
HAL Id: hal-03430388
https://hal.science/hal-03430388

Submitted on 16 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Poisson Shot Noise Removal by an Oracular Non-Local
Algorithm

Qiyu Jin, Ion Grama, Quansheng Liu

To cite this version:
Qiyu Jin, Ion Grama, Quansheng Liu. Poisson Shot Noise Removal by an Oracular Non-Local Algo-
rithm. Journal of Mathematical Imaging and Vision, 2021, 63 (7), pp.855-874. �10.1007/s10851-021-
01033-3�. �hal-03430388�

https://hal.science/hal-03430388
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Poisson shot noise removal by an oracular non-local
algorithm

Qiyu Jin · Ion Grama · Quansheng Liu

Received: date / Accepted: date

Abstract In this paper we address the problem of denoising images obtained
under low light conditions for the Poisson shot noise model. Under such con-
ditions the variance stabilization transform (VST) is no longer applicable, so
that the state-of-the-art algorithms which are proficient for the additive white
Gaussian noise cannot be applied. We first introduce an oracular non-local
algorithm and prove its convergence with the optimal rate of convergence un-
der a Hölder regularity assumption for the underlying image, when the search
window size is suitably chosen. We also prove that the convergence remains
valid when the oracle function is estimated within a prescribed error range.
We then define a realisable filter by a statistical estimation of the similarity
function which determines the oracle weight. The convergence of the realisable
filter is justified by proving that the estimator of the similarity function lies in
the prescribed error range with high probability. The experiments show that
under low light conditions the proposed filter is competitive compared with
the recent state-of-the-art algorithms.
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1 Introduction

Noise is inevitable in any image device. A digital imaging system consists of
an optical system followed by a photodetector and an associated electronic
filter. The photodetector converts the incident optical intensity to a detector
current, i.e. photons to electrons. During the process, the true signals are
contaminated by many different sources of noise. Poisson shot noise appears
in low-light conditions when the number of collected photons is small, such
as night vision, medical imaging, underwater imaging, microscopic imaging,
optical microscopy imaging, single-particle X-ray free-electron laser (XFEL)
diffraction data and astronomy imaging. Such a noise is signal-dependent, and
the usual denoising approaches are not adapted.

The key challenge in Poisson intensity estimation problems is that the vari-
ances of the observed counts are different. Many authors [2–4, 8, 9, 12, 14, 25,
28, 34, 35, 37] contributed to handle signal-dependent noise, by transform-
ing the image with a Variable-Stabilizing Transformation (VST) such as the
Anscombe root transformation [1], the multiscale VSTs [34], the conditional
variance stabilization (CVS) [17], or the Fisz transform [13]. All these transfor-
mations amount to apply per-pixel non-linearities that effectively reduce the
signal dependence of the noise model [27]. Because the transformed signal has
an approximate signal independent noise, it may be processed using denoising
methods for the Gaussian noise model [7, 22, 36]. After denoising, some in-
verse transformations, like the Exact Unbiased Inverse (EUI) [24], are applied
to the denoised signal, obtaining the estimate of the signal of interest. Rond
et al. [28] deploys a general approach termed ”Plug-and-Play-Prior” to Pois-
son inverse-problems, which uses an iterative scheme where an easy treatable
convex programming algorithm is applied, followed by an efficient Gaussian
denoising. Unfortunately, the VST is no longer applicable in low-light condi-
tions, for example when the peak intensity level is less than 5.

There are other approaches which do not use VST. One of them is based
on the maximum likelihood principle [6, 16, 30] and does not need the Gaus-
sian approximation. The maximum likelihood estimate of u is obtained by
maximizing the log likelihood P(u|v) of the Poisson probability distribution
function (PDF), with respect to u ≥ 0. Alternatively, one can calculate the
maximum likelihood estimate of u by minimizing the negative log likelihood of
Poisson PDF given by û = argminu≥0{− lnP(u|v)}. Some methods are modi-
fications of the non-local means filter proposed by Buades et al. [5] to denoise
images damaged by additive white Gaussian noise. It is based on the similarity
phenomenon existing very often in natural images, and assumes that there is
sufficient redundant information (pixels having identical noise-free value) in
the image to reduce the noise significantly. This filter is known to efficiently
reduce the noise and to preserve structures. NLPCA [29] combines Principal
Component Analysis (PCA) and sparse Poisson intensity estimation methods
in a non-local estimation framework, and SPDA [15] uses dictionary learning
within the denoising process. P-LET [23] minimizes the MSE of an unbiased
estimate for Poisson shot noise. These approaches are applicable for low peak
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level images, but the restoration result is not yet so satisfied. In [20], by mini-
mizing a very tight upper bound of the mean square error (MSE), a non-local
means filter with optimal weights, called Optimal Weights Poisson Noise Fil-
ter (OWPF), is proposed. This filter was proved to converge at the optimal
rate under a suitable regularity condition. It gives a good visual quality of
restoration, but it is not robust enough under very low light condition. In fact,
with this method the restored images have residual noise when the peak value
is very small.

In this paper, we propose a new filter to remove the Poisson shot noise,
which is robust under low light condition, and we prove the convergence of the
proposed filter. The main idea is as follows. We first obtain an oracle estimator
by considering a very tight upper bound of the mean square error by varying
the size of the search window. Our oracle estimator (see [10] for this concept)
depends on the unknown similarity function of the original image. We show
that our oracular filter convergences under a Hölder regularity assumption on
the underlying image, when the similarity function is estimated within a pre-
scribed error. A calculable algorithm is then constructed by implementing a
statistical estimator for the similarity function. The convergence of the ob-
tained filter is ensured by proving that the estimator of the similarity function
lies in the prescribed error range with high probability. The experiments show
that under low light conditions the new filter is competitive with the recent
state-of-the-art algorithms.

Compared with the filter introduced in [20], there are two main differences:
(a) in the new filter we use the Gaussian kernel while in [20] we used the
triangular kernel; (b) the statistical estimator for the similarity function used
in the present paper is also different to that used in [20]. When the peak value
is very small (especially when it is smaller than 1), the signal is low and the
effective number of observations is small. In this case the filter OWPF with
optimal weights proposed in [20] is not so efficient: our simulation results show
that while applying this filter there is still a lot of residual noise remaining in
the restored image, although it keeps well the image details. In this case, with
the new proposed filter, the restored image has much less residual noise in
the restored image. We think the reason is that the triangular kernel used in
OWPF is less smooth than the Gaussian kernel used in the new filter, so that
OWPF is less stable with the approximation error of the similarity function,
which is important under low light conditions.

It is worth noticing that similar convergence results have been established
for Gaussian noise in [19, 21], but with a different similarity function to adapt
the Poisson noise, and the proofs are significantly different due to the dif-
ferent nature of noises and similarity functions; see the comments after the
statements of Theorems 1, 2 and 3.

The remainder of this paper is organized as following. In Section 2 we intro-
duce an oracle estimator for the Poisson shot noise, and prove its convergence
under suitable conditions, with useful information on the rate of convergence.
In Section 3 we construct an estimator for the similarity function and estab-
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lish for it a convergence theorem. Simulation results are presented with a brief
analysis in Section 4.

2 The oracle estimator

2.1 Poisson noise model and notation

For an original digital image u defined on the unit square I0 := [0, 1]2, the ob-
served image is a discrete version defined on the lattice I := {0, 1

N , · · · ,
N−1
N }

2,
with N ×N pixels sampled from I0. The higher the value of N , the higher the
resolution of the digital image. The Poisson shot noise model is defined as

v(x) ∼ P(u(x)), x ∈ I, (1)

where v is the observed discrete image defined on the lattice I. Our objective is
to recover the value u(x0) of the original image for each x0 in the unit square
I0, from the observation v defined on the lattice I.

For convenience, we extend the definition of the observed image v to the
whole unit square I0 by setting for all x = (x1, x2) ∈ I0,

v(x) = v(x′) with x′ = (x′1, x
′
2) =

(
[Nx1]

N
,

[Nx2]

N

)
∈ I, (2)

where [t] denotes the integer part of t. Notice that x′ is the closest point in I
of x, which lies in the left and lower side of x. Notice that for all x ∈ I0 and
t ∈ I, we have (x+ t)′ = x′ + t.

Setting ε(x) = v(x) − u(x), from the Poisson shot noise model we obtain
its additive form

v(x) = u(x) + ε(x), x ∈ I, (3)

where the noise variable ε(x) = v(x)− u(x) satisfies

E(ε(x)) = 0 and Var(ε(x)) = Var(v(x)) = u(x).

Compared with the additive Gaussian noise model, the particularity of this
additive representation is that the variance of the noise ε is not homogeneous;
such a model is sometimes called heteroscedastic.

For any point x0 ∈ I and a positive odd integer d, denote the square window
with center x0 and d× d pixels of I by

Nx,d =

{
y ∈ I : ‖y − x‖∞ ≤

d− 1

2N

}
, (4)

where ‖ · ‖∞ denotes the supremum norm: ‖z‖∞ = max{|z1|, |z2|} for z =
(z1, z2), and d−1

2N represents half of the edge size of the window. For x =
(x1, x2) ∈ I0, let x′ ∈ I be as in (2) and define

Nx,d = Nx′,d.
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Windows of different sizes will be used. In the following, for x0, x ∈ I0 and
positive odd integers d and D, we will use Nx,d for similarity patches and
Nx0,D for search windows. For each x ∈ I0, the vector

v(Nx,d) = (v(y))y∈Nx,d = (v(x+ t))t∈N0,d

formed by the values v(y) of the observed noisy image at pixels y ∈ Nx,d,
arranged in the lexicographical order, is called data patch or similarity patch
centered at x. For any x0, x ∈ I0, define

1

d2
‖v(Nx0,d)− v(Nx,d)‖22 =

1

d2

∑
t∈N0,d

(v(x′0 + t)− v(x′ + t))2, (5)

which measures the similarity between the data patches v(Nx0,d) and v(Nx,d).

2.2 The non-local means filter

Let us recall the non-local means filter for Gaussian noise, to well understand
its adaptation to the Poisson noise that we will introduce in the following.
The non-local means algorithm has been proposed in Buades et al. [5] for
removing the white Gaussian noise in the additive Gaussian noise model v(x) =
u(x) + η(x), x ∈ I, where u(x) is the original image, v(x) is the observed one,
η(x) is the Gaussian noise which is a sequence of independent random variables
of mean E(η(x)) = 0 and variance Var(η(x)) = σ2. The parameter σ > 0 is a
measure of the noise level.

For any point x0 ∈ I0, the non-local means filter ũ(x0) is defined as
weighted means of the values of the observed image in the search window
Nx0,D centered at x0:

ũ(x0) =
∑

x∈Nx0,D

w(x0, x)v(x), (6)

where the weight w (x0, x) is given by

w(x0, x) = e−ρ̃
2(x0,x)/H

2

/ ∑
y∈Nx0,D

e−ρ̃
2(x0,y)/H

2

, (7)

with

ρ̃2(x0, x) =
∑
t∈N0,d

κ(t)(v(x0 + t)− v(x+ t))2∑
s∈N0,d

κ(s)
.

Here H > 0 is a bandwidth parameter, and κ(t) > 0, t ∈ N0,d is a fixed kernel
function. For x0 ∈ I0 and x ∈ I, the weight w(x0, x) measures the similarity
of the patches v(Nx0,d) and v(Nx,d); more similar the patches, greater the
value of the weight.
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2.3 Oracle estimator

In order to adapt the non-local means algorithm to the Poisson shot noise,
we introduce an oracle estimator (for details on this concept see Donoho and
Johnstone (1994 [10]). We define the oracle estimator on I0 as follows: for all
x0 ∈ I0,

u∗(x0) = u∗(x′0) =
∑

x∈Nx′0,D

w∗(x′0, x)v(x), (8)

where x′0 ∈ I is defined as in (2), and for x ∈ I,

w∗(x′0, x) = e
− ρ

2(x′0,x)
H2(x′0)

/ ∑
y∈Nx′0,D

e
− ρ

2(x′0,y)
H2(x′0) , (9)

with
ρ(x′0, x) = |u(x)− u(x′0)| (10)

and H(x) > 0 a control function. We set

γ = inf{H(x) : x ∈ I0}. (11)

It is obvious that ∑
x∈Nx′0,D

w∗(x′0, x) = 1 and w∗(x′0, x) ≥ 0. (12)

The function ρ(x′0, x) = |u(x) − u(x′0)| ≥ 0 measures the similarity of the
image brightness between the pixels x and x′0; it is thus called the similarity
function. The usual bias-variance decomposition (cf. e.g. [11, 26, 32]) of the
Mean Squared Error (MSE) yields

E (u(x0)− u∗(x0))
2

(13)

=

 ∑
x∈Nx′0,D

w∗(x′0, x) (u(x)− u(x′0))


2

+
∑

x∈Nx′0,D

w∗(x′0, x)2u(x)

≤

 ∑
x∈Nx′0,D

w∗(x′0, x)|u(x)− u(x′0)|


2

+
∑

x∈Nx′0,D

w∗(x′0, x)2u(x).

The inequality (13) can be rewritten in the following form:

E (u(x0)− u∗(x0))
2 ≤ g(w∗), (14)

where

g(w∗) =

 ∑
x∈Nx′0,D

w∗(x′0, x)ρ(x′0, x)


2

+
∑

x∈Nx′0,D

w∗(x′0, x)2u(x). (15)



Poisson shot noise removal by an oracular non-local algorithm 7

We shall define a family of estimates by minimizing the function g (w∗) by
changing the width of the search window Nx′0,D. Under the Poisson shot noise
in low-light conditions, the upper bound of signal function is small, namely
the peak intensity

Γ := sup{u(x) : x ∈ I0} (16)

is low.

Definition 1 The image function u on I0 is called Hölder if for some constants
L > 0, β ∈ (0, 1] and all x, y ∈ I0,

|u(x)− u(y)| ≤ L ‖x− y‖β∞ . (17)

Let us give some comments on the Hölder assumption. This assumption
is rather natural, considering that all optical images are obtained by devices
that proceed to a spatial frequency cut-off and are therefore band-limited,
hence analytic, so that the Hölder assumption (17) is satisfied with β = 1. We
should mention that in the literature discontinuous image models have also
been taken into consideration. This, however, does not diminish the interest
in the continuous models. For example the bounded variation (BV) is actu-
ally a model of the underlying physical objects emission. It is important to
realize that the noise is a discrete perturbation applied to the samples of a
smooth function, which may be viewed as the result of the convolution of a
BV function with a sinc function. According to Shannon theory, a sampled
image is a representation of a continuous image because it is interpolable, by
the Shannon-Whittaker formula. A pure BV function like a dark square on
white background cannot be sampled as such. It requires previous smoothing.

On the other hand the Hölder assumption of order β ∈ (0, 1] is not so
restrictive. For instance, the Brownian motion, which is known as very irregu-
lar, satisfies this assumption with β = 1/2. With β < 1/2 our model can treat
images which are less regular than the Brownian motion.

The following theorem gives the rate of convergence of the oracle estimator
with D ×D search windows. Let

∆ =
D − 1

2N
and n = N2 (18)

be respectively the width (half of the edge size) of the search window and the
number of pixels of the image. In the following theorem we prove that when
the width of the search window ∆ is properly chosen, the Mean Squared Error

of the oracle estimator u∗(x0) converges at the rate n−
β
β+1 . We will use the

notation
an � bn

to mean that c1bn ≤ an ≤ c2bn for some constants c1, c2 > 0 and all n.

Theorem 1 Suppose that the image function u satisfies the local Hölder con-

dition (17) with β ∈ (0, 1]. Assume also that ∆ � n−
1

2β+2 and γ ≥ cL∆β for
some constant c >

√
2. Then the oracle estimator u∗(x0) given by (8) satisfies

E (u∗(x0)− u(x0))
2

= O
(
n−

β
β+1

)
. (19)



8 Qiyu Jin et al.

For the proof of Theorem 1, see Section 6.1.
The rate of convergence in Theorem 1 is known to be optimal under the

stated Hölder condition (see Fan and Gijbels [18]). In view of the definition of
∆ (cf. (18)), from Theorem 1 we see that when the search window size D is
chosen suitably, the filter converges at optimal rate.

Recall that the parameter γ is a lower bound for the bandwidth H(x) in
the oracle estimator (8). The condition γ > cL∆β that we impose here means
that the bandwidth cannot be too small. Such a condition is necessary when
we want to prove some rate of convergence of a non-parametric estimator like
u∗(x0). Notice that since ∆ converges to 0, the parameter γ can also converge
to 0.

Similar results for Gaussian noise can be found in [19, Theorem 3.1] (for
the optimal weights with the triangular kernel) and [21, Theorem 2.1] (for the
usual weights with the Gaussian kernel). Since the variance of the noise is a
constant in the Gaussian case, but varies with the pixel values in the Poisson
case considered here, it is more difficult to deal with Poisson noise rather than
with Gaussian noise.

The next result shows that the rate of convergence of the oracle filter
u∗(x0) remains optimal when ρ2(x′0, x) = |u(x) − u(x′0)|2 is replaced by an
approximation ρ̄2(x′0, x) with the error

e(x′0, x) := ρ̄2(x′0, x)− ρ2(x′0, x), x ∈ Nx′0,D, x
′
0 ∈ I0, (20)

satisfying |e(x′0, x)| ≤ ηn for some sequence ηn → 0 as n→∞.

Theorem 2 Assume the conditions of Theorem 1. Let u∗(x0) be given by (8),
but with ρ2(x′0, x) replaced by an approximation ρ̄2(x′0, x), with error satisfying

|ρ̄2(x′0, x)− ρ2(x′0, x)| ≤ Cn−
β
β+1 for some constant C > 0. Then

E (u∗(x0)− u(x0))
2

= O
(
n−

β
β+1

)
. (21)

For the proof of this theorem see Section 6.2.
A similar result was established in [20, Theorem 2] but for the optimal

weights corresponding to the triangular kernel, rather than the Gaussian ker-
nel used in this paper. Another important difference is that the statistical
estimator for the similarity function used in the present paper is also different
to that in [20]. Accordingly, their proofs are also significantly different. It is
worth noting that when we use the Gaussian kernel but with the same esti-
mator of similarity function proposed in [20], then the restoration result is not
satisfactory. The proof of Theorem 2 of this paper is significantly different from
that of Theorem 2 in [20] because the filter is significantly different, although
both theorems give the same optimal rate of convergence.

For Gaussian noise, similar results have been established in [19, Theorem
3.2] (for optimal weights with the triangular kernel) and [21, Theorem 3.1] (for
the usual Gaussian weights with the Gaussian kernel). Since Gaussian noise
and Poisson noise have very different statistical properties, the approaches are
significantly different.
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3 Non-local Poisson shot noise filter

3.1 Construction of non-local Poisson shot noise filter

Utilizing the oracle estimator, we construct the non-local Poisson shot noise
filter. Let D > 0 and d > 0. Notice that

|u(x)− u(x0)|2 = E|v(x)− v(x0)|2 − (u(x0) + u(x)).

By the law of large numbers, a natural estimator of E |v(x)− v(x0)|2 is given

by 1
d2 ‖v(Nx0,d)− v(Nx,d)‖22 (see (5)), and for each x, u(x) can be estimated

by

ud(x) :=
1

d2

∑
t∈N0,d

v(x+ t). (22)

Therefore, a natural estimator of |u(x)− u(x0)|2 is

ρ̂2(x0, x) :=

(
1

d2
‖v(Nx0,d)− v(Nx,d)‖22 − ud(x0)− ud(x)

)+

. (23)

As a result, it is natural to define an adaptive estimator û by

û(x0) =
∑

x∈Nx0,D

ŵ(x0, x)v(x), x0 ∈ I0, (24)

where

ŵ(x0, x) = e
− ρ̂

2(x0,x)

H2(x0)

/ ∑
y∈Nx0,D

e
− ρ̂

2(x0,y)

H2(x0) . (25)

The following theorem implies that the similarity function ρ(x0, x) can be
replaced by the estimator ρ̂(x0, x). Recall that ∆ and n are respectively the
width of the search window and the number of pixels of the image defined by
(18). Let δ be the width of the similarity patches:

δ =
d− 1

2N
. (26)

Theorem 3 Suppose that the function u satisfies the local Hölder condition

(17) and ρ̂2(x0, x) is given by (23). Assume also that ∆ � n−
1

2β+2 and δ � n−α
for some α ∈ ( 1−β

2β+2 ,
1
2 ). Then there is a constant c > 0 such that

lim
n→∞

max
x0∈I

max
x∈Nx0,D

P
{∣∣ρ̂2(x0, x)− ρ2(x0, x)

∣∣ ≤ cn−( 1
2−α)
√

lnn
}

= 1. (27)

For the proof of this theorem see Section 6.3.
Theorem 3 shows that, when we replace ρ2(x0, x) = |u(x)− u(x0)|2 by its

estimator ρ̂2(x0, x), the error satisfies

|ρ̄2(x0, x)− ρ2(x0, x)| ≤ cn−( 1
2−α)
√

lnn ≤ Cn−
β
β+1 ,
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with probability close to 1, when 1−β
2β+2 < α < 1

2 . Therefore, from Theorems
3 and 2, we see that if we choose suitably the search window size D and

similarity patch size d so that ∆ � n−
1

2β+2 and δ � n−α, then the proposed

filter û converges at the optimal rate n−
β
β+1 .

A similar result has been established in [21, Theorem 3.2] but for Gaussian
noise and for a different similarity function.

4 Simulation results

4.1 Computational algorithm

In this section, we explain how to calculate our filter û(x0), x0 ∈ I0 defined
by (24).

First, we calculate the estimator ρ̂2(x0, x), x0 ∈ I0 defined by (23). First,
to save computation time, we replace the two mean values ū(x0), x0 ∈ I0 and
ū(x), x ∈ I by the same mean value ūD(x0), x0 ∈ I0 defined by

uD(x0) :=
1

D2

∑
x∈Nx′0,D

v(x), x′0 ∈ I. (28)

This avoids the calculation of u(x) when x varies; the replacement is reasonable
because the averages are close.

Secondly, to better measure the similarity between the patches v(Nx0,d)
and v(Nx,d), we replace the uniform kernel used in the similarity function of
(23) by the non-uniform kernel defined for t ∈ N0,d by

κ (t) =

d−1
2∑

k=max(1,j)

1

(2k + 1)2
, (29)

if ‖t‖∞ = j for some j ∈ {0, 1, · · · , d−12 }.
These considerations lead us to the following version of the estimator (23):

ρ̂2κ(x0, x) =

 ∑
t∈N0,d

κ (t) |v(x0 + t)− v(x+ t)|2∑
t′∈N0,d

κ(t′)
− 2uD(x0)


+

. (30)

We have therefore the following pseudocode for the calculation of the non-local
Poisson shot noise filter (NLPSNF) û(x0), x0 ∈ I0 defined by (24):
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Algorithm 1 Non-local Poisson shot noise filter (NLPSNF)
Require: Noisy image v
1: Parameters: D, d, µ, ν.
Ensure: Estimated image û
2: Step 1
3: for each x0 ∈ I do

4: ŵ(x0, x) = e
− ρ̂2κ(x0,x)

H2(x0) , where H2(x0) = µ
√
uD(x0) + ν, ρ̂2κ(x0, x) is defined in (30).

5: û1(x0) =

∑
x∈Nx0,D

ŵ(x0,x)v(x)∑
x∈Nx0,D

ŵ(x0,x)

6: end for
7: Step 2
8: for each x0 ∈ I do

9: compute û(x0) =

∑
‖x−x0‖≤T

e
−
||x−x0||

2
2

2 û1(x)

∑
‖x−x0‖≤T

e
−
||x−x0||22

2

, where T = 2.

10: end for

Throughout the simulations, this algorithm will be used to compute the
non-local means estimator û(x0), x0 ∈ I0.

Finally, we discuss on the choice of the parameters d,D,H2(x0). In our
simulations, the choice d = 13 and D = 11 gives good results, for all the
tested images. Our experimental results also show that the restoration result
is good when the window search size D varies in a suitable range, and that
the evolution of the PSNR of the restored image varies as a function of the
search window size D in a similar way as in Figure 7 of [21]. In some sense this
confirms the conclusion of the convergence theorem which states that when the
research window size is chosen properly the filter converges at the optimal rate.
We have not tried to find experimentally the exact formula for the optimal
choice of D as a function of N and β as the value of β is in general not known.

Sutour et al. [31] suggested that a good choice of H2(x0) is a linear function
of the standard deviation of ρ̂2(x0, x). Let us first give an estimate of the
variance of ρ̂2(x0, x). When the windows Nx0,d and Nx,d are disjoint, by the
independence of (v(x0 + t)− v(x+ t))2, t ∈ N0,d, we obtain

Var(ρ̂2(x0, x)) ≈ V ar
(

1

d2
‖v(Nx0,d)− v(Nx,d)‖22 − ud(x0)− ud(x)

)
=

1

d4

∑
t∈N0,d

V ar (v(x0 + t)− v(x+ t))2.

Since v(z) is a Poisson variable with mean u(z), for 2 ≤ j ≤ 4, we have
E[v(z)j ] = u(z) +

∑
2≤i≤j aiu(z)i for some absolute constants ai. Therefore
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Fig. 1 The five test images used in the experiments.

for some constants ci, we have

Var(ρ̂2(x0, x)) ≈ 1

d4

∑
t∈N0,d

[u(x0 + t) + u(x+ t)]

+
1

d4

∑
t∈N0,d

∑
2≤i≤4

ci[u
i(x0 + t) + ui(x+ t)]

=
1

d2
[ūd(x) + ūd(x0)] +

1

d2

∑
2≤i≤4

ci[ū
i
d(x) + ūid(x0)],

where ūid(x) = 1
d2

∑
t∈N0,d

ui(x + t) and ūd(x) = ū1d(x), for each x. We can

normalize the original image so that u(z) ∈ [0, 1] for all z. Hence for i ≥ 2,
ūid(x) are negligible with respect to ūd(x). Therefore

Var(ρ̂2(x0, x)) ≈ 1

d2
(ūd(x) + ūd(x0) ≈ 2ūD(x0)

d2
. (31)

Therefore, following [31], a good choice of H2(x0) is of the form

H2(x0) = µ
√
ūD(x0)) + ν. (32)

We add the constant ν > 0 to avoid that H2(x0) = 0. By doing many simula-
tions, we find that the choice µ = 0.2 and ν = 0.0001 is suitable. This choice
can also be justified as follows. We think that the parameter H2(x0) should be
a function of the standard deviation σ(x0) =

√
u(x0) ≈

√
ūD(x0). With the

idea of the affine approximation (Taylor’s first order expansion) of a function,
it is natural to use an affine relation of type (32), similarly to what we did in
our earlier work [21] in removing the Gaussian noise.

Throughout the paper we symmetrize images near the boundary.

4.2 Numerical performance of the non-local Poisson shot noise filter

We have conducted experiments on simulated data on gray scale images which
are presented in Fig. 1. Spots, Galaxy and Cells ( see Fig. 1 (a)-(c) ) were given
by Bo Zhang, the author of [34]; Fig. 1 (d) was downloaded from The USC-
SIPI Image Database1. Fig. 1 (e) is a part of Fermi image downloaded from

1 http://sipi.usc.edu/database/



Poisson shot noise removal by an oracular non-local algorithm 13

the NASA Fermi support center2. Each image is scaled to the peak intensity
levels 0.5, 1, 2, 3 and 5, so we focus only at low counts. We summarize our
results in the following, both with visual results and performance metrics. We
have conducted comparisons of our method and several competing algorithms
on simulated data.

As [34], we evaluated the performance of a denoising filter û by using the
Normalized Mean Integrated Square Error (NMISE) defined by

NMISE =
1

n∗

∑
u(x)>0,x∈I

(
(û(x)− u(x))2

u(x)

)
,

where û(x) are the estimated intensities, u(x) are the respective true vales,
and n∗ = card {u(x) : u(x) > 0, x ∈ I}. Smaller NMISE values signify better
signal restoration.

For each method and each image, we calculate the average and the stan-
dard deviation of NMISE over 30 different random noise realizations. Table 1
shows the average NMISE value ± its standard deviation calculated for the
whole images reconstructed by our method and several state-of-the-art ap-
proaches, such as P-LET [23], MV+B3 and MV-7/9 [34], P-NLM [9], OWPF
[20], E+BM3D [25], NLPCA [29], FoEbin [12] and P4IP [28], for the very low
light levels of interest. As indicated in the table, our algorithm reaches the best
NMISE values in the cases of Cells and Texture with the peak intensity levels
0.5, Fermi with the peak intensity levels 1, 2, 3 and 5; for Spots and Galaxy,
when the peak intensity levels are low, our approach is also competitive. The
standard deviation values also show that our method is the most stable. In
Table 2, we give the rank on the number of the best and second best results
in Table 1 about the NMISE comparison of algorithms. From this table we
see that our method has the best rank with 13 best results and 8 second best
results. Table 3 lists the computation time; it reveals that our code runs fairly
quickly. From Tables 2 and 3, we see that our filter and the second best ranked
algorithm FoEbin have comparable results, but our filter runs much fast: from
Table 3 we can see that the computation time of our filter is 5.6 times shorter
than that of FoEbin. The reason is that our filter has no iterative procedure,
while FoEbin is an iterative algorithm with high computational complexity.

Visual quality is also important for denoising algorithms. In order to get a
better view of the details of restored images, in Figs. 2 - 6, red squares at the
end of an arrow of the original and restored images are zoomed twice (the large
red squares are the zoomed images). From these figures, we can see that our
filter is competitive in details conservation and visual artifacts. More precisely,
from Figs. 2 - 4 we see that the restored images by our method conserve better
the details and introduce fewer artifacts than other algorithms. In Fig. 5, we see
that the method NLPCA has the best visual result, but our method remains
competitive. Fig. 6 shows that for the case of Fermi image with Peak = 5,
our method yields the best visual quality and the lowest NMISE value. In

2 https://fermi.gsfc.nasa.gov/ssc
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Table 1 A comparison of the denoising performance of several denoising algorithms. We
give the average NMISE value computed over 30 noise realizations ± its standard deviation.
The best and second best values are indicated as xxxx and xxxx respectively.

Algorithm Peak Spots Galaxy Cells Texture Fermi Average

P-LET[23] 0.0268±0.0030 0.0076±0.0005 0.0140±0.0004 0.0107±0.0003 0.0336±0.0062 0.0185±0.0021

MV+B3[34] 0.0437±0.0030 0.0074±0.0003 0.0188±0.0007 0.0128±0.0006 0.0252±0.0041 0.0216±0.0017

MV-7/9[34] 0.0330±0.0021 0.0070±0.0003 0.0125±0.0007 0.0114±0.0004 0.0245±0.0026 0.0177±0.0012

E+BM3D[25] 0.0441±0.0038 0.0075±0.0002 0.0108±0.0004 0.0097±0.0003 0.0221±0.0022 0.0188±0.0014

NLPCA[29] 0.5 0.0075±0.0006 0.0069±0.0008 0.0157±0.0010 0.0106±0.0004 0.0211±0.0032 0.0124±0.0012

FoEbin[12] 31.6557±0.0000 2.2899±0.0000 1.3117±0.0000 0.0397±0.0000 64.5154±0.0000 19.9625±0.0000

P4IP[28] 0.0277±0.0042 0.0089±0.0005 0.0135±0.0006 0.0104±0.0003 0.0078±0.0014 0.0137±0.0014

OWPF[20] 0.0374±0.0024 0.0164±0.0005 0.0187±0.0006 0.0133±0.0005 0.0587±0.0045 0.0289±0.0017

P-NLM[9] 0.0192±0.0092 0.0107±0.0008 0.0123±0.0006 0.0118±0.0004 0.0181±0.0025 0.0144±0.0027

Ours 0.0149±0.0014 0.0075±0.0004 0.0105±0.0004 0.0095±0.0003 0.0087±0.0033 0.0102±0.0012

P-LET[23] 0.0452±0.0044 0.0124±0.0004 0.0201±0.0011 0.0169 0.0005 0.0457±0.0037 0.0281±0.0020

MV+B3[34] 0.0623±0.0027 0.0127±0.0004 0.0279±0.0009 0.0228±0.0009 0.0427±0.0029 0.0337±0.0016

MV-7/9[34] 0.0413±0.0024 0.0118±0.0004 0.0188±0.0006 0.0184±0.0005 0.0418±0.0027 0.0264±0.0013

E+BM3D[25] 0.0563±0.0049 0.0129±0.0003 0.0152±0.0005 0.0149±0.0006 0.0354±0.0022 0.0269±0.0017

NLPCA[29] 1 0.0255±0.0167 0.0127±0.0009 0.0298±0.0020 0.0205±0.0007 0.0348±0.0033 0.0247±0.0047

FoEbin[12] 0.0459±0.0025 0.0101 ±0.0003 0.0153±0.0006 0.0146±0.0004 0.0253±0.0017 0.0222±0.0011

P4IP[28] 0.0648±0.0069 0.0123±0.0004 0.0199±0.0008 0.0240±0.0006 0.0151±0.0016 0.0272±0.0021

OWPF[20] 0.0305±0.0013 0.0167±0.0005 0.0233±0.0005 0.0175±0.0004 0.0503±0.0023 0.0277±0.0010

P-NLM[9] 0.0347±0.0114 0.0139±0.0005 0.0163±0.0006 0.0161±0.0005 0.0322±0.0055 0.0226±0.0037

Ours 0.0243±0.0010 0.0128±0.0004 0.0174±0.0005 0.0155±0.0003 0.0133±0.0019 0.0157±0.0008

P-LET[23] 0.0590±0.0040 0.0196±0.0008 0.0359±0.0124 0.0264 0.0004 0.0693±0.0054 0.0420±0.0046

MV+B3[34] 0.0759±0.0031 0.0205±0.0007 0.0413±0.0016 0.0388±0.0009 0.0653±0.0033 0.0484±0.0019

MV-7/9[34] 0.0480±0.0022 0.0193±0.0004 0.0279±0.0006 0.0288±0.0007 0.0661±0.0024 0.0380±0.0013

E+BM3D[25] 0.0507±0.0029 0.0169±0.0004 0.0211±0.0007 0.0240±0.0006 0.0515±0.0028 0.0328±0.0015

NLPCA[29] 2 0.0222±0.0017 0.0249±0.0021 0.0581±0.0041 0.0400±0.0013 0.0647±0.0050 0.0420±0.0028

FoEbin[12] 0.0399±0.0022 0.0153±0.0004 0.0210±0.0007 0.0235±0.0007 0.0364±0.0020 0.0272±0.0012

P4IP[28] 0.1250±0.0067 0.0223±0.0006 0.0372±0.0008 0.0933±0.0012 0.0329±0.0027 0.0621±0.0024

OWPF[20] 0.0265±0.0009 0.0202±0.0005 0.0320±0.0006 0.0263±0.0005 0.0453±0.0017 0.0301±0.0008

P-NLM[9] 0.0922±0.0167 0.0199±0.0006 0.0234±0.0007 0.0235±0.0007 0.0559±0.0045 0.0430±0.0046

Ours 0.0257±0.0012 0.0183±0.0004 0.0306±0.0006 0.0260±0.0004 0.0315±0.0012 0.0264±0.0008

P-LET[23] 0.0718±0.0059 0.0257±0.0009 0.0730±0.0814 0.0343±0.0008 0.0871±0.0045 0.0584±0.0187

MV+B3[34] 0.0802±0.0026 0.0267±0.0011 0.0511±0.0010 0.0521±0.0014 0.0800±0.0034 0.0580±0.0019

MV-7/9[34] 0.0525±0.0019 0.0259±0.0005 0.0356±0.0009 0.0372±0.0007 0.0861±0.0040 0.0475±0.0016

E+BM3D[25] 0.0423±0.0029 0.0222±0.0005 0.0268±0.0006 0.0302±0.0006 0.0622±0.0033 0.0367±0.0016

NLPCA[29] 3 0.0322±0.0020 0.0382±0.0047 0.0903±0.0069 0.0586±0.0015 0.0943±0.0048 0.0627±0.0040

FoEbin[12] 0.0356±0.0013 0.0204±0.0004 0.0264±0.0006 0.0312±0.0005 0.0440±0.0022 0.0315±0.0010

P4IP[28] 0.1685±0.0085 0.0365±0.0005 0.0608±0.0009 0.2197±0.0015 0.0508±0.0035 0.1073±0.0030

OWPF[20] 0.0255±0.0008 0.0241±0.0006 0.0394±0.0007 0.0341±0.0006 0.0470±0.0015 0.0340±0.0008

P-NLM[9] 0.0925±0.0251 0.0255±0.0008 0.0293±0.0007 0.0300±0.0006 0.0739±0.0063 0.0502±0.0067

Ours 0.0311±0.0009 0.0204±0.0004 0.0324±0.0006 0.0356±0.0005 0.0335±0.0013 0.0306±0.0007

P-LET[23] 0.0813±0.0100 0.0314±0.0013 0.0612±0.0248 0.0411±0.0009 0.1035±0.0072 0.0637±0.0088

MV+B3[34] 0.0823±0.0023 0.0321±0.0011 0.0603±0.0011 0.0636±0.0016 0.0942±0.0043 0.0665±0.0021

MV-7/9[34] 0.0563±0.0022 0.0308±0.0006 0.0418±0.0010 0.0443±0.0008 0.1039±0.0039 0.0554±0.0017

E+BM3D[25] 0.0375±0.0024 0.0260±0.0006 0.0310±0.0007 0.0354±0.0008 0.0715±0.0033 0.0403±0.0016

NLPCA[29] 4 0.0419±0.0019 0.0510±0.0049 0.1213±0.0063 0.0764±0.0017 0.1266±0.0148 0.0834±0.0059

FoEbin[12] 0.0329±0.0011 0.0238±0.0006 0.0309±0.0007 0.0386±0.0007 0.0513±0.0029 0.0355±0.0012

P4IP[28] 0.2015±0.0078 0.0548±0.0009 0.0916±0.0011 0.3904±0.0020 0.0689±0.0035 0.1614±0.0031

OWPF[20] 0.0257±0.0008 0.0274±0.0006 0.0453±0.0009 0.0408±0.0006 0.0508±0.0016 0.0380±0.0009

P-NLM[9] 0.0873±0.0231 0.0301±0.0010 0.0349±0.0007 0.0358±0.0006 0.0906±0.0063 0.0557±0.0063

Ours 0.0322±0.0012 0.0262±0.0005 0.0449±0.0008 0.0448±0.0006 0.0452±0.0015 0.0387±0.0009

P-LET[23] 0.0884±0.0074 0.0359±0.0015 0.0700±0.0189 0.0468±0.0008 0.1181±0.0059 0.0718±0.0069

MV+B3[34] 0.0864±0.0025 0.0363±0.0010 0.0686±0.0012 0.0746±0.0009 0.1077±0.0041 0.0747±0.0019

MV-7/9[34] 0.0596±0.0022 0.0360±0.0008 0.0473±0.0013 0.0504±0.0008 0.1197±0.0047 0.0626±0.0020

E+BM3D[25] 0.0363±0.0016 0.0297±0.0007 0.0346±0.0009 0.0400±0.0008 0.0799±0.0036 0.0441±0.0015

NLPCA[29] 5 0.0527±0.0022 0.0620±0.0063 0.1535±0.0080 0.0954±0.0021 0.1518±0.0072 0.1031±0.0052

FoEbin[12] 0.0319±0.0009 0.0273±0.0007 0.0358±0.0006 0.0453±0.0007 0.0584±0.0020 0.0397±0.0010

P4IP[28] 0.2275±0.0074 0.0771±0.0009 0.1292±0.0010 0.5963±0.0024 0.0849±0.0033 0.2230±0.0030

OWPF[20] 0.0263±0.0008 0.0307±0.0006 0.0504±0.0010 0.0469±0.0007 0.0572±0.0017 0.0423±0.0010

P-NLM[9] 0.0844±0.0109 0.0350±0.0008 0.0397±0.0006 0.0412±0.0008 0.1032±0.0097 0.0607±0.0046

Ours 0.0338±0.0011 0.0282±0.0005 0.0411±0.0007 0.0531±0.0006 0.0455±0.0024 0.0403±0.0011
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Table 2 The number of the best and second best results in Table 1.

Method P-LET MV+B3 MV-7/9 E+BM3D NLPCA FoEbin P4IP OWPF P-NLM Ours
[23] [34] [34] [25] [29] [12] [28] [20] [9]

Best 0 0 0 5 3 10 1 3 3 13

2nd best 1 0 1 10 1 7 2 2 1 8

Table 3 The average computation time in seconds for restoring 256 × 256 grayscale im-
age. (a) Microsoft Windows 10 Professional (64-bit) (Intel(R) Core(TM) i7-6820HQ CPU
@2.70 GHz) with MATLAB 2019b; (b) Microsoft Windows 7 Professional (32-bit) (Intel(R)
Core(TM) i3-550 CPU @3.20 GHz) with MATLAB 2015a.

Method P-LET MV+B3 MV-7/9 E+BM3D NLPCA FoEbin P4IP OWPF P-NLM Ours
[23] [34] [34] [25] [29] [12] [28] [20] [9]

(a) 1.76 – – 0.89 30.60 35.12 71.08 7.63 – 6.23

(b) 0.95 1.30 2.69 2.59 37.92 – 151.31 15.25 70.71 11.08

Table 4 A PSNR/SSIM value comparison of the denoising performance of several denois-
ing algorithms. The best and second best values are indicated as xxxx and xxxx respectively.

Algorithm Peak Spots Galaxy Cells Texture Fermi Average

P-LET[23] 31.43/0.8230 27.60/0.6663 25.86/0.6258 22.22/0.4410 33.31/0.7834 27.48/0.6579

MV+B3[34] 29.11/0.8236 26.79/0.6735 24.73/0.5740 20.22/0.2787 32.69/0.7614 26.71/0.6223

MV-7/9[34] 30.75/0.8600 27.15/0.6695 26.37/0.6539 21.80/0.3692 33.25/0.7580 27.87/0.6621

E+BM3D[25] 31.04/0.8399 27.43/0.6929 27.10/0.7067 22.64/0.4891 32.32/0.7606 28.11/0.6978

NLPCA[29] 4 31.49/0.9074 24.79/0.6003 22.29/0.4936 19.54/0.1969 29.86/0.7174 25.60/0.5831

FoEbin[12] 30.90/0.8337 27.89/0.7148 26.70/0.7040 22.36/0.3894 33.30/0.7748 28.23/0.6833

P4IP[28] 24.26/0.7213 22.53/0.6012 20.03/0.5274 11.54/0.1649 28.49/0.7131 21.37/0.5456

OWPF[20] 31.14/0.8697 26.97/0.6847 24.42/0.6173 21.89/0.3916 33.52/0.7810 27.59/0.6688

P-NLM[9] 30.65/0.8466 27.55/0.6843 26.76/0.6834 22.84/0.4608 33.22/0.7748 28.20/0.6900

Ours 32.08/0.8912 28.21/0.6885 25.61/0.6529 21.93/0.4761 33.35/0.7815 28.24/0.6980

P-LET[23] 31.81/0.8369 27.86/0.6558 26.27/0.6425 22.79/0.4822 33.66/0.7908 28.48/0.6816

MV+B3[34] 29.69/0.8436 27.42/0.6904 24.99/0.5912 20.45/0.2975 33.11/0.7764 27.13/0.6398

MV-7/9[34] 31.74/0.8774 27.87/0.6875 26.48/0.6666 22.25/0.4048 33.51/0.7672 28.37/0.6807

E+BM3D[25] 32.12/0.8576 28.04/0.7214 27.80/0.7389 23.20/0.5107 32.52/0.7609 28.75/0.7179

NLPCA[29] 5 31.25/0.8866 24.94/0.6062 22.17/0.4893 19.67/0.1966 29.90/0.7164 25.59/0.5790

FoEbin[12] 31.35/0.8595 28.46/0.7332 27.30/0.7146 22.64/0.4031 33.65/0.7811 28.68/0.6983

P4IP[28] 24.15/0.7292 22.04/0.5952 19.43/0.5227 10.71/0.1604 28.66/0.7182 21.00/0.5451

OWPF[20] 31.75/0.8870 27.33/0.7067 25.04/0.6447 22.33/0.4191 33.80/0.7943 28.05/0.6904

P-NLM[9] 31.42/0.8622 27.73/0.6957 27.19/0.6892 23.19/0.4821 33.76/0.7850 28.66/0.7028

Ours 33.78/0.9141 28.55/0.7045 25.81/0.6713 22.05/0.4812 34.12/0.7890 28.86/0.7120

the restored image by our filter, we can see clearly three points in the area of
red squares, but these points are seriously blurred or have disappeared in the
restored images by other filters.

In the preceding comparisons we have used the NMISE value to measure the
quality of restoration. The NMISE value reflects the relative error of restora-
tion, which is well adapted when the peak value is small (less than 5 in our
simulations). We have preferred to use this measure rather than the PSNR
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Fig. 2 Denoising of Galaxy with Peak= 0.5, The NMISE value is of the recovered images.
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Fig. 3 Denoising of Cells with Peak= 0.5, The NMISE value is of the recovered images.
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Fig. 4 Denoising of Texture with Peak= 1, The NMISE value is of the recovered images.
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Fig. 5 Denoising of Spots with Peak= 3, The NMISE value is of the recovered images.
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Fig. 6 Denoising of Fermi with Peak= 5, The NMISE value is of the recovered images.
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(Peak Signal to Noise Ratio) value defined by:

PSNR = 10 log10

2552

MSE
with MSE =

1

card I

∑
x∈I

(û(x)− u(x))2,

where u is the original image and û the restored one. The reason is that
the PSNR value reflects the absolute error of restoration, which is a reliable
measure of the restoration quality only when the peak value is sufficiently large
(larger than 4). In this case we have calculated the PSNR values, for which
the simulation results are coherent to those obtained for the NMISE value: see
Table 4, where the SSIM (structural similarity) values defined by Wang et al.
[33] are also indicated.

The numerical results are performed mainly on simulated noise on a typ-
ical type of images, how do they perform on natural images, and real images
taken in low light conditions. Also, it may be more helpful to present as well
PSNR/SSIM for the quantitatively comparison.

5 Conclusion

In this paper, we present a new non-local image denoising algorithm to deal
with the Poisson shot noise model. We first define an oracle filter to remove
the Poisson shot noise by an adaptation of the non-local means filter originally
introduced for removing the Gaussian noise. We next introduce an estimator of
the similarity function and define a calculable filter, called Non-local Poisson
shot noise filter, which can effectively remove the Poisson shot noise. We then
establish convergence theorems which show that the proposed filter converges
at the optimal rate when the search window size is appropriately chosen. Sim-
ulation results show that our filter is competitive to remove the Poisson shot
noise with low light conditions, and the computation is relatively rapid.
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6 Appendix: Proofs of the main results

6.1 Proof of Theorem 1

We first notice that by the Hölder condition (17), for each x0 ∈ I0, we have
|u(x′0)−u(x0)| ≤ L‖x′0−x0‖β∞ ≤ LN−β = Ln−β/2, where x′0 = (x′0,1, x

′
0,2) =(

[Nx0,1]
N ,

[Nx0,2]
N

)
∈ I. This, together with the elementary inequality (a+ b)2 ≤

2a2 + 2b2, implies that

|u∗(x0)− u(x0)|2 = |u∗(x′0)− u(x0)|2

≤ 2|u∗(x′0)− u(x′0)|2 + 2|u(x′0)− u(x0)|2

≤ 2|u∗(x′0)− u(x′0)|2 + 2Ln−β .

Since n−β < n−
β
β+1 , it suffices to prove that

E|u∗(x′0)− u(x′0)|2 = O(n−
β
β+1 ). (33)

In other words (since x′0 ∈ I), it suffices to prove (19) for each x0 ∈ I. So in
the following we suppose that x0 ∈ I. In this case x′0 coincides with x0.

Denoting for brevity

I1 =

 ∑
x∈Nx0,D

w∗(x0, x)ρ(x0, x)

2

=


∑

‖x−x0‖∞≤∆

e
− ρ

2(x0,x)

H2(x0) ρ(x0, x)

∑
‖x−x0‖∞≤∆

e
− ρ

2(x0,x)

H2(x0)


2

,

(34)
and

I2 =
∑

x∈Nx0,D

(w∗(x0, x))
2
u(x)

≤
∑

x∈Nx0,D

(w∗(x0, x))
2
Γ

≤

Γ
∑

‖x−x0‖∞≤∆

e
−2 ρ

2(x0,x)

H2(x0)

 ∑
‖x−x0‖∞≤∆

e
− ρ

2(x0,x)

H2(x0)

2 , (35)

then we have
g(w∗) ≤ I1 + I2. (36)

By the assumption of the theorem γ ≥ cL∆β(c >
√

2), which implies that
for x ∈ Nx0,D, we have

L2‖x− x0‖2β∞
H2(x0)

≤ L2∆2β

γ2
≤ 1

c2
. (37)
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Noting that e
− τ2

H2(x0) , τ ∈ [0, γ/
√

2) is decreasing, and using one term Taylor
expansion, the inequality (37) implies that

∑
‖x−x0‖∞≤∆

e
− ρ

2(x0,x)

H2(x0) ≥
∑

‖x−x0‖∞≤∆

e
−L

2‖x−x0‖
2β
∞

H2(x0)

≥
∑

‖x−x0‖∞≤∆

(
1− L2‖x− x0‖2β∞

H2(x0)

)
≥ D2(1− 1

c2
), (38)

where D2 = (2N∆+ 1)2 is the cardinality of the search window (cf. Eq.(18)).

Since τe
− τ2

H2(x0) is increasing in τ ∈ [0, γ/
√

2),

∑
‖x−x0‖∞≤∆

e
− ρ

2(x0,x)

H2(x0) ρ(x0, x) ≤
∑

‖x−x0‖∞≤∆

L‖x− x0‖β∞e
−L

2‖x−x0‖
2β
∞

H2(x0)

≤
∑

‖x−x0‖∞≤∆

L‖x− x0‖β∞

≤ D2L∆2. (39)

The above three inequalities (34), (38) and (39) imply that

I1 ≤
(

D2L∆β

D2(1− 1
c2 )

)2

= c′L2∆2β , where c′ =

(
c2

c2 − 1

)2

. (40)

Taking into account (35), (38) and the inequality∑
‖x−x0‖∞≤∆

e
−2 ρ

2(x0,x)

H2(x0) ≤
∑

‖x−x0‖∞≤∆

1 = D2,

it is easily seen that

I2 ≤
D2Γ

(D2)2
≤ Γ

4∆2n
. (41)

Combining (36), (40), and (41), we get

g(w∗) ≤ c′L2∆2β +
Γ

4∆2n
. (42)

Using the condition c1n
− 1

2β+2 ≤ ∆ ≤ c2n
− 1

2β+2 for some constants c1, c2 > 0,
from this we infer that

g(w∗) ≤
(
c′c22βL2 +

Γ

4c21

)
n−

β
β+1 .

This ends the proof of (19).
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6.2 Proof of Theorem 2

As in the proof of Theorem 1, we can assume that x0 ∈ I, so that x′0 = x0.

By our condition, e(x, x0) = ρ̄2(x0, x)−ρ2(x0, x) satisfies |e(x, x0)| ≤ ηn =

O(n−
β
β+1 ), where ηn = maxx0,x∈I |e(x, x0)|. Using the elementary inequality

(a− b)2 ≤ |a2 − b2| for a, b ≥ 0, we obtain that

|ρ̄(x0, x)− ρ(x0, x)|2 ≤ |ρ̄(x0, x)2 − ρ2(x0, x)| ≤ ηn = O(n−
β
β+1 ).

Therefore

ρ̄(x0, x) ≤ ρ(x0, x) +
√
ηn.

As (a+ b)2 ≤ 2a2 + 2b2, we have

 ∑
x∈Nx0,D

w∗(x0, x)ρ̄(x0, x)

2

≤

 ∑
x∈Nx0,D

w∗(x0, x)ρ(x0, x) +
√
ηn

2

≤ 2

 ∑
x∈Nx0,D

w∗(x0, x)|u(x)− u(x0)|

2

+ 2ηn.

Hence

E (u∗(x0)− u(x0))
2

≤ 2

 ∑
x∈Nx0,D

w∗(x0, x)|u(x)− u(x0)|

2

+ 2ηn +
∑

x∈Nx0,D

w∗(x0, x)2u(x).

≤ 2


 ∑
x∈Nx0,D

w∗(x0, x)|u(x)− u(x0)|

2

+
∑

x∈Nx0,D

w∗(x0, x)2u(x)

+ 2ηn.

From the proof of Theorem 1 we deduce that

 ∑
x∈Nx0,D

w∗(x0, x)|u(x)− u(x0)|

2

+
∑

x∈Nx0,D

w∗(x0, x)2u(x) = O
(
n−

β
β+1

)
.

Since ηn = O(n−
β

2+2β ), we obtain

E (u∗(x0)− u(x0))
2

= 2O
(
n−

β
β+1

)
+ 2O

(
n−

β
β+1

)
= O

(
n−

β
β+1

)
.
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6.3 Proof of Theorem 3

We first give an expression of ρ̂2(x0, x) defined by (23), which will be suitable
for the estimation. For convenience, let

Λx0,x(t) = u(x0 + t)− u(x+ t) (43)

and
ζx0,x(t) = ε(x0 + t)− ε(x+ t). (44)

With these notations and using (3), we see that the function in the definition

of ρ̂2(x0, x) (cf. (23)) can be written as:

‖v(Nx,d)− v(Nx0,d)‖22 − u(x0)− u(x)

=
1

d2

∑
t∈N0,d

(v(x0 + t)− v(x+ t))
2 − u(x0)− u(x)

=
1

d2

∑
y∈Nx0,d

(u(x0 + t)− u(x+ t) + ε(x0 + t)− ε(x+ t))
2 − u(x0)− u(x)

=
1

d2

∑
t∈N0,d

(Λx0,x(t) + ζx0,x(t))
2 − u(x0)− u(x)

=
1

d2

∑
t∈N0,d

Λ2
x0,x(t) +

1

d2
S(x0, x),

where

S(x0, x) =
∑
t∈N0,d

(
ζx0,x(t)2 − u(x0 + t)− u(x+ t) + 2Λx0,x (t) ζx0,x(t)

)
. (45)

Therefore, by the definition of ρ̂2(x0, x) (see (23)),

ρ̂2(x0, x) =

 1

d2

∑
t∈N0,d

Λ2
x0,x(t) +

1

d2
S(x0, x)

+

. (46)

We will need two lemmas for the estimation of the two sums in (46).

Lemma 1 Under the local Hölder condition (17), with ∆ and δ defined by
(18) and (26), we have∣∣∣∣∣∣ 1

d2

∑
y∈N0,d

Λ2
x0,x(t)− |u(x)− u(x0)|2

∣∣∣∣∣∣ ≤ 4L2∆βδβ .

The proof of this lemma can be found in [19, 21].

Lemma 2 There are two positive constants c1 and c2, depending only on L
and Γ, such that for any 0 < z ≤ c1d,

P (|S(x0, x)| ≥ zd) ≤ c2z−2.
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Proof Note that the variables

Xt = ζx0,x(t)2 − u(x0 + t)− u(x+ t) + 2Λx0,x (t) ζx0,x(t), t ∈ N0,d (47)

are identically distributed with EXt = 0. We prove below that the variance
EX2

t satisfies maxt∈N0,d
EX2

t ≤ b for some constant b > 0. As v(x) has Poisson
law with parameter u(x), it holds that

Ev(x) = u(x),

Ev2(x) = u(x) + u2(x),

Ev3(x) = u(x) + 3u2(x) + u3(x),

Ev4(x) = u(x) + 7u2(x) + 6u3(x) + u4(x).

Hence, for each x ∈ Nx0,D and each t ∈ N0,d,

Eε4(x+ t) = E(v(x+ t)− u(x+ t))4

= Ev4(x+ t)− 3u(x+ t)Ev3(x+ t) + 6u2(x+ t)Ev2(x+ t)

−3u3(x+ t)Ev(x+ t) + u4(x+ t)

= u(x+ t) + 4u2(x+ t) + 3u3(x+ t) + 2u4(x+ t)

≤ Γ + 4Γ 2 + 3Γ 3 + 2Γ 4, (48)

where the last inequality follows by the definition of Γ (see (16)). From (48)
and the inequality (a+ b)4 ≤ 8a4 + 8b4 for a, b ∈ R, we have

E(ζ4x0,x(t)) = E (ε(x0 + t)− ε(x+ t))
4

≤ E
(
8ε4(x0 + t) + 8ε4(x+ t)

)
≤ 16(Γ + 4Γ 2 + 3Γ 3 + 2Γ 4). (49)

As E(ε(x)) = 0 and Var(ε(x)) = u(x), by the independence of ε(x0 + t) and
ε(x+ t), it follows that

E(ζx0,x(t)2) = E (ε(x0 + t)− ε(x+ t))
2

= Eε2(x+ t) + Eε2(x0 + t)

= u(x+ t) + u(x0 + t)

≤ 2Γ. (50)

As the function u satisfies the local Hölder condition (17), for x ∈ Nx0,x

Λ2
x0,x (t) = (u(x0 + t)− u(x+ t))2 ≤ L2∆2β ≤ L2. (51)

Therefore, taking into account (49), (50) and (51), we obtain, uniformly in
t ∈ N0,d,

EX2
t = E(ζx0,x(t)2 − u(x0 + t)− u(x+ t) + 2Λx0,x (t) ζx0,x(t))2

= E(ζ4x0,x(t)) + (u(x0 + t) + u(x+ t))2

+ 4Λ2
x0,xE(ζ2x0,x (t)) + 2(u(x0 + t) + u(x+ t))E(ζ2x0,x(t))

≤ 16(Γ + 4Γ 2 + 3Γ 3 + 2Γ 4) + 4Γ 2 + 4L2 × 2Γ + 4Γ × Γ
= 8(2 + L2)Γ + 72Γ 2 + 48Γ 3 + 32Γ 4.
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We have therefore proved that EX2
t ≤ b, where b := 8(2 + L2)Γ + 72Γ 2 +

48Γ 3 + 32Γ 4.
The point in handling the sum S(x0, x) =

∑
t∈N0,d

Xt is that the variables

Xt, t ∈ N0,d are not necessarily independent. Remark that ζx0,x(t) and ζx0,x (s)
are correlated if and only if t−s = ±(x0−x) : indeed, it can be easily checked
that

E(ζx0,x(t)ζx0,x (s)) =

−σ
2, if t− s = x0 − x,

σ2, if t− s = x− x0,
0, otherwise.

By the definition of ζx0,x(t), if t − s 6= ±(x − x0), then ζx0,x(t) and ζx0,x(s)
are independent, so that Xt and Xs are also independent. Consequently

Var(S(x0, x)) = E(S(x0, x)2) =
∑

t,s∈N0,d

E(XtXs) (52)

=
∑

t∈Nx0,d

E(X2
t ) +

∑
t∈Nx0,d

∑
s∈N0,d:s=t±(x−x0)

E(XtXs). (53)

By the Cauchy-Schwarz inequality E(XtXs) ≤ b. Hence

Var(S(x0, x)) ≤ d2b+ 2d2b = 3d2b. (54)

Therefore, by Chebyshev’s inequality

P (|S(x0, x)| ≥ zd) ≤ Var(S(x0, x))

z2d2
≤ 3b

z2
.

Now we turn to the proof of Theorem 3. Below c1, c2, · · · stand for some
constants (independent of n). By equation (26) and the assumption on δ we

have d ≥ c1n
1
2−α. Applying Lemma 2 with z =

√
1
c3

lnn ≤ c2d, we see that

P

 1

d2
|S(x0, x)| ≥

√
1
c3

lnn

d

 ≤ c3
lnn

. (55)

Therefore,

P
(

1

d2
|S(x0, x)| ≥ c4nα−

1
2

√
lnn

)
≤ c3

lnn
. (56)

By Lemma 1 and the conditions on ∆ and δ, we have,∣∣∣∣∣∣ 1

d2

∑
t∈N0,d

Λ2
x0,x(t)− |u(x)− u(x0)|2

∣∣∣∣∣∣ ≤ 4L2∆βδβ ≤ c5n−
β

2β+2−αβ . (57)

From (46), we see that

ρ̂2(x0, x)−|u(x)−u(x0)|2 ≤ 1

d2

∑
t∈N0,d

Λ2
x0,x(t)−|u(x)−u(x0)|2 +

1

d2
|S(x0, x)|
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and

ρ̂2(x0, x)−|u(x)−u(x0)|2 ≥ 1

d2

∑
t∈N0,d

Λ2
x0,x(t)−|u(x)−u(x0)|2− 1

d2
|S(x0, x)| ,

so that

∣∣ρ̂2(x0, x)− |u(x)− u(x0)|2
∣∣ ≤

∣∣∣∣∣∣ 1

d2

∑
t∈N0,d

Λ2
x0,x(t)− |u(x)− u(x0)|2

∣∣∣∣∣∣+ 1

d2
|S(x0, x)| .

Therefore, from (57), we obtain∣∣ρ̂2(x0, x)− |u(x)− u(x0)|2
∣∣ ≤ c5n− β

2β+2−αβ +
1

d2
|S(x0, x)| . (58)

Combining (56) and (58), we get

P
(∣∣ρ̂2(x0, x)− |u(x)− u(x0)|2

∣∣ ≥ c4nα− 1
2

√
lnn+ c5n

− β
2β+2−αβ

)
≤ c3

lnn
.

Since the condition 1
2(β+1)2 < α < 1

2 implies β
2β+2 + αβ > 1

2 − α > 0, this

implies the inequality (27).
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