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1  |  INTRODUC TION

Vegetation stress is manifested in reduced gross primary produc-
tion (GPP), but direct, large- scale measurements of GPP do not 
exist. Satellite- based products such as the normalized difference 
vegetation index (NDVI) and derived quantities including fractional 
absorbed photosynthetically active radiation (fAPAR) and leaf area 
index (LAI) have long been used to monitor vegetation activity, but 

these indices are all based on visible and near- infrared reflectance 
and primarily indicate changes in vegetation cover and chlorophyll 
content, not GPP. Additionally, under condition of abiotic stress, 
other photosynthetic pigments, that is, xanthophyll pigments that 
trigger non- photochemical quenching (NPQ), come into play in par-
titioning light use efficiency (Esteban et al., 2015). The recent de-
velopment of remotely sensed solar- induced passive fluorescence 
(SIF) products have provided additional insights on GPP because a 
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Abstract
Accurate monitoring of vegetation stress is required for better modelling and fore-
casting of primary production, in a world where heatwaves and droughts are expected 
to become increasingly prevalent. Variability in formaldehyde (HCHO) concentrations 
in the troposphere is dominated by local emissions of short- lived biogenic (BVOC) 
and pyrogenic volatile organic compounds. BVOCs are emitted by plants in a rapid 
protective response to abiotic stress, mediated by the energetic status of leaves (the 
excess of reducing power when photosynthetic light and dark reactions are decou-
pled, as occurs when stomata close in response to water stress). Emissions also in-
crease exponentially with leaf temperature. New analytical methods for the detection 
of spatiotemporally contiguous extremes in remote- sensing data are applied here to 
satellite- derived atmospheric HCHO columns. BVOC emissions are shown to play a 
central role in the formation of the largest positive HCHO anomalies. Although veg-
etation stress can be captured by various remotely sensed quantities, spaceborne 
HCHO emerges as the most consistent recorder of vegetation responses to the larg-
est climate extremes, especially in forested regions.

K E Y W O R D S
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fraction of the energy absorbed by chlorophyll is dissipated by this 
pathway. However, although SIF and photosynthesis are usually pos-
itively correlated under normal conditions, very little is known about 
their relationship under heat-  or water- stressed conditions. Here 
again, additional information on the xanthophyll cycle regulatory 
mechanisms would be necessary to better constrain the relation-
ship between SIF and GPP at larger scales (Alonso et al., 2017; Chen 
et al., 2021; Frankenberg & Berry, 2017). Moreover, the available 
time series of SIF are relatively short.

Monitoring vegetation responses to climate extremes more gen-
erally is handicapped by the relatively short time periods of obser-
vations, making it difficult to achieve statistical significance when 
the number of events is small. To overcome this difficulty, previous 
studies have developed analytical approaches allowing the detec-
tion of spatiotemporally contiguous extremes (Lloyd- Hughes, 2012; 
Reichstein et al., 2013; Zscheischler et al., 2013, 2014). These stud-
ies have been carried out using remotely sensed NDVI, fAPAR or 
LAI. Their general conclusion has been that large, contiguous neg-
ative anomalies in vegetation cover occur mostly in savannas and 
grasslands, and are mainly due to drought. These indicators have 
proved less useful in recording responses to climate extremes in for-
ests, therefore we propose to investigate the extent to which form-
aldehyde (HCHO) can be used to infer vegetation stress at regional 
to global scales.

Photo- oxidation of hydrocarbons leads to the production of 
HCHO in the atmosphere. Methane oxidation is the largest source 
of HCHO, but methane- derived HCHO is diffused across the globe 
because methane oxidation is a slow (decadal) process. HCHO col-
umn variability over land is, therefore, mainly due to local emissions 
of more reactive non- methane volatile organic compound (NMVOC) 
emissions (Brasseur et al., 1999; Palmer et al., 2003; Stavrakou et al., 
2009). Atmospheric NMVOCs are dominated by biogenic volatile 
organic compounds (BVOCs), accounting for about 90% of the emis-
sions (Guenther et al., 1995). These are supplemented intermittently 
by emissions of pyrogenic volatile organic compounds (PVOCs) from 
biomass burning. BVOCs produced by plants (and especially by many 
tree species) are involved in many functions including growth, re-
production, protection, signalling and defence (Peñuelas & Staudt, 
2010). Isoprene constitutes the largest part of BVOC emitted to the 
atmosphere, accounting for about half of the total emissions, which 
amount to ~700– 1000 Tg C a−1 (Guenther et al., 2012). BVOC pro-
duction by plants is usually linked to photosynthetic carbon assimi-
lation. However, decoupling between isoprene emission and carbon 
assimilation occurs under abiotic stresses including high tempera-
ture, high radiation and extreme water stress. Under these condi-
tions, the supply of photosynthetically generated reducing power 
can exceed the demands of carbon fixation and photorespiration 
(Morfopoulos et al., 2014; Peñuelas et al., 2013). In such situations, 
isoprene emissions are enhanced while productivity declines (Brilli 
et al., 2007; Fang et al., 1996; Sharkey & Loreto, 1993; Tingey et al., 
1981).

Plants’ ability to rapidly increase isoprene production while pho-
tosynthesis is restricted has proven benefits, as isoprene appears 

to protect the photosynthetic apparatus from both thermal and ox-
idative stress. The detailed mechanisms of this protective effect are 
debated, but there is evidence that isoprene stabilizes lipid mem-
branes at high temperatures, and quenches reactive oxygen species 
that are produced in leaves under heat stress (Sharkey & Monson, 
2017). Monoterpene emissions, which account for 10%– 20% of 
BVOC emissions, are also enhanced during heat stress (Guenther 
et al., 2012). Both isoprene and monoterpene emissions respond 
exponentially to increasing leaf temperature, enhancing the proba-
bility of detecting changes in emissions not only under heat- induced 
stress but also under conditions when stomata close due to drought. 
Furthermore, some studies suggest that isoprene and monoterpenes 
emissions are correlated to NPQ through the xanthophyll cycle 
(Filella et al., 2018; Peñuelas et al., 2013).

Droughts also promote fire activity, and the associated emissions 
of numerous PVOCs (Andreae, 2019). Although human activities in-
fluence fire regimes in many ways, hot and dry conditions are es-
sential to turn small fires into very large ones— especially in tropical 
moist forests, which are otherwise protected by their high moisture 
content (Bowman et al., 2011). There are also direct anthropogenic 
emissions of NMVOCs, but they are of little importance at the global 
scale. As HCHO and its precursors’ atmospheric lifetimes are short, 
HCHO column variability is primarily due to local surface emissions 
(Palmer et al., 2003). Thus, we expect HCHO columns to be large 
when vegetation suffers climatic extremes (Figure 1). Smearing ef-
fects due to the delay between VOC emission and HCHO forma-
tion occur at spatial scales not exceeding 200– 300 km for isoprene 
(Marais et al., 2012).

Here, we analyse spatiotemporally contiguous extremes in 
monthly remotely sensed HCHO columns. We compare the results 
with extremes in other vegetation remote- sensing products; with 
climate data; and with model outputs. We evaluate the roles played 
by BVOC and PVOC in the main extreme events detected in the 
HCHO columns. Finally, we discuss the benefits of using HCHO col-
umns to track vegetation responses to climate extremes.

2  |  MATERIAL AND METHODS

2.1  |  HCHO and BVOC data

We used monthly remotely sensed HCHO integrated columns from 
the Ozone Monitoring Instrument (OMI) spectrometer over 2005– 
2016 on a 0.25º × 0.25º spatial resolution (De Smedt et al., 2018). The 
OMI HCHO tropospheric columns are retrieved using a differential 
optical absorption spectroscopy algorithm comprising (1) the fit of 
the slant column and (2) a radiative transfer calculation of the mean 
light path to transform the slant into a vertical column (the air mass 
factor). In addition, the tropospheric column is normalized using the 
remote Pacific Ocean as reference region (background correction). 
The OMI HCHO slant columns are retrieved in the 328.5– 359 nm in-
terval. Observations with cloud fractions larger than 40% are filtered 
out. Daily prior HCHO profiles are obtained from the TM5 model. 
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Total column averaging kernels are provided for each pixel and are 
taken into account in comparisons with the IMAGES model (see 
below). The OMI data are available at http://www.qa4ecv.eu.

BVOC emissions were simulated by the Model of Emissions of 
Gases and Aerosols from Nature version 2.1 (MEGAN2.1; Guenther 
et al., 2012). MEGAN considers the major processes driving variations 
in BVOC emissions; each BVOC has an associated standard emission 
factor, whose geographical distribution is obtained from MEGAN2.1 
(https://bai.ess.uci.edu/megan/ data- and- code/megan21). Fluxes of 
BVOC are estimated by multiplying the standard emission factor by 
functions accounting for how emissions vary with light, tempera-
ture, leaf age, soil moisture, LAI and CO2 concentration. We limited 
attention to emissions of isoprene, monoterpenes and methanol, 
which are the main BVOC precursors of HCHO.

Modelled HCHO columns were obtained from the IMAGES model, 
which calculates the distribution of 172 compounds at 2° × 2.5° reso-
lution using meteorological fields from the ERA- Interim analysis by the 
European Centre for Medium- Range Weather Forecasts (Bauwens 
et al., 2016). Simulations were made for 2005– 2016 with a spin- up 
period of 6 months. Anthropogenic VOC emissions were provided to 
the model from the EDGAR v4.3.2 global inventory (http://edgar.jrc.
ec.europa.eu/overv iew.php?v=432). Biomass burning emissions were 
from GFED4s and BVOC fluxes from MEGAN. The PVOC oxidation 
mechanism includes an explicit representation of 16 individual com-
pounds; the impact of the remaining PVOCs on HCHO production 
is accounted for through an additional, lumped species (Stavrakou 
et al., 2009). The isoprene oxidation mechanism has been revised to 
account for recent advances as described in Stavrakou et al. (2018).

F I G U R E  1  Schematic representing processes leading to an increase of atmospheric HCHO. High temperature, radiation and water 
deficit favour fire activity, which increases PVOC emissions and decreases carbon uptake. These conditions also trigger the BVOC defence 
mechanism where photosynthetic carbon uptake is reduced while BVOC emissions are enhanced. Increase in both BVOC and PVOC result 
in an increase of atmospheric HCHO. BVOC, biogenic volatile organic compound; HCHO, formaldehyde; PVOC, pyrogenic volatile organic 
compound
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2.2  |  Climate data

For surface air temperature and precipitation, we used monthly cli-
mate data from the University of East Anglia's Climate Research Unit 
CRU TS3.25 at a spatial resolution of 0.5° × 0.5° (2005– 2016; Harris 
et al., 2014). CRU TS data sets are available from the University of 
East Anglia (http://www.cru.uea.ac.uk/). For net short- wave radia-
tion, we used data from the monthly NCEP/NCAR reanalysis avail-
able at a spatial resolution of 1.87° × 1.91° (2005– 2016) at https://
www.esrl.noaa.gov/psd/data/gridd ed/data.ncep.reana lysis.deriv 
ed.surfa ceflux.html.

Land surface temperature (LST) data were obtained from the 
global monthly daytime LST product MOD11C3 LST (Collection 
6) obtained from the MODIS sensor (https://modis - land.gsfc.nasa.
gov/) at 0.05° × 0.05° resolution, upscaled from daily global data 
at 1 km2 resolution. This data set has been substantially improved 
compared to Collection 5 data, especially with regard to cloud con-
tamination effects (Wan, 2014).

2.3  |  Vegetation data

We used the version of GIMMS3g LAI v1 generated by training 
the GIMMS3g v1 NDVI with MODIS LAI using an artificial neural 
network (Zhu et al., 2013). This data set has temporal resolution of 
15 day at a 1/12° spatial resolution. We extracted data from 2005 to 
2016. GIMMS3g LAI data are available at http://cliveg.bu.edu/modis 
misr/lai3g - fpar3g.html.

SIF data were obtained from GOME2_F version 26 (V27) retriev-
als from the GOME- 2 instrument (Joiner et al., 2013). This data set 
provides monthly data with a spatial resolution of 0.5° × 0.5° for 
2007– 2016. GOME2 SIF data sets are available at https://avdc.gsfc.
nasa.gov/pub/data/satel lite/MetOp/ GOME_F/.

TRENDY GPP was modelled using the ensemble mean of simula-
tions by the Dynamic Global Vegetation Models (DGVMs) participat-
ing in the TRENDY project (Sitch et al., 2008). We used the S3 series 
of simulations, where climate, CO2 concentration and land use all 
vary over time. Models outputs were obtained at a spatial resolution 
of 1° × 1° during 2005– 2016. More details about the TRENDY pro-
tocol, and the participating DGVMs, can be found at http://dgvm.
ceh.ac.uk/node/21/index.html. Raw DGVM output is available from 
http://www- lsced ods.cea.fr/invsa t/RECCA P/.

FLUXCOM GPP is calculated using machine learning to combine 
GPP flux measurements from FLUXNET eddy covariance towers 
with remote sensing and meteorological data. Here, we used the 
RS_METEO- CRUJRA_v1 collection obtained at a spatial resolution 
of 1° × 1° for the 2005– 2016 period (http://www.fluxc om.org/CF- 
Produ cts/; Jung et al., 2020; Tramontana et al., 2016).

Biomass burning emissions were obtained from the fourth version 
of the Global Fire Emissions Database including small fires (GFED4s; 
van der Werf et al., 2017; www.globa lfire data.org). GFED4s com-
bines satellite information on fire activity and vegetation productiv-
ity to estimate gridded monthly burned area and fire emissions. We 

used monthly fire carbon (C) emissions with a spatial resolution of 
0.25° × 0.25° during 2005– 2016.

2.4  |  Extreme detection

2.4.1  |  Data pre- processing

All data sets were analysed at a monthly time scale over 2005– 2016 
with the exception of SIF, as SIF data are available only from 2007. 
Each data set was rescaled to the same grid as the OMI HCHO data 
set (0.25° × 0.25°) using the First- order Conservative Remapping 
CDO (remapcon) function. A desert mask, based on MODIS LAI, 
was applied to all data.

For each data set, we applied the three- step method described 
by Zscheischler et al. (2013). At each pixel, first the long, linear trend 
was subtracted, then the mean annual cycle. These two steps permit 
comparison of absolute anomaly values over time for any given pixel. 
Then, each time series of absolute anomalies was standardized by its 
temporal variance, resulting in dimensionless anomalies that can be 
compared across latitudes or vegetation types.

2.4.2  |  Spatio- temporal localization of extremes

Based on this pre- processed data set, we defined a global symmetric 
threshold for extremes (q) such that 90% of standardized anomalies 
range between – q and q (equivalent to the 5th and 95th percentiles). 
Values above q (experiencing a positive extreme above the 95th per-
centile) were set to 1; the rest of the data set was set to 0. We thus 
obtained a data cube of binary voxels (elements of the data cube 
with unique 3D coordinates longitude × latitude × time). A flood- fill 
algorithm (the function connComp3D from the R package neuroim) 
was used to connect spatially and temporally connected voxels with 
value 1. Two voxels were considered to be connected if one belongs 
to the 26 neighbours of the other (as we allow for diagonal neigh-
bours). Clusters, thus, identified were ranked by size (number of con-
nected voxels). Figure 2 summarizes this processing chain.

Note that Zscheischler et al. (2013) recommended step 3 in data 
pre- processing, but did not apply it. This could cause differences be-
tween their results and ours (for the detection of extremes in LAI 
for example) as defining a global threshold for extremes using non- 
standardized anomalies can highlight regions of higher variance.

2.5  |  Identification of climate extremes concurrent 
to detected HCHO extremes and other data sets

A cluster of connected spatio- temporal voxels defines an extreme 
event. These clusters ranked by size and compared with known 
climate extremes (if any) that occurred at that place and time. This 
identification was based on literature for the Amazon droughts 
(Brando et al., 2014; Marengo et al., 2011) and the Russian heatwave 
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(Trenberth & Fasullo, 2012) and on Multivariate El Niño– Southern 
Oscillation (ENSO) Index (MEI; MEI >1.5) for the 2015 El Niño event 
(Wolter & Timlin, 2011). MEI is available at https://www.esrl.noaa.
gov/psd/enso/mei/table.html. We also use information from NOAA 
State of the Climate reports (https://www.ncdc.noaa.gov/sotc/
global) to identify other significant climate events discussed in this 
study. To evaluate the vegetation cover potentially impacted by in-
dividual climate extremes, we used the SREX regions as defined in 
the Special Report on Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation (Seneviratne et al., 
2012) and the ESA CCI Land Cover time- series v2.0.7 (Hartley et al., 
2017; https://www.esa- landc over- cci.org/?q=node/199).

2.6  |  Attribution of OMI HCHO extremes

To estimate the role played by BVOC and PVOC in the detected OMI 
HCHO positive extremes, we used factors αx (equal to the HCHO 
formation yield in the atmospheric oxidation of VOC precursor x, 
multiplied by the atmospheric residence time of HCHO formed 
from that precursor) to convert BVOC and PVOC carbon emissions 
to HCHO columns in molecules per cm2 (i.e. HCHO concentration 
integrated over the atmospheric column) as seen by the OMI sat-
ellite. To obtain these factors we performed sensitivity simulations 
with the IMAGES model to determine the impact of a given emis-
sion enhancement (+10% relative to the standard simulation) on the 

calculated HCHO columns. This was done separately for isoprene, 
monoterpenes, methanol and PVOC. The factor αx for a given ex-
treme event is the ratio of the average HCHO enhancement over the 
spatio- temporal extent of the event, divided by the average VOC 
carbon emission enhancement over the same area. Attribution of 
the contribution of PVOC and BVOC to the HCHO signal was based 
on absolute anomalies for the spatio- temporal domain of each posi-
tive extreme found in the OMI HCHO data set.

We performed an additional experiment (noF_HCHO) where ex-
treme detection excluded all pixels for which emissions from bio-
mass burning exceeded the GFED4 monthly climatological mean for 
2005– 2016. This experiment allowed us to check whether extremes 
detected using the full OMI HCHO data set can be also detected 
when the contribution of PVOC to the HCHO signal is (to first order) 
removed.

3  |  RESULTS

3.1  |  OMI HCHO extremes and their causes

The analysis described above, applied to the HCHO columns, re-
sulted in the identification of 13 × 107 positive extreme anomalies 
(Figure S1a). The distribution shown does not highlight any particular 
region of the globe. The decreasing frequency of positive extreme 
anomalies with latitude reflects the lack of vegetation activity (hence 

F I G U R E  2  Schematic representing the detection of extremes in OMI- HCHO columns, shown here for the first extreme corresponding 
to the 2015 El Niño event over South America. HCHO, formaldehyde; OMI, Ozone Monitoring Instrument
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BVOC emissions) during winter. After connecting spatially and tem-
porally contiguous voxels experiencing extreme positive anomalies, 
we obtained 27,545 extremes events of sizes ranging from to 1 to 
14,756 voxels. The size distribution of extreme events showed an 
inverse exponential relationship to their ranking (Figure S1b).

The largest six positive extreme events detected in HCHO co-
incide with well- known climatic events, among which five occurred 
in the tropics (Figure 3). These are the 2015– 2016 El Niño over 
Amazonia (rank 1) and equatorial West Africa (rank 5), and the three 
severe Amazonian droughts of 2010 (rank 2), 2005 (rank 3) and 2007 
(rank 6), detected here in order of drought intensity (Marengo et al., 
2011). The only extra- tropical event among the top six was the 2010 
Russian heatwave (rank 4). In what follows, we focus on these top 
six events.

To gain insight into the conditions associated with positive ex-
tremes in the HCHO columns, we integrated the standardized 
anomalies of key vegetation and climatic variables over the spatio-
temporal domain of each of these events (Figure 4; Tables 1 and 2). 
All six HCHO positive extremes are associated with positive anom-
alies in air temperature, LST and solar radiation along with negative 

anomalies of precipitation, confirming that atmospheric HCHO pro-
duction is anomalously large in condition associated to droughts and 
heatwaves. MODIS LAI, GOME2 SIF and GPP from TRENDY and 
FLUXCOM all also showed negative anomalies.

Biomass burning emissions data from GFED4s showed numer-
ous outliers of high variance implying increased fire frequency and 
intensity; but BVOC emissions (isoprene, monoterpenes and metha-
nol) as simulated by MEGAN also showed positive anomalies during 
these six events (Figure 4). The positive anomalies in both fire and 
BVOC emissions support the hypothesis that increases in both PVOC 
and BVOC contribute to the large positive extremes observed in the 
HCHO data. To estimate the respective contributions of BVOC and 
PVOC emissions, we used the IMAGES model simulations of HCHO 
columns. This model captured the top six HCHO extremes as seen 
in the OMI record among its top seven positive extremes (extended 
data Figure S2; Table 3). This agreement between simulated and 
observed HCHO extremes implies that they are not observational 
artefacts, for example, due to the cloud filter, or the interference of 
heavy aerosol loadings during fires. During the 2005, 2007 and 2010 
Amazonian droughts, the HCHO signal of absolute HCHO anomalies 

F I G U R E  3  Location (panels a– f) and timing (panel g) of the first 6 positive extreme events in the observed OMI HCHO column. Panels a– f 
show all pixels involved in the identified extreme event for at least 1 month, while panel g shows, for each of these six extremes, the time 
evolution of the number of voxels involved. Lines underneath the x- axis of panel g show the timing of major climatic events as discussed 
in this study i.e. 2005 (blue), 2007 (orange) and 2010 (pink) Amazonian droughts, 2010 Russian heatwave (green), and 2015 El Niño event 
(red- magenta). The timing of those events, is based on literature for the Amazon droughts (Brando et al., 2014; Marengo et al., 2011) and the 
Russian heatwave (Trenberth & Fasullo, 2012) and on Multivariate ENSO Index (MEI; MEI >1.5) for the 2015 El Niño event (Wolter & Timlin, 
2011). HCHO, formaldehyde; OMI, Ozone Monitoring Instrument
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was dominated by PVOCs (contributing over 85% of the modelled 
HCHO absolute anomaly during each event: Table 1). In contrast, 
for the two extremes associated with the El Niño of 2015– 2016, 
BVOCs anomalies were the dominant contribution to the modelled 

HCHO signal, accounting for about 70% over Amazonia and 57% in 
West Africa. During the 2010 Russian heatwave, PVOC and BVOC 
equally influenced the modelled HCHO. For all identified extremes, 
isoprene dominated the biogenic signal, with a contribution to the 

F I G U R E  4  Distribution of standardised anomalies of HCHO sources, vegetation indices and climate drivers for each extreme event 
observed in OMI HCHO. Panels a– f show for each of the first six positive extremes events in the observed OMI HCHO column (pink), 
the corresponding anomalies for (from left to right): isoprene, monoterpenes and methanol as simulated by MEGAN (respectively in dark 
green, green, light green), GFED4s biomass burning carbon emissions (red), MODIS LAI (dark blue), GOME2 SIF (purple), TRENDY GPP 
(dark brown), FLUXCOM GPP (light brown), CRU temperature (orange), MODIS LST (cream), CRU precipitation (blue) and NCEP- NCAR 
short- wave radiation (yellow). Bar plots show the distribution of the standardised anomalies at the spatio- temporal domain of each HCHO 
positive extreme. The boxes indicate the interquartile range and median values. Whiskers extend to the largest or smallest observation 
that fall within 1.5 times the box size; any observations outside these values are shown as individual points. GPP, gross primary production; 
HCHO, formaldehyde; LAI, leaf area index; LST, land surface temperature; OMI, Ozone Monitoring Instrument; SIF, solar- induced passive 
fluorescence

TA B L E  1  Mean absolute anomaly (1015 molecules cm−2) calculated for observed (OMI) and simulated (IMAGES) HCHO over the spatio- 
temporal domain of the first six positive extremes detected in OMI HCHO columns. Attribution of HCHO mean anomaly modelled by 
IMAGES to sources of isoprene, monoterpenes, methanol and PVOC (in %, rounded to the nearest integer)

HCHO extreme rank 1 2 3 4 5 6

Year 2015 2010 2005 2010 2015 2007

Event
El Niño
Amazon

Drought
Amazon

Drought
Amazon

Heatwave
Russia

El Niño
Africa

Drought
Amazon

OMI HCHO anomaly (1015 mol cm−2) 6.0 7.6 6.1 7.0 5.6 8.2

IMAGES HCHO anomaly (1015 mol cm−2) 2.6 1.1 3.8 3.1 4.3 9.9

Attribution to isoprene/monoterpenes/
methanol/PVOC (% of modelled HCHO)

62/6/2/30 14/1/0/85 12/1/0/86 35/8/10/47 49/5/3/43 3/0/0/97

Abbreviations: HCHO, formaldehyde; OMI, Ozone Monitoring Instrument; PVOC, pyrogenic volatile organic compound.
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total BVOC anomalies ranging between 66% and 100%, followed by 
monoterpenes (0%– 15%) and methanol (0%– 18%; Table 1).

Pyrogenic volatile organic compound emissions originate from 
one- off events of extremely high carbon emission (10– 100 times 
higher than through BVOCs). For the three Amazonian droughts, 
these large PVOC emissions dominate the HCHO signal when inte-
grated over the entire spatio- temporal domain, masking the role of 
less intense, but more spatially extensive BVOC emissions (extended 
data Figure S3; Table 2). Even if we cannot entirely exclude the influ-
ence of horizontal atmospheric transport of PVOC- derived HCHO, 
these results suggest a significant role for BVOC emissions during 
extreme conditions for all the detected events. Moreover, masking 
pixels experiencing unusual biomass burning (Table 3; extended data 
Figure S4) had little influence on the correspondence between ex-
tremes detected in HCHO and climatic extreme events— apart from 
the 2015 El Niño over West Africa, which fell from rank 5 to 14.

3.2  |  Extremes detected in other data sets

The correspondence between extreme events detected in HCHO 
and in alternative data sets (in term of size ranking) is shown in 
Table 3; extended data Figure S4.

Among its top six negative extremes, MODIS LAI detected the 
2007 Amazonian drought and the 2010 Russian heatwave. Other ex-
tremes corresponded to the summer of 2009 in central Europe (not 
reported as a significant event by NOAA global climate report), the 
2005 African drought, the 2012 USA summer drought and the 2015 
warm summer in Canada. The 2005 and 2010 Amazonian droughts, 
and the 2015– 2016 El Niño event, fell above the first thirteen nega-
tive LAI extremes (Table 3; extended data Figures S4 and S5).

SIF data showed negative extremes corresponding only to the 
2007 drought in Amazonia and the 2015 El Niño event over West 

Africa. Among its top six negative extremes, SIF detected the 2012 
and 2011 US summer droughts, and an extreme in 2007 over South 
Africa (not reported as a significant event by NOAA global climate 
report). The 2010 Russian heatwave was detected at rank 8, but the 
2015– 2016 El Niño over South America and the 2010 Amazonian 
drought were detected at ranks 33 and 185, respectively (Table 3; 
extended data Figures S4 and S6).

Negative extremes in TRENDY GPP captured only the 2015– 
2016 El Niño over South America among the top six detected ex-
tremes. The 2010 Russian heatwave was detected at rank 8, and the 
2015– 2016 El Niño over Africa at rank 9. Negative extremes corre-
sponding to the 2005, 2007 and 2010 Amazonian droughts were 
ranked 31 or above. Other detected extremes corresponded to the 
2005 African drought, the 2012 USA summer drought, spring 2006 
in Russia and spring 2008 in southwest Asia (not reported as a signif-
icant event by NOAA global climate report; Table 3; extended data 
Figures S4 and S7).

Similar to TRENDY GPP, FLUXCOM GPP captured only the 
2015– 2016 El Niño over South America among the top six detected 
extremes. The 2010 Russian heatwave was detected at rank 7, and 
the 2015– 2016 El Niño over Africa at rank 13. Negative extremes 
corresponding to the 2005, 2007 and 2010 Amazonian droughts 
were ranked 20 or above. In contrast to TRENDY GPP, the 5 remain-
ing top extreme events detected in FLUXCOM GPP occur mainly 
in Eurasia, primarily in Russia, for 5 consecutive years (2011– 2015). 
Four out of the 5 years i.e. 2012– 2015 are considered as significant 
warm years according to NOAA global climate report (Table 3; ex-
tended data Figures S4 and S8).

The same detection method applied to the main climatic vari-
ables returned a more ambiguous picture (extended data Figures 
S9– S11). Surface air temperature detected only the 2015– 2016 El 
Niño over equatorial West Africa among its top six positive extremes. 
Extremes of surface air temperature were mainly warm winters 

TA B L E  2  Mean absolute anomaly calculated for MODIS LAI, TRENDY GPP, FLUXCOM GPP, MODIS LST, CRU air temperature and 
precipitation and NCEP- NCAR net shortwave radiation over the spatio- temporal domain of the first six positive extremes detected in OMI 
HCHO columns. Percentage of voxels for which the BVOC signal dominates over the PVOC signal using IMAGES modelling (i.e. >50% of 
HCHO calculated at the voxels originates from BVOC)

HCHO extreme rank 1 2 3 4 5 6

Year 2015 2010 2005 2010 2015 2007

Event
El Niño
Amazon

Drought
Amazon

Drought
Amazon

Heatwave
Russia

El Niño
Africa

Drought
Amazon

LAI anomaly (m2 m−2) −0.4 −0.6 −0.1 −0.5 −0.6 −0.5

GPP TRENDY anomaly (g m−2 day−1) −0.37 −0.23 −0.21 −1.8 −0.57 −0.39

GPP FLUXCOM anomaly (g m−2 day−1) −0.28 −0.14 −0.19 −0.5 −0.41 −0.24

LST anomaly (°C) 1.1 0.3 0.5 6.1 0.8 0.5

Air temperature anomaly (°C) 0.5 0.2 0.2 2.8 0.5 0.1

Precipitation anomaly (mm) −41 −14 −30 −21 −17 −13

Net shortwave radiation anomaly (Wm−2) 8.7 11.3 7.2 9.9 10.5 6.4

Voxels where BVOC dominated (%) 86 68 74 89 74 38

Abbreviations: BVOC, biogenic volatile organic compound; HCHO, formaldehyde; OMI, Ozone Monitoring Instrument; PVOC, pyrogenic volatile 
organic compound.
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(2006, 2007, 2008, 2016) in the Northern Hemisphere and the 2005 
African drought. The 2015– 2016 El Niño and the 2010 drought over 
Amazonia were detected at rank 7 and 8, respectively. The 2010 
Russian heatwave and the 2005 and 2007 Amazonian droughts were 
detected at ranks of 22 or above (Table 3; extended data Figures S4 
and S9).

Precipitation negative extremes detected the 2010 Russian 
heatwave and the 2007 Amazonian drought. The largest negative 
extremes of precipitation occurred mainly during summers over East 
Asia. The other climatic extremes detected in the HCHO columns 
were detected in precipitation data at ranks of 18 or above (Table 3; 
extended data Figures S4 and S10).

Positive extremes of short- wave radiation did not include any 
of those detected by HCHO among its top 10 (Table 3; extended 
data Figures S4 and S11). The top six positive extremes of short- 
wave radiation include the warm year of 2014 in Europe, the 2012 
US drought, the 2016 warm year over Asia, the 2010 warm spring in 
Canada, and the 2014 warm spring in Russia. The event detected at 
rank 4 does not correspond to any known climatic event.

Finally, positive extremes in MODIS LST detected the 2015– 
2016 El Niño over South America, but other climatic extremes de-
tected in the HCHO columns were ranked at 18 or higher. As for 
air temperature, the first six positive LST extremes mainly relate to 
warm winters (2007, 2008, 2009) in the Northern Hemisphere. The 

2015
El Niño
Amazon

2010
Drought
Amazon

2005
Drought
Amazon

2010
Heatwave
Russia

2015
El Niño
West Africa

2007
Drought
Amazon

HCHO

Ranking 1 2 3 4 5 6

Size 14,756 12,584 8520 5997 5533 5449

noF- HCHO

Ranking 2 1 4 3 14 6

Size 7572 11,207 5600 6882 1535 2726

IMAGES

Ranking 1 5 6 4 2 7

Size 32,736 22,562 21,126 27,460 30,591 18,334

LAI

Ranking 16 13 14 4 21 1

Size 8055 8737 8673 19,649 6453 21,952

SIF

Ranking 33 185 NA 8 2 4

Size 1298 270 NA 3486 6640 6177

TRENDY

Ranking 2 47 41 8 9 33

Size 28,489 5926 6413 19,500 19,492 8953

FLUXCOM

Ranking 3 41 32 7 13 20

Size 30,550 7142 8396 27,994 17,772 13,432

Tair

Ranking 7 8 30 22 6 66

Size 28,520 27,651 5973 9431 29,266 3051

LST

Ranking 4 18 46 21 27 28

Size 27,938 9756 3842 8982 6702 6407

Precipitation

Ranking 24 59 32 4 18 3

Size 4338 2508 3567 11,271 5298 11,383

Radiation

Ranking 10 28 25 15 13 73

Size 15,911 7530 8225 12,360 12,959 2886

Abbreviations: HCHO, formaldehyde; OMI, Ozone Monitoring Instrument.

TA B L E  3  Known climatic extreme 
events and their correspondence in 
extreme ranking and size of positive 
extremes detected in the OMI HCHO, 
noF- HCHO (i.e. OMI- HCHO with biomass 
burning masked), IMAGES, CRU air 
temperature, MODIS LST, NCEP- NCAR 
net shortwave radiation and negative 
extremes detected for MODIS LAI, 
GOME- SIF, TRENDY GPP, FLUXCOM GPP 
and CRU precipitation data sets
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2005 African drought and spring 2012 over the USA also triggered 
positive extremes in MODIS LST (Table 3; extended data Figures S4 
and S12).

4  |  DISCUSSION

We have successfully used a robust detection method to identify pos-
itive extremes in remotely sensed HCHO columns. HCHO has long 
been used to infer isoprene emissions (Marais et al., 2012; Palmer 
et al., 2003) with a focus on atmospheric chemistry. Here, we show 
that HCHO data have the potential to provide key information on the 
response of vegetation state to extreme climate events, particularly in 
forested regions. Positive extremes identified in HCHO data coincide 
with important climatic extreme events, each of which potentially af-
fecting between 10 to 20% of forest cover in the World (Table 4). 
Confronting results from remotely sensed HCHO and IMAGES simu-
lations show good consistency, suggesting that our results are robust 
despite potential signal disturbance due to cloud and aerosol con-
tamination in remotely sensed HCHO. The strong response of BVOC 
emissions to heat and drought stress appears to be the main driver 
for these extremes. This is an important property since, to sustain 
high BVOC emissions, the photosynthetic apparatus (not only the 
leaf area) must remain functional. Although both the light reactions 
(absorption of solar radiation by chlorophyll) and the dark reactions 
(CO2 assimilation by Rubisco) of photosynthesis can function under 
normal conditions, CO2 assimilation is suppressed due to stomatal 
closure under moderate to mild drought, whereas the photosynthetic 
apparatus is not damaged (Cornic & Briantais, 1991). Under more 
severe drought, this reduction is strengthened by decreased ATP 
synthesis in water- deficient leaves (Lawlor & Tezara, 2009), thereby 
further reducing photosynthetic metabolism. The resulting oversup-
ply of reducing power ensures that BVOC emissions can continue at 
a high rate even when carbon assimilation is reduced (Morfopoulosl 

et al., 2013; Niinemets et al., 2010). Thus, the observation of positive 
extremes in HCHO during extreme heat and/or drought events indi-
cates not only a decoupling between vegetation structure and carbon 
assimilation but also that the light- harvesting capacity of plants re-
mains intact, at least in isoprenoids- emitting plants.

We have shown that HCHO has the ability to track large- scale 
responses to important climate extremes in forest vegetation, 
identified as potentially significant for the carbon cycle, that is, the 
2015– 2016 El Niño over the South America and Africa, the 2010 
and 2005 Amazonian droughts and the 2010 Russian heatwave 
(Barriopedro et al., 2011; Lewis et al., 2011; Liu et al., 2017; Rasmijn 
et al., 2018; Saleska et al., 2007). All these extremes left a substantial 
imprint in the atmospheric HCHO columns. Indeed, these climate 
events are detected in the HCHO positive extremes events, more 
consistently than in LAI and SIF, or in any single climatic variable. 
This can be explained in part by plants’ reliance on NPQ via the xan-
thophyll cycle as a means to dissipate excess energy. The biosynthe-
sis of xanthophyll pigments takes place through the same pathway 
as isoprenoid BVOCs (including isoprene and monoterpenes). In 
the absence of fire, changes in HCHO column concentrations can 
be directly linked to change in BVOC emissions, which are concom-
itant with a rise in the xanthophyll content of leaves (Peñuelas et al., 
2013). Moreover, using a meta- analytical approach, Esteban et al. 
(2015) showed that, under drought conditions the xanthophyll: chlo-
rophyll ratio increases by about 50% compared to non- stressed con-
ditions. Under the same conditions, the concentration of chlorophyll 
a+b decreases by only by a few per cent. Therefore the plant can 
remain ‘green’ while being under high abiotic stress. Additionally, 
it has been demonstrated that Amazonian tree mortality is mainly 
due to hydraulic failure rather than carbon starvation (Rowland 
et al., 2015), suggesting an important NPQ defence mechanism. Our 
results support the hypothesis that BVOC emissions, in particular 
isoprene, play a central role in tropical forest resilience to drought 
and high temperature (Smith et al., 2020; Taylor et al., 2019). If only 

TA B L E  4  Proportion (in %) of world vegetation potentially affected by known climate significant events corresponding to the first 
six extremes detected in the OMI HCHO, MODIS LAI and GOME- SIF. Percentages of impacted vegetation are based on SREX regions 
potentially affected by the climate events combined with information on land cover from ESA CCI Land Cover time- series v2.0.7 (extended 
data Figure S13)

SREX regions Climate significant events
Mean event 
duration (month)

Vegetation % 
of the world

Forest % of 
the world

Shrub % of 
the world

Grassland % 
of the world

7, 8 El Niño (2015– 2016) over South 
Americaa

Amazonian droughts (2010, 
2005, 2007)a

11 11 18 10 6

15, 16 El Niño (2015– 2016) over 
Equatorial Africaa

11 12 10 16 14

18 Russian Heatwave (2010)a 3 13 20 12 10

5, 6 USA drought (2011, 2012) 4 6 5 4 7

17 Southern Africa drought (2005) 12 5 3 9 5

1, 2 Canadian warm summer (2015) 3 0.6 7 5 0.5

Abbreviations: HCHO, formaldehyde; OMI, Ozone Monitoring Instrument.
aSignificant events detected in the formaldehyde columns.
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about 20%– 38% of tropical plants are isoprene emitters, the dom-
inant species from the top five genera, representing about 50% of 
all individuals in the Amazonian basin, have a large abundance of 
isoprenoids emitters (~80%; Jardine et al., 2020). Isoprenoids emis-
sion is a significant plant trait in tree response to increasing droughts 
improving forest resilience. Yet it is still unclear if tropical forest 
composition will shift towards higher isoprenoids emitters or other 
traits such as leaf deciduousness (Taylor et al., 2018).Our results 
indicate that HCHO is more sensitive than any climatic variable or 
satellite- derived vegetation product explored in this study to climate 
extremes such as droughts and heatwaves where water scarcity is 
associated with high temperature, particularly over forested areas. 
Variations in the HCHO columns are mainly controlled by BVOC 
emissions, which are expected to take place only when vegetation is 
active (Palmer et al., 2003). This is in contrast to climate data alone, 
which performed poorly in our analyses as predictors of vegetation 
stress, and identified many extremes during northern winter when 
vegetation is inactive. Satellite- based products based on visible and 
near- infrared reflectance, such as LAI, are dependent on chloro-
phyll concentration, which does not vary much under drought stress 
(Esteban et al., 2015) unless the plant defoliates. These products 
also tend to saturate in the Tropics and are sensitive to cloud and 
aerosol contamination (Hashimoto et al., 2021; Hilker et al., 2014). 
Thus it is not surprising that chlorophyll- based satellite products 
catches climate events where plants defoliate under drought con-
ditions (i.e. grassland and croplands ecosystems), such as the 2012 
US drought or the 2005 African drought. The same applies to SIF, 
which is also chlorophyll dependent, although less sensitive to cloud 
contamination. Yet, it is surprising that despite a clear connection 
between MODIS LAI and GOME SIF (i.e. chlorophyll concentration), 
extremes in the two products do not match and reveal several ex-
tremes that do not correspond to any climate significant event. This 
mismatch might be due to the differences in spatial resolution for 
detection between both products.

Tropical forests play a crucial role in the global carbon cycle (Le 
Quéré et al., 2009; Pan et al., 2011), yet observations of GPP in tropi-
cal forests are still limited, making it difficult to constrain the effect of 
climate change and extremes on GPP at a large scale. The connection 
between increase in HCHO and GPP loss under drought is however not 
straightforward and would require further investigation using a model-
ling approach linking GPP and isoprenoids emission. Yet, carbon cost 
that can amount for about 2% of the leaf net carbon assimilation under 
non- stressed conditions, this loss can be significantly larger under high- 
temperature conditions (Lerdau & Throop, 1999; Sharkey & Loreto, 
1993). For instance, the study by Parveen et al. (2019) found out that 
tropical ficus septica presented twice more isoprene emission under 
drought while net carbon assimilation was lowered by 90.6%, increas-
ing the carbon lost in isoprene emission from ~1.7% under normal con-
ditions to ~40% under drought conditions. Thus we argue that carbon 
loss estimates solely based on remotely sensed ‘greenness’ are likely to 
underestimate carbon loss during drought events in the Tropics.

The repeated droughts experienced over recent decades have 
had a significant impact on ecosystem dynamics and carbon cycling in 

tropical forests (Brienen et al., 2015; Doughty et al., 2015; Feldpausch 
et al., 2016). The ability to produce BVOC is a key defence mechanism 
against the effects of heat and drought, accounting for the unique suit-
ability of HCHO as a sensor of vegetation stress and NPQ response. 
Very recent direct satellite- based retrievals of atmospheric isoprene 
concur with our finding that the interannual variation of BVOC emis-
sion in the tropics is tied to El Niño (Wells et al., 2020). Meanwhile, 
HCHO— as a joint indicator of biogenic and pyrogenic emissions— has 
the advantage of being routinely measured from space and a valuable 
indicator of the effects of climate extremes on the coupled vegetation- 
atmosphere system at regional to global scales.
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