N

N

Don’t Interrupt Me When You Reconfigure my Service
Function Chains

Adrien Gausseran, Andrea Tomassilli, Frederic Giroire, Joanna Moulierac

» To cite this version:

Adrien Gausseran, Andrea Tomassilli, Frederic Giroire, Joanna Moulierac. Don’t Interrupt Me When
You Reconfigure my Service Function Chains. Computer Communications, 2021, 171, pp.39-53.
10.1016/j.comcom.2021.02.008 . hal-03430469

HAL Id: hal-03430469
https://hal.science/hal-03430469

Submitted on 16 Nov 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03430469
https://hal.archives-ouvertes.fr

Don’t Interrupt Me When You Reconfigure my
Service Function Chains

Adrien Gausseran, Andrea Tomassilli, Frederic Giroire, Joanna Moulierac

%

November 16, 2021

Abstract

Software Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV) are complementary and core components of modernized net-
works. In this paper, we consider the problem of reconfiguring Service
Function Chains (SFC) with the goal of bringing the network from a sub-
optimal to an optimal operational state. We propose optimization models
based on the make-before-break mechanism, in which a new path is set up
before the old one is torn down. Our method takes into consideration the
chaining requirements of the flows and scales well with the number of nodes
in the network. We show that, with our approach, the network operational
cost defined in terms of both bandwidth and installed network function costs
can be reduced and a higher acceptance rate can be achieved, while not in-
terrupting the flows.

Keywords: Software Defined Networks, Network Function Virtualiza-
tion, Service Function Chaining, Network reconfiguration, optimization

1 Introduction

The last decade has seen the development of new paradigms to pave the way
for a more flexible, open, and economical networking. In this context, Software
Defined Networking (SDN) and Network Function Virtualization (NFV) are two
of the most promising technologies for the Next-Generation Network.

SDN aims at simplifying network management by decoupling the control
plane from the data plane. Network intelligence is logically centralized in an SDN

“Université Cote d’ Azur, CNRS, Inria Sophia Antipolis, I3S, UMR 7271, 06900 Sophia An-
tipolis, France

controller that maintains a global view of the network state. As a consequence, the
network becomes programmable and can be coupled to users’ business applica-
tions. Indeed, network devices do not need to be configured individually anymore
as it becomes easier to manipulate them through a software program [[1].

With the NFV paradigm, network functions (e.g., firewall, load balancer, con-
tent filtering or deep packet inspection) can be implemented in software and exe-
cuted on generic-purpose servers located in small cloud nodes. Virtual Network
Functions (VNFs) can be instantiated and scaled on—demand without the need of
installing new dedicated equipment. The goal is to shift from specialized hard-
ware appliances to commoditized hardware in order to deal with the major prob-
lems of today’s enterprise middlebox infrastructure, such as cost, capacity rigidity,
management complexity, and failures [2]]. For network operators, NFV is an op-
portunity to offer services in a more agile way, capable of operating on extremely
large scales, but above all, in a faster way by exploiting the intrinsic properties
of virtualization. The benefits of these two emerging technologies are many. An
NFV can easily adapt to changing demand. This is particularly interesting at the
launch of the service where you do not have to immobilize a large investment
without knowing the subsequent evolution. Virtualization offers great flexibility
and elasticity for deployment; in addition to the reduction in implementation costs
(CAPEX), there are also reductions in operating costs (OPEX). With NFV, scaling
can be done horizontally: for example, in the event of congestion of a service, it
is easy to deploy a new occurrence of this service, thus allowing it to adapt to the
scalability. Finally, virtualization permits to overcome geographical constraints
by positioning the service independently of physical constraints.

Even though SDN and NFV are two different independent technologies, they are
complementary. Each one can leverage off the other to improve networks and
service delivery over them [3].

To meet customers’ demands, VNFs have often to be interconnected to form
complete end-to-end services. Besides, network flows are often required to be pro-
cessed by an ordered sequence of network functions. For example, an Intrusion
Detection System may need to inspect the packet before compression or encryp-
tion are performed. This notion is known as Service Function Chaining (SFC) [4].
SDN has the potential to make the chaining of the network functions much easier.

Routing & Provisioning In this context, a fundamental problem that arises is
how to map these VNFs to nodes (servers) in the network to satisfy all demands,
while routing them through the right sequence of functions and meeting service
level agreements. In doing this, the capacity constraints on both nodes and links
must be respected.

In this paper, we consider the problem of providing, for each demand, a path

through the network in the case of dynamic traffic while respecting capacities on
both links and nodes. Moreover, the problem also consists in provisioning VNFs
in order to ensure that the traversal order of the network functions by each path
is respected. Our goal is to minimize the network operational cost, defined as the
sum of the bandwidth cost to route the demands and the cost for all the VNFs
running in the network.

Reconfiguring The network state changes continually due to the arrival and de-
parture of flows. Moreover, the allocation of a demand is performed individually
without having full knowledge of the incoming traffic. This may lead to a sub-
optimal utilization of the resources of the network. For instance, requests may
be routed on long paths, and there may be more active network functions than
needed. An optimal or near-optimal resource allocation may result after a lapse of
time in over-provisioning or in an inefficient resource usage. Also, it may lead to
a higher blocking probability even though there are enough resources to serve new
demands. Indeed, as reported by [S]], 99% of rejections were caused by bandwidth
shortage even though there were enough resources to satisfy the request.

Therefore, operators must take it into consideration and adjust network config-
urations in response to changing network conditions to fully exploit the benefits
of the SDN and NFV paradigms, and to avoid undue extra cost (e.g., software
licenses, energy consumption, and Service Level Agreement (SLA) violation).

Thus, another problem is how to reroute traffic flows through the network and
how to improve the mapping of network functions to nodes. In order to minimize
the network’s operator cost and to optimize the usage of network resources, we
consider the problem of reconfiguring regularly the demands, i.e., moving them
from a local optimal allocation to a global optimal one.

Make-Before-Break Reconfiguration can be performed at several moments in
time. It can be done as soon as a new request arrives [6], when a request is
rejected [7], when the physical network is modified [8]], or it could also be done
periodically when the network is not yet saturated.

Rerouting demands and migrating VNFs may take several time steps. If dur-
ing this time, traffic is interrupted, it may have a non-negligible impact on the
QoS experienced by the users. To tackle this issue, our strategy performs the
reconfiguration by using a two—phase approach. First, a new route for the trans-
mission is established while keeping the initial one enabled (i.e., two redundant
data streams are both active in parallel), and after the network has been updated to
the new state, the transmission moves on the new route and the resources used by
the initial one are released. This strategy is often referred to as make-before-break.

This article is an extended version of the conference paper published in [9]
and our contributions are as follows.

* We provide the first method, Break—-Free-ILP, to reconfigure, with a
make-before-break mechanism, a network routing a set of demands which
have to go through service function chains. This mechanism allows to reach
closer to optimal resource allocation while not interrupting the demands
which have to be rerouted.

* We propose an efficient heuristic to reconfigure the SFCs as closely as pos-
sible to a given allocation.

Compared to the original version, this article presents some new and more de-
tailed contents. The major extensions in this article can be summarised as follows.

* Previously, we only proposed solutions based on Integer Linear Program-
ming (ILP). Now, we also present a scalable heuristic algorithm, Break-Free-HEUR.
The heuristic is detailed in Section [4.5] and thoroughly evaluated in Sec-
tion [5| (Numerical Results). The algorithm allowed us to present results for
a larger network (with 65 nodes and 108 links) than with the ILP-based
methods (where the largest evaluated network had 24 nodes and 55 links).

* Sections [4.2] and {1.3] were basically missing in the conference version and
only reduced to a few lines. We present here the optimization models used
to solve (i) the static routing and provisioning problem (Breaking-Bad) and
(1) the problem for a single demand used when a new demand arrives dy-
namically.

* The example of Section {.1]in Figure [2] was added to clarify the notion of
layered graph.

e We also extended our evaluation section.

— First, all the figures include now the results for the heuristic and for a
larger network named ta?2.

— Second, we present new metrics, number of VNFs deployed (see Fig-
ure [3) and bandwidth usage (see Figure [)) across time, to give the
readers a more informed explanation of the cost reduction achieved by
our solutions.

— We also completed the study of the impact of the parameter (3, that is
the relative cost of the network function installation, on the results by
looking at how it influences the bandwidth usage in the network, see

Figure [§]

— We added a discussion on the average reconfiguration times of the
different solutions in Section[5.5] see Figure

— We carried out new experiments to understand the impact of the re-
configuration rate on the network cost and on the accepted demands

(see Section[5.6)and Figures[12]and [13)).

— Last, our model does not take into account the number of transient
VNFs used only for reconfiguration, so we performed additional sim-
ulations to study this overhead and added the Section

The results of our numerical evaluations lead to the following conclusions.

* Break—-Free—-ILP allows to reduce the network cost and increase the ac-
ceptance rate. It can achieve, in most of the considered cases, a gain close to
the one of a reconfiguration algorithm that interrupts the requests (referred
to as Breaking-Bad in the following), as proposed in the literature.

e Itis important to consider mechanisms limiting the impact on the demands.
Indeed, as we show in Section the percentage of demands which have
to be rerouted to achieve a significant gain in terms of network cost or ac-
ceptance rate may be very high.

» Network reconfiguration needs to be performed frequently in order to achieve
a significant gain. However, this reconfiguration can be quickly computed
and carried out, making it possible to be put into practice in real time.

The rest of this paper is organized as follows. In Section[2] we discuss related
work. In Section 3] we formally state the problem addressed in this paper. Sec-
tion] presents the optimization framework and develops the optimization models
for solving the problem of routing a demand and reconfiguring the network. In
Section [5] we validate our proposed optimization models by various numerical
results on two real-world network topologies of different sizes. Finally, we draw
our conclusion in Section [6l

2 Related Work

The problem of how to deploy and manage network services conceived as a chain
of VNFs has received a significant interest in the research and industrial commu-
nity. We refer to [[10] and [[11] for comprehensive surveys on the relevant state of
the art.

Although a lot of effort has been made to develop efficient strategies to route
demands and satisfy their chaining requirements [12, [13]], not enough has been
made to improve resources usage during network operation.

5

Recently, some research work has started to explore SDN capabilities for a
more efficient usage of the network resources by dynamically adapting the routing
configuration over time. For instance, Paris et al. [[14] study the problem of online
SDN controllers to decide when to perform flow reconfigurations for efficient
network updating such that the flow reallocation cost is minimized. However,
the network function requirements are not considered in their work. Indeed, the
traffic of a request may need to be steered to traverse middleboxes implementing
the required network functions.

Ayoubi et al. [15] propose an availability-aware resource allocation and re-
configuration framework for elastic services in failure-prone data center networks.
Their work is limited to the case of Virtual Network scale-up requests such as re-
source demands increase, new network components arrival, and/or service class
upgrade. The goal is to provide the highest availability improvement minimizing
the overall reconfiguration cost which reflects the amount of resources as well as
any service disruption/downtime.

Ghaznavi et al. [16] propose a consolidation algorithm that optimizes the
placement of the VNFs in response to on-demand workload. The algorithm de-
cides the VNF Instances to be migrated on the basis of the reconfiguration costs
implied by the migration. However, they assume only one type of VNF and do
not consider chaining requirements.

In [[17], Eramo et al. study the problem of migrating VNFs in the dynamic
scenario. The considered objective is to minimize the network operation cost
which is the sum of the energy consumption costs and the revenue loss due to the
bit loss occurring during the downtime. However, their model does not consider
the bandwidth resources.

In [18]], Noghani et al. study the trade-off between the reconfiguration of SFCs
and the optimality of the reconfigured routing and placement solution.

In [19], Pozza et al proposes a reconfiguration algorithm for network slices.
Their algorithm takes as input the network to be reconfigured and the network in
its reconfigured state. In output it returns the different reconfiguration steps. Each
reconfiguration step represents the migration of a vnf as well as the rerouting of
the flow towards it. Each step must be a valid routing and allocation. This study
is partly similar to our heuristic solution with the difference that between each
step they do not check that the capacity of the flows can coexist, thus not doing
a make-before-break reconfiguration and thus not being sure not to degrade the
QoS.

In [20], Harutyunyan et al proposes a MILP to solve the problem of slices
embedding , modeled by SFCs. They compare different placement strategies and
study their trade-offs. They then propose a slice embedding heuristic to minimize
the number of vnf migrations.

Sharma et al [21], propose a dynamic algorithm for network slicing. Their

6

goal is to minimize the number of slices by removing, adding or scaling existing
slices to adapt to the current traffic. Their optimization is done in two steps, the
first one by solving the problem by using the average of the values to instantiate
the slices. The second by giving an uncertain value to each slice and then scaling
them, in order to maximize the utility of every slice placed.

Wei et al [22] proposes a slice reconfiguration algorithm in the core net-
work exploiting Deep Reinforcement Learning to maximize the use of network
resources. Deep Reinforcement Learning is used to predict when to make recon-
figurations. A reconfiguration consists in re-routing the slice from the vnfs it uses
to other vnfs, while taking into account a reconfiguration cost.

In [23]], Wang et al proposes two slice reconfiguration algorithms to maximize
the operator’s profit. A dynamic algorithm that individually reconfigures slices to
scale them . A static algorithm that is occasionally used to adapt the set of slices to
incoming traffic by modifying their routing. They also study resource reservation
for future requests to reduce the number of reconfigurations.

The closest study to our work is from Liu et al. [24]]. They consider the prob-
lem of optimizing VNFs deployment and readjustment to efficiently orchestrate
dynamic demands. When a new request arrives, the service provider can serve it
or change the provisioning schemes of the already deployed ones at time instances
with a fixed interval in between. They consider the maximization of the service
provider’s profit which is the total profit from the served requests minus the total
deployment cost as an optimization task. For this purpose, they formulate an Inte-
ger Linear Programming (ILP) model. Then, to reduce the time complexity, they
design a column generation model. An important unaddressed issue concerns the
revenue loss of an operator due to the QoS degradation occurring when demands
are reconfigured [17]. Indeed, in their model, transmissions may need to be inter-
rupted in order to be moved to the new computed state. Different from the above
mentioned works, our aim is to provide efficient mechanisms to dynamically real-
locate the demands without the consequential QoS deterioration due to the traffic
interruption, but instead using make-before-break strategy. This paper is the long
version of [9].

The table [T] presents the main differences of the publications presented in this
related work.

3 Problem Statement and Notations

We model the network as a directed graph G = (V, E), where V' represents the
set of nodes and F the set of links. Both nodes and links have associated a ca-
pacity. The capacity of a link (u,v) € E is denoted by C,,, and defines the total
bandwidth of the link. For a node u € V/, the capacity C, denotes the available

" 9 2 §

g | & 5 |32 ‘g

8 2 3 5 v 5 § | = 2

5D = o S) 2, 5 s | 2 | =] 8|F

3} o » = o) o0 | & L

< | 2| £ < S € [€|2| |®)

& = 3 | 8|E |

[12] SFC | Upto8 | Dynamic Max Accept - NC [NC| - | vV |
[13] SFC | Unknown | Static Min Cost - NC | NC | VvV | V

[14] Flow 0 Dynamic Min Cost v v - VIV
[15] VN | Upto20 | Dynamic Max Utility v v - VY
[[16] VN 1 Dynamic Min Cost v v - - |V
[L7] SFC | Upto3 Static | Max Accept Min Cost v v - V|V
(18] SFC | Upto4 | Dynamic Min Cost v v - |V -

[19] SFC 5 - - v v - R
[20] SFC 3 Dynamic Min Cost v v - VIV
[21] SFC | Unknown | Dynamic Max Slices Utility Scaling | - - - -
[22] SFC 2-3 - Min Cost v v - V-

[23] SFC | Unknown | Dynamic | Max Utility and Profit v v - R

[24] SFC | Upto5 | Dynamic Max Profit v - - V- s
Our Work | SFC | Upto4 | Dynamic Min Cost v - v | VY

Table 1: Related Work Summary where NC means Not Concerned, ’-’ means that
the paper does not deal with this parameter, and v'means that this parameter is
addressed in the paper.

resources such as CPU, memory, and disk; it is expressed as the number of CPU
cores. For this purpose, given the set of VNFs F', each f € F' has associated a
value A defining the number of cores required by function f per unit of band-
width. Also, each function f has associated an installation cost ¢, s which also
depends on the node u. D represents the set of demands. Each demand d € D
is modeled by a quadruple with v, the source, v, the destination, c, the ordered
sequence of network functions that need to be performed, and bw, the required
units of bandwidth. Table |2 defines the notation used throughout the paper. We
consider a setting with splittable flows as it is frequent to have load balancing in
networks [25] and as it makes the model quicker to solve [26]. Following the
model of [27], a demand can follow different paths and the network functions of
its chain can be processed in different cloud nodes.

The optimization task consists in routing each demand while minimizing the net-
work operational cost defined in terms of bandwidth and VNFs cost (licenses,
energy consumption, etc). Also, as the dynamics related to the arrival and de-
parture of demands may leave the network in a sub-optimal operational state, we
want to reconfigure the network to improve resources usage and to be able to ac-
commodate new incoming traffic. In doing this, we use the make-before-break
mechanism to avoid network services disruption due to traffic rerouting resulting
from the re-optimization process.

In practice, the reconfiguration is done following several steps: (i) First, the

reconfiguration to be carried out is computed by the controller. (ii) Second, the
new needed VNF instances (if any) are deployed. (ii1) Third, rerouted flows are
sent towards their new routes in which we know the needed capacity is available.
(iv) Last, the flows are no more sent to their old routes.
An Example. Figure [I] illustrates an example for the reconfiguration of a request
using a make-before-break process. When the request from A to F arrives in step
(c), two requests have already been routed during step (b). To avoid the cost of
installing new VNFs, the route from A to F with minimum cost is a long 5-hops
route (step (c)). When requests from B to C and from F to E leave (step (d)), the
request is routed on a non-optimal path which uses more resources than necessary.
We reroute the request from A to F to one optimal 3-hops path (step (f)) with an
intermediate make-before-break step (step (e)) in which both routes co-exist. Note
that the VNF in C is removed, while a new one is installed in D.

4 Modeling

In the considered setting, demands arrive and leave the network. To route them,
we consider them one by one, and find the route which minimizes the additional
network operational cost to be paid. Indeed, in an SDN network, even if multiple

B—~c @ i@
r-t @ 2

A—F @ b8

(a) Requests

E
(d) The first two requests (f) Optimal routing for the
leave (e) Reconfiguration phase third request

Figure 1: An example of the reconfiguration of a request using the make-before-
break procedure.

flows arrive simultaneously, they will be processed one by one by the SDN con-
troller [28]]. We then reconfigure the network to improve the network operational
cost when one of the following conditions holds:

* Periodically, after a given period of time;

* When the set of requests has changed significantly (after a given number of
SFEC arrivals and departures);

* When arequest arrives and cannot be accepted with the current provisioning
and routing solution.

The solution we propose, called Break-Free—ILP (for Break-Free Recon-
figuration algorithm), implements a make-before-break mechanism to avoid the
interruption of the flows. In our experiments, we compare its results with a
reconfiguration algorithm which does not implement such a mechanism, called
Breaking-Bad (for Breaking-Bad Reconfiguration algorithm). This algorithm
breaks the flows before rerouting them, leading to packet losses and QoS degrada-
tion for these flows. When a reconfiguration has to be carried out, Breaking-Bad
considers basically a static setting with the requests present in the network and

10

finds an optimal Routing & Provisioning solution (R&P) without considering the
current setting.

We present here three optimization models: (i) to solve the static problem
(Section used by Breaking—-Bad, (ii) to route one demand when it arrives
(Section [4.3), and (iii) to reconfigure the network with the make-before-break
mechanism of Break-Free—-ILP (Section 4.4). Our models are based on the
concept of a layered graph explained in the following section. For large networks,
the models may take a prohibitive time to be solved. We thus also propose a
heuristic algorithm, Break—-Free—HEUR, to solve large instances in Section

4.1 Layered graph

Similarly as in [29], in order to model the chaining constraints of a demand, we
associate to each demand d a layered graph G*(d). See Figure [2|for an example
of a graph with three layers. Representing the original graph as a layered graph
is a modeling trick first proposed in [30]. It allows to simplify the problem by
reducing it to a routing problem with shared capacities. This allows a drastic
reduction of computation time compared to usual strategies using a large number
of binary variables due to the ordering constraints of SFCs. The principle is to
consider as many copies of the network as VNFs in an SFC plus one. Copies of a
node in a layer are then connected to the ones in the above and below layers with a
vertical link. Using a horizontal link in a layer corresponds to the use of a physical
network link, when using a vertical link joining layers represents the use a virtual
function in the corresponding node. Layered graphs can be used to solve different
problems: (i) determine the placement and activation of NFVs, and the routing of
demands; (i1) If the placement of NFVs has already been done, determine their
activation and the routing of demands.

We denote by u;; the copy of node u; in layer [. The path for demand d starts
from node v, in layer 0 and ends at node v, in layer |cq| where |c,4| denotes
the number of VNFs in the chain of the demand.

Given a link (u;, v;), each layer [has a link (u;;,v;;) defined. This property does
not hold for links of the kind (u;, u;;+1). Indeed, a node may be enabled to run
only a subset of the virtual functions. To model this constraint, given a demand d
we add a link (w; g, u;;41) only if Node w is enabled to run the ({4 1) —th function
of the chain of d. The [— th function of the chain of d will be denoted by f;.

A path on the layered graph corresponds to an assignment to a demand of both
a path and the locations where functions are being run. Using a link (u;;,v;;)
on G, implies using link (u,v) on G. On the other hand, using link (u;, u;;41)
implies using the (I 4 1) — th function of the chain at node u. Capacities of both
nodes and links are shared among layers.

11

Layer 0

Figure 2: The layered network G*(d) associated with a demand d such that v, =
U1, vg = us, and ¢ = f1, fo, within a triangle network. f; is allowed be installed
on u; and f, on u; and u3. Source and destination nodes of G (d) are u; o and
us 2. Two possible SFCs that satisfy d are drawn in red (f; is in u;, f2 in u3) and
blue (f; and f5 are in u,).

4.2 Static Routing and provisioning problem (R&P): Breaking—-Bad

To solve the static R&P (Routing and Provisioning) problem in which a routing
and a provisioning of VNF is given for each SFC, we use an ILP given below. The
ILP routes the demands by finding a path on the layered graph for each of them.
In doing this, both node and link capacities must be respected as they are shared
among all the demands. The ILP has the minimization of the network operational
cost (i.e., bandwidth cost and network function activation cost) as an objective.
As network functions can be shared, the ILP will try to activate a small number of
network functions. The parameter 5 > 0 specified by the network administrator
accounts for different scales over which the functions’ activation cost is put in re-
lationship with the network bandwidth cost. /3 represents how many 7B/s of data
can be sent when using a dollar. Its dimension thus is 7'B/dollars, giving that
our objective function formally expresses a bandwidth.

Model. The ILP takes as an input the set of demands D. The output corre-
sponds to the minimum cost SFC-R&P.
Variables:
e ol ;> 01is the amount of flow on Link (u,v) in Layer i for Demand d.

'A node u with a strictly positive number of cores (i.e., C,, € N* = {1,2,--.}) represents
a cloud location with the capability to execute VNFs, while a node with C, = 0 is a node that
serves only as an SDN router.

12

G = (V,E) the network where V' represents the set of nodes and
the set of links.
Cuy capacity of a link (u,v) € E expressed as its total band-
width available.
C, available resourceﬂsuch as CPU, memory, and disk of a
node u € V.
Ay number of cores required per unit of bandwidth required
by the function f € F.
cy,r installation cost of the function f € F which also de-
pends on the node w.

(vs, Vg, cq, bwy) each demand d € D is modeled by a quadruple with v,
the source, v, the destination, ¢, the ordered sequence of
network functions that need to be performed, and bw, the
required units of bandwidth.

Table 2: Notation used throughout the paper

° aﬁ’i > 0 is the fraction of flow of Demand d using Node u in Layer .
o 2,5 € {0,1}, where z, s = 1 if function f is activated on Node u.
Objective: minimize the amount of network resources consumed.

|cal

min. > YN bwa @l B D Cupug

deD (uw)eE =0 ueV feF

Flow conservation constraints. For each Demand d € D, Node v € V.

1ifu = vy
Yoo — > hotaly= { (1)

(u,v)EwT (u) (v,u)Ew™ (u) 0else
—lifv=vw
d d d _ d
Z gpu’u,|cd| - Z ¢vu,|cd\ - au,\cd\—l - {O else (2)
(u,v)Ew™ (v) (v,u)ew=(v)
Z @Zv,z‘ - Z @gu,z‘ + ag,i - O‘Z,i—1 = 0.(0 <@ < cal) 3)
(u,v)Ew™ (u) (v,u)Ew= (u)

Node capacity constraints. The capacity of a node u in V' is shared between each
layer and cannot exceed C',. For each Node u € V.

leal—1
D bwg Y Apa-al, <G 4)
deD =0 '

13

Link capacity constraints. The capacity of a link (u,v) € E is shared between
each layer and cannot exceed C,,. For each Link (u,v) € E.

|eal

wadZ%m_ uv - (5)

deD

Functions activation. To know which functions are activated on which nodes. For
each Node u € V, Function f € F, Demand d € D, Layeri € {0, ..., |cq| — 1}.

Location constraints. A node may be enabled to run only a subset of the virtual
network functions. For each Demand d € D, Node u € V, layeri € {0, ..., |cq| —
1}, if the (i + 1) — th function of ¢, cannot be installed on Node u, we add the
following constraint.

al. =0 (7)

4.3 R&P for a single demand

Note first, that even routing a single demand is NP-hard as it is equivalent to find
a shortest Weight-Constrained Path [31] in the layered graph as link and node
capacities are shared between layers [29]. A solution is to use the ILP for static
R &P in which all the demands routed in the past are fixed. The ILP routes the de-
mand (if possible) with the goal of minimizing the additional needed cost without
exceeding the available network resources. To deal with the already installed net-
work function, the current cost ¢, ; of installing a network function f on a Node u
is defined as follows. Let Z be the set with the already installed network function,
then ¢, f = 0if (u, f) € Z, and ¢, s otherwise.

Model. The ILP takes as an input a demand d = (v, v4, ¢4, bw,) and the network.
We denote by R, the residual capacity of a Node u, and finally by R, the residual
capacity of a link (u, v).

Variables:

® Vi > 0 is the amount of flow on Link (u,v) in Layer q.

® o, ; > 0 1is the fraction of flow of the demand using Node u in Layer ¢ at time
step t.

Objective: minimize the additional increase in terms of network operational cost.

leal leal—1
min E E bwd Puvi + 6 E § 7fcd Oy g
(u,v)€E =0 ueV =0

14

Flow conservation constraints. For each Node ©v € V.

Z Puv,0 — Z Pou,0

(u,w)Ew™ (u) (v,u)Ew™ (u)
lifu=w
+ o = ° 8
o {0 else ®
Z Puv,|eq] — Z Pou,|eq]
(u,w)EwT (v) (v,u)Ew (v)
—lifv= (]
— Qo1 = 9
leal=1 {0 else ©
Z Puvi — Z Poui + Qg — Qyi—1 = 0.
(u,v)€wt (u) (v,u)Ew™ (u)
0<i<]|ecd (10)

Node capacity constraints. The capacity of a node v in V' is shared between each
layer and cannot exceed the residual capacity R,,. For each Node v € V.

leal—1

bwg > Apa -y < Ry (11)

=0

Link capacity constraints. The capacity of a link (u,v) € E is shared between
each layer and cannot exceed the residual capacity R,,. For each Link (u,v) € E.

|cal

bwa Y Puvi < Ruv. (12)

=0

Another possibility is to adapt the pseudo-polynomial algorithms proposed for
the shortest Weight-Constrained Path problem such as the Label-setting algorithm
based on dynamic programming [32]].

4.4 Break-Free-ILP Reconfiguration (Make-before-break)

A first way to perform the reconfiguration at a given time ¢ is to try to reconfigure
to optimal. This is done in two phases. In the first one, we compute a minimum
cost routing for the set of demands present at time ¢. This can be done by using
the model for static R&P presented in Section4.2] In the second one, we compute
the transitions from the current routing to the optimal routing for each demand,
taking into account the intermediate make-before-break steps during which two
paths may co-exist for demands that need to be moved. This can be done using

15

the ILP presented in this section, taking as inputs the current and the minimum
cost solutions.

However, the transitions to an optimal solution may be long to compute or

even impossible to carry out. Indeed, in complex scenarios (which occur when
the network is saturated), the transition to the new routes cannot be performed
directly. This is mainly due to two reasons.
First, in an intermediate step of the reconfiguration, two routes are provided, lead-
ing to an increased use of the network resources. Second, a request may need to be
in an intermediate routing state before reaching its final one in order to free space
for another request. This needs to be done during distinct reconfigurations steps.
Because of this, several intermediate steps of reconfigurations may be necessary,
and each additional step of reconfiguration significantly increases the number of
variables and constraints of the problem, and thus the time needed to obtain an
optimal solution. Therefore, we propose a best effort reconfiguration.

Best Effort Reconfiguration. The idea here consists in improving the R&P as
much as possible instead of setting a final R&P as a target. To this end, we set a
number of intermediate reconfiguration steps, 7', (how to set 7' is discussed below)
and the goal of the optimization is to find a routing with minimal cost which can
be reached from the current routing using 7' reconfiguration steps. Note that the
best effort reconfiguration has several advantages compared to the reconfiguration
to optimal. It will give a solution as good as the reconfiguration to optimal when
such a reconfiguration is possible. Indeed, several optimal solutions may exist,
and only part of them could be reached using reconfiguration. Reconfiguration
to optimal is focusing on only one, when Best Effort reconfiguration could reach
any of those. Second, when reconfiguration to optimal is not possible, Best Effort
reconfiguration may still be able to find a solution better than the current one. This
is why we used Best Effort reconfiguration in our experiments.

Best Effort reconfiguration can be modeled using the ILP presented in the
following. At time 0, the R&P is set to the current one. Then, at each step of
reconfiguration, a set of demands can be rerouted as long as there are enough link
and node capacities to satisfy the intermediate make-before-break reconfiguration
steps. This can be modeled linearly by defining a variable which is equal to 1 if a
resource is used by a request either at time ¢ — 1 or at time ¢. As a single step of
reconfiguration may not be enough, the ILP has several intermediate reconfigura-
tion steps, each corresponding to a solution of the R&P problem. The objective
function is to minimize the cost of the R&P of the final state.

Note that reconfiguration to optimal can be modeled using the same ILP with
a few changes. We just have to set the variables corresponding to the final state to
the minimum cost R&P computed previously.

16

Choosing 7', the number of reconfiguration steps. The value of 7" is an impor-
tant parameter. Indeed, a value too small may lead to models with no solution,
while a value too large to models with prohibitive execution times. This is why
we tested different values in our experiments. We observe that when the network
is not congested, corresponding to the low-traffic scenarios of Section[5.2] a single
reconfiguration step is enough to provide optimal (or close to optimal) solutions
while it leads to solutions almost as bad as without reconfiguration in the high-
traffic scenarios of Section In the later scenarios, at least 2 reconfiguration
steps are necessary. A good way to find the right value is to start with 7" = 1,
which is the fastest model, and then to increase progressively the value of 7" until
either the solution does not improve any more or the model solving time is too
long. Note that, when a maximum solving time is set, the largest possible value
of T" leading to a lower solving time can also be found by dichotomy.

Model. The ILP takes as an input both the current configuration (i.e., paths
and function locations for all the demands) and the number of time steps 7" to
be used in the reconfiguration process. The output corresponds to both the fi-
nal SFC-R&P at time 7' after the reconfiguration process and the intermediate
SFC-R&P to be used to reach the final state. Between two consecutive time steps
tg < ... <t; <ty < .. <T,asubset of the demands may be moved to a new
route. In doing this, resources of both nodes and links must not be exceeded in
order to not interrupt connections (make-before-break).

Variables:
. goifl > 0 is the amount of flow on Link (u,v) in Layer ¢ at time step ¢ for
Demand d.
. ai’; > 0 is the fraction of flow of Demand d using Node v in Layer ¢ at time
step t.

dit

e 7, ; > 0is the maximum amount of flow on Link (u, v) in Layer 7 at time steps
t and t — 1 for Demand d.

. yff’; > 0 is the maximum fraction of flow of demand d using Node v in Layer ¢
at time steps t or t — 1.

ezl ;€ {0,1}, where 2] = 1if function f is activated on Node v at time step T’
in the final routing.

The optimization model starts with the initial configuration as an input. Thus,
for each demand d € D the variables goﬁ;?i (for each node u € V, layer i €
{0, ..., |eq|}) and ai? (for each link (u,v) € E, layer i € {0, ..., |cq|}) are known.
The ILP is based on the layered graph described in Sectiond.T|and it is written as
follows.

Objective: minimize the amount of network resources consumed during the last

17

reconfiguration time step 7'.

|cal

min Z Z wad gpum+6 chuf zr

deD (uw)eFE =0 ueV feF

Flow conservation constraints. For each Demand d € D, Node v € V, time step

ted{l,.. T}

dt dt
Puv,0 — Pou,0

(u,)Ew™ (u) (v,u)Ew™ (u)
1if u = vy
+ g = (13)
’ 0 else
d,t
> Puv,leal Z ol
(u,v)Ew™ (v) (v,u)ew=(v)
—lifv=w
d,t d
wleal=1 = 0 else 14
Z 903’5,1‘ - Z Sf)g;f,i + O‘Z’; - 0‘3’;—1 =0.
(u,v)Ew (u) (v,u)Ew™ (u)
0<i<|ecd (15)

Node usage over two consecutive time periods. For each Demand d € D, Node
u € V,Layeri € {0, ..., |cq| — 1} time step t € {1,...,T}.

dt d,t
uf — yuz
Oédt 1

dt 1

«

Ay +al >y:f:§

Link usage over two consecutive time periods. For each Demand d € D, Link
(u,v) € E, Layeri € {0, ..., |cq|} time step ¢t € {1,...,T}.

d,t
Spuv,i — Yuv,
d,t—1 d,t
uv,t — Yuv,

dit—1 d,it
Spuv) + ()O'U,’U K Z xuv,z’

These two last constraints state that the flow y * for the node (or T, t ; for the link)
is equal to the maximum flow between two 1ntermed1ate reconﬁguratlon steps. If

18

dit

uv,i

there is no flow in « and wv during steps ¢ — 1 and ¢ then yfﬁ (and x
to 0.

Make Before Break - Node capacity constraints. The capacity of a node v in V' is
shared between each layer and cannot exceed C, considering the resources used
over two consecutive time periods. For each Node u € V, timestept € {1,...,T'}.

) are equal

lcal—1
D bwy > Apea-yyi < C (16)
deD =0 '

Make Before Break - Link capacity constraints. The capacity of a link (u,v) € E
is shared between each layer and cannot exceed), considering the resources
used over two consecutive time periods. For each Link (u,v) € FE, time step
te{l,.., T}
lcal
D bwa Y ayy; < Cu (17)
deD i=0
Location constraints. A node may be enabled to run only a subset of the virtual
network functions. For each Demand d € D, Node u € V/, layeri € {0, ..., |cq| —
1}, if the (¢ + 1) — th function of ¢, cannot be installed on Node u, we add the
following constraint for each time step ¢t € {1,...,T}.
i =0 (18)
Functions activation. To know which functions are activated on which nodes in
the final routing. For each Node u € V, Function f € F, Demand d € D, and
Layer i € {0, ..., |cq| — 1},

d,T T
a,; < Z%ffd .

(19)

Note that we do not consider the cost of potential activations of VNFs during the
reconfiguration process. Indeed, our goal is to minimize the network operational
cost over time and the reconfiguration duration is very small in comparison in an
SDN network [33]].

4.5 Heuristic Break-Free—-HEUR

As shown by the numerical evaluations in Section[5.5] the ILP models may take a
long time to be solved for large networks. We thus present a heuristic algorithm,
Break-Free—-HEUR, able to provide good solutions for them. The algorithm
reconfigures the requests as closely as possible to a given (optimal if possible)
configuration in a given number of steps.

19

Break-Free-HEURIis an iterative algorithm presented in Algorithm[I] which
starts from an initial allocation and tries to reconfigure as many as possible the
SFCs to a given allocation. In the best case, all SFCs are reconfigured to the new
allocation, in the worst case no SFCs are reconfigured. Algorithm |1|takes as in-
puts the graph G, the initial allocation (alloclnit given by the flow values ¢ and
« at time 0) the allocation to which we reconfigure (allocFinal given by the flow
values ¢ and « at time 7") and the number of steps allowed to reconfigure (nb-
Steps). The main technical point of the algorithm is concentrated in the procedure
reconfSFC (Algorithm[2)). The difficulty derives from the fact that we consider
splittable flows and that only part of these flows can be rerouted by the procedure.

Algorithm 1: Break-Free-HEUR
Data: G, listSfc, allocInit, allocFinal, nbSteps
Result: Reconfigure the allocation as close as possible to the optimal
1 currentOpti <— void allocation;
2 currentNonOpti <— copy of alloclnit;
3 remainingFinal < allocFinal;
4 listSfcToReconf «— List of SFCs whose initial allocation is not the final
allocation;

5 for step in nbSteps do

6 G’ +— Residual graph of G for the current step;

7 for s in listSfcToReconf do

8 reconfSFC(G’, currentOpti[s], currentNonOpti[s], allocFinal[s],

8);
9 if currentOpti[s] = allocFinal[s] then
10 remove s from listSfcToReconf; > # We no longer need to
reconfigure this sfc

1 if no chains have been moved during this step then

12 \ break; > # We can no longer reconfigure sfc

13 return fusion(currentOpti, currentNonOpti);

In Lines 1 and 2, the initial allocation of each SFC is divided into two al-
locations: currentOpti is the set of flows already reconfigured (noted as ")
and currentNonOpti is the set of flows that remains to be reconfigured (noted as
ot = bt — p?"), These two allocations represent the current allocation of each
SFC. We also consider the set of flows of the final allocation to which the initial
flow was not yet reconfigured, named remainingFinal. The corresponding flow is
noted o' = T — P®t",

In Line 4 we list the SFCs to be reconfigured: those of which alloclnit is dif-
ferent from allocFinal. In Line 6 we compute G, the residual graph of G using the

20

current allocation of each SFC for the current step. The capacities of G’ are given
by u(G') = Cup — Dy D" gpz;ii for edges and ¢, (G') = C,, — > ;> 3¢ ozZ’; for
nodes. In Line 8, for each SFC to be reconfigured, the procedure reconfSFC
(presented in Algorithm [2)) moves as much flow as possible from currentNonOpti
to currentOpti. The procedure reconf SFC updates currentOpti, currentNonOpti
and the residual graph G’ to take into account the additional capacity used at each
reconfiguration step. And it will return if it has successfully changed the current
allocation of the SFC or if no move is possible at this step. The algorithm stops
either if the final allocation is reached and there are no more SFCs to reconfigure,
or when no more SFCs can be modified, or when the maximum number of steps
has been reached. At the end of the algorithm in Line 13, currentNonOpti and
currentOpti of each SFC are merged to return the current allocation: in the best
case, currentNonOpti is empty for each SFC and the current allocation is the final
allocation. In the worst case no SFC has been reconfigured and the current allo-
cation is the same as the initial allocation.

Algorithm 2: reconfSFC(sfc d)

Data: G’, currentOpti, currentNonOpti, allocFinal, sfc

Result: Pushes as much flow of currentNonOpti as possible into

allocFinal for sfc during one step

1 G+ «— layer graph of currentNonOpti(d);
2 T +— layer graph of remainingFinal(d);
3 while path* < findPath(G*) # Null do
4
5

> #Find a path to be rerouted;
flow! < min. value of ' over edges and nodes of path > #Max.
flow which can be rerouted from path;

6 while path" < findPath(G")) # Null do

7 > #Find a destination path for part of flow;

8 flow" « maxFlow(G ",path");

9 remove flow " from the edges of path' on G*;

10 remove flow " from currentNonOpti and remainingFinal;
1 reduce the residual capacity of G by flow;

12 add flow " into currentOpti;
13 if If currentOpti has not changed then
14 | return False;

15 return True;

The procedure reconfSFC (Algorithm 2)) takes as inputs the residual graph,
d (the SFC to be moved), the current allocation of the SFC and the final allocation

21

to which we want to move the SFC. Its goal is to move as much flow as possible
from currentNonOpti to remainingFinal. It returns if a reconfiguration has taken
place or if the SFC is blocked at this step. In Line 1, we create the layer graph for
the flow that is not yet reconfigured by taking only the links and nodes present in
currentNonOpti and taking as capacity the flow passing through currentNonOpti.
In Line 2, we create the layer graph for the final allocation by taking only the
links and nodes present in remainingFinal and taking the capacities of G’. In Line
3, we find a path on currentNonOpti, that is a non splitted subflow from the flow
of d which still has to be rerouted. In fact, a flow can be easily decomposed into
paths. The procedure findPath returns such a path using a depth-first-search
from the source of the SFC d to its destination. The value of the flow which can
be rerouted from this path is the minimum value (over all edges of the path) of the
flow passing through currentNonOpti (Line 4).

Algorithm 3: findPath(G)
Data: a graph G
Result: Find an s-t path
1 Carry out a Bread First Search in G starting from s and stopping at ¢;
2 if t never reached then
3 ‘ return Null;
4 path < path from s to ¢ given by the DFS;
5 return path;

We now want to reroute this subflow. We do it iteratively from Lines 6 to
12. In Line 6, we compute a target path, path”, to which we reroute some flows.
Then, we compute the maximum value of flow which can be rerouted using the
procedure maxF low (given in Algorithm [)). The computation of the maximum
flow which can be rerouted on path= is not direct due to layers sharing capacities.
First, if path” has an edge in the layered graph, (e,), which is common with
path™, we know that flow' can be completely rerouted on (e, 7). We note E? the
set of such edges. Then, for each edge e of path", we compute the maximum flow,
/2, which can pass on the edge. The flow f; is equal to the capacity C. divided
by the number of times path' goes through e in different layers (f = C./|{(e, 1)
with (e,) in path and (e, i) ¢ E,}|). Then, we set f* = min.cp f. We have flow
< f*. Second, we should not reroute more flow than the one of the target solution
on path path'. Thus, we have flow” < mingcpamn ¢, . Last, the value of the
rerouted flow cannot be larger than the flow which is rerouted, that is f low" <
flow™. This gives

flow" = min(flow™, f*, min).
ecpath

22

We now have the value of flow' and its path. We update the flows and capacities

Algorithm 4: maxFlow(G,path " ,path* flow™)
Data: a graph G,path " ,path* flow™
Result: The maximum value of flow which can be rerouted from path™ to

path".
1 E, <0 >#E, = {(e,i) : (e,1) € path"and(e,i) € path*};
2 for (e, i) € path" do
3 | if(e,i) € path! then
4 | E,.append((e,1));
5 for e in path" do
6 nbPassages < 0;
7 | for (e,i) in path' do
8 if (e,i) ¢ E, then
9 ‘ nbPassages <— nbPassages+1;
10 f: = Wiayes;

1 f* = Mileep f;;
12 flow = min(flow®, f* minecpan ¢,);
13 return flow;

of the residual graphs G* and G for the remaining of the procedure reconf SFC
(Lines 7 and 8). We also accordingly update the allocations currentNonOpti, cur-
rentOpti, remainingFinal which are used in the main Algorithm [I] (Lines 9 and
10). We then iterate on all the paths in G-.

Finally, in Line 13, we check that we have succeeded in reconfiguring at least
part of the flow. Otherwise, we return that sfc is blocked at this step.

5 Numerical Results

In this section, we evaluate the performance of Break-Free—ILP and Break—-Free—-HEUR.
We study the impact of the reconfiguration on different metrics such as cost sav-

ings, acceptance rate, and resource usage. We first present the data sets used for

the experiments. Then, we compare the results with the ones of Breaking-Bad,

which computes an optimal R&P for the whole set of requests (ILP of Section[4.2)

for each SFC arrival, and with No—-Reconf, which computes the R&P problem

for a single demand, the newly arrived SFC (Section §.3)).

We consider two scenarios, one with low traffic in which basically all demands can

be accepted and one with high traffic in which some of them have to be rejected

in order to satisfy the capacity constraints. In the low traffic scenario, we can fairly

23

No-Reconf +— B-Free 1 step —x— B-Free 3 steps
—e— Breaking-Bad —— B-Free 2 steps —4— Heuristic

[
(=}
o

100

o
o

T T T
& g ~ 2z
= B " . A, Q-
<8 50 S8 507 SR
s w & o 25
o = [
Z 4 4
> . . > 0 . . > 0 . -
0 100 200 0 100 200 0 100 200
SFC Arrival SFC Arrival SFC Arrival
(a) pdh (b) tal (c)ta2

Figure 3: Low-Traffic scenario - Number of VNFs deployed across time.

S S S
~ 40 ~ 40 ~ 40
[[} ()
IS) o) IS)
g 2 2
220 2 20 2 20- /V_/-—’"""
Ad A Ad
£ £ £
) . .) i i = i i
0 100 200 0 100 200 0 100 200
SFC Arrival SFC Arrival SFC Arrival
(a) pdh (b) tal (c)ta2

Figure 4: Low-Traffic scenario - Bandwidth usage across time.

2 40001 Z 4000 2
o o o
A4 A4 A4
o = = 6000 -
£ 3000 £ 3000 s
z z z
4 4000 -
0 100 200 0 100 200 0 100 200
SFC Arrival SFC Arrival SFC Arrival
(a) pdh (b) tal (c)ta2

Figure 5: Low-Traffic scenario - Network operational cost.

compare resource usage using the different algorithms Break-Free-ILP, Breaking-Bad,
and No—-Reconf, as they are accepting the same demands. In the high traffic sce-

nario, we can compare them in terms of acceptance rate.

We show in particular that Break—-Free-ILP allows to lower the network cost

and increases the acceptance rate almost as much as Breaking-Bad. For both

algorithms, a large number of demands have to be rerouted, showing that it is cru-

cial to implement a mechanism to avoid impacting them. Network reconfiguration

has to be done often to attain a significant gain, however, this reconfiguration can

be quickly computed. This allows reconfiguration mechanisms to be put into prac-
tice.

24

topology nb Nodes nb Links degree min degree max degree avg diameter

pdh 11 34 4 8 6.18 3
tal 24 55 2 11 4.58 4
ta2 65 108 1 10 3.32 8

Table 3: Three-real world topologies

5.1 Data sets

We conduct experiments on three real-world topologies from SNDIib [34]] of dif-
ferent sizes: pdh (11 nodes, 34 links), tal (24 nodes, 55 links), and ta2 (65
nodes, 108 links). The table |3| summarizes the properties of each network topol-
ogy. We generate our problem instances as follows. We considered 250 demands
for each network. The source and destination of each demand are chosen using the
given traffic matrices. Following [335]], the lifetime of a demand is exponentially
distributed with mean ;o = 20 for the low-traffic scenario and with mean p = 45
for the high-traffic scenario. We then round this lifetime to an integral number of
time steps. The volume of the demands is chosen randomly. Also, each demand
is associated with an ordered sequence of 2 to 4 functions uniformly chosen at
random from a set of 5 different functions. Experiments have been conducted on
an Intel Xeon E5520 with 24GB of RAM. Break-Free—-ILP is not studied on
ta2 due to excessive runtime.

5.2 Low-traffic scenario - Resource usage

In Figure [5] we show the network cost for the low-traffic scenario. This cost
is the result the weighted addition of Bandwidth (Figure @) and of VNF costs
(Figure [3). The results are given for No-Reconf and Breaking-Bad as a
measure of comparison, for several variants of Break—Free-ILP with different
numbers of reconfiguration steps from 1 to 3, and for Break-Free—-HEUR with
10 steps of reconfiguration. We focus on the low-traffic scenario as the compared
algorithms accept the same requests and therefore, we can have a comparison for
the same global volume of traffic
We first see that Break—Free—ILP has similar performances to Breaking-Bad

in terms of network operational cost. Recall that Breaking-Bad interrupts the
requests during reconfiguration. This means that Breaking—-Bad provides a
lower bound for Break-Free—ILP. As Break—-Free-ILP does not interrupt
the requests, it won’t be able to reach a better solution than Breaking-Bad.
Moreover, Break-Free—ILP achieves this performance for any number of time

25

steps (even 1). This leads to a very fast algorithm as discussed below. Indeed,
when the network is not congested, there is enough capacity to host both the old
and new routes. Nevertheless in ta2 the efficiency of Break—-Free-HEUR is
slightly below Breaking—-Bad.

Reconfiguration leads to a better resource utilization and reduces the network
operational cost compared to No-Reconf, and this given a same volume of traf-
fic (note that no demand is rejected in this scenario). Indeed, reconfiguring the
network regularly permits a reduction of 15% of network operational cost (Fig-
ure [5(a)) while using 7% fewer VNFs (Figure [3(a)) and 18% less link bandwidth
(Figure [d((a)) compared to the no-reconfiguration case on pdh. For tal, we have
a reduction of 20% of network operational cost while using 17% fewer VNFs and
21% less link bandwidth compared to No—Reconf. Finally, for ta2 we have a
reduction of 19% of network operational cost while using 10% fewer VNFs and
22% less link bandwidth compared to the no-reconfiguration.

For t a2 and unlike pdh and tal, Break—-Free—HEUR deployed two times
more VNFs than Breaking-Bad (Figure[3[c)). But, in the same time, Break-Free-HEUR
reduces drastically the bandwidth usage (Figure{c)), leading in the end to a good
improvement of network cost (Figure [5{c)).

The results for Break—-Free—-HEUR on ta2 show that we can reduce the
whole network operational cost, but not equally between the bandwidth usage and
the VNF cost. The diameter on this graph is 8, and the average degree connectivity
is low compared to pdh and tal. This implies that finding alternative paths
reducing the number of links is more interesting to reduce the global network
operational cost than moving the VNFs to other data centers. Recall that there are
a fixed number of data centers where the VNFs can be installed, and with a large
network, there are less opportunities for changing the VNFs. Moreover, deleting
a VNF in one data center implies moving all the SFCs using it, and due to the
possible longer paths, it is not always an interesting option.

We can hypothesize that Break-Free—-HEUR has more difficulty in stopping
using VNFs during reconfiguration because the graph is larger, its diameter is
larger too (3 for pdh, 4 for tal, 8 for ta2) and the average node’s degree is
also smaller making it more difficult to reconfigure completely every SFCs using
a specific VNF.

5.3 High-Traffic scenario - Acceptance Rate

In our high-traffic scenario, there are not enough resources to satisfy all the de-

mands. As a consequence, some requests cannot be accepted. We show, in Fig-

ure[6] the profit achieved by Break-Free—-ILP, Breaking-Bad, Break-Free-HEUR
and No-Reconf. We define the profit of a demand as the asked volume of band-

width multiplied by its duration.

26

No-Reconf +— B-Free 1 step —x— B-Free 3 steps
—e— Breaking-Bad —— B-Free 2 steps —4— Heuristic

100 1

100

100

(%)

801 D -

o
o

80

Profit accepted
(%)
Profit accepted
(%)
i
Profit accepted

0 100 200 0 100 200 0 100 200
SFC Arrival SFC Arrival SFC Arrival

(a) pdh (b) tal (c)taz2

Figure 6: High-Traffic scenario - Percentage of accepted profit across time.

[[g
o 5000 [3) o J
> % 6000 = 8000
o o o d
£ 4000 s z
2 2 3 60001
Z 3000 , , Z 40001 , , z . .
0 100 200 0 100 200 0 100 200
SFC Arrival SFC Arrival SFC Arrival
(a) pdh (b) tal (c)ta2

Figure 7: High-Traffic scenario - Cost gain across time.

The global profit is defined as the sum of all the accepted requests’ profits. This
metric is of high importance. Indeed, in case of High-Traffic scenario, some re-
quests will be rejected. However, we want to ensure that our algorithm will accept
equally the requests when they arrive. If we consider only the number of accepted
requests, one can think of an heuristic accepting only short and low-bandwidth in
order to get an higher acceptance rate.

We show the profit as a percentage in terms of maximum achievable profit. In
other words, 100% of profit means that all the demands (and their requested band-
width) have been accepted (100% represents the global profit of all the requests).

It can be seen that No-Reconf and Break—-Free—-ILP (with 1-step) lead
to equivalent profit, around 70% for pdh (and between 78 and 81% for tal),
while Break-Free-ILP (with 2, 3, and 4 steps), Break—-Free-HEUR and
Breaking-Bad have similar performances (around 79% for pdh and 87% for
tal). On ta2 the results are the following: 71% for No—Reconf against 79%
for Break-Free—-HEUR and 82% for Breaking—Bad.

For this congested scenario, one step of reconfiguration is not enough as there
is not enough place to move the requests. Therefore, some requests are rejected.
Allowing to use more steps in our make-before-break reconfiguration process,
without interrupting the requests, we can reach the same performances as Breaking-Bad.

In Figure [/}, we show the network operational cost for Break—-Free-ILP,

27

Breaking-Bad, and No-Reconf as a function of the number of demands ar-

rived. The first observation is that Break-Free-HEUR and Break-Free—-ILP

(with more than 2-steps) lead to a smaller network operational cost than No-Reconf.

It accepts more, with less cost. The second observation is thatevenif Break-Free—-ILP
(with 1-step) has a similar profit to No—Reconf, it has substantially less network
operational cost than all the other algorithms.

5.4 Low-Traffic scenario - Impact of Parameter

In Figures 8 and 0] we study the impact of the § parameter on the resources
required in the network in terms of bandwidth and number of deployed VNFs,
respectively.

As [increases, the impact of the VNF cost on the total cost is greater. As a
consequence, the number of deployed VNFs decreases, leading to longer routes,
and thus, to an increased amount of bandwidth usage.

Note also that, for all values of beta, reconfiguration using Break-Free-ILP
(for any number of steps) leads to similar gains to reconfiguration using Breaking-Bad.
This shows that the conclusion discussed in Section [5.2] for a specific value of
B = 25 (our default value) is valid in more general settings for a wide range of 3.

Another important observation is that the gain of reconfiguration is higher
for larger values of 5. The reason is that, when [is large, the requests tend to
use longer routes as the cost of bandwidth is less important compared to the one
of VNFs. This leads to requests routed in a very suboptimal way when other
requests using the same VNFs leave (as shown in the example of Figure [I). On
the contrary, when £ is small, the routes try to always use close to shortest path
solutions, leading to lower gains. There is still a gain as a shortest path is not
always available (due to nodes and link capacities).

Finally, we can see that, as we said earlier in Section[5.2] the Break-Free-HEUR
is not as effective in reducing the deployment of VNFs: For pdh and tal it is
comparable to Break-Free—ILP with 1 step. For ta2 we can see that its ef-
ficiency is very limited compared to Breaking-Bad, even if it does as well in
reducing the use of links.

In the following, we use 5 = 25, as this is a good compromise between link
utilization and number of VNFs deployed.

5.5 Execution Times to Compute the Reconfiguration

Figure[I0]shows the average times to reconfigure with a logarithmic scale. We can
see that the reconfiguration time of Breaking-Bad and Break-Free-HEUR
are within the same order of magnitude. Indeed, recall that in the first steps of

28

No-Reconf EEE B-Free 1 step B B-Free 3 steps
E== Breaking-Bad HEM B-Free 2 steps Bl Heuristic

o
(=}

S S S
& s &
240 g 5‘ g
5 E A]
N
£ 30 E E
S| S| \ |
0 10 25 50 100
B
(a) pdh (b) tal

Figure 8: Low-Traffic scenario - Impact of parameter S - Bandwidth usage as a
function of j3.

100

o ° el
3 g g
2 2 g g 60
=N o~ 2~
8 g8 o ; g8
& & N § o 40

3 N N N N >

0 10 25 50 100

B
(b) tal

Figure 9: Low-Traffic scenario - Impact of parameter 5 - VNFs deployed as a
function of f3.

No-Reconf EE# B-Free 1 step B B-Free 3 steps
E== Breaking-Bad Hlll B-Free 2 steps Bl Heuristic

—_
[=)
©

10?2

o o o 102
g S g

E? 1 Eﬁ 1 Eﬁ 1
5210 5210 5210
f=i=1 f=i=1 .=

S* 100 S* 100 S* 100
Q Q Q

~ 0 ~ 0 ~ 0

(a) pdh (b) tal (c)taz2

Figure 10: High-Traffic scenario - Average reconfiguration times

Break-Free-HEUR, a routing is computed. During the simulations, this rout-
ing is computed using Breaking-Bad. This explains the identical reconfigura-
tion times.

For Break—-Free-ILP, even if the computation time is not much longer
with one step, it increases with 2 and 3 steps and can not be used on large networks
such as ta2. Break-Free—ILP with one step being far less effective on high-
traffic scenarios than Breaking—-Bad and Break-Free—-HEUR, it also seems
to be of little use on large networks.

29

N
o
N
o
N
o

Network cost
reduction (%)
—

o
Network cost
reduction (%)
i
o
Network cost
reduction (%)
—_

(=}

o

0- 0- -
0.1 1 10 60 0.1 1 10 60 0.1 1 10 60
Max reconf time (s) Max reconf time (s) Max reconf time (s)

(a) B-Free (1 step) (b) B-Free (2 steps) (c) B-Free (3 steps)

Figure 11: Low-Traffic scenario - Gains of network operational costs for different
time limits for the optimization process.

Figure [T|shows the gains of network cost (compared to No—Reconf) in per-
centage for Break-Free-ILP (I to 3 steps) when limiting the time spent for the
reconfiguration. Break—Free—ILP with 1 step needs only 1 second to reach its
best solution. This variant of the algorithm is almost as fast as Breaking-Bad
(which does not compute an intermediate make-before-break step). 10 seconds
are needed to reach a close to optimal solution for the 2—step variant, and a good
solution for the 3—step variant. The best solution is attained after 1 minute. We
remind the reader that in the low-traffic scenario, the 1-step variant is enough to
achieve solutions close to optimal, while in the high-traffic scenario, this is the
case of the 2 step variant. It is thus possible to reconfigure a network without
interruption and with significant gain in a few seconds.

5.6 Reconfiguration Rate

In this experiment, we test different reconfiguration rates. Note that during the
previous simulations, we reconfigured the network considering the three condi-
tions defined in the beginning of Section {4, Here, the only condition to reconfig-
ure is the first one, i.e., periodically, after a given number of time steps, defined as
the reconfiguration rate.

The faster rate is to reconfigure every time step, while the slowest one in
our setting would be to reconfigure every 100 time steps (only 1 or 2 recon-
figurations are performed during the whole test). We thus present the results
for reconfiguration rates of every 1, 5, 10, 15, 50, and 100 time steps using
Break-Free—-HEUR, the results with Breaking—-Bad and Break-Free-ILP
are similar. In Figure[I2] we provide the network cost in the low-traffic scenario.
The minimum cost is as expected achieved when reconfiguring at each time step.
However, in this setting similar gain can be obtained when reconfiguring every 10
and 15 time steps for pdh, tal and ta2.

Results for the high-traffic scenarios can be seen in Figure [I3] in which we
report the profit generated by the accepted demands. In this setting, the network

30

—&— Every 1top —— Every10top —x— Every 50 top

—e— Every 5 top Every 15 top Every 100 top
., 4000 - -
@ @ 4000 @
; : ; 6000
5 3000 5 5
E E 3000 E
5} ® 5}
4 Z 4 Z 4000
2000 r .
0 100 200 0 100 200 0 100 200
SFC Arrival SFC Arrival SFC Arrival
(a) pdh (b) tal (c)ta2

Figure 12: Low-Traffic scenario - Impact of the reconfiguration rate on the net-
work cost.

= 100 = - 100 == - 100
3 3 2
o, o, Q,
(o] [0 [
o ’E o ? o ?
5 8 8
& 80 & 80 & 80
o o o
— — —
~ . ; ~ . . ~
0 100 200 0 100 200 0 100 200
SFC Arrival SFC Arrival SFC Arrival
(a) pdh (b) tal (c) ta2

Figure 13: High-Traffic scenario - Impact of the reconfiguration rate on the per-
centage of profit accepted.

is congested. This means that very frequently the demand arriving at a time step
cannot be routed directly.

For pdh, not reconfiguring at every time step leads to poor performance, what-
ever the value of the reconfiguration rate. For tal, this effect is not as stringent.
Different reconfiguration rates lead to different values of profit. However, only a
reconfiguration every time step leads to an optimal performance. Choosing a rate
between 5 and 15 can achieve a high efficiency without reconfiguring too much.

Thus, the reconfiguration should be well chosen by network operators, de-

pending on their network usage. The higher the congestion, the higher the rate
should be.

5.7 Percentage of rerouted requests

To see the importance of implementing a make-before-break process, we study the
percentage of rerouted requests during the reconfiguration process. We report in
Figure [14] (left) the percentage of reconfigured SFCs for Break-Free-ILP (1
to 3 steps), Break—Free—-HEUR and Breaking-Bad for the high-traffic sce-
nario. Firstly, Breaking—-Bad has to interrupt, on average, 48% of the requests

31

-
o
o

100

I 5 7

SFCs reconfigured
(%)
a1
<)
SFCs reconfigured
(%)
o1
o

B T L BT I 1 5 10 15 50 100
25 gse gree” W Reconfiguration rat
® o ? econiiguration rate
Figure 14: Percentage of rerouted requests for tal, considering (left) different
intermediate reconfiguration steps and (right) different reconfiguration rates.
g p g g

—_
(€3]
—
(€3]

N
o
-
(=)

92}

Transients VNFs
(%)
(@)
Transients VNFs
(%)

B-Free 2 steps B-Free 3 steps B-Free 2 steps B-Free 3 steps

(a) pdh (b) tal

Figure 15: Percentage of transient VNFs used during the intermediate steps of the
reconfiguration.

(between 20% and 70%) to maintain an optimal solution. This is thus of crucial
importance to avoid impacting this large number of requests when reconfiguring.
Break-Free—-ILP and Break-Free—-HEUR change the routing of approxi-
mately the same number of requests (except for one step which is less efficient)
but without any interruption of traffic.

Note that the number of reconfigured requests depends on the frequency of the
reconfiguration, as shown in Figure 14{(right). Reconfiguring regularly permits to
impact less SFCs at each reconfiguration process. Indeed, around 48% of SFCs
are reconfigured when the reconfiguration rate equals 1, while around 80% of
SFCs need to be reconfigured if this rate reach 100.

5.8 Percentage of Transient VNFs instantiated during recon-
figuration

Our objective is to minimize the network operational cost at the final step of the

reconfiguration. Since the transient VNFs used during reconfiguration are instan-

tiated for a short period of time, our model did not take them into account. We
considered their cost to be marginal compared to the cost of the VNFs that are

32

used before and after the reconfiguration. Nevertheless, we plot in Figure [15] the
percentage of transient VNFs that are used only for the aim of the reconfiguration.
A VNF is considered as transient if it is deployed neither before, nor after the
reconfiguration, but during the steps of the reconfiguration.

Breaking-Bad has no reconfiguration step and therefore do not activate
transient VNFs. As for Break-Free-HEUR, by design it does not activate any
either: indeed, each reconfiguration step is only a transition from the initial state to
the final state. Therefore, no transient VNF is needed for Break-Free—HEUR.
By analogy to Break-Free-HEUR, there is also none with Break-Free—-ILP
with one step, since there is no intermediate step between the initial an the final
state.

In Figure [I5] we can see that Break—Free—ILP (with 2 and 3 steps) uses
on average about 5% temporarily VNFs for pdh and between 11% and 12% for
tal. We can especially notice that the use of transient VNFs is stable between
2 and 3 reconfiguration steps and does not increase. Although our model does
not minimize the use of transient VNFs, it deploys an acceptable number of them
during reconfiguration. If this happens to be critical, then constraints in the model
could be added to restrain the use of these VNFs. Another solution would be to
use Break-Free—-HEUR that has no transient VNF and similar performance.

6 Conclusion

In this work, we provide two solutions, Break-Free—ILP and Break-Free-HEUR,
to reconfigure a set of requests which have to go through service function chains.
The requests are routed greedily when they arrive, leading to a sub-optimal use of
network resources, bandwidth, and virtual network functions. We compared our
strategies with Breaking-Bad (that reconfigures to an optimal placement and
routing solution with interruption of the requests) and No-Reconf (that never
performs reconfiguration). For our 2 solutions, we study their impact on band-
width usage, the deployment of VNFs as well as on the increase in the acceptance
of requests during periods of heavy network congestion. We also study their ef-
ficiency according to the variation of reconfiguration frequencies and the maxi-
mum time limit allowed for each reconfiguration. For small and medium sized
networks, Break—Free—-ILP is fast and efficient. It reroutes the requests to an
optimal or close to optimal solution in a few seconds while providing a make-
before-break mechanism to avoid impacting the rerouted requests. The reconfig-
uration frequency can be adapted depending on the needs and the number of SFC
arrivals and departures. The network operational cost is already greatly improved
with only two steps of reconfigurations.

33

Break-Free-HEUR needs as an input the final desired placement and rout-
ing solution, and tries to greedily move the requests to that state. Therefore, it
does not instantiate transient VNFs during reconfiguration steps. It is almost as
efficient as Break—Free—ILP and moreover, it allows to solve efficiently large
network instances, for which Break—-Free-ILP cannot provide any solution.

As a future work, we would like to develop more scalable optimization models
able to provide guarantees on solutions for large networks.

7 Acknowledgements

This work has been supported by the French government through the UCA JEDI
(ANR-15-IDEX-01) and EUR DS4H (ANR-17-EURE-004) Investments in the
Future projects, and by Inria associated team EfDyNet.

References

[1] H. Kim, N. Feamster, Improving network management with Software De-
fined Networking, IEEE Communications Magazine 51 (2) (2013) 114-119.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, V. Sekar,
Making middleboxes someone else’s problem: network processing as a
cloud service, ACM SIGCOMM Computer Communication Review 42 (4)
(2012) 13-24.

[3] J. Matias, J. Garay, N. Toledo, J. Unzilla, E. Jacob, Toward an SDN-enabled
NFV architecture, IEEE Communications Magazine 53 (4) (2015) 187-193.

[4] P. Quinn, T. Nadeau, Problem statement for Service Function Chaining,
Tech. rep. (2015).

[5] L. Fajjari, N. Aitsaadi, G. Pujolle, H. Zimmermann, VNR algorithm: A
greedy approach for virtual networks reconfigurations, in: IEEE Global
Telecommunications Conference (GLOBECOM), IEEE, 2011, pp. 1-6.

[6] L. Gao, G. N. Rouskas, Virtual network reconfiguration with load balancing
and migration cost considerations, in: IEEE International Conference on
Computer Communications (INFOCOM), IEEE, 2018, pp. 2303-2311.

[7] P.N. Tran, A. Timm-Giel, Reconfiguration of virtual network mapping con-
sidering service disruption, in: IEEE International Conference on Commu-
nications (ICC), IEEE, 2013, pp. 3487-3492.

34

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Z. Cai, F. Liu, N. Xiao, Q. Liu, Z. Wang, Virtual network embedding
for evolving networks, in: IEEE Global Telecommunications Conference
(GLOBECOM), IEEE, 2010, pp. 1-5.

A. Gausseran, A. Tomassilli, F. Giroire, J. Moulierac, Don’t Interrupt Me
When You Reconfigure my SFCs, in: IEEE International Conference on
Cloud Networking (CloudNet), 2019.

J. G. Herrera, J. F. Botero, Resource allocation in NFV: A comprehen-
sive survey, IEEE Transactions on Network and Service Management (IEEE
TNSM) 13 (3) (2016) 518-532.

R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, R. Boutaba,
Network function virtualization: State-of-the-art and research challenges,
IEEE Communications Surveys & Tutorials 18 (1) (2016) 236-262.

T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, M.-]J. Tsai, Deploying chains of vir-
tual network functions: On the relation between link and server usage,
IEEE/ACM Transactions on Networking (TON) 26 (4) (2018) 1562—-1576.

A. Tomassilli, F. Giroire, N. Huin, S. Pérennes, Provably efficient algo-
rithms for placement of Service Function Chains with ordering constraints,
in: IEEE International Conference on Computer Communications (INFO-
COM), IEEE, Honolulu, Hawai, US, 2018, pp. 774-782.

S. Paris, A. Destounis, L. Maggi, G. S. Paschos, J. Leguay, Controlling flow
reconfigurations in SDN, in: IEEE International Conference on Computer
Communications (INFOCOM), IEEE, 2016, pp. 1-9.

S. Ayoubi, Y. Zhang, C. Assi, A reliable embedding framework for elastic
virtualized services in the cloud, IEEE Transactions on Network and Service
Management (IEEE TNSM) 13 (3) (2016) 489-503.

M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, R. Boutaba,
Elastic virtual network function placement, in: IEEE International Confer-
ence on Cloud Networking (CloudNet), 2015, pp. 255-260.

V. Eramo, E. Miucci, M. Ammar, F. G. Lavacca, An approach for service
function chain routing and virtual function network instance migration in
network function virtualization architectures, IEEE/ACM Transactions on
Networking (ToN) 25 (4) (2017) 2008-2025.

K. A. Noghani, A. J. Kassler, J. Taheri, On the Cost-Optimality Trade-off for
Service Function Chain Reconfiguration, in: IEEE International Conference
on Cloud Networking (CloudNet), 2019.

35

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Pozza, P. K. Nicholson, D. F. Lugones, A. Rao, H. Flinck, S. Tarkoma, On
reconfiguring 5G network slices, IEEE Journal on Selected Areas in Com-
munications 38 (7) (2020) 1542-1554.

D. Harutyunyan, R. Fedrizzi, N. Shahriar, R. Boutaba, R. Riggio, Orchestrat-
ing end-to-end slices in 5G networks, in: 2019 15th International Conference
on Network and Service Management (CNSM), 2019, pp. 1-9.

S. Sharma, A. Gumaste, M. Tatipamula, Dynamic network slicing using util-
ity algorithms and stochastic optimization, in: 2020 IEEE 21st International
Conference on High Performance Switching and Routing (HPSR), 2020, pp.
1-8.

F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, Y. Liang, Network slice reconfig-
uration by exploiting deep reinforcement learning with large action space,
IEEE Transactions on Network and Service Management.

G. Wang, G. Feng, T. Q. S. Quek, S. Qin, R. Wen, W. Tan, Reconfiguration in
network slicing—optimizing the profit and performance, IEEE Transactions
on Network and Service Management 16 (2) (2019) 591-605.

J. Liu, W. Lu, F. Zhou, P. Lu, Z. Zhu, On dynamic service function chain
deployment and readjustment, IEEE Transactions on Network and Service
Management (IEEE TNSM) 14 (3) (2017) 543-553.

B. Augustin, T. Friedman, R. Teixeira, Measuring load-balanced paths in the
internet, in: ACM Internet Measurement Conference (IMC), ACM, 2007,
pp- 149-160.

N. Garg, J. Koenemann, Faster and simpler algorithms for multicommodity
flow and other fractional packing problems, SIAM Journal on Computing
37 (2) (2007) 630-652.

Y. Sang, B. Ji, G. R. Gupta, X. Du, L. Ye, Provably efficient algorithms for
joint placement and allocation of virtual network functions, in: IEEE In-

ternational Conference on Computer Communications (INFOCOM), IEEE,
2017, pp. 1-9.

W. Ma, O. Sandoval, J. Beltran, D. Pan, N. Pissinou, Traffic aware placement
of interdependent NFV middleboxes, in: IEEE International Conference on
Computer Communications (INFOCOM), 2017, pp. 1-9.

N. Huin, B. Jaumard, F. Giroire, Optimal network service chain provision-
ing, IEEE/ACM Transactions on Networking (ToN) 26 (3) (2018) 1320-
1333./do1:10.1109/TNET.2018.2833815.

36

http://dx.doi.org/10.1109/TNET.2018.2833815

[30]

[31]

[32]

[33]

[34]

[35]

A. Dwaraki, T. Wolf, Adaptive service-chain routing for virtual network
functions in software-defined networks, in: Proceedings of the 2016 work-
shop on Hot topics in Middleboxes and Network Function Virtualization,
2016, pp. 32-37.

M. R. Garey, D. S. Johnson, Computers and intractability, Vol. 29, wh free-
man New York, 2002.

S. Irnich, G. Desaulniers, Shortest path problems with resource constraints,
in: Column generation, Springer, 2005, pp. 33-65.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, et al., ONOS: towards an open, dis-
tributed SDN OS, in: Proceedings of the third workshop on Hot topics in
software defined networking, ACM, 2014, pp. 1-6.

S. Orlowski, R. Wessily, M. Pidro, A. Tomaszewski, Sndlib 1.0—survivable
network design library, Networks: An International Journal 55 (3) (2010)
276-286.

S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet, P. De-
meester, Network service chaining with optimized network function em-
bedding supporting service decompositions, Computer Networks 93 (2015)
492-505.

37

	Introduction
	Related Work
	Problem Statement and Notations
	Modeling
	Layered graph
	Static Routing and provisioning problem (R&P): Breaking-Bad
	R&P for a single demand
	Break-Free-ILP Reconfiguration (Make-before-break)
	Heuristic Break-Free-HEUR

	Numerical Results
	Data sets
	Low-traffic scenario - Resource usage
	High-Traffic scenario - Acceptance Rate
	Low-Traffic scenario - Impact of Parameter
	Execution Times to Compute the Reconfiguration
	Reconfiguration Rate
	Percentage of rerouted requests
	Percentage of Transient VNFs instantiated during reconfiguration

	Conclusion
	Acknowledgements
	References

