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Abstract

Modern 5G networks promise more bandwidth, less delay, and
more flexibility for an ever increasing number of users and applica-
tions, with Software Defined Networking, Network Function Virtual-
ization, and Network Slicing as key enablers. Within that context,
efficiently provisioning the network and cloud resources of a wide va-
riety of applications with dynamic user demand is a real challenge. We
study here the network slice reconfiguration problem. Reconfiguring
network slices from time to time reduces network operational costs
and increases the number of slices that can be managed within the
network. However, this affect the Quality of Service of users during
the reconfiguration step. To solve this issue, we study solutions im-
plementing a make-before-break scheme. We propose new models and
scalable algorithms (relying on column generation techniques) that
solve large data instances in few seconds.

1 Introduction

The Network Function Virtualization (NFV) paradigm is a major technology
of 5G networks. Over the past decade, it has been widely deployed and a
large number of studies investigated its use and benefits. Its core principle
is to break the dependence on dedicated hardware like traditional expensive
middleboxes by allowing network functions (e.g., firewall, load balancing, Vir-
tual Private Network (VPN) gateways, content filtering) to be virtualized and
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implemented in software, and executed on generic servers. Virtual Network
Functions (VNFs) can be instantiated and scaled on demand without the
need to install new equipment, increasing flexibility with user demands [1].
In parallel, we also saw the emergence of Software-Defined Networking (SDN)
that simplifies network monitoring and management. By decoupling the con-
trol plane from the data plane and abstracting network intelligence into a
central controller, SDN allows a global vision and control of the network [2].
Combination of SDN and NFV leads to dynamic, programmable, and flex-
ible networks in which the network infrastructure and resources are shared
among network services.

The 5G technology is envisioned to allow a multi-service network sup-
porting a wide range of communication scenarios with a diverse set of per-
formance and service requirements. The concept of network slicing has been
proposed to address these diversified service requirements. A network slice
is an end-to-end logical network provisioned with a set of isolated virtual
resources on a shared physical infrastructure [3, 4]. Moreover, slicing allows
an efficient usage of resources, as VNFs can be instantiated and released on
demand by slices. Besides, slices can be deployed whenever there is a service
request, reducing the network operator costs [4]. With all these key features,
Network slicing will thus be a fundamental feature of 5G networks [3].

Dynamic resource allocation is one of the key challenges of network slicing.
In a dynamic scenario, the network state changes continuously due to the
arrival and departure of requests (noted also as flows). As the granting
of new flows is done without impacting the ongoing ones, we may end up
with a non-optimal provisioning, and thus with an inefficient resource usage.
Therefore, network operators must adjust network configurations in response
to changing network conditions to fully exploit the benefits of the SDN and
NFV paradigms, and to minimize the operational cost (e.g., software licenses,
energy consumption, and Service Level Agreement (SLA) violations).

We here consider the problem of both rerouting traffic flows and improv-
ing the mapping of network functions onto nodes in the presence of dynamic
traffic, with the objective of bringing the network back to a close to opti-
mal operating state, in terms of resource usage. Rerouting demands and
migrating VNFs take several steps. Usually, network carriers/operators can-
not afford traffic disruption, due to their SLAs, as this can have a significant
impact on the Quality of Service (QoS) experienced by users. Their strat-
egy is then to perform the reconfiguration by using a two–phase approach.
First, a new route is established while keeping the initial one enabled (i.e.,
two redundant data streams are both active in parallel). Then, the trans-
mission is done only on the new route and the resources used by the initial
one are released. This strategy is often referred to as make-before-break. In
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this work, to the best of our knowledge, we are the first to propose scalable
models to reconfigure network slices while implementing such mechanisms to
avoid QoS degradation.

Our contributions in this paper are as follows:

� We propose an Integer Linear Program (slow-rescue) to reconfigure,
with a make-before-break mechanism, the routing and provisioning of a
set of slices.

� We propose two scalable models, rescue-ILP and rescue-LP, with
rescue standing for “Reconfiguration of network Slices with Column
generation without interruption”. Both are based on a decomposition
model and are solved using column generation. Our algorithms recon-
figure a given set of network slices from an initial routing and placement
of network functions to another solution that improves the usage of the
network resources (both in terms of links and VNFs). Our solutions
scale on large networks as we succeeded in solving data instances with
65 nodes and 108 links, and a hundred of network slices in few seconds,
a lot faster than with a classic compact Integer Linear Program (ILP)
formulation such as slow-rescue.

� We show that our solutions allow the decrease of the network cost with-
out degrading the QoS (as the network slices are not interrupted thanks
to the make-before-break approach) in moderate running times. More-
over, we can manage more network slices when the network is congested
compared to solutions without any reconfiguration.

2 Related Work

In the last years, a large corpus of works has studied the deployment and
management of network services, see [5] and [6] for surveys. In particular,
the problem of jointly routing demand and provisioning them with their
needed VNFs has attracted a lot of attention. A large number of efficient
algorithms and optimization models have been proposed in order to minimize
setup cost [7, 8] or take into account the chaining constraints [9, 10]. Most
of these works have only considered scenarios in which, when a service is
deployed, its route and used virtual resources are not changed during its
lifetime. However, the churn of network services makes that even an optimal
service deployment may lead to sub-optimal use of network resources after a
certain time, when some services are no longer there.
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Inspired by the classic defragmentation mechanism in optical networks [11],
it has been proposed to carry out reconfigurations of network and virtual re-
sources regularly in order to bring the network closer to an optimal state
of operation. The goals can be diverse: optimizing network usage, grant-
ing more requests, modifying the capacities of flows already allocated on the
network or even to overcome network failures.

The readjustment of Service Function Chains (SFCs) has been studied in
Liu et al. [12]. The latter formulate an ILP and a column generation model
in order to jointly optimize the deployment of the SFCs of new users and the
readjustment of the SFCs already provisioned in the network while consid-
ering the trade-off between resource consumption and operational overhead.
Noghani et al. [13] study the trade-off between the reconfiguration of SFCs
and the optimality of the reconfigured routing and placement solution.

Gao and Rouskas [14] considered the reconfiguration of virtual networks.
They proposed online algorithms to minimize the maximum utilization of
substrate nodes and links while bounding the number of virtual nodes that
have to be migrated.

Ayoubi et al. [15] propose an availability-aware resource allocation and
reconfiguration framework for elastic services in failure-prone data center
networks. Their work is limited to the case of Virtual Network scale-up
requests such as resource demands increase, new network components arrival,
and/or service class upgrade. The goal is to provide the highest availability
improvement minimizing the overall reconfiguration cost which reflects the
amount of resources as well as any service disruption/downtime.

Ghaznavi et al. [16] propose a consolidation algorithm that optimizes the
placement of the VNFs in response to on-demand workload. The algorithm
decides the VNF Instances to be migrated on the basis of the reconfiguration
costs implied by the migration. However, they assume only one type of VNF
and do not consider chaining requirements.

In [17], Eramo et al. study the problem of migrating VNFs in the dynamic
scenario. The considered objective is to minimize the network operation cost
which is the sum of the energy consumption costs and the revenue loss due
to the bit loss occurring during the downtime. However, their model does
not consider the bandwidth resources.

Recently, the problem has been studied for network slices. Wang et al.
[18] propose a hybrid slice reconfiguration mechanism. The goal of the au-
thors is to optimize the profit of a network slice provider, i.e., the total utility
gained by serving slices minus the resource consumption and reconfiguration
cost. The reconfiguration overhead of a slice includes two aspects: service
interruption and reconfiguration resource cost.

Similarly, all works on reconfiguration of virtual resources (virtual net-
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G = (V, L) Network: V represents the node set and L the link set.
C` Bandwidth link capacity of ` ∈ E.
delay` Link delay of ` ∈ L.
Cv Resource node capacity (e.g., CPU, memory, and disk) of

node v ∈ V .
∆f Number of bandwidth units required by function f ∈ F .
cv,f Usage cost of function f ∈ F , which also depends on node

v.

Each demand d ∈ D is modeled by a quintuplet :
(vsrc, vdst) Source and destination nodes,
cd Ordered network function sequence for demand d,
f cd
i i− th function of chain cd,
bwd Required bandwidth units,
delayd Maximum required delay for the slice.

Table 1: Notations

works, slices or service function chains) include a cost expressing the degra-
dation of the client’s QoS. On the contrary, our goal is to avoid this QoS
degradation by proposing a make-before-break mechanism, in which the new
route is reserved and the new virtual resources are installed before the slice
is reconfigured. A similar mechanism has been proposed in [19]. However,
we are the first to propose a scalable decomposition model based on column
generation to solve it.

3 Problem Statement and Notations

3.1 Definitions

We consider the network as a directed capacitated graph G = (V, L) where V
represents the node set and L the link set. The resource node capacity (e.g.,
CPU, memory, and disk) of node v ∈ V is denoted by Cv. Link transport
capacity is represented by C` and delay` is the delay of link ` ∈ L. t ∈ T
is the number of steps used for the reconfiguration. ∆f is the number of
bandwidth units required by function f ∈ F .

Following, e.g., [20, 21], a slice can be modeled by a set of requests. Each
demand request d ∈ D is modeled with a quintuplet: vsrc the source, vdst
the destination, cd the ordered sequence of network functions that need to
be performed, where f cd

i is the i− th function of chain cd. bwd denotes the
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required units of bandwidth of demand d, and delayd the delay requirement
of demand d. Table 1 summarizes the notations used throughout the paper.

In a dynamic scenario with no information on future traffic, each de-
mand is routed individually while minimizing the network operational cost
defined by the weighted sum of link bandwidth and VNF usage costs (li-
censes, energy consumption, etc). As requests come and leave over time,
allocations that are locally optimal at a given instant can bring the network
in a global sub-optimal state. Our goal is to reconfigure the network to im-
prove resource usage and therefore the operational costs. In doing so, we use
the make-before-break mechanism to avoid network service disruption due to
traffic rerouting. Reconfiguring a demand involves rerouting its path and/or
reallocating the VNFs it’s using to other locations

3.2 Example

Figure 1 illustrates an example for the reconfiguration of a request using a
make-before-break process. Two requests, v2 to v3 and v6 to v5 are routed
during step (b). Four VNFs have been installed in v2, v3, v5 and v6 to satisfy
the needs of these requests. To avoid the usage cost of new VNFs, the route
from v1 to v6 with minimum cost is a long 5–hops route (step (c)). When
requests from v2 to v3 and from v6 to v5 leave, the request is routed on a
non-optimal path (step (d)), which uses more resources than necessary. We
compute one optimal 3-hop path and reroute the request on it (step (f))
with an intermediate make-before-break step (step (e)) in which both routes
co-exist. In this example, the reconfiguration can be done in only one step
of reconfiguration, but we will consider in the following up to 3 steps of
reconfiguration.

3.3 Layered graph

As in [22], in order to model the chaining constraints of a demand, we asso-
ciate with each demand d a layered graph GL(d). The principle is to consider
as many copies of the network as VNFs in an SFC plus one. Copies of a node
in a layer are then connected to the ones in the previous and next layers with
an inter-layer link. Links within a layer corresponds to the physical network
links. The use of an inter-layer link represents the use of a virtual function
in the corresponding node. See Figure 2 for an example of a graph with
three layers. Representing the original graph as a layered graph is a mod-
eling idea first proposed in [23]. It allows a reduction of the problem to a
routing problem with shared capacities. This leads to a drastic reduction in
computational times compared to usual strategies using a large number of
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(a) Requests (b) Two requests (c) A 3rd request

(d) First two requests leave (e) Reconfiguration phase (f) Optimal routing for the
third request

Figure 1: An example of the reconfiguration of a request using a make-before-
break approach with one step.

binary variables due to the ordering constraints of the SFCs. Layered graphs
can be used to solve different problems: (i) how to determine the placement
and activation of NFVs, and the routing of demands; (ii) if the placement
of NFVs has already been done, how to determine their activation and the
routing of demands.

More formally, we associate with each demand d a layered graph GL(d)
containing |cd|+1 copies of G representing the layers of the graph. We denote
by vh,i the copy of node vh in layer i. As shown on Figure 2, the path for
demand d from node vsrc = v1 to node vdst = v3 starts from node v1,0 in
layer 0 and ends at node v3,|cd| in layer |cd|. |cd| denotes the number of VNFs
in the chain cd of the demand. Given a link (vh, vj), each layer i has a link
(vh,i, vj,i) defined. A node may be enabled to run only a subset of the virtual
functions. To model this latter constraint, given a demand d we add a link
(vh,i, vh,i+1) only if node vh is enabled to run the (i+ 1)− th function of the
chain of d. A path on the layered graph corresponds to an assignment of
a demand to both a path and the locations where functions are being run.
Using a link ` = (vh,i, vj,i) on GL, implies using link ` = (vh, vj) on G. In
addition, using link (vh,i, vh,i+1) implies using the (i + 1) − th function of
the chain at node vh. Capacities of both nodes and links are shared among
layers.
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Layer 0

v1,0

v2,0

v3,0

Layer 1

v1,1

v2,1

v3,1

Layer 2

v1,2

v2,2

v3,2

Figure 2: The layered network GL(d) associated with demand d such that
vsrc = v1, vdst = v3, and cd = f cd

0 , f
cd
1 , within a triangle network. f cd

0 can be
installed on v1 and f cd

1 on v1 and v3. Two possible paths that satisfy d are
drawn in red (f cd

0 in v1 and f cd
1 in v3) and blue (both functions are in v1).

4 Optimization models

This section described first the compact ILP model (slow-rescue) to solve
our problem, and then, the two models (rescue-ILP and rescue-LP) based
on column generation methods.

4.1 ILP Model: slow-rescue

The compact ILP model, slow-rescue, is an Integer Linear Program based
on the notion of layered graph described previously.
Variables:
• ϕd,t

`,i ∈ [0, 1] is the amount of flow on Link ` in Layer i at time step t for
demand d.
• αd,t

v,i ∈ [0, 1] is the amount of flow on node v in layer i at time step t for
demand d.
• xd,t`,i ∈ [0, 1] is the maximum amount of flow on Link ` in Layer i at time
steps t and t− 1 for demand d.
• yd,tv,i ∈ [0, 1] is the maximum amount of flow on node v in layer i at time
steps t and t− 1 for demand d.
•ωd,t ∈ [0, 1], where ωd,t = 0 if the allocation of demand d is modified between
time steps t or t− 1.
• zv,f ∈ [0, 1], where zfv = 1 if function f is activated on node v at time step
|T | in the final routing.
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The optimization model starts with the initial configuration (an initial place-
ment of VNFs on the nodes, and a valid routing for the slices) as an input.
Thus, for each demand d ∈ D, at initial time step 0, variables ϕd,0

`,i (for

each link ` ∈ L, layer i ∈ {0, ..., |cd|}) and αd,0
u,i (for each node v ∈ V , layer

i ∈ {0, ..., |cd|}) are known.
Objective: minimize the amount of network resources consumed during the
last reconfiguration time step |T |.

min
∑
d∈D

∑
`∈L

|cd|∑
i=0

bwd ϕ
d,T
`,i + β

∑
v∈V

∑
f∈F

cv,f zv,f (1)

The parameter β ≥ 0 specified by the network administrator accounts for
different scales over which the functions’ activation cost is put in relationship
with the network bandwidth cost. β represents how many TB/s of data can
be sent when using a dollar. Its dimension thus is TB/dollars, giving that
our objective function formally expresses a bandwidth.
Constraints:
Flow conservation constraints . The following equations are the usual flow
conservation constraints considering the graph layer technique as explained
previously. Note that the traffic can enter at the top layer, and only exits at
the bottom layer. For each demand d ∈ D, node v ∈ V , time step t ∈ T .

∑
`∈ω+(v)

ϕd,t
`,0 −

∑
`∈ω−(v)

ϕd,t
`,0 + αd,t

v,0 =

{
1 if v = vsrc

0 else
(2)

∑
`∈ω+(v)

ϕd,t
`,|cd| −

∑
`∈ω−(v)

ϕd,t
`,|cd| − α

d,t
v,|cd|−1

=

{
−1 if v = vdst

0 else
(3)∑

`∈ω+(v)

ϕd,t
`,i −

∑
`∈ω−(v)

ϕd,t
`,i + αd,t

v,i − α
d,t
v,i−1 = 0

0 < i < |cd|. (4)

Node usage over two consecutive time periods . For d ∈ D, v ∈ V , i ∈
{0, ..., |cd| − 1}, t ∈ T . If d used link ` either at time step t or t− 1, then yd,tv,i

is forced to 1. If d is modified between these two steps, then ωd,t = 0 and one
(or both) of the two variables αd,t

v,i or αd,t−1
v,i should be equal to 0. If d keeps

the same allocation between t and t− 1, then ωd,t = 1 and yd,tv,i is forced to 1
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if node v is used and can be equal to 0 otherwise.

αd,t
v,i ≤ yd,tv,i (5)

αd,t−1
v,i ≤ yd,tv,i (6)

αd,t
v,i + αd,t−1

v,i − ωd,t ≤ yd,tv,i . (7)

Link usage over two consecutive time periods. For d ∈ D, ` ∈ L, Layer
i ∈ {0, ..., |cd|}, t ∈ T . The arguments to justify these constraints are the
same as the ones for node usage over two consecutive time periods.

ϕd,t
`,i ≤ xd,t`,i (8)

ϕd,t−1
`,i ≤ xd,t`,i (9)

ϕd,t
`,i + ϕd,t−1

`,i − ωd,t ≤ xd,t`,i . (10)

Make Before Break - Node capacity constraints. The capacity of a node v ∈ V
is shared between each layer and cannot exceed Cv considering the resources
used over two consecutive time periods. For each Node v ∈ V , time step
t ∈ T . ∑

d∈D

bwd

|cd|−1∑
i=0

∆f
cd
i
yd,tv,i ≤ Cv. (11)

Make Before Break - Link capacity constraints. The capacity of a link ` ∈ L
is shared between each layer and cannot exceed C` considering the resources
used over two consecutive time periods. For ` ∈ L, t ∈ T .

∑
d∈D

bwd

|cd|∑
i=0

xd,t`,i ≤ C`. (12)

Delay constraint. The sum of the delays of all links traversed by the flow of
a demand d must not exceed the maximum delay accepted by the demand.
For d ∈ D, t ∈ T

|cd|∑
i=0

xd,t`,i delay` ≤ delayd. (13)

Function activation. To know which functions are activated on which nodes
in the final routing. For v ∈ V , f ∈ F , d ∈ D, and i ∈ {0, ..., |cd| − 1},

αd,T
v,i ≤ zv,fcd

i
. (14)

Reconfiguration - node modification constraints. To know if the allocation of
a demand d is modified on nodes between two consecutive time periods.
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For d ∈ D, v ∈ V , i ∈ {0, ..., |cd|}, t ∈ T .

ωd,t ≤ 1 + αd,t
v,i − α

d,t−1
u,i (15)

ωd,t ≤ 1 + αd,t−1
v,i − αd,t

v,i. (16)

Reconfiguration - link modification constraints. To know if the routing of a
demand d is modified on links between two consecutive time periods.
For d ∈ D, ` ∈ L, i ∈ {0, ..., |cd|}, t ∈ T .

ωd,t ≤ 1 + ϕd,t
`,i − ϕ

d,t−1
`,i (17)

ωd,t ≤ 1 + ϕd,t−1
`,i − ϕd,t

`,i . (18)

Master 
Problem

Set of pricing problems PP(s)

               ...PP1 PP2 PPk

Found 
variables 

with negative 
costs ?

Transform the 
Master to ILP and 

solve it

End

Initial 
Paths

Dual 
values

Yes

No

Figure 3: CG is a decomposition method dividing an optimization model
into two parts: a master problem and a (set of) pricing problem(s) (PP). The
restricted master problem (RMP) solves a linear relaxation of the problem
with a restricted set of columns. Then the PPs compute the best columns
to be added, based on prices given by the dual variables of the RMP. The
RMP and PPs are then iteratively solved until no more columns can improve
the solution of the RMP. Last, the original problem is solved subject to the
integrality constraint using the columns of the RMP.

As we will see in Section 5, although effective, the compact ILP model
slow-rescue does not scale on large networks or with many slices. We
therefore propose an alternative using column generation: rescue-ILP and
rescue-LP (for REconfiguration of network Slices with ColUmn gEneration
with ILP or LP pricing).

4.2 Description of our CG-based algorithms: rescue-ILP

and rescue-LP

4.2.1 Key ideas of column generation technique

Column generation (CG) is a model allowing the solution of an optimiza-
tion model without explicitly introducing all variables, see Figure 3 for an
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explanation. It thus often allows the solution of larger instances of the prob-
lem than a compact model, in particular, with an exponential number of
variables.

In the context of our problem, the master problem (MP) seeks a possible
global reconfiguration for all slices with a path-formulation. In the restricted
master problem (RMP), only a subset of potential paths is used for each
slice. At the initialization, the set of paths is the one used before reconfigu-
ration. Each pricing problem (PP) then generates a new path for a request,
together with the placement of the VNFs. During a reconfiguration, slices
are migrated from one path to another. Note that, as the execution of each
pricing problem is independent of the others, their solutions can be obtained
in parallel. For a more detailed explanation column generation techniques,
see [24].

4.2.2 Master Problem of rescue-ILP and rescue-LP

This master problem is used both by rescue-ILP and rescue-LP.
Variables:
• ϕd,t

p ∈ [0, 1] is the amount of flow of demand d on path p at time step t.
•yd,tp ∈ [0, 1] is the maximum amount of flow of demand d on path p between
time step t− 1 and t.
• δp` is the number of times the link ` appears on path p.
• θpi,v = 1 if node v is used as a VNF on path p on layer i.

We assume an initial configuration is provided with fixed values for ϕd,0
p .

The optimization model is written as follows.
Objective: minimize the amount of network resources consumed during the
last reconfiguration time step T .

min
∑
d∈D

∑
p∈Pd

∑
`∈L

bwd ϕ
d,T
p δp` + β

∑
V ∈V vnf

∑
f∈F

cv,f zv,f (19)

Constraints:
One path constraint . For d ∈ D, time step t ∈ T .∑

p∈Pd

ϕd,t
p = 1. (20)

Path usage over two consecutive time periods. For d ∈ D, p ∈ Pd, t ∈ T .

ϕd,t
p ≤ yd,tp and ϕd,t

p ≤ yd,t−1p . (21)
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Make Before Break - Node capacity constraints. The capacity of a node v in V
is shared between each layer and cannot exceed Cv considering the resources
used over two consecutive time periods. For v ∈ V vnf, t ∈ T .

∑
d∈D

∑
p∈Pd

|cd|−1∑
i=0

yd,tp · θ
p
i,v · bwd ·∆f

cd
i
≤ Cv. (22)

Make Before Break - Link capacity constraints. The capacity of a link ` ∈ L
is shared between each layer and cannot exceed C` considering the resources
used over two consecutive time periods. For ` ∈ L, t ∈ T ,∑

d∈D

∑
p∈Pd

bwd y
d,t
p δp` ≤ C`. (23)

Function activation. To know which functions are activated on which nodes
in the final routing. For v ∈ V , f ∈ F , d ∈ D, i ∈ {0, ..., |cd| − 1},

yd,Tp θpi,u ≤ zu,fcd
i
. (24)

4.2.3 ILP Pricing Problem of rescue-ILP

The pricing problem searches for a possible placement for the slice. Since a
reconfiguration can be done in several steps, a pricing problem is launched
for each demand, at each time step.

Parameters:
• µ are the dual values of the master’s constraints. The number written in
upperscript is the reference of the master’s constraints.
Variables:
• ϕ`,i ∈ [0, 1] is the amount of flow on link ` in layer i.
• αv,i ∈ [0, 1] is the amount of flow on node v in layer i.
Objective: minimize the amount of network resources consumed for the
demand d at time t.

min
∑
`∈L

|cd|∑
i=0

ϕ`,i bwd(1 + µ
(23)
`,t )

+ bwd

∑
v∈V vnf

µ
(22)
v,t

|cd|−1∑
i=0

∆f
cd
i
αv,i

− µ(20)
d,t + β

∑
v∈V vnf

∑
f∈F

cv,f zv,f µ
(24)
d,v,f , (25)
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where µ
(24)
d,v,f = 0 when t 6= T , see constraints (24).

Constraints:
Flow conservation constraints for the demand d. For v ∈ V vnf.

∑
`∈ω+(v)

ϕ`,0 −
∑

`∈ω−(v)

ϕ`,0 + αv,0 =

{
1 if v = vsrc

0otherwise
(26)

∑
`∈ω+(v)

ϕ`,|cd| −
∑

`∈ω−(v)

ϕ`,|cd| − αv,|cd|−1 ={
−1 if v = vdst

0 otherwise
(27)∑

`∈ω+(v)

ϕ`,i −
∑

`∈ω−(v)

ϕ`,i + αv,i−1 − αv,i−1 = 0

0 < i < |cd|. (28)

Delay constraints. The sum of the link delays of the flow must not exceed
the delay requirement of demand d.

|cd|∑
i=0

ϕ`,i delay` ≤ delayd. (29)

Function activation. To know which functions are activated on which nodes.
For v ∈ V vnf, f ∈ F , layer i ∈ {0, ..., |cd| − 1}.

αv,i ≤ zv,fcd
i
. (30)

Location constraints . A node may be enabled to run only a subset of the
virtual network functions. For v ∈ V vnf, i ∈ {0, ..., |cd| − 1}, if the (i + 1)th

function of cd cannot be installed on v, we have

αu,i = 0. (31)

4.2.4 LP Pricing Problem of rescue-LP

The difference between rescue-ILP and rescue-LP comes from the pricing
problem, which is integer for rescue-ILP and fractional for rescue-LP. In-
deed, the execution time of the CG algorithm is divided into the resolutions
of: (1) the multiple PPs, (2) the multiple relaxations of the RMP, and (3)
the ILP of the MP. In our experiments, the time spent in (1) represents more
than 90% of the whole execution time. To reduce this computational time,
we propose rescue-LP that solves a relaxation of the pricing problem with
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fractional flows. The Master Problem of rescue-LP is the same as previ-
ously described. In the vast majority of cases, even with no constraint to
force integral flows, the PP outputs an integral path that can be directly
integrated into the RMP. If the LP gives a fractional flow, we use the ILP
PP of rescue-ILP to get an integral path.

5 Numerical Results

We conducted several experiments in order to show the efficiency of our Col-
umn Generation algorithms, rescue-ILP (with ILP pricing) and rescue-LP

(with LP pricing). We compare their results with three solutions:

� no-reconf which places and removes the slices without reconfiguring
the network,

� slice-wreck which regularly reconfigures the network but with inter-
ruptions, and

� slow-rescue, our (slower) compact ILP reconfiguring slices without
interruptions.

The solution slice-wreck computes an optimal (static) routing and place-
ment solution and reconfigures to that new solution. This algorithm gives
a bound for the best solution we can reach with the make-before-break ap-
proach.

We first show the efficiency of the CG models in terms of execution times
and gains in network costs compared to the ILP, and of accuracy using static
scenarios in Section 5.2. We discuss the impact of the number of reconfig-
uration steps in Section 5.3. Then, we consider dynamic scenarios in which
requests arrive and leave over time in Section 5.4. We discuss the gains
provided by the reconfiguration by studying the impact on several metrics
while varying the reconfiguration frequency in Section 5.5. The scalability
of our solutions are proven in 5.6. The gains of parallelization are shown in
Section 5.7 and the impact of slice delay constraints in Section 5.8.

5.1 Data sets

Topologies. We conduct simulations on three real-world topologies from
SNDlib [25] of different sizes: pdh (11 nodes, 34 links), ta1 (24 nodes, 55
links), and ta2 (65 nodes, 108 links). The compact model, slow-rescue,
succeeds to find solutions only for small networks like pdh. We thus first
compare the results on pdh and ta1 to show the efficiency of the CG models
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Figure 4: Period approximation of traffic variation

Slice Types VNF chain Latencybw

(Mbps)

Web Service NAT-FW-TM-WOC-IDPS 10ms 100

Video Streaming NAT-FW-TM-VOC-IDPS 5ms 256

VoIP NAT-FW-TM-FW-NAT 3.5ms 64

Online Gaming NAT-FW-VOC-WOC-IDPS 2.5ms 50

Table 2: Characteristics of network slices

in terms of execution times and gains in network costs. We then use the two
larger networks ta1 and ta2 for our study of large dynamic scenarios. We
use cplex [26] for the mathematical linear programming solver.
Slice demands. Each slice is composed of a random number of demands
chosen uniformly between 1 and 5. Each of the demands has to implement a
chain of up to 5 VNFs, requires a specific amount of bandwidth, and has a la-
tency constraints. We consider four different types of demands corresponding
to four services: Video Streaming, Web Service, VoIP, and online gaming.
The characteristics of each service are reported in Table 2 and are taken
from [27]. The bandwidth usage was chosen according to the distribution
of Internet traffic described in [28]. The latency requirements are expressed
in milliseconds and represent the maximum delay between the source and
destination. Simulations have been conducted on an Intel Xeon E5520 with
24GB of RAM.
Traffic distribution. Our goal is to study the impact of reconfiguration for
different network usages. Indeed, when the traffic is low or medium, all slices
can be served and reconfigurations improve the network usage (links and
VNFs). However, when the traffic is high and if some links are congested,
reconfiguration also helps to prevent rejecting slices. To model the typical
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daily variation of traffic in an ISP network, we used the traffic distribution
from a trace of the Orange network (Fig. 4). We adapted the churn rate of
slices during time in order to obtain a similar level of traffic. This distribution
is decomposed into five different levels of traffic demands: D1 to D5, D1 being
the lowest one (from 3 to 6 am) and D5 the highest one (from 11 am to 6
pm). Each level of traffic corresponds to a different average number of slices:
from 10 for D1, 22 for D2, 35 for D3, 52 for D4 to 60 for D5 with an average
of 3 SFCs per slice.

Finally we will mostly use 3-steps reconfiguration, except for pdh where it
will be a 2-steps reconfiguration (to be able to compare our algorithms with
slow-rescue which does not give results with 3 steps). The reason for the
choice of the 3-steps reconfiguration is developed in sub-section 5.3.

5.2 Efficiency of our algorithms with different traffic
matrices

We evaluate the efficiencies of rescue-ILP and rescue-LP by comparing
them with slow-rescue. We consider the pdh and ta1 networks for the five
different traffic levels during the day of Fig. 4. We consider here a static
scenario. For each network and for each level of traffic, we first place a cor-
responding number of slices one by one. We then carry out a reconfiguration
to reroute the slices in order to improve the network usage. First, all the
slices of D1 are placed, and then all reconfigured at once. Then, the same
process is repeated for D2 until D5.

5.2.1 Execution times

We report the execution times of a reconfiguration in two steps for slow-rescue,
rescue-ILP and rescue-LP in Figure 5. Each value is an average over 10 ex-
periments. We set a time limit of one hour. When the time limit is reached,
the algorithms return the best solution found during this delay. This solution
is often not too far from the optimal solution, or even optimal as the solver
tries to prove the optimality of the solution. For pdh, slow-rescue finds
the optimal solution only for the period D1 and a small number of runs for
D2. For all the other ones, it reaches the time limit. For the larger network
ta1, the compact ILP was not able to find any feasible solution, even for D1
with the lowest number of slices. Column generation models are a lot faster.
The execution times are below 120 s for both networks for any time period.
Moreover, the models scale well as their execution times increase in a linear
way. We observe that rescue-LP is a lot faster than rescue-ILP (beware
of the log y-scale): for ta1, rescue-LP needs from 4 s to around 70 s, while
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the execution times of rescue-ILP are between 20 s and 120 s. It confirms
that using LPs instead of ILPs when possible very significantly speeds up the
resolution of the pricing problems, and, then, of the whole method.

5.2.2 Gains in network cost

We now compare the improvement in terms of network cost obtained after
a reconfiguration in Figure 6. Results are given for each time period for pdh
and ta1. Recall that the network cost is a weighted sum of the VNF and
network costs (which are also plotted in Figure 7 and 8, respectively).

For pdh and for traffic matrix D2, slow-rescue reached the time limit,
but succeeds in finding a feasible solution, whose improvement in terms of
network cost is only half of the improvement of the Column Generation based
methods. For the other traffic periods (except for the smallest one D1), not
even a feasible solution can be found during the time limit.

For both networks, we see that rescue-ILP and rescue-LP achieve com-
parable results. As rescue-LP is faster, we use it as our preferred solution
in the following.

Last, we compare the results of our models with slice-wreck, which
does not use the make-before-break mechanism. slice-wreck can achieve a
better network improvement but at the cost of breaking slices and, thus, of a
degraded QoS for users. We report its results as an upper bound on what our
algorithms can achieve. We see that rescue-ILP and rescue-LP results are
within few percent of the ones of slice-wreck, showing their efficiency. The
difference is higher for heavy load periods (D4 and D5). Indeed, when the
traffic is high, some links are almost saturated. It thus is harder to ensure
that the bandwidth for both the current path and the one targeted by the
reconfiguration can be reserved during the process.

Figure 7 and 8 show how the improvement of objective is decomposed
between the number of VNFs and the bandwidth usage. We considered a
setting (and accordingly set the value of β in our objective function, Equa-
tion 1) in which the bandwidth and the VNFs have the same weight in the
objective: using 100% of the available bandwidth has the same cost as using
100% of the available VNFs.

We see that reconfiguration allows to decrease the usage of both network
bandwidth and VNFs. In terms of network bandwidth usage, the gains
are similar between pdh and ta1 and vary between 12% and 24%. For the
deployment of VNFs the gain on pdh is lower and is between 6% and 25%
while for ta1 it varies between 23.5% and 38%.

Indeed, pdh is a smaller network with a smaller diameter compared to
ta1 and fewer available datacenters. The routes of new slices are therefore
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pdh ta1

rescue-ILP rescue-LP rescue-ILP rescue-LP

D1 3.11 4.03 1.82 1.38
D2 19.14 17.15 10.67 6.64
D3 11.22 13.88 8.19 9.55
D4 15.30 17.87 12.39 15.60
D5 12.52 13.28 12.16 13.09

Table 3: Accuracy of the column generation models (%)

more likely to be close to an already deployed VNF and of length not too far
from the shortest one. Therefore, the reconfiguration is not as efficient on
pdh compared to ta1.

5.2.3 Accuracy of the Column Generation Models

The accuracy ε of a column generation model is classically defined as ε =
(z̃ilp−z?lp)/z?lp, where z?lp represents the optimal value of the relaxation of the
Restricted Master Problem, and z̃ilp the integer solution obtained at the end
of the column generation algorithm. We provide the accuracy of rescue-ILP
and rescue-LP in Table 3. We see that, if the accuracy increases with the
number of slices, it is always lower than 20% for both networks. The solutions
thus are not far from optimal.

5.2.4 Time limits for the reconfiguration

The reconfiguration of the network has to be done dynamically in real time.
In this context, the time to compute the reconfiguration is an important
element towards the adoption of such solutions. We thus compare the results
of the algorithms for ta1 for different maximum execution times: 1, 5, 10, 60
seconds and without limits, see Figure 9 (with rescue-ILP at the top and
rescue-LP at the bottom). In period D1, rescue-LP is almost optimal in
1 s. We need at least 10 s to get closer to the optimal (no time limit) in the
other periods, at 3% at most in D5. As for rescue-ILP, it is almost optimal
in D1 in 5 s but needs at least 60 s to reach near optimal results for the other
periods.

It confirms that rescue-LP is the most scalable method while reaching
similar performance as rescue-ILP. It thus is the best solution to use in
practice: rescue-LP is fast and reaches a very good performance level in
only 10 s for all the periods.
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5.3 Impact of the number of reconfiguration steps

A specificity of our make-before-break scheme is that the reconfiguration is
done in a given number of steps. The more steps the more possibilities to
improve the network operating state, however the more complex the models
and the longer to solve them. In this section, we are interested in the impact
of the number of steps on the improvements achieved by the reconfiguration
and on the execution time. We use the same scenario as in the previous
section. The simulations are done on ta1 for a number of reconfiguration
steps varying from 1 to 4. Results are reported in Figures 10 and 11. As a
measure of comparison, we reported the results of slice-wreck which are
the same in all cases, as the method does not have reconfiguration steps.
As can be seen in Figure 10 and Table 4, whether on rescue-LP or rescue-ILP,
over all periods: an increase in numbers implies an improvement in the ob-
jective. This phenomenon is even more noticeable in periods D4 and D5.
Nevertheless we can see a strong improvement between 1 step and 2 steps, a
weaker improvement between 2 and 3 steps and finally a negligible improve-
ment between 3 and 4 steps. In order to compare the interest of different
numbers of reconfiguration steps, we must also look at the execution times.
Figure 11 and Table 5 shows that, like the objective, an increase in the num-
ber of reconfiguration steps implies a higher computing time. But unlike the
objective, the increase in computing time is not reduced as much by increas-
ing the number of steps. By averaging over all time periods and between
rescue-LP and rescue-ILP:

Going from 1 to 2 steps, the balance is undeniable, we increases the ob-
jective improvement by 60% against 59% additional execution time. Passing
from 2 to 3 steps increases the objective improvement by 11.7% for 35.3%
more computing time. Finally, moving from 3 to 4 steps we increases the
objective improvement by only 3.1% for 21.9% more computing time. Seeing
this we decided to use a 2-step reconfiguration for pdh (mainly so that we
could compare our algorithms to slow-rescue) and a 3-steps reconfiguration
for all the other experiments because it seems to us to be the most balanced
configuration.

5.4 Gains over Time

We now study the gains provided by the reconfiguration over time. To this
end, we consider a scenario in which the traffic is dynamic (requests arrive
and leave over time) and some reconfigurations are regularly performed. We
use a traffic distribution from a trace of Orange network (Figure 4) in order
to model the variation of traffic over 24 hours. In our scenario, the net-
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rescue-ILP rescue-LP

# Steps 1 2 3 4 1 2 3 4
D1 21.0 26.1 26.1 25.7 20.7 25.4 25.9 26.7
D2 18.6 24.4 23.9 26.1 18.6 24.6 26.6 26.4
D3 16.6 27.0 28.8 28.0 17.0 26.5 27.9 27.4
D4 9.1 19.5 24.7 25.8 9.1 18.9 23.6 25.9
D5 6.4 19.6 25.2 27.5 6.8 19.0 24.7 26.9
AVG 14.4 23.3 25.8 26.6 14.4 22.9 25.8 26.7

Table 4: Average percentages of improvement for each period and each num-
ber of steps for rescue-LP and rescue-ILP on ta1.

rescue-ILP rescue-LP

# Steps 1 2 3 4 1 2 3 4
D1 19.5 25.1 23.9 39.0 2.8 3.2 4.2 4.7
D2 24.0 40.1 48.1 58.8 6.6 11.6 15.5 15.5
D3 35.2 50.2 65.4 83.8 15.4 24.3 32.7 45.3
D4 44.3 73.4 107.9 112.9 23.6 40.4 53.8 62.7
D5 59.3 85.1 120.7 151.8 20.1 45.2 68.0 83.7
AVG 36.5 54.8 73.2 89.3 13.7 24.9 34.8 42.4

Table 5: Computation times (seconds) on ta1
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work experiences periods of high congestion during which some slices may
be rejected and periods with lower traffic.

To assess the reconfiguration gains, we compare rescue-LP (our best
algorithm as it is as efficient as rescue-ILP but much faster) with no-reconf

which does not carry out reconfigurations for a medium (ta1) and a large
(ta2) networks. We study the following metrics: the network operational
cost, the throughput of the accepted slices, the accepted number of slices,
and the operational cost per Mbits of accepted traffic.

rescue-LP performs reconfigurations every 15 minutes. We choose this
value as it seems a reasonable one for a network operator which does not want
to change its routes too frequently. This choice is discussed in Section5.5,
in which we vary the reconfiguration frequency, and show that 15 is a good
trade-off between network management and all the studied metrics.

5.4.1 Network Cost

In Figure 12 we study the network operational cost over time. Recall that
the network costs are defined by the weighted sum of link bandwidth and
VNF usage costs. The network cost follows the traffic variation depicted
in Figure 4. Of course, the figures shows that the more traffic, the more
network operational cost. Our solution is more reactive to traffic variations
thanks to the reconfigurations that are regularly performed. Throughout
the entire execution and for both networks, rescue-LP significantly reduces
the network operational costs: 22% of reduction on ta1 and 18% on ta2

compared to no-reconf case. This reduction is particularly substantial when
the network is loaded (between 10am and 6pm). Reconfiguration allows a
better management of the network and a more efficient resource usage.

5.4.2 Throughput

The objective of our solution is to reduce operational costs. However, we
should not reduce these costs at the price of rejecting slices. Therefore, we
present the global throughput of the network in Figure 13. This through-
put is defined as the sum of the requested bandwidth of the accepted slices.
During the first 5 hours of execution there is almost no congestion because
the traffic decreases, thus,no-reconf and rescue-LP accept the same num-
ber of slices and get roughly the same throughput for both networks. The
next 3 hours, traffic increases and rescue-LP improves the throughput by
up to 13% for ta2 when the network is the most saturated (traffic period
D5). For a period of 24 hours, rescue-LP allows an average throughput
improvement of 3% on ta1 and 5% on ta2. Therefore, as a combined con-
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clusion of Figures 12 and 13, rescue-LP succeeds in reducing the network
operational costs while, at the same time, improving the network through-
put. These gains are reached without impacting users’ Quality of Service as
resources are reserved before any changes of network configurations thanks
to our make-before-break mechanism.

5.4.3 Accepted Slices

The difference in terms of throughput discussed above comes from different
slice acceptance rates of both solutions. As the slices of different types do not
require the same reserved bandwidth (see Table 2), we report the percentage
of the bandwidth of the accepted slices compared to the one of the requested
slices. The plot in Figure 14 represent incremental acceptance, each bar
corresponds to the percentage of accepted bandwidth averaged over 2 hours.
The evolution of the curve reflects the inverse of the network load as shown
in Figure 4. Between midnight and 5:00 a.m. the network load decreases
from period D3 to D2 and then to D1, we can therefore see that we are able
to accept almost all of the demands. Then the load rises until noon to reach
period D5 and remains stable until about 7 p.m., thus, the percentage of
demands acceptance declines, which is even more noticeable on ta2. Finally,
the load decreases until midnight to reach period D3, implying an increase
in the acceptance percentage. rescue-LP allows an improvement in slice
acceptance for both networks: 2% and 4% more bandwidth for ta1 and ta2,
respectively.

5.4.4 Cost per MBit

As discussed above, reconfiguration allows to reduce the network operational
cost and, at the same time, to accept more slices. To measure both advantage
with a single metric, we report the cost per MBit to obtain a fair comparison
in Figure 15. The improvement in percent is given by the light red bars.
The gain is of 25% for ta1 and 22% for ta2. This shows that our solution
is significantly efficient. We observe that the gain is lower when the traffic
is low (period D1), but similar for the other periods (D2, D3, D4, D5). We
also see that reconfiguring the network keeps the cost per MBit more stable
during time, showing a better usage of the network resources which adapt
when the traffic varies.
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5.5 Impact of the reconfiguration time interval

In the previous section, we measured the effects of regularly reconfiguring the
network in a dynamic scenario. The reconfiguration interval was set to 15
minutes. We now study the effects of different reconfiguration frequencies:
5 , 15 , 30 , and 60 min. Indeed, reconfiguring more regularly can improve the
usage of the network resources, but at the same time lead to more difficult
management. Reconfiguring less regularly eases management, but reduces
the reconfiguration gains.

5.5.1 Network Cost

We study in Figure 16 the network operational cost of the network consid-
ering different reconfiguration frequencies. For frequency of 60 , 30 , 15 and
5 respectively, we have improvements of 15.5%, 18.2%, 22% and 23.9% on ta1

and 9.4%, 14%, 18% and 21% on ta2. Even if a frequency of 5 leads to better
improvement in network costs, good improvement is already obtained with
a reconfiguration frequency of 60 , meaning a reconfiguration every hour.

5.5.2 Throughput

Figure 17 shows the network throughput over time as defined in 5.4.2. For
reconfiguration frequency of 60 , 30 , 15 and 5 respectively, there are improve-
ments of 0%, 1%, 3.1% and 5.1% on ta1 and 0.1%, 2.4%, 5% and 7% on
ta2. For both networks, a reconfiguration frequency every 15 minutes seems
to be a good trade-off between throughput and network management.

5.5.3 Accepted Slices

In Figure 18, we plot the accepted bandwidth over time as defined in 5.4.3.
Each curve is more easily identifiable compared to previous figures. For
reconfiguration frequency of 60 , 30 , 15 and 5 respectively we have improve-
ments of 0%, 0.7%, 2.2% and 4% on ta1 and 0%, 1.5%, 3.8% and 5.3% on
ta2. Here again, reconfiguring every 15 minutes seems to be a good trade-off
for the accepted number of slices.

5.5.4 Cost per MBit

Figure 19 shows the network operational cost per MBit over time as defined
in 5.4.4. We can easily distinguish the above curve without reconfigura-
tion among all the curves. For reconfiguration frequency of 60 , 30 , 15 and
5 respectively there are improvements of 14.4%, 20.5%, 25% and 28.5% on
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ta1 and 10.2%, 16.2%, 22% and 26.8% on ta2. Reconfiguring once an hour
leads to strong peaks of cost, while when we reconfigure every 5 minutes, the
cost per Mbit is more stable.

To summarize, a reconfiguration frequency of 15 is a good trade-off to
balance the cost, stability and ease of network management. It leads to an
improvement of 20.7% (respectively 17%) of network cost, 3.5% (respectively
8.9%) of throughput, 2.4% (respectively 6.4%) of accepted bandwidth, and
of 25.5% (respectively 23.2%) of cost per Mbit on ta1 (respectively on ta2).

5.6 Scalability

In this section we study the scalability potential of our approach. Indeed the
interest of column generation is to be able to use reconfiguration with many
requests. We must recall that a slice is composed of an average of three SFCs
requests and therefore 480 slices represent about 1440 requests. In Figure 20,
we are interested in the scalability of our solution based on our experiences
in 5.2. We want to show that our solution can manage a large number of
slices in few seconds only. We vary the number of slices from 60 to 480, as
well as the capacity of the network to keep the same percentage of network
load. We impose a maximum time of 60 seconds. Note that only rescue-ILP

and rescue-LP are compared, and recall that slow-rescue did not find any
feasible solution with 2 steps of reconfiguration, with less than 30 slices in
3600 seconds on ta1 (Figure 9 (right)). For each of the networks ta1 and
ta2 we perform a 3-steps reconfiguration. As we can see, even with a large
number of slices and a limited time, our solution still allows a significant
improvement of the objective. The left side of figure 20 shows us the results
on ta1 where rescue-ILP gets an improvement of 27.1% with 120 slices and
on average it improves by 19%, while rescue-LP improves at best by 29.5%
with 120 slices with an average of improvement of 22.6%. The right side of
Figure 20 shows the results on ta2 where rescue-ILP improves at best by
22.6% with 120 slices and at worst by 12.2% with 480 slices and on average
it improves by 18.1%, while rescue-LP improves at best by 24% with 120
slices and at worst by 17.9% with 480 slices and on average it improves by
20%. Finally we can see here the advantage of rescue-LP over rescue-ILP

which allows a better improvement and is less affected by the lack of time on
large instances.
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5.7 Parallelization of the pricing problem

One of the advantages of column generation is the ability to parallelize the
execution of pricing problems on several CPUs cores or machines. In our
experiments about 70% of the execution time is spent on solving pricing
problems, which means that parallelization can save time. In Figure 21
we show the execution times of rescue-LP to reconfigure 60 slices in D5
period in ta2. For this experiment we put no time limit and let the column
generation create as many columns that can potentially improve the solution.
The average computation time is 433 seconds with 1 thread and 237 seconds
with 2 threads (45% improvement). With 4 threads rescue-LP is faster and
computes a solution on 157 seconds. The difference between 4 and 8 threads
is less pronounced, 29 seconds less, but our computer, although having 8
threads, has only 4 CPU cores. As pricing execution already uses CPUs to
their full potential, additional threads have only a limited impact.

5.8 Impact of the delay constraints

Being able to ensure strict delay constraints for some applications is one of
the key element of network slicing [4]. As an example, each of the slice we
considered had a maximum latency corresponding to its service as shown in
Table 2. In this section, we study the impact of different delay constraints
on the reconfiguration gains. We carried out three sets of reconfigurations
for ta1 setting the delay constraints of each slice successively to 3 different
values: 2.5 ms, 5 ms and 10 ms.

5.8.1 Stricter delays lead to lower improvements

The improvement of the objective due to reconfiguring is plotted in Figure 22
for the 3 different latency constraints. We observe that larger gains are
obtained when the delay constraints are looser. For a 2.5 ms latency, the
improvement is of 16% in average, while it is of 27% and 27.5% for 5 ms and
10 ms latencies, respectively. Indeed, when the maximum delay is small, the
number and diversity of potential paths to choose from for a demand are
smaller. This leads to fewer opportunities for the reconfiguration. However,
we also see that, when the maximum allowed delay reaches a threshold, such
constraints are no more an important limiting factor. For example, for ta1

the improvements for 5 ms and the 10 ms are similar.
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5.8.2 Stricter delays makes it harder to solve

In Figure 23 we study the time taken to compute the reconfigurations: The
stricter the latency constraints, the slower to compute a reconfiguration.
With a very tight delay constraint of 2.5 ms, in addition to have a lower
improvement, we have much longer computation times with 428 sec on aver-
age, compared to 228 sec and 91 sec for 5 ms and 10 ms, respectively, which
allowed similar gains. Indeed, the higher the maximum allowed delay, the
larger the opportunities for reconfiguration and the easier it is to find paths
satisfying the delay constraints.

6 Conclusion

Modern 5G networks will see an increase in the number of users and an ever-
growing need for flexibility and efficiency. Reconfiguring requests regularly
can lead to significant improvements in the use of network resources. In this
work, we provide solutions, rescue-ILP and rescue-LP, to reconfigure a set
of requests using a make-before-break approach. Our algorithms, based on
column generation, reroute the requests to an optimal or close to optimal
solution without impacting the rerouted requests. Both our solutions are
scalable and allow to reconfigure several hundred of Slices in one minute.
The use of column generation also allows us to effectively parallelise part of
the problem, which will increase its efficiency in the coming years with the
development of computer with a larger number of CPU cores. rescue-LP is
the solution to be chosen in practice as we observed during simulations that
it scales better with the network size and the number of slices. Reconfiguring
regularly the network with rescue-LP allows a slight increase in throughput
when the network is congested as well as a significant reduction in operating
costs of around 20% to 25%.
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Figure 5: Execution times for pdh (left) and for ta1 (right).
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Figure 6: Gains in network cost for pdh (left) and for ta1 (right).
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Figure 7: Gains in VNF cost for pdh (left) and for ta1 (right).
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Figure 8: Gains in bandwidth cost for pdh (left) and for ta1 (right).
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Figure 9: Improvement due to the reconfiguration for different model time
limits on ta1.
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Figure 10: Improvement of the Objective (in %) with different numbers of
reconfiguration steps on ta1
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Figure 11: Reconfiguration time with different numbers of reconfiguration
steps on ta1
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Figure 12: Network cost for ta1 (left) and for ta2 (right).
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Figure 13: Throughput for ta1 (left) and for ta2 (right).

35



0 6 12 18 24
Time (h)

60

80

100

B
w

 A
cc

ep
te

d 
(%

)

0 6 12 18 24
Time (h)

60

80

100

B
w

 A
cc

ep
te

d 
(%

)

Figure 14: Percentage of Bandwidth accepted for ta1 (left) and for ta2

(right).
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Figure 15: Network cost per accepted bandwidth for ta1 (left) and for ta2

(right).
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Figure 16: Network cost for ta1 (left) and for ta2 (right).

0 6 12 18 24
Time (h)

0

10000

20000

Th
ro

ug
hp

ut
 (M

B
/s

)

0 6 12 18 24
Time (h)

0

10000

20000

Th
ro

ug
hp

ut
 (M

B
/s

)

Figure 17: Throughput for ta1 (left) and for ta2 (right).
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Figure 18: Percentage of Bandwidth accepted for ta1 (left) and for ta2

(right).
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Figure 19: Network cost per accepted bandwidth for ta1 (left) and for ta2

(right).
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Figure 20: Gains in network cost for ta1 (left) and for ta2 (right) with
different numbers of slices during D5 period.
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Figure 21: Time to execute the pricing problems according to the number of
threads on ta2 in D5 period (60 slices).
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Figure 22: Improved Objective with 2.5ms delay (left), 5ms delay (middle)
and 10ms delay (right) reconfiguration on ta2.
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Figure 23: Reconfiguration time with 2.5ms delay (left), 5ms delay (middle)
and 10ms delay (right) reconfiguration on ta2.
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