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Abstract 1 

Osteotomies during rhinoplasty are usually based on the surgeon’s proprioception to 2 

determine the number and the strength of the impacts. The aim of this study is to determine 3 

whether a hammer instrumented with a force sensor can be used to classify fractures and to 4 

determine the location of the osteotome tip. Two lateral osteotomies were realized in nine 5 

anatomical subjects using an instrumented hammer recording the evolution of the impact force. 6 

Two indicators τ and λ were derived from the signal, and video analysis was used to determine 7 

whether the osteotome tip was located in nasal or frontal bone as well as the condition of the 8 

bone tissue around the osteotome tip. A machine-learning algorithm was used to predict the 9 

condition of bone tissue after each impact. The algorithm was able to predict the condition of 10 

the bone after the impacts with an accuracy of 83%, 91%, and 93% when considering a 11 

tolerance of 0, 1, and 2 impacts respectively. Moreover, in nasal bone, the values of τ and λ 12 

were significantly lower (p<10-10) and higher (p<10-4) than in frontal bone, respectively. This 13 

study paves the way for the development of the instrumented hammer as a decision support 14 

system. 15 

  16 
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1. Introduction  1 

Rhinoplasty is a common intervention in plastic surgery, representing around 9% of all 2 

plastic surgery procedures according to the 2015 International Society of Aesthetic Plastic 3 

Surgery (ISAPS) global survey [1]. It is usually realized to reshape the nose by modifying its 4 

osseocartilaginous architecture and/or to correct breathing difficulties. Rhinoplasty is a 5 

complex intervention, even for an experienced surgeon [2] and it requires precise execution to 6 

obtain optimal results while respecting the aesthetic and functional aspects of the nose. 7 

Osteotomies are particularly crucial when taking care of deviated, hunchbacked noses, with a 8 

nasal bridge and / or a wide base [3], [4]. Osteotomies must be performed with caution to avoid 9 

any cosmetic or functional complications that could result in permanent deformities. 10 

Nasal osteotomies are often performed without direct visual control, using subcutaneous 11 

minimal invasive approaches to limit visible scars. The surgeon positions and moves the 12 

osteotome to fracture bone tissue using his/her proprioception only (touch, hearing). The 13 

development of a decision support system allowing to quantify bone properties around the 14 

osteotome tip would be of interest in order to help the surgeon adapt the impact strength 15 

throughout the surgical procedure. Such information could allow the surgeon to determine the 16 

progress of the osteotome through the different tissues, to anticipate an uncontrolled fracture 17 

and to obtain objective and quantified information on the osteotome pathway, which is often 18 

carried out blindly. Such device would be particularly interesting for lateral osteotomies aiming 19 

at separating the lateral slope of the bony nasal pyramid from its attachment to the maxilla, 20 

which are the most prone to variations [8].  21 

Our group has been developing over the last few years a hammer instrumented with a 22 

piezoelectric force sensor that allows measuring the variation of the force applied to the hammer 23 

during the several microseconds corresponding to each impact. This approach was originally 24 
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designed to measure the stability of orthopedic implants such as acetabular cups or femoral 1 

stems. Relevant indicators were derived from the measured signal [9]–[11] and tested in vitro 2 

[12], ex vivo [13] and in anatomical subjects [14], [15]. 3 

More recently, the instrumented hammer was employed in the context of osteotomies, 4 

first in vitro with composite materials and bone mimicking phantoms [16] and then ex vivo in 5 

rabbit head samples [17]. The in vitro study [16] showed that the material of a sample could be 6 

predicted with an estimated 89% prediction performance and that its thickness could be 7 

estimated with an error lower than 10%. The ex vivo study [17] then showed that a dedicated 8 

indicator could be used to a) measure the displacement of the osteotome in the bone tissue 9 

during a given impact and b) detect the arrival of the osteotome in frontal bone, which 10 

corresponds to the end of the osteotomy.  11 

The aim of the present study is to determine whether a hammer instrumented with a 12 

piezoelectric force sensor can be used to retrieve information on the mechanical properties of 13 

the tissue located around the tip of the osteotome during rhinoplasty. To do so, our approach 14 

consisted in performing osteotomies in cadaveric subjects while using video analysis in order 15 

to validate the prediction of an algorithm based on the signal retrieved by the instrumented 16 

hammer. More specifically, the objective is to determine whether a dedicated signal processing 17 

technique can be used to follow the apparition of fractures during osteotomies performed with 18 

the instrumented hammer. 19 

 20 

 21 

  22 
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2. Methods 1 

2. 1) Anatomical subjects: 2 

Our study was conducted in the anatomy laboratory of the Fer-à-Moulin surgical school 3 

(school of « Assistance Publique – Hôpitaux de Paris ») from December 2019 to March 2020 4 

and was approved by its ethic committee (agreement #9301/cnrs/05052021). The study 5 

involved nine anatomical subjects with an average age of 85 ± 14 years old. No chemicals were 6 

used for their preservation. They were stored in a cold room at -18 ° C and then thawed at room 7 

temperature before the experiments.. 8 

2.2) Surgical procedure: 9 

All experiments were carried out according to the same protocol by an experienced 10 

plastic surgeon. A subcutaneous infiltration of the entire nasal pyramid was performed with 11 

physiological serum, facilitating the subcutaneous detachment of the cartilages and nasal bones. 12 

The incisions were realized using an open rhinoplasty technique [18] in order to validate the 13 

displacement of the osteotome using video analysis (see paragraph 2.4, video 1). The 14 

subcutaneous dissection began with a columellar incision, followed laterally by a bilateral 15 

marginal incision. The subcutaneous tissues were released from their cartilaginous attachments 16 

and raised, thus exposing the cartilaginous tip and the proximal part of the osseocartilaginous 17 

bump. A transverse incision from the glabella to the columella was made in order to allow soft 18 

tissue to be removed and the entire nasal pyramid to be exposed (Fig. 1). On each subject, two 19 

lateral ascending curved osteotomies of the “low to high” type [19]  (video 1) were performed, 20 

leading to a total number of 18 osteotomies, each osteotomy having a total number of impact 21 

comprised between 21 and 49. 22 

 23 

 24 
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2.3) Acquisition of the signal: 1 

The device used in this study was similar to the one used in [16,17] and consisted in a 2 

260g surgical mallet (32-6906-26, Zepf, Tuttlingen, Germany) equipped with a piezoelectric 3 

sensor having a measurement range up to 4.45 kN (208C04, PCB Piezotronics, Depew, NY, 4 

USA) and calibrated by the manufacturer with an uncertainty of ± 1% (though the amplitude of 5 

the signal is not important in this study). The instrumented hammer was used to impact a 10 6 

mm osteotome (reference #32-6002-10, Zepf, Tuttlingen, Germany). Each signal 7 

corresponding to a given impact lasted several milliseconds. The force sensor was used to 8 

measure the time variation of the force during each impact. A data acquisition module (NI 9234, 9 

National Instruments, Austin, TX, USA) with a sampling frequency of 51.2 kHz and a 10 

resolution of 24 bits was used to record, for each impact, the time variation of the force exerted 11 

on the osteotome over a duration of 2 ms. The signals were transferred to a computer and 12 

recorded with a LabVIEW interface (National Instruments, Austin, TX, USA). 13 

For each impact performed with the instrumented hammer, the recorded signal s(t) 14 

corresponds to the evolution of the impact force as a function of time (video 1). The signal 15 

shape was qualitatively similar to the one obtained in the in vitro [16] and ex vivo [17] 16 

configurations. The same signal processing method as the one developed in vitro was applied 17 

to the signals corresponding to all impacts using Matlab (The MathWorks, Inc., Natick, 18 

Massachusetts, USA). Briefly, for the first and second peaks (p=1,2) of each impact, the 19 

maximum peak amplitude ap, the time of the center of the peak tp, and the root mean square 20 

width wp were calculated using a Gaussian fit with a time window centered on the middle of 21 

the time window corresponding to s(t) > ap/5. Two indicators were calculated for each signal: 22 

the second peak time τ= t2-t1 and the impulse ratio λ = L2 / L1, where Lp corresponds to the peak 23 

integrals approximated by: Lp = (2π)0.5 . wp . ap. 24 
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2.4) Classification of the impacts: 1 

During all experiments, the position of the osteotome was recorded using a video camera 2 

(L-920M3, Spedal, Taiwan) in order to track fracture initiations and to classify each impact 3 

according to the bone status around the osteotome tip. After each impact, the bone-osteotome 4 

system (BOS) was considered to be in the “Fracture” (respectively “Bone”) state when the 5 

video showed a fracture in front of the osteotome tip (respectively when the video showed the 6 

osteotome tip in direct contact with bone tissue); as illustrated in Fig 2. Moreover, for each 7 

osteotomy, the surgeon determined empirically (based on his proprioception) when the 8 

osteotome tip was assumed to be located in frontal bone, in which case the impacts were 9 

considered to be in the “Hard Bone” (“HB”) state. Note that the surgeon did not have access to 10 

any information retrieved by the hammer during surgery in order to avoid any bias in the 11 

measurements. 12 

Based on the classification of the BOS described above, the impacts were classified into 13 

four groups depending on the state of the BOS before and after the impact. When the BOS 14 

before and after the impact were in the “Fracture” (respectively “Bone”) state, the impact was 15 

assumed to belong to the F2F (respectively B2B) group. When the BOS before the impact was 16 

in the “Fracture” (respectively “Bone”) state and the BOS after the impact was in the “Bone” 17 

(respectively “Fracture”) state, the impact was assumed to belong to the F2B (respectively 18 

B2F) group. Figure 3 illustrates schematically the different configurations.  19 

A database was assembled, containing, for each of the 531 impacts, the corresponding 20 

state (“Bone”, “Fracture”, or “Hard Bone”), group (B2B, B2F, F2B, or F2F), maximum peak 21 

force F, and values of the indicators λ and τ. Out of those 531 impacts, 6 were discarded because 22 

they corresponded to impacts where the osteotome had slipped out of the bone tissue (which 23 

would not happen during an actual surgery).  24 
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2.5) Machine-learning classifier:  1 

A dedicated iterative algorithm based on machine learning was developed in order to 2 

predict the state of the BOS for each impact in the database. The different osteotomy paths were 3 

analyzed separately, and for each of them, the first impact I1 was not considered because it 4 

corresponds to the initiation of the osteotomy pathway. After I1, the BOS was considered to be 5 

in the “Bone” state since we assumed that no fracture was initiated on the initial impact. For 6 

each impact In (n>1 corresponding to the impact number), four information were entered in the 7 

database: 8 

 the state of the BOS for the impact In-1 (“Bone”, “Fracture”, “HB”) 9 

 the value of τn=τ corresponding to the impact In 10 

 the value of Δτn = τn - τn-1, where τn-1 corresponds to the value of τ for the impact In-1 11 

 the value of λn = λ corresponding to the impact In 12 

The aim of the Support Vector Machine (SVM) classification algorithm [20] was to 13 

predict the state of the BOS after the impact In (noted BOS(In) in what follows). SVM models 14 

are machine-learning algorithms that can be used to separate the different groups of a dataset 15 

using hyperplanes, which are optimized to obtain prediction areas allowing to separate the 16 

points of the different classes. Here, a quadratic SVM model [20] was employed because it led 17 

to the best results compared to other types of SVM algorithms.  18 

The algorithm is illustrated in Fig. 4 and is described in what follows. The first step was 19 

to decide whether the BOS(In) was in the “HB” state or in other states. To do so, the parameters 20 

(τ, Δτ) were considered and the output of the SVM algorithm was the equation y =fHB(x) in the 21 

(λ, τ) space separating impacts from the “HB” state and from the other groups. When τ < fHB(λ) 22 

(respectively τ > fHB(λ)), BOS(In) was classified as “HB” (respectively in other groups).  23 
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 If the BOS(In) was not considered to be in the “HB” state, the algorithm was continued.  1 

 If the BOS(In-1) was in the “Bone” state, the quadratic SVM algorithm was used in order 2 

to determine if the impact In was in the B2B or in the B2F group. To do so, the parameters 3 

(τ, Δτ) were considered and the output of the SVM algorithm was the equation y=fB(x) in 4 

the (τ, Δτ) space separating impacts from the B2B and from the B2F groups. When Δτ> 5 

fB(τ) (respectively Δτ< fB(τ)), the impact was classified in the B2F (respectively B2B 6 

group). Such classification allows to determine the state of BOS(In) when the state of 7 

BOS(In-1) was considered to be in the “Bone” state. 8 

 If BOS(In-1) was in the “Fracture” state, the same quadratic SVM algorithm was used in 9 

order to determine if the impact In was in the F2B or in the F2F group. Again, only the 10 

parameters (τ, Δτ) were considered. The (τ, Δτ) referential was rotated by 45° in order to 11 

be able to realize the interpolation, which led to a new set of coordinates (τrot, Δτrot), given 12 

by:  13 

 𝜏𝑟𝑜𝑡  =  𝑐𝑜𝑠(45°) × 𝜏 –  𝑠𝑖𝑛(45°) × 𝛥𝜏 ( 1 ) 

 𝜏𝑟𝑜𝑡  =  𝑐𝑜𝑠(45°) × 𝜏 –  𝑠𝑖𝑛(45°) × 𝛥𝜏 

 

( 2 ) 

The output of the SVM algorithm was the equation yrot =fF(xrot) in the (τrot, Δτrot) space 14 

separating impacts from the F2B and from the F2F groups. When Δτrot > fF(τrot) (respectively 15 

Δτrot < fF(τrot)), the impact was classified in the F2F (respectively F2B) group. Such 16 

classification allows to determine the state of BOS(In) when the state of BOS(In-1) was 17 

considered to be in the “Fracture” state. 18 

 19 
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2.6) Statistical analyses:  1 

The algorithm described above was applied to all 531 impacts corresponding to 18 osteotomies 2 

and the state of the BOS predicted by the algorithm was compared to the state of the BOS 3 

observed with the video tracking analysis. For each impact, we determined whether and the 4 

results obtained with the algorithm and with the video tracking analysis agreed and the error 5 

was analyzed as a function of the predicted bone state. We also compared the two results when 6 

considering a tolerance of one and two impacts for the prediction, which is justified by the fact 7 

that several consecutive impacts were sometimes necessary to detect some fractures. 8 

  9 

3. Results 10 

3.1) Signals measured 11 

Two typical signals corresponding to an impact realized in nasal bone (grey line) and in 12 

frontal bone (black line) are shown in Fig. 5, with the corresponding values of τ. The value of 13 

τ obtained in frontal bone is significantly lower than the one obtained in nasal bone. 14 

An ANOVA analysis carried out for all osteotomies showed that the values of τ 15 

(respectively of λ) were significantly lower (respectively higher) when the osteotome was in 16 

frontal bone compared to when it is in nasal bone (p < 10-10 and p < 10-4, respectively).  17 

 18 

3.2) Classification study 19 

The results obtained for the three classification studies are represented in Fig. 6.  20 

Figure 6A shows the values of the parameters (τ, Δτ) obtained for all 531 impacts. The 21 

dots correspond to impacts In for which the BOS(In) is in the “HB” state according to the 22 
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surgeon proprioception, while the crosses correspond to all other impacts. The result of the 1 

SVM classifier is indicated by the black line, which has the following equation:  2 

 y =  𝑓𝐻𝐵(x) =  6.665. 𝑥4 –  17.01. 𝑥3  +  15.007. 𝑥2 −  4,664. 𝑥 +  0.669 ( 3 ) 

The (τ, Δτ) space in Fig. 6A is separated by the black line defined above into the dark 3 

and light grey areas. The dark area corresponds to impacts In for which the BOS(In) is in the 4 

“HB” state, while the light grey area corresponds to impacts In for which the BOS(In) is in all 5 

other groups. 6 

 7 

Figure 6B shows the values of the parameters (τ, Δτ) corresponding to impacts In realized 8 

when the BOS(In-1) is in the “Bone” state. The crosses (respectively dots) correspond to impacts 9 

belonging to the B2F (respectively B2B) group according to the video analysis. The result of 10 

the SVM classifier corresponds to the black line, which has the following equation: 11 

 y =  𝑓𝐵(x) =  0,052. 𝑥4 –  0,188. 𝑥3  +  0,235. 𝑥2 –  0,125. 𝑥 +  0,295 ( 4 ) 

The (τ, Δτ) space in Fig. 6B is separated by the black line defined above into dark and 12 

light grey areas, which corresponds to coordinates of impacts belonging to the B2B and B2F 13 

groups, respectively. 14 

Figure 6C shows the values of the parameters (τ, Δτ) corresponding to impacts In realized 15 

when the BOS(In-1) is in the “Fracture” state. The crosses (respectively dots) correspond to 16 

impacts belonging to the F2F (respectively F2B) group according to the video analysis. The 17 

result of the SVM classifier corresponds to the black line, which has the following equation in 18 

the (τrot, Δτrot) space (see subsection 2.5):  19 
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 y =  f𝐹(x) = 0,415. 𝑥4 –  1.672. 𝑥3  +  0,882. 𝑥2 +  1,991. 𝑥 −  0,893 ( 5 ) 

The (τ, Δτ) space in Fig. 6C is separated by the black line defined above into the dark 1 

and light grey areas which therefore corresponds to coordinates of impacts belonging to the 2 

F2F and F2B groups, respectively. 3 

 4 

3.3) Prediction Algorithm 5 

The results obtained in the last subsection and shown in Fig. 6 were used in the algorithm 6 

described in subsection 2.6 in order to predict the state of the BOS after each impact. For a 7 

given osteotomy, Fig. 7A shows the state of the BOS obtained after each impact using the video 8 

analysis, while Fig. 7B shows the corresponding results obtained by the aforementioned 9 

algorithm. The stars (respectively the white and black dots) correspond to a BOS in the 10 

“Fracture” (respectively “Bone” and “HB”) state after the corresponding impact. The errors 11 

of the algorithm are indicated with a triangle in Fig. 7B. As shown in Fig. 7, a good agreement 12 

is obtained between the prediction of the algorithm and the results obtained using the video 13 

analysis since a false prediction was obtained for 2 out of 27 impacts. 14 

 15 

As shown in Table 1, when considering all 18 osteotomy pathways, the results obtained 16 

with the algorithm and with the video analysis were in agreement in 83% of the cases (442 out 17 

of a total of 531 impacts). Moreover, video analysis found the presence of a fracture which was 18 

not predicted by the algorithm in 10% of the cases (55 out of 531 impacts), a situation 19 

corresponding to the 3rd impact in Fig. 7. Conversely, video analysis found that the BOS 20 

corresponded to “Bone”, while a fracture was predicted by the algorithm in 2% of the cases (10 21 

out of 531 impacts), a situation corresponding to the 11th impact in Fig. 7. The algorithm failed 22 
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to predict a BOS corresponding to “HB” in 2% of the cases (9 out of 531 impacts), while a false 1 

prediction of “HB” was made in 3% of the cases (15 out of 531 impacts).  2 

The third and fourth columns of Table 1 show the comparison between the results 3 

obtained with video analysis and with the algorithm described in subsection 2.6 when allowing 4 

an error of one and two impacts between the two modalities, respectively. As shown in Table 5 

1, the performances of the algorithm are significantly better when allowing an error of one and 6 

two impacts. 7 

 8 

 
Correct 

Predictions 

Fracture 

False Positive 

Bone 

False Positive 

HB 

False Positive 

Actual 

Performance 

442/531 

(83%) 

10/531 

(2%) 

64/531 

(12%) 

15/531 

(3%) 

Perf. with ±1 

Tolerance 

480/531 

(91%) 

1/531 

(0%) 

39/531 

(7%) 

11/531 

(2%) 

Perf. with ±2 

Tolerance 

496/531 

(93%) 

0/531 

(0%) 

25/531 

(5%) 

10/531 

(2%) 

 9 

Table 1. Performance of the algorithm for the prediction of the state of the bone-osteotome 10 

system after each impact. The second column shows the raw performances of the algorithm, 11 

while the third and fourth column show the performances when allowing a tolerance of 1 and 12 

2 impacts, respectively.  13 
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4. Discussion  1 

The originality of the approach described herein is to help the surgeon collect objective 2 

information on the nature of the tissues located around the osteotome tip throughout the 3 

osteotomy procedure, including i) the presence of a fracture at the osteotome tip and ii) the 4 

arrival of the osteotome in frontal bone. Moreover, the operating time is not modified since the 5 

information can be given in real time and the instrument is not invasive since the instrumented 6 

hammer does not touch the patient's tissues. Since osteotomies in rhinoplasty are often 7 

performed blindly, such device could provide objective information about the osteotomy site, 8 

regardless of the technique used by the surgeon.  9 

Rhinoplasty is recognized as a difficult surgical procedure with a long learning process 10 

[2] for three main reasons: the nasal anatomy is very variable, the procedure must correct shape 11 

and function, and the final result must meet the patient expectations. Our approach could 12 

therefore allow young surgeons to achieve a faster learning curve for rhinoplasty, which is 13 

particularly steep, since 70 to 100 trials are usually required to start mastering the gesture [21]. 14 

In addition, each rhinoplasty is different because the surgeon must adapt to the patient's request 15 

and its intrinsic characteristics [22]. All these advantages make it possible to consider a future 16 

routine clinical use of such instrument.  17 

Rhinoplasty surgeons involved in teaching residents must balance the practical 18 

experience of a trainee while ensuring that such difficult maneuvers are carried out properly. 19 

Today, educational tools for surgical simulation using 3D printed models allow young surgeons 20 

to acquire the necessary experience more quickly and safely [23], [24]. Such learning technique 21 

is increasingly in demand but remains expensive and is never similar to the real anatomy of the 22 

operating room. By giving real-time control to the experienced surgeon, accessibility to 23 
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rhinoplasty could be made easier for young trainees. In addition, objective data will be useful 1 

to osteotome manufacturers to control the quality and performance of the devices they design.  2 

Coupling the data retrieved with the instrumented hammer to navigation systems such 3 

as CT-scan data could also increase the precision of the surgical procedure. By comparing the 4 

density of the maxilla, nasal, and frontal bones with the data acquired intra-operatively using 5 

the instrumented hammer, it could become possible to locate precisely the osteotome tip, 6 

somewhat reaching the neuronavigation principle used in otorhinolaryngological surgery for 7 

the sinus, ear, and cranial surgery [25].  8 

Hubert et al. [16] developed an analytical model in order to understand the physical 9 

determinants of the signals shown in Fig. 5. The results found in [16] indicated that τ decreased 10 

as a function of the rigidity of the material located around the osteotome tip, which was given 11 

by the material and by the thickness of the plate. The results were confirmed experimentally by 12 

considering 6 types of materials and various plate thicknesses. Similar results were obtained 13 

more recently in an ex vivo animal study [17] that found that τ also decreased when the rigidity 14 

of the sample increased, which could be explained by the fact that a higher rigidity leads to a 15 

higher resonance frequency of the BOS and thus to a lower value of τ. The results found in the 16 

present study are in agreement with previous experimentations [16] because of the following 17 

explanation.  18 

First, Fig. 6B shows that fracture initiation corresponds to values of Δτ higher than 0.3 19 

ms, which can be explained by the sudden decrease of rigidity due to the fracture initiation.  20 

Second, Fig. 6C shows that fractures disappear when both values of τ and of Δτ are low, 21 

which corresponds to an increase of rigidity of the BOS due to the fracture disappearance.  22 
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Third, Fig. 6A shows that the arrival of the osteotome in frontal bone corresponds to 1 

low values of τ, which is consistent with previous results obtained in a rabbit model and may 2 

be explained by the higher thickness and rigidity of frontal bone compared to nasal bone [26], 3 

[27]. Consequently, low values of τ could be used to detect the arrival of the osteotome in frontal 4 

bone and the end of the osteotomy pathway. 5 

However, this study has several limitations. First, we only considered one osteotome and the 6 

results are likely to depend on its geometry, which is left to future studies. Second, the bone 7 

mechanical properties of anatomical subject may be different from those of patients. However, 8 

the surgeon proprioception was similar to the one obtained in the operating room. Third, the 9 

decision boundaries shown in Fig. 6 and obtained with the classification algorithms that were 10 

optimized in order to maximize the accuracy of the trained model (i.e., to minimize the total 11 

number of errors), led to a total number 55 Fracture false negatives and 10 Fracture false 12 

positives. However, in a clinical context, it may be preferable to reduce the number of Fracture 13 

false negatives at the cost of more Fracture false positives in order to maximize patient safety. 14 

Therefore, the algorithm’s parameters could be adjusted to better fit the surgeon’s needs. 15 

Fourth, the remaining errors between video analysis and the algorithm prediction may be 16 

explained by i) sudden variation of bone thickness, leading to changes of values of τ [16], ii) 17 

issues associated with the video analysis system and/or with the 3-D fracture path which may 18 

lead to difficulties in detecting the presence of a fracture, and iii) errors made by surgeon when 19 

determining whether the impact belongs to hard bone. Note that the errors are significantly 20 

reduced when allowing a tolerance in terms of impact, which can be explained by the difficulty 21 

of detecting the presence of a fracture or the location of the osteotome tip. Moreover, the 22 

surgeon’s proprioception and video analysis were used to classify the impacts and constitute 23 

subjective criteria (similarly as what is done in the clinic). Thus, further studies should look 24 
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into defining objective criteria that support the results described here. Fifth, the progress of the 1 

osteotome due to a given impact was not measured herein as it was done in rabbit model because 2 

of the difficulty of determining the location of the osteotome tip in this 3D configuration with 3 

a sufficient precision. Future studies should focus on the possibility of determining such 4 

modification of the osteotome location.  5 

  6 
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5. Conclusion  1 

The results obtained with anatomical subjects indicate that employing an instrumented 2 

hammer in combination with machine learning techniques may be an interesting approach to 3 

provide a decision support system to the surgeon in order to retrieve information on bone status 4 

around the osteotome tip during rhinoplasty.  5 

The significant difference of biomechanical properties of the frontal and nasal bone 6 

allows to determine when the osteotome reaches the end of the osteotomy pathway. Moreover, 7 

the instrumented hammer allows the prediction of fracture apparition and disappearance in front 8 

of the osteotome tip (video 1). In a clinical context, such information is critical to allow 9 

adaptation of the following impacts’ strength in order to avoid propagation of an existing 10 

fracture more than desired. Therefore, the instrumented hammer is a non-invasive decision 11 

support system that could provide clinicians with relevant and objective information in order to 12 

assist optimized surgical procedures without modifying the surgical protocol. 13 

 14 
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Figure Legends 

Figure 1. Experimental configuration considered for the osteotomies. 

 

 

Figure 2. Image of the bone-osteotome system where (A) no fracture is present around the 

osteotome tip (“Bone” state) and (B) a fracture is located in front of the osteotome tip 

(“Fracture” state). 

 

 



24 

 

Figure 3. Schematic illustration of the different groups of impacts on the osteotome (light grey) 

in the bone tissue (dark grey) and fractures (white). A: Bone to Bone (B2B), B: Bone to Fracture 

(B2F), C: Fracture to Bone (F2B), D: Fracture to Fracture (F2B). The group of each bone-

osteotome system is indicated for each configuration. 
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Figure 4. Schematic representation of the SVM based algorithm to predict the state of the bone-

osteotome system after each impact In. BOS(In) indicates bone-osteotome system after the 

impact #n. HB corresponds to Hard bone. 
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Figure 5. Example of the signals recorded for two different impacts of the instrumented hammer 

in the nasal bone and frontal bone, respectively. The values of the second peak time τ are 

indicated for each signal. 
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Figure 6. Results of the three classification studies. A: Classification of the BOS state 

corresponding to “Hard Bone” (dark grey) and to other states (light grey). B: Classification of 

the impact groups B2F (dark grey) and B2B (light grey). C: Classification of the impact groups 

F2F (dark grey) and F2B (light grey). For each classification, the decision boundary is plotted 

as a black line. 
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Figure 7. State of the bone-osteotome system obtained after each impact A: using the video 

analysis analysis and B: using the machine-learning algorithm. The errors are indicated with a 

triangle in B. 

 

 


