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In this paper we address the problem of denoising images obtained under low light conditions for the Poisson shot noise model. Under such conditions the variance stabilization transform (VST) is no longer applicable, so that the state-of-the-art algorithms which are proficient for the additive white Gaussian noise cannot be applied. We first introduce an oracular non-local algorithm and prove its convergence with the optimal rate of convergence under a Hölder regularity assumption for the underlying image, when the search window size is suitably chosen. We also prove that the convergence remains valid when the oracle function is estimated within a prescribed error range. We then define a realisable filter by a statistical estimation of the similarity function which determines the oracle weight. The convergence of the realisable filter is justified by proving that the estimator of the similarity function lies in the prescribed error range with high probability. The experiments show that under low light conditions the proposed filter is competitive compared with the recent state-of-the-art algorithms.

Introduction

Noise is inevitable in any image device. A digital imaging system consists of an optical system followed by a photodetector and an associated electronic filter. The photodetector converts the incident optical intensity to a detector current, i.e. photons to electrons. During the process, the true signals are contaminated by many different sources of noise. Poisson shot noise appears in low-light conditions when the number of collected photons is small, such as night vision, medical imaging, underwater imaging, microscopic imaging, optical microscopy imaging, single-particle X-ray free-electron laser (XFEL) diffraction data and astronomy imaging. Such a noise is signal-dependent, and the usual denoising approaches are not adapted.

The key challenge in Poisson intensity estimation problems is that the variances of the observed counts are different. Many authors [2-4, 8, 9, 12, 14, 25, 28, 34, 35, 37] contributed to handle signal-dependent noise, by transforming the image with a Variable-Stabilizing Transformation (VST) such as the Anscombe root transformation [START_REF] Anscombe | The transformation of Poisson, binomial and negativebinomial data[END_REF], the multiscale VSTs [START_REF] Zhang | Wavelets, ridgelets, and curvelets for Poisson noise removal[END_REF], the conditional variance stabilization (CVS) [START_REF] Jansen | Multiscale Poisson data smoothing[END_REF], or the Fisz transform [START_REF] Fisz | The limiting distribution of a function of two independent random variables and its statistical application[END_REF]. All these transformations amount to apply per-pixel non-linearities that effectively reduce the signal dependence of the noise model [START_REF] Prucnal | Transformation of image-signal-dependent noise into image-signal-independent noise[END_REF]. Because the transformed signal has an approximate signal independent noise, it may be processed using denoising methods for the Gaussian noise model [START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF][START_REF] Lebrun | A nonlocal bayesian image denoising algorithm[END_REF][START_REF] Zhang | Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising[END_REF]. After denoising, some inverse transformations, like the Exact Unbiased Inverse (EUI) [START_REF] Makitalo | A closed-form approximation of the exact unbiased inverse of the Anscombe variance-stabilizing transformation[END_REF], are applied to the denoised signal, obtaining the estimate of the signal of interest. Rond et al. [START_REF] Rond | Poisson inverse problems by the plugand-play scheme[END_REF] deploys a general approach termed "Plug-and-Play-Prior" to Poisson inverse-problems, which uses an iterative scheme where an easy treatable convex programming algorithm is applied, followed by an efficient Gaussian denoising. Unfortunately, the VST is no longer applicable in low-light conditions, for example when the peak intensity level is less than 5.

There are other approaches which do not use VST. One of them is based on the maximum likelihood principle [START_REF] Chouzenoux | A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood[END_REF][START_REF] Goudail | Performance comparison of pseudo-inverse and maximumlikelihood estimators of Stokes parameters in the presence of Poisson noise for spherical design-based measurement structures[END_REF][START_REF] Srivastava | Restoration of Poisson noise corrupted digital images with nonlinear PDE based filters along with the choice of regularization parameter estimation[END_REF] and does not need the Gaussian approximation. The maximum likelihood estimate of u is obtained by maximizing the log likelihood P(u|v) of the Poisson probability distribution function (PDF), with respect to u ≥ 0. Alternatively, one can calculate the maximum likelihood estimate of u by minimizing the negative log likelihood of Poisson PDF given by u = argmin u≥0 {-ln P(u|v)}. Some methods are modifications of the non-local means filter proposed by Buades et al. [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF] to denoise images damaged by additive white Gaussian noise. It is based on the similarity phenomenon existing very often in natural images, and assumes that there is sufficient redundant information (pixels having identical noise-free value) in the image to reduce the noise significantly. This filter is known to efficiently reduce the noise and to preserve structures. NLPCA [START_REF] Salmon | Poisson noise reduction with non-local PCA[END_REF] combines Principal Component Analysis (PCA) and sparse Poisson intensity estimation methods in a non-local estimation framework, and SPDA [START_REF] Giryes | Sparsity-based Poisson denoising with dictionary learning[END_REF] uses dictionary learning within the denoising process. P-LET [START_REF] Luisier | Fast interscale wavelet denoising of Poisson-corrupted images[END_REF] minimizes the MSE of an unbiased estimate for Poisson shot noise. These approaches are applicable for low peak level images, but the restoration result is not yet so satisfied. In [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF], by minimizing a very tight upper bound of the mean square error (MSE), a non-local means filter with optimal weights, called Optimal Weights Poisson Noise Filter (OWPF), is proposed. This filter was proved to converge at the optimal rate under a suitable regularity condition. It gives a good visual quality of restoration, but it is not robust enough under very low light condition. In fact, with this method the restored images have residual noise when the peak value is very small.

In this paper, we propose a new filter to remove the Poisson shot noise, which is robust under low light condition, and we prove the convergence of the proposed filter. The main idea is as follows. We first obtain an oracle estimator by considering a very tight upper bound of the mean square error by varying the size of the search window. Our oracle estimator (see [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] for this concept) depends on the unknown similarity function of the original image. We show that our oracular filter convergences under a Hölder regularity assumption on the underlying image, when the similarity function is estimated within a prescribed error. A calculable algorithm is then constructed by implementing a statistical estimator for the similarity function. The convergence of the obtained filter is ensured by proving that the estimator of the similarity function lies in the prescribed error range with high probability. The experiments show that under low light conditions the new filter is competitive with the recent state-of-the-art algorithms.

Compared with the filter introduced in [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF], there are two main differences: (a) in the new filter we use the Gaussian kernel while in [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF] we used the triangular kernel; (b) the statistical estimator for the similarity function used in the present paper is also different to that used in [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF]. When the peak value is very small (especially when it is smaller than 1), the signal is low and the effective number of observations is small. In this case the filter OWPF with optimal weights proposed in [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF] is not so efficient: our simulation results show that while applying this filter there is still a lot of residual noise remaining in the restored image, although it keeps well the image details. In this case, with the new proposed filter, the restored image has much less residual noise in the restored image. We think the reason is that the triangular kernel used in OWPF is less smooth than the Gaussian kernel used in the new filter, so that OWPF is less stable with the approximation error of the similarity function, which is important under low light conditions.

It is worth noticing that similar convergence results have been established for Gaussian noise in [START_REF] Jin | Nonlocal means and optimal weights for noise removal[END_REF][START_REF] Jin | Convergence theorems for the Non-Local Means filter[END_REF], but with a different similarity function to adapt the Poisson noise, and the proofs are significantly different due to the different nature of noises and similarity functions; see the comments after the statements of Theorems 1, 2 and 3.

The remainder of this paper is organized as following. In Section 2 we introduce an oracle estimator for the Poisson shot noise, and prove its convergence under suitable conditions, with useful information on the rate of convergence. In Section 3 we construct an estimator for the similarity function and estab-lish for it a convergence theorem. Simulation results are presented with a brief analysis in Section 4.

The oracle estimator

Poisson noise model and notation

For an original digital image u defined on the unit square I 0 := [0, 1] 2 , the observed image is a discrete version defined on the lattice

I := {0, 1 N , • • • , N -1 N } 2
, with N × N pixels sampled from I 0 . The higher the value of N , the higher the resolution of the digital image. The Poisson shot noise model is defined as

v(x) ∼ P(u(x)), x ∈ I, ( 1 
)
where v is the observed discrete image defined on the lattice I. Our objective is to recover the value u(x 0 ) of the original image for each x 0 in the unit square I 0 , from the observation v defined on the lattice I.

For convenience, we extend the definition of the observed image v to the whole unit square I 0 by setting for all

x = (x 1 , x 2 ) ∈ I 0 , v(x) = v(x ) with x = (x 1 , x 2 ) = [N x 1 ] N , [N x 2 ] N ∈ I, (2) 
where [t] denotes the integer part of t. Notice that x is the closest point in I of x, which lies in the left and lower side of x. Notice that for all x ∈ I 0 and t ∈ I, we have (

x + t) = x + t. Setting ε(x) = v(x) -u(x), from the Poisson shot noise model we obtain its additive form v(x) = u(x) + ε(x), x ∈ I, (3) 
where the noise variable ε(x) = v(x) -u(x) satisfies E(ε(x)) = 0 and Var(ε(x)) = Var(v(x)) = u(x).

Compared with the additive Gaussian noise model, the particularity of this additive representation is that the variance of the noise ε is not homogeneous; such a model is sometimes called heteroscedastic. For any point x 0 ∈ I and a positive odd integer d, denote the square window with center x 0 and d × d pixels of I by

N x,d = y ∈ I : y -x ∞ ≤ d -1 2N , (4) 
where • ∞ denotes the supremum norm: andd-1 2N represents half of the edge size of the window. For x = (x 1 , x 2 ) ∈ I 0 , let x ∈ I be as in (2) and define

z ∞ = max{|z 1 |, |z 2 |} for z = (z 1 , z 2 ),
N x,d = N x ,d .
Windows of different sizes will be used. In the following, for x 0 , x ∈ I 0 and positive odd integers d and D, we will use N x,d for similarity patches and N x0,D for search windows. For each x ∈ I 0 , the vector

v(N x,d ) = (v(y)) y∈N x,d = (v(x + t)) t∈N 0,d
formed by the values v(y) of the observed noisy image at pixels y ∈ N x,d , arranged in the lexicographical order, is called data patch or similarity patch centered at x. For any x 0 , x ∈ I 0 , define

1 d 2 v(N x0,d ) -v(N x,d ) 2 2 = 1 d 2 t∈N 0,d (v(x 0 + t) -v(x + t)) 2 , (5) 
which measures the similarity between the data patches v(N x0,d ) and v(N x,d ).

The non-local means filter

Let us recall the non-local means filter for Gaussian noise, to well understand its adaptation to the Poisson noise that we will introduce in the following. The non-local means algorithm has been proposed in Buades et al. [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF] for removing the white Gaussian noise in the additive Gaussian noise model v(x) = u(x) + η(x), x ∈ I, where u(x) is the original image, v(x) is the observed one, η(x) is the Gaussian noise which is a sequence of independent random variables of mean E(η(x)) = 0 and variance Var(η(x)) = σ 2 . The parameter σ > 0 is a measure of the noise level.

For any point x 0 ∈ I 0 , the non-local means filter u(x 0 ) is defined as weighted means of the values of the observed image in the search window N x0,D centered at x 0 :

u(x 0 ) = x∈N x 0 ,D w(x 0 , x)v(x), (6) 
where the weight w (x 0 , x) is given by

w(x 0 , x) = e -ρ 2 (x0,x)/H 2 y∈N x 0 ,D e -ρ 2 (x0,y)/H 2 , (7) 
with

ρ 2 (x 0 , x) = t∈N 0,d κ(t)(v(x 0 + t) -v(x + t)) 2 s∈N 0,d κ(s) .
Here H > 0 is a bandwidth parameter, and κ(t) > 0, t ∈ N 0,d is a fixed kernel function. For x 0 ∈ I 0 and x ∈ I, the weight w(x 0 , x) measures the similarity of the patches v(N x0,d ) and v(N x,d ); more similar the patches, greater the value of the weight.

Oracle estimator

In order to adapt the non-local means algorithm to the Poisson shot noise, we introduce an oracle estimator (for details on this concept see Donoho and Johnstone (1994 [10]). We define the oracle estimator on I 0 as follows: for all

x 0 ∈ I 0 , u * (x 0 ) = u * (x 0 ) = x∈N x 0 ,D w * (x 0 , x)v(x), (8) 
where x 0 ∈ I is defined as in (2), and for x ∈ I,

w * (x 0 , x) = e - ρ 2 (x 0 ,x) H 2 (x 0 ) y∈N x 0 ,D e - ρ 2 (x 0 ,y) H 2 (x 0 ) , (9) 
with ρ(x 0 , x) = |u(x) -u(x 0 )| [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] and H(x) > 0 a control function. We set

γ = inf{H(x) : x ∈ I 0 }. (11) 
It is obvious that

x∈N x 0 ,D w * (x 0 , x) = 1 and w * (x 0 , x) ≥ 0. ( 12 
)
The function ρ(x 0 , x) = |u(x) -u(x 0 )| ≥ 0 measures the similarity of the image brightness between the pixels x and x 0 ; it is thus called the similarity function. The usual bias-variance decomposition (cf. e.g. [START_REF] Fan | Local linear regression smoothers and their minimax efficiencies[END_REF][START_REF] Mandel | Use of the singular value decomposition in regression analysis[END_REF][START_REF] Terrell | Variable kernel density estimation[END_REF]) of the Mean Squared Error (MSE) yields

E (u(x 0 ) -u * (x 0 )) 2 (13) =    x∈N x 0 ,D w * (x 0 , x) (u(x) -u(x 0 ))    2 + x∈N x 0 ,D w * (x 0 , x) 2 u(x) ≤    x∈N x 0 ,D w * (x 0 , x)|u(x) -u(x 0 )|    2 + x∈N x 0 ,D w * (x 0 , x) 2 u(x).
The inequality (13) can be rewritten in the following form:

E (u(x 0 ) -u * (x 0 )) 2 ≤ g(w * ), (14) 
where

g(w * ) =    x∈N x 0 ,D w * (x 0 , x)ρ(x 0 , x)    2 + x∈N x 0 ,D w * (x 0 , x) 2 u(x). (15) 
We shall define a family of estimates by minimizing the function g (w * ) by changing the width of the search window N x 0 ,D . Under the Poisson shot noise in low-light conditions, the upper bound of signal function is small, namely the peak intensity

Γ := sup{u(x) : x ∈ I 0 } (16) is low.
Definition 1 The image function u on I 0 is called Hölder if for some constants L > 0, β ∈ (0, 1] and all x, y ∈ I 0 ,

|u(x) -u(y)| ≤ L x -y β ∞ . (17) 
Let us give some comments on the Hölder assumption. This assumption is rather natural, considering that all optical images are obtained by devices that proceed to a spatial frequency cut-off and are therefore band-limited, hence analytic, so that the Hölder assumption ( 17) is satisfied with β = 1. We should mention that in the literature discontinuous image models have also been taken into consideration. This, however, does not diminish the interest in the continuous models. For example the bounded variation (BV) is actually a model of the underlying physical objects emission. It is important to realize that the noise is a discrete perturbation applied to the samples of a smooth function, which may be viewed as the result of the convolution of a BV function with a sinc function. According to Shannon theory, a sampled image is a representation of a continuous image because it is interpolable, by the Shannon-Whittaker formula. A pure BV function like a dark square on white background cannot be sampled as such. It requires previous smoothing.

On the other hand the Hölder assumption of order β ∈ (0, 1] is not so restrictive. For instance, the Brownian motion, which is known as very irregular, satisfies this assumption with β = 1/2. With β < 1/2 our model can treat images which are less regular than the Brownian motion.

The following theorem gives the rate of convergence of the oracle estimator with D × D search windows. Let

∆ = D -1 2N and n = N 2 (18) 
be respectively the width (half of the edge size) of the search window and the number of pixels of the image. In the following theorem we prove that when the width of the search window ∆ is properly chosen, the Mean Squared Error of the oracle estimator u * (x 0 ) converges at the rate n -β β+1 . We will use the notation

a n b n to mean that c 1 b n ≤ a n ≤ c 2 b n for some constants c 1 , c 2 > 0 and all n.
Theorem 1 Suppose that the image function u satisfies the local Hölder condition [START_REF] Jansen | Multiscale Poisson data smoothing[END_REF] 

with β ∈ (0, 1]. Assume also that ∆ n -1 2β+2 and γ ≥ cL∆ β for some constant c > √ 2.
Then the oracle estimator u * (x 0 ) given by ( 8) satisfies

E (u * (x 0 ) -u(x 0 )) 2 = O n -β β+1 . ( 19 
)
For the proof of Theorem 1, see Section 6.1.

The rate of convergence in Theorem 1 is known to be optimal under the stated Hölder condition (see Fan and Gijbels [START_REF] Jianqing | Local polynomial modelling and its applications[END_REF]). In view of the definition of ∆ (cf. ( 18)), from Theorem 1 we see that when the search window size D is chosen suitably, the filter converges at optimal rate.

Recall that the parameter γ is a lower bound for the bandwidth H(x) in the oracle estimator [START_REF] Danielyan | Denoising of multispectral images via nonlocal groupwise spectrum-PCA[END_REF]. The condition γ > cL∆ β that we impose here means that the bandwidth cannot be too small. Such a condition is necessary when we want to prove some rate of convergence of a non-parametric estimator like u * (x 0 ). Notice that since ∆ converges to 0, the parameter γ can also converge to 0.

Similar results for Gaussian noise can be found in [19, Theorem 3.1] (for the optimal weights with the triangular kernel) and [21, Theorem 2.1] (for the usual weights with the Gaussian kernel). Since the variance of the noise is a constant in the Gaussian case, but varies with the pixel values in the Poisson case considered here, it is more difficult to deal with Poisson noise rather than with Gaussian noise.

The next result shows that the rate of convergence of the oracle filter u * (x 0 ) remains optimal when ρ 2 (x 0 , x) = |u(x) -u(x 0 )| 2 is replaced by an approximation ρ2 (x 0 , x) with the error

e(x 0 , x) := ρ2 (x 0 , x) -ρ 2 (x 0 , x), x ∈ N x 0 ,D , x 0 ∈ I 0 , (20) 
satisfying |e(x 0 , x)| ≤ η n for some sequence η n → 0 as n → ∞.

Theorem 2 Assume the conditions of Theorem 1. Let u * (x 0 ) be given by ( 8), but with ρ 2 (x 0 , x) replaced by an approximation ρ2 (x 0 , x), with error satisfying

|ρ 2 (x 0 , x) -ρ 2 (x 0 , x)| ≤ Cn -β β+1 for some constant C > 0. Then E (u * (x 0 ) -u(x 0 )) 2 = O n -β β+1 . ( 21 
)
For the proof of this theorem see Section 6.2.

A similar result was established in [20, Theorem 2] but for the optimal weights corresponding to the triangular kernel, rather than the Gaussian kernel used in this paper. Another important difference is that the statistical estimator for the similarity function used in the present paper is also different to that in [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF]. Accordingly, their proofs are also significantly different. It is worth noting that when we use the Gaussian kernel but with the same estimator of similarity function proposed in [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF], then the restoration result is not satisfactory. The proof of Theorem 2 of this paper is significantly different from that of Theorem 2 in [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF] because the filter is significantly different, although both theorems give the same optimal rate of convergence.

For Gaussian noise, similar results have been established in [19, Theorem 3.2] (for optimal weights with the triangular kernel) and [21, Theorem 3.1] (for the usual Gaussian weights with the Gaussian kernel). Since Gaussian noise and Poisson noise have very different statistical properties, the approaches are significantly different. 

|u(x) -u(x 0 )| 2 = E|v(x) -v(x 0 )| 2 -(u(x 0 ) + u(x)).
By the law of large numbers, a natural estimator of

E |v(x) -v(x 0 )| 2 is given by 1 d 2 v(N x0,d ) -v(N x,d ) 2 
2 (see ( 5)), and for each x, u(x) can be estimated by

u d (x) := 1 d 2 t∈N 0,d v(x + t). (22) 
Therefore, a natural estimator of |u(x) -

u(x 0 )| 2 is ρ 2 (x 0 , x) := 1 d 2 v(N x0,d ) -v(N x,d ) 2 2 -u d (x 0 ) -u d (x) + . ( 23 
)
As a result, it is natural to define an adaptive estimator u by

u(x 0 ) = x∈N x 0 ,D w(x 0 , x)v(x), x 0 ∈ I 0 , (24) 
where

w(x 0 , x) = e - ρ 2 (x 0 ,x) H 2 (x 0 ) y∈N x 0 ,D e - ρ 2 (x 0 ,y) H 2 (x 0 ) . (25) 
The following theorem implies that the similarity function ρ(x 0 , x) can be replaced by the estimator ρ(x 0 , x). Recall that ∆ and n are respectively the width of the search window and the number of pixels of the image defined by [START_REF] Jianqing | Local polynomial modelling and its applications[END_REF]. Let δ be the width of the similarity patches:

δ = d -1 2N . ( 26 
)
Theorem 3 Suppose that the function u satisfies the local Hölder condition (17) and ρ 2 (x 0 , x) is given by [START_REF] Luisier | Fast interscale wavelet denoising of Poisson-corrupted images[END_REF]. Assume also that ∆ n -1 2β+2 and δ n -α for some α ∈ ( 1-β 2β+2 , 1 2 ). Then there is a constant c > 0 such that

lim n→∞ max x0∈I max x∈N x 0 ,D P ρ 2 (x 0 , x) -ρ 2 (x 0 , x) ≤ cn -( 1 2 -α) √ ln n = 1. ( 27 
)
For the proof of this theorem see Section 6.3. Theorem 3 shows that, when we replace ρ 2 (x 0 , x) = |u(x) -u(x 0 )| 2 by its estimator ρ 2 (x 0 , x), the error satisfies

|ρ 2 (x 0 , x) -ρ 2 (x 0 , x)| ≤ cn -( 1 2 -α) √ ln n ≤ Cn -β β+1 ,
with probability close to 1, when 1-β 2β+2 < α < 1 2 . Therefore, from Theorems 3 and 2, we see that if we choose suitably the search window size D and similarity patch size d so that ∆ n -1 2β+2 and δ n -α , then the proposed filter u converges at the optimal rate n -β β+1 . A similar result has been established in [START_REF] Jin | Convergence theorems for the Non-Local Means filter[END_REF]Theorem 3.2] but for Gaussian noise and for a different similarity function.

Simulation results

Computational algorithm

In this section, we explain how to calculate our filter u(x 0 ), x 0 ∈ I 0 defined by [START_REF] Makitalo | A closed-form approximation of the exact unbiased inverse of the Anscombe variance-stabilizing transformation[END_REF].

First, we calculate the estimator ρ 2 (x 0 , x), x 0 ∈ I 0 defined by [START_REF] Luisier | Fast interscale wavelet denoising of Poisson-corrupted images[END_REF]. First, to save computation time, we replace the two mean values ū(x 0 ), x 0 ∈ I 0 and ū(x), x ∈ I by the same mean value ūD (x 0 ), x 0 ∈ I 0 defined by

u D (x 0 ) := 1 D 2 x∈N x 0 ,D v(x), x 0 ∈ I. ( 28 
)
This avoids the calculation of u(x) when x varies; the replacement is reasonable because the averages are close. Secondly, to better measure the similarity between the patches v(N x0,d ) and v(N x,d ), we replace the uniform kernel used in the similarity function of (23) by the non-uniform kernel defined for t ∈ N 0,d by

κ (t) = d-1 2 k=max(1,j) 1 (2k + 1) 2 , ( 29 
) if t ∞ = j for some j ∈ {0, 1, • • • , d-1
2 }. These considerations lead us to the following version of the estimator (23):

ρ 2 κ (x 0 , x) =    t∈N 0,d κ (t) |v(x 0 + t) -v(x + t)| 2 t ∈N 0,d κ(t ) -2u D (x 0 )    + . ( 30 
)
We have therefore the following pseudocode for the calculation of the non-local Poisson shot noise filter (NLPSNF) u(x 0 ), x 0 ∈ I 0 defined by ( 24 , where H 2 (x 0 ) = µ u D (x 0 ) + ν, ρ 2 κ (x 0 , x) is defined in [START_REF] Srivastava | Restoration of Poisson noise corrupted digital images with nonlinear PDE based filters along with the choice of regularization parameter estimation[END_REF].

5:

u 1 (x 0 ) = x∈N x 0 ,D w(x 0 ,x)v(x) x∈N x 0 ,D w(x 0 ,x)
6: end for 7:

Step 2 8: for each x 0 ∈ I do

9: compute u(x 0 ) = x-x 0 ≤T e - ||x-x 0 || 2 2 2 u 1 (x) x-x 0 ≤T e - ||x-x 0 || 2 2 2
, where T = 2.

10: end for

Throughout the simulations, this algorithm will be used to compute the non-local means estimator u(x 0 ), x 0 ∈ I 0 . Finally, we discuss on the choice of the parameters d, D, H 2 (x 0 ). In our simulations, the choice d = 13 and D = 11 gives good results, for all the tested images. Our experimental results also show that the restoration result is good when the window search size D varies in a suitable range, and that the evolution of the PSNR of the restored image varies as a function of the search window size D in a similar way as in Figure 7 of [START_REF] Jin | Convergence theorems for the Non-Local Means filter[END_REF]. In some sense this confirms the conclusion of the convergence theorem which states that when the research window size is chosen properly the filter converges at the optimal rate. We have not tried to find experimentally the exact formula for the optimal choice of D as a function of N and β as the value of β is in general not known.

Sutour et al. [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF] suggested that a good choice of H 2 (x 0 ) is a linear function of the standard deviation of ρ 2 (x 0 , x). Let us first give an estimate of the variance of ρ 2 (x 0 , x). When the windows N x0,d and N x,d are disjoint, by the independence of (v(x 0 + t) -v(x + t)) 2 , t ∈ N 0,d , we obtain

Var( ρ 2 (x 0 , x)) ≈ V ar 1 d 2 v(N x0,d ) -v(N x,d ) 2 2 -u d (x 0 ) -u d (x) = 1 d 4 t∈N 0,d V ar (v(x 0 + t) -v(x + t)) 2 .
Since v(z) is a Poisson variable with mean u(z), for 2 ≤ j ≤ 4, we have E[v(z) j ] = u(z) + 2≤i≤j a i u(z) i for some absolute constants a i . Therefore for some constants c i , we have

Var( ρ 2 (x 0 , x)) ≈ 1 d 4 t∈N 0,d [u(x 0 + t) + u(x + t)] + 1 d 4 t∈N 0,d 2≤i≤4 c i [u i (x 0 + t) + u i (x + t)] = 1 d 2 [ū d (x) + ūd (x 0 )] + 1 d 2 2≤i≤4 c i [ū i d (x) + ūi d (x 0 )],
where ūi

d (x) = 1 d 2
t∈N 0,d u i (x + t) and ūd (x) = ū1 d (x), for each x. We can normalize the original image so that u(z) ∈ [0, 1] for all z. Hence for i ≥ 2, ūi d (x) are negligible with respect to ūd (x). Therefore

Var( ρ 2 (x 0 , x)) ≈ 1 d 2 (ū d (x) + ūd (x 0 ) ≈ 2ū D (x 0 ) d 2 . (31) 
Therefore, following [START_REF] Sutour | Adaptive regularization of the NL-means: Application to image and video denoising[END_REF], a good choice of H 2 (x 0 ) is of the form

H 2 (x 0 ) = µ ūD (x 0 )) + ν. (32) 
We add the constant ν > 0 to avoid that H 2 (x 0 ) = 0. By doing many simulations, we find that the choice µ = 0.2 and ν = 0.0001 is suitable. This choice can also be justified as follows. We think that the parameter H 2 (x 0 ) should be a function of the standard deviation σ(x 0 ) = u(x 0 ) ≈ ūD (x 0 ). With the idea of the affine approximation (Taylor's first order expansion) of a function, it is natural to use an affine relation of type [START_REF] Terrell | Variable kernel density estimation[END_REF], similarly to what we did in our earlier work [START_REF] Jin | Convergence theorems for the Non-Local Means filter[END_REF] in removing the Gaussian noise.

Throughout the paper we symmetrize images near the boundary.

Numerical performance of the non-local Poisson shot noise filter

We have conducted experiments on simulated data on gray scale images which are presented in Fig. 1. Spots, Galaxy and Cells ( see Fig. 1 (a)-(c) ) were given by Bo Zhang, the author of [START_REF] Zhang | Wavelets, ridgelets, and curvelets for Poisson noise removal[END_REF]; Fig. 1 (d) was downloaded from The USC-SIPI Image Database1 . Fig. 1 (e) is a part of Fermi image downloaded from the NASA Fermi support center2 . Each image is scaled to the peak intensity levels 0.5, 1, 2, 3 and 5, so we focus only at low counts. We summarize our results in the following, both with visual results and performance metrics. We have conducted comparisons of our method and several competing algorithms on simulated data.

As [START_REF] Zhang | Wavelets, ridgelets, and curvelets for Poisson noise removal[END_REF], we evaluated the performance of a denoising filter u by using the Normalized Mean Integrated Square Error (NMISE) defined by

NMISE = 1 n * u(x)>0,x∈I ( u(x) -u(x)) 2 u(x) ,
where u(x) are the estimated intensities, u(x) are the respective true vales, and n * = card {u(x) : u(x) > 0, x ∈ I}. Smaller NMISE values signify better signal restoration.

For each method and each image, we calculate the average and the standard deviation of NMISE over 30 different random noise realizations. Table 1 shows the average NMISE value ± its standard deviation calculated for the whole images reconstructed by our method and several state-of-the-art approaches, such as P-LET [START_REF] Luisier | Fast interscale wavelet denoising of Poisson-corrupted images[END_REF], MV+B3 and MV-7/9 [START_REF] Zhang | Wavelets, ridgelets, and curvelets for Poisson noise removal[END_REF], P-NLM [START_REF] Deledalle | Poisson NL means: Unsupervised non local means for Poisson noise[END_REF], OWPF [START_REF] Jin | A New Poisson Noise Filter based on Weights Optimization[END_REF], E+BM3D [START_REF] Makitalo | Optimal inversion of the Anscombe transformation in low-count Poisson image denoising[END_REF], NLPCA [START_REF] Salmon | Poisson noise reduction with non-local PCA[END_REF], FoEbin [START_REF] Feng | Poisson noise reduction with higherorder natural image prior model[END_REF] and P 4 IP [START_REF] Rond | Poisson inverse problems by the plugand-play scheme[END_REF], for the very low light levels of interest. As indicated in the table, our algorithm reaches the best NMISE values in the cases of Cells and Texture with the peak intensity levels 0.5, Fermi with the peak intensity levels 1, 2, 3 and 5; for Spots and Galaxy, when the peak intensity levels are low, our approach is also competitive. The standard deviation values also show that our method is the most stable. In Table 2, we give the rank on the number of the best and second best results in Table 1 about the NMISE comparison of algorithms. From this table we see that our method has the best rank with 13 best results and 8 second best results. Table 3 lists the computation time; it reveals that our code runs fairly quickly. From Tables 2 and3, we see that our filter and the second best ranked algorithm FoEbin have comparable results, but our filter runs much fast: from Table 3 we can see that the computation time of our filter is 5.6 times shorter than that of FoEbin. The reason is that our filter has no iterative procedure, while FoEbin is an iterative algorithm with high computational complexity.

Visual quality is also important for denoising algorithms. In order to get a better view of the details of restored images, in Figs. 23456, red squares at the end of an arrow of the original and restored images are zoomed twice (the large red squares are the zoomed images). From these figures, we can see that our filter is competitive in details conservation and visual artifacts. More precisely, from Figs. 234we see that the restored images by our method conserve better the details and introduce fewer artifacts than other algorithms. In Fig. 5, we see that the method NLPCA has the best visual result, but our method remains competitive. Fig. 6 shows that for the case of Fermi image with P eak = 5, our method yields the best visual quality and the lowest NMISE value. In the restored image by our filter, we can see clearly three points in the area of red squares, but these points are seriously blurred or have disappeared in the restored images by other filters.

In the preceding comparisons we have used the NMISE value to measure the quality of restoration. The NMISE value reflects the relative error of restoration, which is well adapted when the peak value is small (less than 5 in our simulations). We have preferred to use this measure rather than the PSNR 

( u(x) -u(x)) 2 ,
where u is the original image and u the restored one. The reason is that the PSNR value reflects the absolute error of restoration, which is a reliable measure of the restoration quality only when the peak value is sufficiently large (larger than 4). In this case we have calculated the PSNR values, for which the simulation results are coherent to those obtained for the NMISE value: see Table 4, where the SSIM (structural similarity) values defined by Wang et al. [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] are also indicated.

The numerical results are performed mainly on simulated noise on a typical type of images, how do they perform on natural images, and real images taken in low light conditions. Also, it may be more helpful to present as well PSNR/SSIM for the quantitatively comparison.

Conclusion

In this paper, we present a new non-local image denoising algorithm to deal with the Poisson shot noise model. We first define an oracle filter to remove the Poisson shot noise by an adaptation of the non-local means filter originally introduced for removing the Gaussian noise. We next introduce an estimator of the similarity function and define a calculable filter, called Non-local Poisson shot noise filter, which can effectively remove the Poisson shot noise. We then establish convergence theorems which show that the proposed filter converges at the optimal rate when the search window size is appropriately chosen. Simulation results show that our filter is competitive to remove the Poisson shot noise with low light conditions, and the computation is relatively rapid.

6 Appendix: Proofs of the main results

Proof of Theorem 1

We first notice that by the Hölder condition [START_REF] Jansen | Multiscale Poisson data smoothing[END_REF], for each x 0 ∈ I 0 , we have

|u(x 0 ) -u(x 0 )| ≤ L x 0 -x 0 β ∞ ≤ LN -β = Ln -β/2 , where x 0 = (x 0,1 , x 0,2 ) = [N x0,1] N , [N x0,2] N ∈ I.
This, together with the elementary inequality (a + b) 2 ≤ 2a 2 + 2b 2 , implies that

|u * (x 0 ) -u(x 0 )| 2 = |u * (x 0 ) -u(x 0 )| 2 ≤ 2|u * (x 0 ) -u(x 0 )| 2 + 2|u(x 0 ) -u(x 0 )| 2 ≤ 2|u * (x 0 ) -u(x 0 )| 2 + 2Ln -β .
Since n -β < n -β β+1 , it suffices to prove that

E|u * (x 0 ) -u(x 0 )| 2 = O(n -β β+1 ). (33) 
In other words (since x 0 ∈ I), it suffices to prove [START_REF] Jin | Nonlocal means and optimal weights for noise removal[END_REF] for each x 0 ∈ I. So in the following we suppose that x 0 ∈ I. In this case x 0 coincides with x 0 . Denoting for brevity

I 1 =   x∈N x 0 ,D w * (x 0 , x)ρ(x 0 , x)   2 =       x-x0 ∞ ≤∆ e - ρ 2 (x 0 ,x) H 2 (x 0 ) ρ(x 0 , x) x-x0 ∞≤∆ e - ρ 2 (x 0 ,x) H 2 (x 0 )       2 , (34) and 
I 2 = x∈N x 0 ,D (w * (x 0 , x)) 2 u(x) ≤ x∈N x 0 ,D (w * (x 0 , x)) 2 Γ ≤ Γ x-x0 ∞≤∆ e -2 ρ 2 (x 0 ,x) H 2 (x 0 )   x-x0 ∞≤∆ e - ρ 2 (x 0 ,x) H 2 (x 0 )   2 , (35) 
then we have

g(w * ) ≤ I 1 + I 2 . ( 36 
)
By the assumption of the theorem γ ≥ cL∆ β (c > √ 2), which implies that for x ∈ N x0,D , we have

L 2 x -x 0 2β ∞ H 2 (x 0 ) ≤ L 2 ∆ 2β γ 2 ≤ 1 c 2 . ( 37 
)
Noting that e

-τ 2 H 2 (x 0 ) , τ ∈ [0, γ/ √ 
2) is decreasing, and using one term Taylor expansion, the inequality (37) implies that

x-x0 ∞ ≤∆ e - ρ 2 (x 0 ,x) H 2 (x 0 ) ≥ x-x0 ∞≤∆ e - L 2 x-x 0 2β ∞ H 2 (x 0 ) ≥ x-x0 ∞≤∆ 1 - L 2 x -x 0 2β ∞ H 2 (x 0 ) ≥ D 2 (1 - 1 c 2 ), (38) 
where D 2 = (2N ∆ + 1) 2 is the cardinality of the search window (cf. Eq.( 18)).

Since τ e

-τ 2 H 2 (x 0 ) is increasing in τ ∈ [0, γ/ √ 2), x-x0 ∞≤∆ e - ρ 2 (x 0 ,x) H 2 (x 0 ) ρ(x 0 , x) ≤ x-x0 ∞≤∆ L x -x 0 β ∞ e - L 2 x-x 0 2β ∞ H 2 (x 0 ) ≤ x-x0 ∞≤∆ L x -x 0 β ∞ ≤ D 2 L∆ 2 . ( 39 
)
The above three inequalities ( 34), ( 38) and (39) imply that

I 1 ≤ D 2 L∆ β D 2 (1 -1 c 2 ) 2 = c L 2 ∆ 2β , where c = c 2 c 2 -1 2 . (40) 
Taking into account ( 35), (38) and the inequality

x-x0 ∞≤∆ e -2 ρ 2 (x 0 ,x) H 2 (x 0 ) ≤ x-x0 ∞ ≤∆ 1 = D 2 ,
it is easily seen that

I 2 ≤ D 2 Γ (D 2 ) 2 ≤ Γ 4∆ 2 n . (41) 
Combining ( 36), (40), and (41), we get

g(w * ) ≤ c L 2 ∆ 2β + Γ 4∆ 2 n . (42) 
Using the condition

c 1 n -1 2β+2 ≤ ∆ ≤ c 2 n -1 2β+2 for some constants c 1 , c 2 > 0, from this we infer that g(w * ) ≤ c c2 2β L 2 + Γ 4c 2 1 n -β β+1 .
This ends the proof of (19).

Proof of Theorem 2

As in the proof of Theorem 1, we can assume that x 0 ∈ I, so that x 0 = x 0 . By our condition, e(x, x 0 ) = ρ2 (x 0 , x) -ρ 2 (x 0 , x) satisfies |e(x,

x 0 )| ≤ η n = O(n -β β+1 ), where η n = max x0,x∈I |e(x, x 0 )|. Using the elementary inequality (a -b) 2 ≤ |a 2 -b 2 | for a, b ≥ 0, we obtain that |ρ(x 0 , x) -ρ(x 0 , x)| 2 ≤ |ρ(x 0 , x) 2 -ρ 2 (x 0 , x)| ≤ η n = O(n -β β+1 ). Therefore ρ(x 0 , x) ≤ ρ(x 0 , x) + √ η n . As (a + b) 2 ≤ 2a 2 + 2b 2 , we have   x∈N x 0 ,D w * (x 0 , x)ρ(x 0 , x)   2 ≤   x∈N x 0 ,D w * (x 0 , x)ρ(x 0 , x) + √ η n   2 ≤ 2   x∈N x 0 ,D w * (x 0 , x)|u(x) -u(x 0 )|   2 + 2η n . Hence E (u * (x 0 ) -u(x 0 )) 2 ≤ 2   x∈N x 0 ,D w * (x 0 , x)|u(x) -u(x 0 )|   2 + 2η n + x∈N x 0 ,D w * (x 0 , x) 2 u(x). ≤ 2      x∈N x 0 ,D w * (x 0 , x)|u(x) -u(x 0 )|   2 + x∈N x 0 ,D w * (x 0 , x) 2 u(x)    + 2η n .
From the proof of Theorem 1 we deduce that

  x∈N x 0 ,D w * (x 0 , x)|u(x) -u(x 0 )|   2 + x∈N x 0 ,D w * (x 0 , x) 2 u(x) = O n -β β+1
.

Since η n = O(n -β 2+2β ), we obtain

E (u * (x 0 ) -u(x 0 )) 2 = 2O n -β β+1 + 2O n -β β+1 = O n -β β+1 .

Proof of Theorem 3

We first give an expression of ρ 2 (x 0 , x) defined by ( 23), which will be suitable for the estimation. For convenience, let 

With these notations and using (3), we see that the function in the definition of ρ 2 (x 0 , x) (cf. ( 23)) can be written as: 

v(N x,d ) -v(N x0,d )
We will need two lemmas for the estimation of the two sums in (46).

Lemma 1 Under the local Hölder condition [START_REF] Jansen | Multiscale Poisson data smoothing[END_REF], with ∆ and δ defined by [START_REF] Jianqing | Local polynomial modelling and its applications[END_REF] and (26), we have

1 d 2 y∈N 0,d Λ 2 x0,x (t) -|u(x) -u(x 0 )| 2 ≤ 4L 2 ∆ β δ β .
The proof of this lemma can be found in [START_REF] Jin | Nonlocal means and optimal weights for noise removal[END_REF][START_REF] Jin | Convergence theorems for the Non-Local Means filter[END_REF].

Lemma 2 There are two positive constants c 1 and c 2 , depending only on L and Γ, such that for any 0 < z ≤ c 1 d,

P (|S(x 0 , x)| ≥ zd) ≤ c 2 z -2 .
Proof Note that the variables X t = ζ x0,x (t) 2 -u(x 0 + t) -u(x + t) + 2Λ x0,x (t) ζ x0,x (t), t ∈ N 0,d (47) are identically distributed with EX t = 0. We prove below that the variance EX 2 t satisfies max t∈N 0,d EX 2 t ≤ b for some constant b > 0. As v(x) has Poisson law with parameter u(x), it holds that Ev(x) = u(x), Ev 2 (x) = u(x) + u 2 (x), Ev 3 (x) = u(x) + 3u 2 (x) + u 3 (x), Ev 4 (x) = u(x) + 7u 2 (x) + 6u 3 (x) + u 4 (x).

Hence, for each x ∈ N x0,D and each t ∈ N 0,d , Eε 4 (x + t) = E(v(x + t) -u(x + t)) 4 = Ev 4 (x + t) -3u(x + t)Ev 3 (x + t) + 6u 2 (x + t)Ev 2 (x + t) -3u 3 (x + t)Ev(x + t) + u 4 (x + t)

= u(x + t) + 4u 2 (x + t) + 3u 3 (x + t) + 2u 4 (x + t)

≤ Γ + 4Γ 2 + 3Γ 3 + 2Γ 4 , (48) 
where the last inequality follows by the definition of Γ (see ( 16)). From (48) and the inequality (a + b) Since the condition 1 2(β+1) 2 < α < 1 2 implies β 2β+2 + αβ > 1 2 -α > 0, this implies the inequality [START_REF] Prucnal | Transformation of image-signal-dependent noise into image-signal-independent noise[END_REF].
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  Non-local Poisson shot noise filter 3.1 Construction of non-local Poisson shot noise filter Utilizing the oracle estimator, we construct the non-local Poisson shot noise filter. Let D > 0 and d > 0. Notice that

): Algorithm 1 Require: Noisy image v 1 : 3 :

 113 Non-local Poisson shot noise filter (NLPSNF) Parameters: D, d, µ, ν. Ensure: Estimated image u 2: Step 1 for each x 0 ∈ I do 4: w(x 0 , x) = e -

Fig. 1

 1 Fig.1The five test images used in the experiments.

Fig. 2

 2 Fig. 2 Denoising of Galaxy with Peak= 0.5, The NMISE value is of the recovered images.

Fig. 3

 3 Fig. 3 Denoising of Cells with Peak= 0.5, The NMISE value is of the recovered images.

Fig. 4

 4 Fig. 4 Denoising of Texture with Peak= 1, The NMISE value is of the recovered images.

Fig. 5

 5 Fig. 5 Denoising of Spots with Peak= 3, The NMISE value is of the recovered images.

Fig. 6

 6 Fig. 6 Denoising of Fermi with Peak= 5, The NMISE value is of the recovered images.

Λ

  x0,x (t) = u(x 0 + t) -u(x + t) (43) and ζ x0,x (t) = ε(x 0 + t) -ε(x + t).

2 2 - 1 d 2 y∈N x 0 2 S

 21202 u(x 0 ) -u(x) x 0 + t) -v(x + t)) 2 -u(x 0 ) -u(x) = ,d (u(x 0 + t) -u(x + t) + ε(x 0 + t) -ε(x + t)) 2 -u(x 0 ) -u(x) ,x (t) + ζ x0,x (t)) 2 -u(x 0 ) -u(x) (x 0 , x), where S(x 0 , x) = t∈N 0,d ζ x0,x (t) 2 -u(x 0 + t) -u(x + t) + 2Λ x0,x (t) ζ x0,x (t) . (45)Therefore, by the definition of ρ 2 (x 0 , x) (see[START_REF] Luisier | Fast interscale wavelet denoising of Poisson-corrupted images[END_REF]), ρ 2 (x 0 , x)

  .

and ρ 2 2 t∈N 0,d Λ 2 1 d 2 ≤ 1 d 2 t∈N 0,d Λ 2 2 √

 22212222 (x 0 , x)-|u(x)-u(x 0 )| 2 ≥ 1 d x0,x (t)-|u(x)-u(x 0 )| 2 -|S(x 0 , x)| , so that ρ 2 (x 0 , x) -|u(x) -u(x 0 )| 2 x0,x (t) -|u(x) -u(x 0 )| 2 + 1 d 2 |S(x 0 , x)| .Therefore, from (57), we obtainρ 2 (x 0 , x) -|u(x) -u(x 0 )| 2 ≤ c 5 n -β 2β+2 -αβ + 1 d 2 |S(x 0 , x)| .(58)Combining (56) and (58), we getP ρ 2 (x 0 , x) -|u(x) -u(x 0 )| 2 ≥ c 4 n α-1 ln n + c 5 n -β 2β+2 -αβ ≤ c 3 ln n .

Table 1

 1 A comparison of the denoising performance of several denoising algorithms. We give the average NMISE value computed over 30 noise realizations ± its standard deviation. The best and second best values are indicated as xxxx and xxxx respectively.

	Algorithm	Peak	Spots	Galaxy	Cells	Texture	Fermi	Average
	P-LET[23]		0.0268±0.0030 0.0076±0.0005 0.0140±0.0004 0.0107±0.0003 0.0336±0.0062 0.0185±0.0021
	MV+B3[34]		0.0437±0.0030 0.0074±0.0003 0.0188±0.0007 0.0128±0.0006 0.0252±0.0041 0.0216±0.0017
	MV-7/9[34]		0.0330±0.0021 0.0070±0.0003 0.0125±0.0007 0.0114±0.0004 0.0245±0.0026 0.0177±0.0012
	E+BM3D[25]		0.0441±0.0038 0.0075±0.0002 0.0108±0.0004 0.0097±0.0003 0.0221±0.0022 0.0188±0.0014
	NLPCA[29]	0.5 0.0075±0.0006 0.0069±0.0008 0.0157±0.0010 0.0106±0.0004 0.0211±0.0032 0.0124±0.0012
	FoEbin[12]		31.6557±0.0000 2.2899±0.0000 1.3117±0.0000 0.0397±0.0000 64.5154±0.0000 19.9625±0.0000
	P 4 IP[28]		0.0277±0.0042 0.0089±0.0005 0.0135±0.0006 0.0104±0.0003 0.0078±0.0014 0.0137±0.0014
	OWPF[20]		0.0374±0.0024 0.0164±0.0005 0.0187±0.0006 0.0133±0.0005 0.0587±0.0045 0.0289±0.0017
	P-NLM[9]		0.0192±0.0092 0.0107±0.0008 0.0123±0.0006 0.0118±0.0004 0.0181±0.0025 0.0144±0.0027
	Ours		0.0149±0.0014 0.0075±0.0004 0.0105±0.0004 0.0095±0.0003 0.0087±0.0033 0.0102±0.0012
	P-LET[23]		0.0452±0.0044 0.0124±0.0004 0.0201±0.0011 0.0169 0.0005 0.0457±0.0037 0.0281±0.0020
	MV+B3[34]		0.0623±0.0027 0.0127±0.0004 0.0279±0.0009 0.0228±0.0009 0.0427±0.0029 0.0337±0.0016
	MV-7/9[34]		0.0413±0.0024 0.0118±0.0004 0.0188±0.0006 0.0184±0.0005 0.0418±0.0027 0.0264±0.0013
	E+BM3D[25]		0.0563±0.0049 0.0129±0.0003 0.0152±0.0005 0.0149±0.0006 0.0354±0.0022 0.0269±0.0017
	NLPCA[29]	1	0.0255±0.0167 0.0127±0.0009 0.0298±0.0020 0.0205±0.0007 0.0348±0.0033 0.0247±0.0047
	FoEbin[12]		0.0459±0.0025 0.0101 ±0.0003 0.0153±0.0006 0.0146±0.0004 0.0253±0.0017 0.0222±0.0011
	P 4 IP[28]		0.0648±0.0069 0.0123±0.0004 0.0199±0.0008 0.0240±0.0006 0.0151±0.0016 0.0272±0.0021
	OWPF[20]		0.0305±0.0013 0.0167±0.0005 0.0233±0.0005 0.0175±0.0004 0.0503±0.0023 0.0277±0.0010
	P-NLM[9]		0.0347±0.0114 0.0139±0.0005 0.0163±0.0006 0.0161±0.0005 0.0322±0.0055 0.0226±0.0037
	Ours		0.0243±0.0010 0.0128±0.0004 0.0174±0.0005 0.0155±0.0003 0.0133±0.0019 0.0157±0.0008
	P-LET[23]		0.0590±0.0040 0.0196±0.0008 0.0359±0.0124 0.0264 0.0004 0.0693±0.0054 0.0420±0.0046
	MV+B3[34]		0.0759±0.0031 0.0205±0.0007 0.0413±0.0016 0.0388±0.0009 0.0653±0.0033 0.0484±0.0019
	MV-7/9[34]		0.0480±0.0022 0.0193±0.0004 0.0279±0.0006 0.0288±0.0007 0.0661±0.0024 0.0380±0.0013
	E+BM3D[25]		0.0507±0.0029 0.0169±0.0004 0.0211±0.0007 0.0240±0.0006 0.0515±0.0028 0.0328±0.0015
	NLPCA[29]	2	0.0222±0.0017 0.0249±0.0021 0.0581±0.0041 0.0400±0.0013 0.0647±0.0050 0.0420±0.0028
	FoEbin[12]		0.0399±0.0022 0.0153±0.0004 0.0210±0.0007 0.0235±0.0007 0.0364±0.0020 0.0272±0.0012
	P 4 IP[28]		0.1250±0.0067 0.0223±0.0006 0.0372±0.0008 0.0933±0.0012 0.0329±0.0027 0.0621±0.0024
	OWPF[20]		0.0265±0.0009 0.0202±0.0005 0.0320±0.0006 0.0263±0.0005 0.0453±0.0017 0.0301±0.0008
	P-NLM[9]		0.0922±0.0167 0.0199±0.0006 0.0234±0.0007 0.0235±0.0007 0.0559±0.0045 0.0430±0.0046
	Ours		0.0257±0.0012 0.0183±0.0004 0.0306±0.0006 0.0260±0.0004 0.0315±0.0012 0.0264±0.0008
	P-LET[23]		0.0718±0.0059 0.0257±0.0009 0.0730±0.0814 0.0343±0.0008 0.0871±0.0045 0.0584±0.0187
	MV+B3[34]		0.0802±0.0026 0.0267±0.0011 0.0511±0.0010 0.0521±0.0014 0.0800±0.0034 0.0580±0.0019
	MV-7/9[34]		0.0525±0.0019 0.0259±0.0005 0.0356±0.0009 0.0372±0.0007 0.0861±0.0040 0.0475±0.0016
	E+BM3D[25]		0.0423±0.0029 0.0222±0.0005 0.0268±0.0006 0.0302±0.0006 0.0622±0.0033 0.0367±0.0016
	NLPCA[29]	3	0.0322±0.0020 0.0382±0.0047 0.0903±0.0069 0.0586±0.0015 0.0943±0.0048 0.0627±0.0040
	FoEbin[12]		0.0356±0.0013 0.0204±0.0004 0.0264±0.0006 0.0312±0.0005 0.0440±0.0022 0.0315±0.0010
	P 4 IP[28]		0.1685±0.0085 0.0365±0.0005 0.0608±0.0009 0.2197±0.0015 0.0508±0.0035 0.1073±0.0030
	OWPF[20]		0.0255±0.0008 0.0241±0.0006 0.0394±0.0007 0.0341±0.0006 0.0470±0.0015 0.0340±0.0008
	P-NLM[9]		0.0925±0.0251 0.0255±0.0008 0.0293±0.0007 0.0300±0.0006 0.0739±0.0063 0.0502±0.0067
	Ours		0.0311±0.0009 0.0204±0.0004 0.0324±0.0006 0.0356±0.0005 0.0335±0.0013 0.0306±0.0007
	P-LET[23]		0.0813±0.0100 0.0314±0.0013 0.0612±0.0248 0.0411±0.0009 0.1035±0.0072 0.0637±0.0088
	MV+B3[34]		0.0823±0.0023 0.0321±0.0011 0.0603±0.0011 0.0636±0.0016 0.0942±0.0043 0.0665±0.0021
	MV-7/9[34]		0.0563±0.0022 0.0308±0.0006 0.0418±0.0010 0.0443±0.0008 0.1039±0.0039 0.0554±0.0017
	E+BM3D[25]		0.0375±0.0024 0.0260±0.0006 0.0310±0.0007 0.0354±0.0008 0.0715±0.0033 0.0403±0.0016
	NLPCA[29]	4	0.0419±0.0019 0.0510±0.0049 0.1213±0.0063 0.0764±0.0017 0.1266±0.0148 0.0834±0.0059
	FoEbin[12]		0.0329±0.0011 0.0238±0.0006 0.0309±0.0007 0.0386±0.0007 0.0513±0.0029 0.0355±0.0012
	P 4 IP[28]		0.2015±0.0078 0.0548±0.0009 0.0916±0.0011 0.3904±0.0020 0.0689±0.0035 0.1614±0.0031
	OWPF[20]		0.0257±0.0008 0.0274±0.0006 0.0453±0.0009 0.0408±0.0006 0.0508±0.0016 0.0380±0.0009
	P-NLM[9]		0.0873±0.0231 0.0301±0.0010 0.0349±0.0007 0.0358±0.0006 0.0906±0.0063 0.0557±0.0063
	Ours		0.0322±0.0012 0.0262±0.0005 0.0449±0.0008 0.0448±0.0006 0.0452±0.0015 0.0387±0.0009
	P-LET[23]		0.0884±0.0074 0.0359±0.0015 0.0700±0.0189 0.0468±0.0008 0.1181±0.0059 0.0718±0.0069
	MV+B3[34]		0.0864±0.0025 0.0363±0.0010 0.0686±0.0012 0.0746±0.0009 0.1077±0.0041 0.0747±0.0019
	MV-7/9[34]		0.0596±0.0022 0.0360±0.0008 0.0473±0.0013 0.0504±0.0008 0.1197±0.0047 0.0626±0.0020
	E+BM3D[25]		0.0363±0.0016 0.0297±0.0007 0.0346±0.0009 0.0400±0.0008 0.0799±0.0036 0.0441±0.0015
	NLPCA[29]	5	0.0527±0.0022 0.0620±0.0063 0.1535±0.0080 0.0954±0.0021 0.1518±0.0072 0.1031±0.0052
	FoEbin[12]		0.0319±0.0009 0.0273±0.0007 0.0358±0.0006 0.0453±0.0007 0.0584±0.0020 0.0397±0.0010
	P 4 IP[28]		0.2275±0.0074 0.0771±0.0009 0.1292±0.0010 0.5963±0.0024 0.0849±0.0033 0.2230±0.0030
	OWPF[20]		0.0263±0.0008 0.0307±0.0006 0.0504±0.0010 0.0469±0.0007 0.0572±0.0017 0.0423±0.0010
	P-NLM[9]		0.0844±0.0109 0.0350±0.0008 0.0397±0.0006 0.0412±0.0008 0.1032±0.0097 0.0607±0.0046
	Ours		0.0338±0.0011 0.0282±0.0005 0.0411±0.0007 0.0531±0.0006 0.0455±0.0024 0.0403±0.0011

Table 2

 2 The number of the best and second best results in Table1.

	Method P-LET MV+B3 MV-7/9 E+BM3D NLPCA FoEbin P 4 IP OWPF P-NLM Ours [23] [34] [34] [25] [29] [12] [28] [20] [9]
	Best	0	0	0	5	3	10	1	3	3	13
	2 nd best	1	0	1	10	1	7	2	2	1	8

Table 3

 3 The average computation time in seconds for restoring 256 × 256 grayscale im-

	age. (a) Microsoft Windows 10 Professional (64-bit) (Intel(R) Core(TM) i7-6820HQ CPU
	@2.70 GHz) with MATLAB 2019b; (b) Microsoft Windows 7 Professional (32-bit) (Intel(R)
	Core(TM) i3-550 CPU @3.20 GHz) with MATLAB 2015a.	
	Method P-LET MV+B3 MV-7/9 E+BM3D NLPCA FoEbin P 4 IP OWPF P-NLM Ours [23] [34] [34] [25] [29] [12] [28] [20] [9]
	(a)	1.76	-	-	0.89	30.60 35.12 71.08 7.63	-	6.23
	(b)	0.95	1.30	2.69	2.59	37.92	-	151.31 15.25 70.71 11.08

Table 4 A

 4 PSNR/SSIM value comparison of the denoising performance of several denoising algorithms. The best and second best values are indicated as xxxx and xxxx respectively.

	Algorithm	Peak	Spots	Galaxy	Cells	Texture	Fermi	Average
	P-LET[23]		31.43/0.8230 27.60/0.6663 25.86/0.6258 22.22/0.4410 33.31/0.7834 27.48/0.6579
	MV+B3[34]		29.11/0.8236 26.79/0.6735 24.73/0.5740 20.22/0.2787 32.69/0.7614 26.71/0.6223
	MV-7/9[34]		30.75/0.8600 27.15/0.6695 26.37/0.6539 21.80/0.3692 33.25/0.7580 27.87/0.6621
	E+BM3D[25]		31.04/0.8399 27.43/0.6929 27.10/0.7067 22.64/0.4891 32.32/0.7606 28.11/0.6978
	NLPCA[29]	4	31.49/0.9074 24.79/0.6003 22.29/0.4936 19.54/0.1969 29.86/0.7174 25.60/0.5831
	FoEbin[12]		30.90/0.8337 27.89/0.7148 26.70/0.7040 22.36/0.3894 33.30/0.7748 28.23/0.6833
	P 4 IP[28]		24.26/0.7213 22.53/0.6012 20.03/0.5274 11.54/0.1649 28.49/0.7131 21.37/0.5456
	OWPF[20]		31.14/0.8697 26.97/0.6847 24.42/0.6173 21.89/0.3916 33.52/0.7810 27.59/0.6688
	P-NLM[9]		30.65/0.8466 27.55/0.6843 26.76/0.6834 22.84/0.4608 33.22/0.7748 28.20/0.6900
	Ours		32.08/0.8912 28.21/0.6885 25.61/0.6529 21.93/0.4761 33.35/0.7815 28.24/0.6980
	P-LET[23]		31.81/0.8369 27.86/0.6558 26.27/0.6425 22.79/0.4822 33.66/0.7908 28.48/0.6816
	MV+B3[34]		29.69/0.8436 27.42/0.6904 24.99/0.5912 20.45/0.2975 33.11/0.7764 27.13/0.6398
	MV-7/9[34]		31.74/0.8774 27.87/0.6875 26.48/0.6666 22.25/0.4048 33.51/0.7672 28.37/0.6807
	E+BM3D[25]		32.12/0.8576 28.04/0.7214 27.80/0.7389 23.20/0.5107 32.52/0.7609 28.75/0.7179
	NLPCA[29]	5	31.25/0.8866 24.94/0.6062 22.17/0.4893 19.67/0.1966 29.90/0.7164 25.59/0.5790
	FoEbin[12]		31.35/0.8595 28.46/0.7332 27.30/0.7146 22.64/0.4031 33.65/0.7811 28.68/0.6983
	P 4 IP[28]		24.15/0.7292 22.04/0.5952 19.43/0.5227 10.71/0.1604 28.66/0.7182 21.00/0.5451
	OWPF[20]		31.75/0.8870 27.33/0.7067 25.04/0.6447 22.33/0.4191 33.80/0.7943 28.05/0.6904
	P-NLM[9]		31.42/0.8622 27.73/0.6957 27.19/0.6892 23.19/0.4821 33.76/0.7850 28.66/0.7028
	Ours		33.78/0.9141 28.55/0.7045 25.81/0.6713 22.05/0.4812 34.12/0.7890 28.86/0.7120

  As the function u satisfies the local Hölder condition[START_REF] Jansen | Multiscale Poisson data smoothing[END_REF], for x ∈ N x0,x Λ 2 x0,x (t) = (u(x 0 + t) -u(x + t)) 2 ≤ L 2 ∆ 2β ≤ L 2 .(51)Therefore, taking into account (49), (50) and (51), we obtain, uniformly in t ∈ N 0,d ,EX 2 t = E(ζ x0,x (t) 2 -u(x 0 + t) -u(x + t) + 2Λ x0,x (t) ζ x0,x (t)) 2 = E(ζ 4 x0,x (t)) + (u(x 0 + t) + u(x + t)) 2 + 4Λ 2 x0,x E(ζ 2 x0,x (t)) + 2(u(x 0 + t) + u(x + t))E(ζ 2 x0,x (t)) ≤ 16(Γ + 4Γ 2 + 3Γ 3 + 2Γ 4 ) + 4Γ 2 + 4L 2 × 2Γ + 4Γ × Γ = 8(2 + L 2 )Γ + 72Γ 2 + 48Γ 3 + 32Γ 4

	≤ 2Γ.	(50)

4 

≤ 8a 4 + 8b

4 

for a, b ∈ R, we have

E(ζ 4 x0,x (t)) = E (ε(x 0 + t) -ε(x + t)) 4 ≤ E 8ε 4 (x 0 + t) + 8ε 4 (x + t) ≤ 16(Γ + 4Γ 2 + 3Γ 3 + 2Γ 4 ).

(49)

As E(ε(x)) = 0 and Var(ε(x)) = u(x), by the independence of ε(x 0 + t) and ε(x + t), it follows that

E(ζ x0,x (t) 2 ) = E (ε(x 0 + t) -ε(x + t)) 2 = Eε 2 (x + t) + Eε 2 (x 0 + t)

= u(x + t) + u(x 0 + t)

http://sipi.usc.edu/database/

https://fermi.gsfc.nasa.gov/ssc
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We have therefore proved that EX 2 t ≤ b, where b := 8(2 + L 2 )Γ + 72Γ 2 + 48Γ 3 + 32Γ 4 .

The point in handling the sum S(x 0 , x) = t∈N 0,d X t is that the variables X t , t ∈ N 0,d are not necessarily independent. Remark that ζ x0,x (t) and ζ x0,x (s) are correlated if and only if t -s = ±(x 0 -x) : indeed, it can be easily checked that

By the definition of

s) are independent, so that X t and X s are also independent. Consequently

By the Cauchy-Schwarz inequality E(X t X s ) ≤ b. Hence

Therefore, by Chebyshev's inequality

Now we turn to the proof of Theorem 3. Below c 1 , c 2 , • • • stand for some constants (independent of n). By equation ( 26) and the assumption on δ we

Therefore,

By Lemma 1 and the conditions on ∆ and δ, we have,

From (46), we see that