the calibration from the validation period. The grey band in the calibration period represents the 95th lower and upper limits 371 
of the 100 simulations performed using the SUFI2 algorithm in SWATCUP (Abbaspour et al., 2007, 2014). As there is a relevant 372 
difference in discharge ranges between the dry and the wet periods, the vertical axis is plotted in logarithmic scale. 373 

Table 5. Summary of hydrological calibration and validation in three gauging stations at a daily time step. r2 represents the coefficient 374 
of determination, where 0 = no correlation and 1 = perfect fit; NSE is the Nash-Sutcliffe Efficiency, where < 0 = observed mean better 375 
than simulation, 0 = model prediction is accurate as observed mean, and 1 = perfect fit; PBIAS represents the tendency of the 376 
simulation to be larger or smaller than the observations, where >0 = overestimation of the model, <0 = underestimation of the model, 377 
KGE is the Kling-Gupta Efficiency, where values >-0.41 are considered as reasonable (Kobne et al., 2019), and 1 = perfect fit. P-378 
factor represents the fraction of the measured data falling within the 95% prediction uncertainty band, while r-factor is the ratio of the 379 
average width of the band and the standard deviation of the measured variable. 380 

  Calibration Validation 

January 2004 - December 2013 January 2014 - December 2017 

r2 NSE PBIAS (%) KGE p-factor r-factor r2 NSE PBIAS (%) KGE 

Altzola 0.72 0.71 -0.7 0.71 0.65 0.42 0.76 0.68 13.7 0.56 

Oñati 0.64 0.64 -13.5 0.71 0.47 0.48 0.74 0.71 0.9 0.64 

San Prudentzio 0.65 0.62 -28.4 0.64 0.57 0.5 0.7 0.66 -4.8 0.60 
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 381 

 382 

3.1.3 Spatial downscaling 383 

The geochemical loadings derived from rock’s chemical weathering are carried out by the rivers to oceans and 384 

lakes. Disregarding instream transformation (outgassing, biological uptake, secondary precipitation, or ionic 385 

exchange processes) loadings are added along the river network. Figure 5 presents the comparison of these 386 

loadings at the outlet of each subbasin, which has a corresponding sampling location. Only fluxes from 387 

sampling campaigns are considered (cf. Lechuga-Crespo et al., 2020b). As expected, there is a corresponding 388 

generally increasing trend between the two signals. Downstream sampling locations have higher exports than 389 

upstream subbasins. However, the trend is different for each ion. 390 

Mg2+, SO4
2-, and HCO3

- present the best spatial collinearity among all ions, and the mean loadings in each 391 

sampling location are scattered around the perfect fit line. The largest deviations are Na+ and Cl-, where 392 

observed values are higher than the simulation ones. Nevertheless, since loadings are added through the 393 

routing network, upstream errors are carried downstream. Specific attention to the D2 and D3 sampling 394 

locations (subbasins 2 and 7, respectively) indicate underestimation for all ions, especially Na+ and Cl-. This 395 

suggests that this area contains an ionic point source loaded with these ions, which is not captured by the 396 

model. This results in the worst representation among all of the catchments. 397 

Among the headwater sampling locations (D1, E1, M1, and O1) and subbasins (8, 3, 5, and 6, respectively), 398 

the Oñati stream presents the largest loadings, in which ions are commonly located close to the perfect fit line 399 

except for Mg2+ and SO4
2-. This overestimation compensates for the underestimation found in D3 for these 400 

ions, improving the overall representation of the model. Further analysis of this stream’s temporal evolution is 401 

found in section 3.1.4 Temporal downscaling. 402 

The application of the model to this case study supports that headwater locations present lower discrepancies 403 

than downstream subbasins. This spatial analysis indicates that point sources exert a great impact on the 404 

model’s performance, since downstream locations are conditioned by incoming loadings. 405 
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 406 

Figure 5. Simulated versus observed loadings for all sampling locations (subbasin number presented between 407 

brackets). The point represents the mean value for the daily loadings, considering only dates with in-situ 408 

monitoring campaigns. Horizontal and vertical lines present minimum and maximum values for observed and 409 

simulated loadings. 410 

3.1.4 Temporal downscaling  411 

Figure 5 presents a graphical assessment of the SWATLitho performance, comparing the simulated and 412 

observed time series at three gauging stations (Altzola, San Prudentzio, and Oñati, Figure 3a). A visual 413 
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evaluation shows that the global fitted parameters applied to the calibrated QSWATLitho project yield 414 

geochemical loads showing a varying degree of similarity between the simulated and the observed values, 415 

suggesting the model performs differently depending on the ion and drainage basin being considered. Besides, 416 

Table 6 contains the statistical results for each pair of time series and the average values for each gauging 417 

station. Considering Altzola results as representative of the catchment-scale performance of the model, the 418 

average statistics show a reasonable performance from the model (r2 = 0.74 ± 0.02, PBIAS=-17.96 ± 85.02, 419 

KGE=0.08 ± 0.48), according to the criterion presented by Kobne et al. (2019) regarding KGE. 420 

Focusing on the subbasin-scale, each mean statistic yields a different pattern for the model’s performance. The 421 

mean coefficient of determination (r2) is comparable among gauging stations, suggesting that dynamic 422 

representation is homogeneous at the subbasin level. The mean percentage of deviation (PBIAS) indicates that 423 

the Altzola gauging station is the closest to reality, while Oñati presents the largest discrepancies; the Kling-424 

Gupta Efficiency factor (KGE), as a summary statistic, is best for San Prudentzio and worst for Oñati. 425 

However, the analysis of the standard deviation highlights the presence of two outliers in Oñati: Mg2+ and 426 

SO4
2-. Excluding these outliers from the analysis yields the best values for Oñati in all statistics (KGE = 0.59 ± 427 

0.19, PBIAS[%] = 13.22 ± 34.68, and r2 = 0.75 ± 0.01), and worst for San Prudentzio. The Altzola gauging 428 

station, which receives waters from Oñati, San Prudentzio and other tributaries in the main channel, presents 429 

intermediate statistics suggesting that the differences present in the upper part of the catchment are routed 430 

downstream to the outlet. This can also be seen in the times series in Figure 5, where the deviations between 431 

the observed and the simulated values are similar in Altzola and San Prudentzio, while they are independent at 432 

the Oñati stream. Using the KGE as an integrative measure of the model’s performance, values >-0.41 are 433 

considered reasonable (Kobne et al., 2019). This criterion yields a valid representation of the average ionic 434 

loadings in all gauging stations. 435 

Previous studies in the area using in-situ samplings have highlighted the sulphate water composition in the 436 

Oñati stream of the catchment (Lechuga-Crespo et al., 2020b), which could be related to the evaporitic 437 

presence in the upper part of the catchment (Iribar and Ábalos, 2011). However, despite the evaporitic 438 

presence in the input data (largest percentage the in draining catchment, Table 2), a karstic presence has also 439 

been reported in the area (Iribar and Ábalos, 2011), which could be a source of diluted water to the system. A 440 

complex interaction of these saline and diluted water sources may be responsible for the discrepancies found 441 

between the simulated and the observed values for Mg2+ and SO4
2-.  442 

In addition, the presence of springs, i.e. wells with saline water, is common in the San Prudentzio stream 443 

(Iribar and Ábalos, 2011), particularly the Leintz-Gatzaga spring, which provides one of the most 444 

concentrated effluents, with 230.6 g·L-1 of total dissolved solids and over 85 g·L-1 of Cl- (Iribar and Ábalos, 445 

2011). The vertical pathway of this spring is over 384 m (Iribar and Ábalos, 2011), which explains the 446 

different dynamics of Cl-, Na+, and K+ present in this area, as the input from the spring is steadier than the 447 
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rapid response of the groundwater and the lateral flow of the remaining catchment, changing the relative 448 

contribution of these ions to the total cation concentration with time (Lechuga-Crespo et al., 2020b). 449 

There are few models similar to this one, but a recent publication (Bailey et al., 2019) introduced a saline 450 

module based on physical equations at chemical equilibrium into the SWAT code to analyse of the fate and 451 

transport of the ions in catchments. In addition, the researchers in that study reported problems of 452 

underestimation of the model’s value regarding unmapped mineral presence in the input data, which also 453 

occurred in the present study. Both studies have shown the importance of measured concentrations in rivers as 454 

a proxy for the geochemical minerals affecting the riverine loads. In the present case, the monitoring 455 

campaigns, together with the gauging station’s data, have recorded the effect of the spring input, which the 456 

model did not capture.  457 

 458 
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 459 

Figure 6. Time series (validation period: January 2014-December 2017) of daily simulated and observed loadings at three gauging 460 
stations, Altzola, San Prudentzio, and Oñati, of Ca2+, Mg2+, Na+, K+, SO4

2-, Cl-, and HCO3
-. The gauging stations are located in the 461 

outlet of the catchment and in two tributaries. Note that the vertical axis is in logarithmic scale to better differentiate the results in dry 462 
and wet periods. 463 

Table 6. Summary statistics for geochemical loadings in the Deba River urban catchment. The coefficient of determination is 464 
represented by r2, where 0 = no correlation, and 1 = perfect fit. NSE is the Nash-Sutcliffe Efficiency, where <0 = observed mean better 465 
than simulation, 0 = model prediction is accurate as observed mean, and 1 = perfect fit. PBIAS denotes the tendency of the simulation 466 
to be larger or smaller than the observations, where >0 = overestimation of the model, and <0 = underestimation of the model. KGE is 467 
the Kling-Gupta Efficiency, where values >-0.41 are considered as reasonable (Kobne et al., 2019), and 1 = perfect fit. mean and sd 468 
signify the arithmetic mean and standard deviation of all ions for each gauging station. 469 

Station Ion r2 PBIAS [%] KGE 

Altzola Ca2+ 0.76 -67.70 -0.02 
Mg2+ 0.76 -9.80 0.68 
Na+ 0.70 -73.90 -0.04 
K+ 0.72 -66.60 0.05 

HCO3
- 0.75 -44.30 0.26 
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SO4
2- 0.76 -31.10 0.46 

Cl- 0.73 167.70 -0.84 
mean 0.74 -17.96 0.08 

sd 0.02 85.02 0.48 
    

San Prudentzio Ca2+ 0.75 -64.40 0.04 
Mg2+ 0.75 -38.40 0.38 
Na+ 0.70 -76.90 0.00 
K+ 0.73 -76.20 -0.02 

HCO3
- 0.74 -28.30 0.47 

SO4
2- 0.76 -58.10 0.15 

Cl- 0.65 -80.50 -0.04 
mean 0.73 -60.40 0.14 

sd 0.04 20.26 0.21 
    

Oñati Ca2+ 0.74 -23.00 0.55 
Mg2+ 0.75 169.20 -1.10 
Na+ 0.75 25.40 0.70 
K+ 0.75 -13.80 0.64 

HCO3
- 0.75 13.10 0.79 

SO4
2- 0.67 284.30 -2.90 

Cl- 0.75 64.40 0.29 
mean 0.74 74.23 -0.15 

sd 0.03 112.97 1.38 

 470 

3.1.5 SWATLitho limitations and alternatives 471 

A recent study has presented a physically-based module for assessing the fate and transport of saline ions in 472 

catchments integrated on the SWAT model (Bailey et al., 2019). That model has been developed to evaluate 473 

the best irrigation management practices and their impacts on  the salinisation of freshwater environments 474 

within a catchment. The setup requirements are a discharge calibrated SWAT project, the initial 475 

concentrations of the ions in the soil and the aquifer, and the percentage of five solid species present in each 476 

HRU to compute the chemical equilibrium (Bailey et al., 2019). In contrast, the model introduced in the 477 

present study focuses solely onthe process of chemical weathering. It computes the geochemical loadings 478 

derived from lithology to the river streams based on empirical equations; uses a lithological and soil 479 

description, as well as hydrology, as its input data. The SWATLitho model is not based on a spatial 480 

mineralogical representation but on lithological groups of minerals that are available worldwide (cf. Hartmann 481 

and Moosdorf, 2012) or commonly available in finer resolution for local studies. However, it lacks point 482 

source data (for irrigation, saline springs, or other anthropogenic inputs). In fact, even though the SWAT 483 

model has been widely applied (Fu et al., 2019), there may be occasions when it is not possible to set up the 484 

model even though there is  interest exists in assessing the chemical weathering derived geochemical loadings 485 

in a dynamic way.  486 

Applying the SWATLitho model to evaluate daily loadings at a local scale has yielded reasonable results for 487 

representing the dynamic (r2 > 0.73). However, applying the model to local-scale studies to quantify daily 488 

draining loads at the catchment’s outlet is conditioned by a detailed representation of the area’s lithology and 489 

the lack of other relevant salt sources. When considering the Altzola gauging station as a reference for the 490 
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catchment-scale model application, the mean percentage of deviation of the model is ~-17.96% (Table 6). The 491 

results shown here do not include any variation in the mineral dissolution constant (cxi in Equation 1) which is 492 

likely to occur with changes in groundwater or lateral flow water temperature. A more mechanistic model is 493 

needed to account for this evolution, as well as the chemical equilibrium between phases (as done in Bailey et 494 

al., 2019). However, the more mechanistic a model is, the harder it is to find available input data. 495 

In the present study, a digital filter to deconvolute the hydrograph –distinguish surface runoff from baseflow 496 

and lateral flow with the total discharge time series– has been tested as a potential alternative when it is not 497 

possible to set up QSWATLitho projects, either because of a lack of input data or computational resources 498 

constraints. Interannual daily loads (mean, first, and third quartiles) are shown monthly in Figure 7. Spatial 499 

and temporal limitations of the SWATLitho model have been discussed in previous sections (3.1.3 and 3.1.4), 500 

but all three results in the Oñati drainage catchment, observed, SWATLitho and Eckhardt, present a similar 501 

temporal pattern. However, the SWATLitho presents a peak for all ions in September. This is not present in 502 

the other two methods, supporting the idea that the SWAT’s groundwater flux computation is affected by 503 

pulses calculated in each HRU instead of a diffuse load, which is better represented by graphical separation in 504 

an Eckhardt model. Nonetheless, the variances of the two methods have yielded discrete values, though a 505 

Welch’s test for the differences between the loadings SWATLitho and the Eckhardt module has yield a 506 

p>0.05, which does not demonstrate enough significance to indicate that the loadings are dissimilar. The 507 

visual inspection and the test demonstrate that the Eckhardt digital filter may be applied when a QSWATLitho 508 

project cannot be set up. 509 

One of the limitations of the ICWR model is the presence of spring waters or point sources that alter the 510 

streams’ composition. Those impacts are not presented in the model at this stage and should be considered 511 

when assessing the chemical loads from catchments with springs within their hydrogeological basin or 512 

groundwater inputs that are sourced outside the hydromorphological basin. When it comes to the model’s 513 

performance from various input data, the greatest distinctions among results in the loadings have been found 514 

when changing the lithological map, yielding results closer to the observed values. 515 

Future improvements of the SWATLitho model should allow the inclusion of saline point sources (which 516 

could represent natural saline springs or anthropogenic inputs), and permit the calibration of the cxi parameters 517 

for each catchment (which could adjust the contribution of each lithology for each location) as done in the 518 

common SWAT calibration procedure. 519 

 520 
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 521 
Figure 7. Average monthly inter-annual loading comparison among the observed, SWATLitho, and Eckhardt digital filter results. 522 
Lines indicate the mean value, while the shade represents the 1st and 3rd quartiles for the January 2014 to December 2017 time series. 523 
The vertical axis is shown in logarithmic scale.  524 

4 Conclusion  525 

An empirical model used to estimate the annual average geochemical loads to rivers through chemical 526 

weathering has been downscaled from global to local scale, and shifted from an annual average estimation to a 527 

daily dynamic output, based on the coupling with SWAT, an extended hydrological model. The coupling 528 

method is described along with the case study, using different input datasets to check the influence of 529 

hydrology and lithology resolution in the outputs of the model. The use of globally fitted parameters for the 530 

model has yielded average loadings with a model underestimation of 17.96% with regards to the observed 531 
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data, though the model’s performance is “reasonable” on the representation of spatially explicit daily 532 

geochemical loadings to stream the a catchment level. 533 

The limitations of the model have been addressed, such as the poor performance of the model when springs 534 

are present in the study area, or when the lithological input dataset does not contain information 535 

hydrogeochemically relevant units, such as gypsum intrusions, which are too small to be mapped but relevant 536 

enough to affect the water chemistry and loadings. An alternative has also been presented for those cases in 537 

which a QSWATLitho project cannot be set up: the application of a digital filter to measure data in a gauging 538 

station, together with the drainage basin description (lithology and soil classes). The results do not present 539 

significant differences from those of the SWATLitho, which suggests that both methods may be applied when 540 

it is not possible to set the first one up or that spatially explicit results are not in the scope of the modelling. 541 

The present work introduces a hydrogeochemical tool which is useful for estimating dynamic chemical 542 

weathering loadings out of a catchment at a local scale and also for the estimating of ionic fluxes that derive 543 

from the chemical weathering of rocks in a spatiotemporal context. 544 

Software availability 545 

• The Soil and Water Assessment Tool (SWAT) is freely available in https://swat.tamu.edu/software/ 546 

• The QGIS plugin for SWAT (QSWAT) is freely available in https://swat.tamu.edu/software/qswat/ 547 

• The modified QGIS plugin that is presented in this study (QSWATLitho) as well as the SWATLitho 548 

module written in Python are freely available in https://swat.tamu.edu/software/swat-litho/ 549 
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