Benjamin Bergougnoux
email: benjamin.bergougnoux@uib.no

Édouard Bonnet
email: edouard.bonnet@ens-lyon.fr

Nick Brettell
email: nick.brettell@vuw.ac.nz

O-Joung Kwon
email: ojoungkwon@gmail.com

Close relatives of Feedback Vertex Set without single-exponential algorithms parameterized by treewidth

Keywords: 2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory Subset Feedback Vertex Set, Multiway Cut, Parameterized Algorithms, Treewidth, Graph Modification, Vertex Deletion Problems

The Cut & Count technique and the rank-based approach have lead to single-exponential FPT algorithms parameterized by treewidth, that is, running in time 2 O(tw) n O(1) , for Feedback Vertex Set and connected versions of the classical graph problems (such as Vertex Cover and Dominating Set). We show that Subset Feedback Vertex Set, Subset Odd Cycle Transversal, Restricted Edge-Subset Feedback Edge Set, Node Multiway Cut, and Multiway Cut are unlikely to have such running times. More precisely, we match algorithms running in time 2 O(tw log tw) n O(1) with tight lower bounds under the Exponential-Time Hypothesis (ETH), ruling out 2 o(tw log tw) n O(1) , where n is the number of vertices and tw is the treewidth of the input graph. Our algorithms extend to the weighted case, while our lower bounds also hold for the larger parameter pathwidth and do not require weights. We also show that, in contrast to Odd Cycle Transversal, there is no 2 o(tw log tw) n O(1) -time algorithm for Even Cycle Transversal under the ETH.

Introduction

Many NP-hard graph problems admit polynomial-time algorithms on graphs with bounded treewidth, a measure of how well a graph accommodates a decomposition into a tree-like structure. In fact, Courcelle's Theorem [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF] states that any problem definable in MSO 2 logic can be solved in linear time on graphs of bounded treewidth.

To obtain a more fine-grained perspective on the dependence on treewidth for certain problems, it is useful to study the parameterized complexity with respect to treewidth. In particular, we can ask: what is the "smallest" function f for which we can obtain an algorithm that, given a graph with treewidth tw, has running time f (tw)n O (1) ? For Feedback Vertex Set, standard dynamic programming techniques can be used to obtain an algorithm running in 2 O(tw log tw) n O (1) time, and for a while many believed this to be essentially best possible. However, this changed in 2011 when Cygan et al. [START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF] developed the Cut&Count technique, by which they obtained a single-exponential 3 tw n O(1) -time randomized algorithm. Following this, Bodlaender et al. [START_REF] Hans | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF] showed there is a deterministic 2 O(tw) n O(1) -time algorithm, using a rank-based approach and the concept of representative sets. The same year, Pilipczuk [START_REF] Pilipczuk | Problems parameterized by treewidth tractable in single exponential time: A logical approach[END_REF] exhibited a logic fragment whose model checking admits a single-exponential algorithm parameterized by the treewidth of the input graph, thereby providing a scaled-down but more fine-grained version of Courcelle's theorem. Moreover, also in 2011, Lokshtanov et al. [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF] developed a framework yielding 2 Ω(tw log tw) n O (1) -time lower bounds under the Exponential Time Hypothesis (ETH). Recall that the ETH asserts that there is a real number δ > 0 such that 3-SAT cannot be solved in time 2 δn on n-variable formulas [START_REF] Impagliazzo | On the Complexity of k-SAT[END_REF]. Lokshtanov et al.'s paper prompted several authors to investigate the exact time-dependency on treewidth for a variety of graph modification problems. For a vertex-deletion problem, the task is to delete at most k vertices so that the resulting graph is in some target class. Feedback Vertex Set can be viewed as a vertex-deletion problem where the graphs in the target class consist of blocks with at most two vertices (a block is a maximal subgraph H such that H has no cut vertices). Bonnet et al. [START_REF] Bonnet | Generalized feedback vertex set problems on bounded-treewidth graphs: chordality is the key to single-exponential parameterized algorithms[END_REF] considered the class of problems, generalizing Feedback Vertex Set, where the target graphs are those consisting of blocks each of which has a bounded number of vertices, and is in some fixed hereditary, polynomial-time recognizable class P. They showed that such a problem is solvable in time 2 O(tw) n O (1) precisely when each graph in P is chordal (when P does not satisfy this condition, an algorithm with running time 2 o(tw log tw) n O (1) would refute the ETH). Baste et al. [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF] studied another generalization of Feedback Vertex Set: the vertex-deletion problem where the target graphs are those having no minor isomorphic to a fixed graph H. They showed a single-exponential parameterized algorithm in treewidth is possible precisely when H is a minor of the banner (the cycle on four vertices with a degree-1 vertex attached to it), but H is not P 5 (the path graph on five vertices), assuming the ETH holds.

So-called slightly superexponential parameterized algorithms, running in time 2 O(tw log tw) n O (1) , are by no means a formality for problems that are FPT in treewidth. For instance, Pilipczuk [START_REF] Pilipczuk | Problems parameterized by treewidth tractable in single exponential time: A logical approach[END_REF] showed that deciding if a graph has a transversal of size at most k hitting all cycles of length exactly (or length at most) for a fixed value cannot be solved in time 2 o(tw 2) n O (1) , unless the ETH fails. This lower bound matches a dynamic-programming based algorithm running in time 2 O(tw 2) n O (1) . Cygan et al. [START_REF] Cygan | Tight lower bounds on graph embedding problems[END_REF] investigated the more general problem of hitting all subgraphs H of a given graph G, for a fixed pattern graph H, again parameterized by treewidth. For various H, they found algorithms running in time 2 O(tw u(H)) n O (1) , and proved ETH lower bounds in 2 Ω(tw (H)) n O (1) , for values 1 < (H) u(H) depending on H. Another recent example is provided by Sau and Uéverton [START_REF] Sau | Hitting forbidden induced subgraphs on bounded treewidth graphs[END_REF] who prove similar results for the analogous problem where "subgraphs" is replaced by "induced subgraphs". Finally, for the vertex-deletion problem where the target class is a proper minor-closed class given by the non-empty list of forbidden minors, it is still open if the double-exponential dependence on treewidth is asymptotically best possible [START_REF] Baste | Hitting minors on bounded treewidth graphs[END_REF].

Sometimes, only a seemingly slight generalization of Feedback Vertex Set can result in problems with no single-exponential algorithm parameterized by treewidth. Bonamy et al. [START_REF] Bonamy | On directed feedback vertex set parameterized by treewidth[END_REF] showed that Directed Feedback Vertex Set can be solved in time 2 O(tw log tw) n O (1) but not faster under the ETH, where tw is the treewidth of the underlying undirected graph. In this paper, we consider another collection of problems that generalize Feedback Vertex Set, and that do not have single-exponential algorithms parameterized by treewidth. An equivalent formulation of FVS is to find a transversal of all cycles in a given graph. We consider problems where the goal is to find a transversal of some subset of the cycles of a given graph. If this subset of cycles is those that intersect some fixed set of vertices S, we obtain the following problem:

Input: A graph G, a subset of vertices T ⊆ V (G), called terminals, and an integer k. Question: Is there a set of at most k edges hitting every path between a pair of terminals?

The look-alike problem Multicut, where the task is to separate each pair of terminals in a given set of pairs (rather than all the pairs in a given set), is NP-complete on trees [START_REF] Garg | Primal-dual approximation algorithms for integral flow and multicut in trees[END_REF]. Therefore a parameterization by treewidth cannot help here. In the language of parameterized complexity, Multicut parameterized by treewidth is paraNP-complete.

Our contribution

With the exception of Even Cycle Transversal, for which we provide only a lower bound, we show that all the problems formally defined so far admit a slightly superexponential parameterized algorithm, and that this running time cannot be improved, unless the ETH fails. We leave as an open problem the existence of a slightly superexponential algorithm for (Subset) Even Cycle Transversal parameterized by treewidth. We note that Deng et al. [START_REF] Deng | Multi-multiway cut problem on graphs of bounded branch width[END_REF] have already shown that Multiway Cut can be solved in time 2 O(tw log tw) n O (1) . Our algorithms work for treewidth and weights, while our lower bounds hold for the larger parameter pathwidth and do not require weights.

On the algorithmic side we show the following:

Theorem 1.
The following problems can be solved in time 2 O(tw log tw) n O (1) on n-vertex graphs with treewidth tw: Subset Feedback Vertex Set, Subset Odd Cycle Transversal, Restricted Edge-Subset Feedback Edge Set, and Node Multiway Cut.

We provide algorithms having the claimed running time for the weighted versions of each of the four problems in Theorem 1. In these weighted versions, the input graph is given with a weight function w on the vertices when the problem is to find a set of vertices, or on the edges when the problem is to find a set of edges. Furthermore, in the weighted versions, the problem asks for a solution of weight at most k.

On the complexity side, the main conceptual contribution of the paper is to show that problems seemingly quite close to Feedback Vertex Set do not admit a single-exponential algorithm parameterized by treewidth, under the ETH. Theorem 2. Unless the ETH fails, the following problems cannot be solved in time 2 o(pw log pw) n O (1) For the last two problems, our reductions build instances where the number of terminals |T | is Θ(pw). Thus we also rule out a running time of |T | o(pw) . All the reductions are from k × k-(Permutation) Independent Set/Clique following a strategy suggested by Lokshtanov et al. [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF] (see for instance, [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF][START_REF] Bonamy | On directed feedback vertex set parameterized by treewidth[END_REF][START_REF] Bonnet | Generalized feedback vertex set problems on bounded-treewidth graphs: chordality is the key to single-exponential parameterized algorithms[END_REF][START_REF] Broersma | Tight complexity bounds for FPT subgraph problems parameterized by the clique-width[END_REF][START_REF] Grønås Drange | On the computational complexity of vertex integrity and component order connectivity[END_REF]). These problems cannot be solved in time 2 o(k log k) , unless the ETH fails.

k × k-Independent Set Parameter: k Input: A graph H with vertex set V (H) = [k] 2
for some integer k. Question: An independent set of size k hitting each column exactly once.

k × k-Permutation Independent Set Parameter: k Input: A graph H with vertex set V (H) = [k] 2
for some integer k. Question: An independent set of size k hitting each column and each row exactly once.

A row is a set of vertices of the form {(i, 1), (i, 2), . . . ,

(i, k)} ⊂ V (H) for some i ∈ [k], while a column is a set {(1, j), (2, j), . . . , (k, j)} ⊂ V (H) for some j ∈ [k]. The problem k × k-(Permutation)
Clique is defined analogously, where the solution is required to be a clique rather than an independent set.1

Roadmap for the lower bounds. To prove Theorem 2, we start by designing a gadget specification for generic vertex-deletion problems. We show that any such problem, allowing for gadgets respecting the specification, has the lower bound given in Theorem 2. This is achieved by a meta-reduction from k × k-Permutation Independent Set. We give gadgets for Subset FVS, Subset OCT, and ECT that comply with the specification. We thus obtain the first three items of the theorem in a unified way, with simple and reusable gadgets. This mini-framework may in principle be useful for other vertex-deletion problems.

In order to show a stronger lower bound for Node Multiway Cut, with the number of terminals in Θ(k), we depart from the previous specification slightly, although we still use some shared notation and arguments to bound the pathwidth, where convenient. This reduction is from k × k-Independent Set.

Finally, the reduction to Multiway Cut is more intricate. For this problem it is surprisingly challenging to discourage the undesirable solutions "cutting close" to every terminal but one, where the deletion set yields a very large connected component for one terminal, and small components for the rest of the terminals. In particular, the trick used for the Node Multiway Cut lower bound cannot be replicated. We overcome this issue by designing a somewhat counter-intuitive edge gadget which encourages the retention of as many pairs of endpoints linked to two (distinct) terminals as possible. This uses the simple fact that, in a ∆-regular graph, a clique of size k minimizes the number of edges covered by k vertices: ∆k -k 2 vs ∆k for an independent set of size k. We then reduce from k × k-Permutation Clique. We discuss why getting the same lower bound for a regular variant of k × k-Permutation Clique is technical, and bypass that difficulty by encoding a degree-equalizer gadget directly in the Multiway Cut instance. As a side note, we nevertheless prove that a semi-regular variant of k × k-Clique also has the slightly superexponential lower bound. This proof uses a constructive version of the Hajnal-Szemerédi theorem on equitable colorings.

A remark on parameter-preserving reductions between the problems.

There is an easy reduction from Node Multiway Cut to Weighted Subset Feedback Vertex Set (WSFVS, for short). It consists of adding a vertex v of "infinite" weight adjacent to all the terminals of the Multiway Cut instance, which also all get "infinite" weight. The set S of the WSFVS instance is {v}. The same process yields a reduction from Multiway Cut to Restricted Edge-Subset Feedback Edge Set, where now the set S of the Restricted Edge-Subset Feedback Edge Set instance contains all the edges incident to v (recall that these edges are thus undeletable).

From the latter reduction, we can immediately derive the lower bound for Restricted Edge-Subset Feedback Edge Set from the lower bound for Multiway Cut (see Theorem 13). However, the hardness result for Node Multiway Cut (see Theorem 11) does not imply anything for Subset Feedback Vertex Set. Indeed, to encode the "infinite" weight that makes v and its neighbors undeletable, one would have to duplicate these vertices many times. This would result in a large biclique, or at the very least a large biclique minor, and would thereby make the pathwidth or treewidth large. Therefore Theorem 10 is necessary and cannot be obtained by a simple modification of Theorem 11. Finally, we observe that the straightforward reduction from Multiway Cut to Node Multiway Cut requires vertex weights, or blows up the treewidth. So again Theorem 11 cannot be derived from Theorem 12.

Roadmap for the algorithms. To prove Theorem 1, we first present a 2 O(tw log tw) n 3 -time algorithm for the weighted variant of Subset OCT. With a few modifications, this algorithm can solve the weighted variant of Subset FVS. We obtain algorithms for the other problems in Theorem 1 by reducing these problems to the weighted variant of Subset FVS.

Let us explain our approach for Subset OCT on a graph G with S ⊆ V (G). We solve Subset OCT indirectly by finding a set X ⊆ V (G) of maximum weight that induces a graph with no odd cycles traversing S (we call such a graph S-bipartite). We prove that a graph has no odd cycle traversing S if and only if for each block C, either C is bipartite or C has no vertex in S. From this characterization, we prove that it is enough to store 2 O(tw log tw) partial solutions at each bag B of a tree decomposition.

Let B be a bag of the tree decomposition of G and G B be the graph induced by the vertices in B and its descendant bags in the tree decomposition. A partial solution of G B is a set X ⊆ V (G B) that induces an S-bipartite graph. We design an equivalence relation ≡ B on the partial solutions of G B such that for every For the weighted variant of Subset FVS, we can use the same equivalence relation without [START_REF] Hans | Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth[END_REF]. We reduce the weighted variant of Node Multiway Cut to Subset FVS as explained in the previous subsection: by adding a vertex v of infinite weight adjacent to the set of terminals, setting S = {v}, and also giving infinite weights to the terminals. Furthermore, we reduce the weighted variant of Restricted Edge-Subset Feedback Edge Set to the weighted variant of Subset FVS by subdividing each edge, setting S as the set of subdivided vertices corresponding to the given subset of edges, and giving infinite weights to the original vertices and the vertices in S. These two reductions show that both problems admit 2 O(tw log tw) n 3 -time algorithms.

X ≡ B Y and W ⊆ V (G) \ V (G B), G[X ∪ W] is S-bipartite if and only if G[Y ∪ W] is S-bipartite.

Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give the required graph-theoretic definitions and notation. In Section 3 we prove all the ETH lower bounds of Theorem 2. More precisely, in Section 3.1 we introduce a gadget specification for a generic vertex-deletion problem, and we show the slightly superexponential lower bound for any problem complying with the gadget specification. In Section 3.2 we design gadgets for Subset FVS, Subset OCT, ECT, and thus obtain the first three items of Theorem 2. In Sections 3.3 and 3.4 we present specific reductions for Node Multiway Cut and Multiway Cut, respectively. In Section 4 we prove that the weighted variants of Subset OCT, Subset FVS, Restricted Edge-Subset Feedback Edge Set, and Node Multiway Cut admit 2 O(tw log tw) n 3 -time algorithms.

Preliminaries

We assume all graphs have no loops or parallel edges. Let G be a graph. We denote the vertex set and the edge set of G by V (G) and E(G), respectively. For a vertex v in G, we use G -v to denote the deletion of v from G, that is, the graph obtained by removing v and its incident edges. For X ⊆ V (G), we denote by G -X the graph obtained by removing all vertices in X and their incident edges. For X ⊆ V (G), we denote by G[X] the subgraph induced by the vertex set

X. A subgraph H of G is an induced subgraph of G if H = G[X] for some vertex subset X of G. For two graphs G 1 and G 2 , G 1 ∪ G 2 is the graph with the vertex set V (G 1) ∪ V (G 2
) and the edge set E(G 1) ∪ E(G 2), and G 1 ∩ G 2 is the graph with the vertex set V (G 1) ∩ V (G 2) and the edge set

E(G 1) ∩ E(G 2). A set X ⊆ V (G) is a clique if G
N G [v] := N G (v) ∪ {v}. For X ⊆ V (G), we let N G (X) := (v∈X N G (v)) \ X, and say N G (X) is the (open) neighborhood of X. For u, v ∈ V (G), we say that u and v are twins if N (u) = N (v). If N [u] = N [v]
, then we also say that u and v are true twins; whereas when u and v are non-adjacent twins, we say that u and v are false twins.

A vertex v of G is a cut vertex if the deletion of v from G increases the number of connected components. We say G is 2-connected if it is connected and has no cut vertices. Note that every connected graph on at most two vertices is 2-connected. A block of G is a maximal 2-connected subgraph of G.

Let G be a graph. A walk in G is a sequence of vertices where every consecutive pair of vertices is an edge of G. The first and last vertices in a walk are called end-vertices. A walk is closed if its two end-vertices are the same. Given two walks W 1 = (v 1 , . . . , v t) and W 2 = (v t , v t+1 , . . . , v k) whose internal vertices are pairwise distinct, we denote by W 1 • W 2 the walk (v 1 , . . . , v t , v t+1 , . . . , v k). We say that a walk is odd (resp. even) if the number of edges used by the the walk is odd (resp. even). Given S ⊆ V (G), we say that a walk is S-traversing if it contains at least one vertex in S. For a graph H and subgraph B of H, we say that a walk W in H is a B-walk if the endpoints of W are in B and the internal vertices of W are not in B. A path of a graph is a walk where each vertex is used at most once. A cycle of a graph is a closed walk where each vertex, except the end-vertices, is used at most once.

Treewidth

A tree decomposition of a graph G is a pair (T, B) consisting of a tree T and a family B = {B t } t∈V (T) of sets B t ⊆ V (G), called bags, satisfying the following three conditions:

1. V (G) = t∈V (T) B t , 2.
for every edge uv of G, there exists a node t of T such that u, v ∈ B t , and 3. for t 1 , t 2 , t 3 ∈ V (T), B t1 ∩ B t3 ⊆ B t2 whenever t 2 is on the path from t 1 to t 3 in T . The width of a tree decomposition (T, B) is max{|B t | -1 : t ∈ V (T)}. The treewidth of G is the minimum width over all tree decompositions of G. A path decomposition is a tree decomposition (P, B) where P is a path. The pathwidth of G is the minimum width over all path decompositions of G. We denote a path decomposition (P, B) as (B v1 , . . . , B vt), where

P is a path v 1 v 2 • • • v t .
To design a dynamic programming algorithm, we use a convenient form of a tree decomposition known as a nice tree decomposition. A tree T is said to be rooted if it has a specified node called the root. Let T be a rooted tree with root node r. A node t of T is called a leaf node if it has degree one and it is not the root. For two nodes t 1 and t 2 of T , t 1 is a descendant of t 2 if the unique path from t 1 to r contains t 2 . If a node t 1 is a descendant of a node t 2 and t 1 t 2 ∈ E(T), then t 1 is called a child of t 2 .

A tree decomposition (T, B = {B t } t∈V (T)) is a nice tree decomposition with root node r ∈ V (T) if T is a rooted tree with root node r, and every node t of T is one of the following: 1. a leaf node: t is a leaf of T and B t = ∅; 2. an introduce node: t has exactly one child t and B t = B t ∪ {v} for some v ∈ V (G) \ B t ; 3. a forget node: t has exactly one child t and B t = B t \ {v} for some v ∈ B t ; or 4. a join node: t has exactly two children t 1 and t 2 , and

B t = B t1 = B t2 . (G, X) (H, X) (G, X) ⊕ (H, X)
Figure 1 An example of the sum (G, X) ⊕ (H, X).

Theorem 3 (Bodlaender et al. [START_REF] Hans | A c k n 5-approximation algorithm for treewidth[END_REF]). Given an n-vertex graph G and a positive integer k, one can either output a tree decomposition of G with width at most 5k + 4, or correctly answer that the treewidth of G is larger than k, in time 2 O(k) n. Lemma 4 (folklore; see Lemma 7.4 in [START_REF] Cygan | Parameterized Algorithms[END_REF]). Given a tree decomposition of an n-vertex graph G of width w, one can construct a nice tree decomposition (T, B) of width w with

|V (T)| = O(wn) in time O(k 2 • max(|V (T)|, |V (G)|)).

Boundaried graphs

For a graph G and X ⊆ V (G), the pair (G, X) is called a boundaried graph. Two boundaried graphs (G, X) and (H, X) are said to be

compatible if V (G -X) ∩ V (H -X) = ∅ and G[X] = H[X].
For two compatible boundaried graphs (G, X) and (H, X), the sum of two graphs is the graph obtained from the disjoint union of G and H by identifying each vertex of X in G with the same vertex in H and removing an edge from multiple edges that appear in X. We denote the resulting graph by (G, X) ⊕ (H, X). See Figure 1 for an example.

Superexponential lower bounds parameterized by treewidth

Our reductions for Subset FVS, Subset OCT, and ECT, in Section 3.2, will have the same skeleton. In order to avoid repeating the same arguments, we show in Section 3.1 the lower bound of Theorem 2 for a meta-problem. We prove the lower bound for Node Multiway Cut in Section 3.3, and the lower bounds for Multiway Cut and Restricted Edge-Subset Feedback Edge Set in Section 3.4.

Lower bound for a generic vertex-deletion problem

The scope of application of Theorem 2 is any hereditary vertex-deletion problem Π; that is, if G -X satisfies a problem instance P (Π), then G -X also satifies P (Π) for every X ⊇ X. The main part of the input is a graph G and a non-negative integer k . In addition, we allow any sort of labelings of G, be it subsets of vertices

S 1 , S 2 , . . . ⊆ V (G), of edges E 1 , E 2 , . . . , ⊆ E(G), pairs of vertices P 1 , P 2 , . . . ⊆ V (G) 2 , etc. The goal is to find a subset X ⊆ V (G) of k vertices such that a property P (Π), dependent on Π, is satisfied on G -X with its induced labeling. A subset of vertices A ⊆ V (G) is a Π-obstruction if G[A] does not satisfy P (Π). A set X ⊆ V (G) is Π-legal if G -X satisfies P (Π) (in particular, solutions are Π-legal sets of size k). As P (Π) is assumed hereditary, a Π-legal set intersects every Π-obstruction. Finally a Π-legal s-deletion within Y is a set X ⊆ Y of size at most s such that G[Y \ X] satisfies P (Π).

Common base

The meta-result of Theorem 5 concerns hereditary vertex-deletion problems admitting four types of gadgets. These gadgets, which will eventually depend on Π, are attached to a common problem-independent base. We first describe the common base. H • is a set of 2k 2 vertices, for some implicit positive integer k. We denote these vertices by v • (i, j, z) for each i ∈ [k], j ∈ [k], and z ∈ [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF]. We imagine the vertices of H • being displayed in a k-by-k grid with v • (i, j, 1) and v • (i, j, 2) side by side in the i-th row and j-th column.

The base consists of copies of H • that we denote by H 1 , H 2 , . . . and typically index by p. The vertices of H p are denoted by v p (i, j, z). The vertices v p (i, j, 1) and v p (i, j, 2) are said to be homologous. We set C p,j := i∈[k],z∈ [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF] {v p (i, j, z)} and refer to it as the j-th column of H p . Similarly R p,i := j∈[k],z∈ [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF] {v p (i, j, z)} is called the i-th row of H p . We can attach to the base a list of gadgets as detailed now. The vertices added to the base are called additional or new.

Column selector gadget

A k-column selector gadget has the following specification. Its vertex set is a single column C p,j plus O(k) additional vertices C sel (p, j). The only restriction on the edge set of the gadget is that homologous vertices should remain non-adjacent. Other than that, any edge can be added within C p,j . However the open neighborhood of C sel (p, j) has to be contained in C p,j .

A problem Π admits a column selector gadget if, for every positive integer k, one can build in time k O(1) a k-column selector such that the only Π-legal (2k -2)-deletions within C p,j ∪ C sel (p, j) are one of the k sets:

C p,j \ {v p (1, j, 1), v p (1, j, 2)}, C p,j \ {v p (2, j, 1), v p (2, j, 2)}, . . . , C p,j \ {v p (k, j, 1), v p (k, j, 2)}.

Row selector gadget

In order to keep small balanced separators, our k-row selector gadget is quite different from the k-column selector.

Its vertex set is a single row R p,i plus O(1) additional vertices R sel (p, i). Furthermore no edge can be added within R p,i . Again the open neighborhood of R sel (p, i) has to be contained in R p,i .
A problem Π admits a row selector gadget if, for every positive integer k, one can build in time k O(1) a k-row selector such that, for every j

= j ∈ [k], R sel (p, i) ∪ {v p (i, j, 1), v p (i, j, 2), v p (i, j , 1), v p (i, j , 2)} is a Π-obstruction.

Edge gadget

The vertex set of an edge gadget is of the form {v p (i, j, 1), v p (i, j, 2), v p (i , j , 1), v p (i , j , 2)} ∪ E p (i, j, i , j) where

i = i ∈ [k], j = j ∈ [k], and E p (i, j, i , j) is a set of O(k) vertices 2 .
There is no restriction on the edge set. As usual the open neighborhood of E p (i, j, i , j) has to be contained in {v p (i, j, 1), v p (i, j, 2), v p (i , j , 1), v p (i , j , 2)}.

A problem Π admits an edge gadget if one can build in time k O (1) an edge gadget such that E p (i, j, i , j

) ∪ {v p (i, j, 1), v p (i, j, 2), v p (i , j , 1), v p (i , j , 2)} is a Π-obstruction.

Propagation gadget

The vertex set of a propagation gadget is of the form H p ∪ H p+1 ∪ P p where P p is a set of k O(1) vertices. There is a subset P p ⊆ P p of size O(k) such that each vertex of P p \ P p has at most one neighbor in H p ∪ H p+1 and the rest of its neighborhood in P p . This fairly technical condition aims to give some extra flexibility while keeping sufficiently small separators between H p and H p+1 . In particular, if P p is itself of size O(k), then the condition is trivially met with P p = P p . The propagation gadget has no edge with both endpoints in H p ∪ H p+1 . Everything else is permitted, but the open neighborhood of P p has to be contained in

H p ∪ H p+1 .
A problem Π admits a propagation gadget if one can build in time k O (1) a propagation gadget such that for every i, j

= j ∈ [k], P p ∪ {v p (i, j, 1), v p (i, j, 2), v p+1 (i, j , 1), v p+1 (i, j , 2)} is a Π-obstruction.

Intended-solution property

A hereditary vertex-deletion problem Π and a description of the four above gadgets for Π have the intendedsolution property if the following holds. On any graph G built by adding to the base H 1 ∪. . .∪H p ∪. . . H m at most one edge gadget in each H p , one propagation gadget between consecutive pairs H p and H p+1 , and some column and row selector gadgets, every deletion set p∈[m],i∈ [k],j∈[k]\{ji},z∈ [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF] {v p (i, j, z)} (with {j 1 , j 2 , . . . , j k } = [k]) intersecting every edge gadget is Π-legal.

We can now state the lower bound for the generic hereditary vertex-deletion problems.

Theorem 5. Unless the ETH fails, every vertex-deletion problem Π admitting a column selector, a row selector, an edge, and a propagation gadget, satisfying the intended-solution property, cannot be solved in time 2 o(pw log pw) n O (1) on n-vertex graphs with pathwidth pw. 1) , we derive the claimed lower bound.

Proof. From any instance

H of k × k-Permutation Independent Set, we build an equivalent Π-instance (G, k = k O(1)) of size k O(1) with pathwidth in O(k). Since under the ETH there is no algorithm solving k × k-Permutation Independent Set in time 2 o(k log k) k O(
Construction. We number the edges in E(H) as e 1 , . . . , e m . We start with a base consisting of m copies of H • , labelled H p for p ∈ [m] (see description of the common base). The vertices v p (i, j, 1) and v p (i, j, 2) encode the vertex (i, j) ∈ V (H); recall that we call such a pair homologous. We attach to each column C p,j , for p ∈ [m] and j ∈ [k], a column selector gadget (for Π), with additional vertices C sel (p, j). For each pair p ∈ [m], i ∈ [k], we add a row selector gadget to R p,i , with additional vertices R sel (p, i).

For each edge e p = (i p , j p

)(i p , j p) ∈ E(H) (p ∈ [m]
), we attach an edge gadget, with additional vertices E p (i p , j p , i p , j p), to {v p (i p , j p , 1), v p (i p , j p , 2), v p (i p , j p , 1), v p (i p , j p , 2)}. For each p ∈ [m-1], we add a propagation gadget between H p and H p+1 , with additional vertices P p . This finishes the construction of G. We set k := 2(k -1)km.

Correctness. We first assume that there is a solution I to k × k-Permutation Independent Set. That is, I is an independent set of H with exactly one vertex per column and per row. Say the vertices of

I are (1, j 1), (2, j 2), . . . (k, j k) with {j 1 , j 2 , . . . , j k } = [k]. Then X := p∈[m] H p \ ∪ i∈[k] {v p (i, j i , 1), v p (i, j i , 2)}
is a solution to Π. Indeed it is Π-legal since it intersects every edge gadget (if not, the edge gadget would be between two vertices of I, a contradiction) and Π satisfies the intended-solution property, by assumption. Furthermore |X| = 2mk(k -1) = k .

We now assume that the Π-instance (G, k) admits a solution (of size k), say X. The graph G has km disjoint Π-obstructions C p,j ∪ C sel (p, j). For each of these sets, at least s := 2(k -1) vertices must be deleted, by the specification of the column sector gadget. Since globally only k = kms vertices can be deleted, X intersects each C p,j ∪ C sel (p, j) at a set C p,j \ {v p (i j,p , j, 1), v p (i j,p , j, 2)} for some i j,p ∈ [k]. Moreover, the k row selector gadgets attached to each H p enforce that {i 1,p , i 2,p , . . . , i k,p } = [k], and the propagation gadget P p enforces that i j,p = i j,p+1 for every j ∈ [k]. This implies that i j,1 = i j,2 = . . . = i j,m for every j ∈ [k], and we simply denote this common value by i j . We claim that {(i 1 , 1), (i 2 , 2), . . . , (i k , k)} is a solution to the k × k-Permutation Independent Set instance. We have already argued that {i

1 , i 2 , . . . , i k } = [k].
Finally there cannot be an edge e p = (i j , j)(i j , j) ∈ E(H) since then the Π-obstruction E p (i j , j, i j , j) ∪ {v p (i j , j, 1), v p (i j , j, 2), v p (i j , j , 1), v p (i j , j , 2)} would be disjoint from X.

Pathwidth in O(k). Let P p be the O(k) vertices of P p with strictly more than one neighbor in

H p ∪ H p+1 . For every p ∈ [m -1], we set Y p := P p ∪ E p (i p , j p , i p , j p) ∪ C p,jp ∪ C sel (p, j p) ∪ C p,j p ∪ C sel (p, j p) ∪ i∈[k] R sel (p, i), and we observe that |Y p | = O(k) (this is where it is important that each R sel (p, i) has constant size). For each p ∈ [m] and j ∈ [k -2], let Z p,j be C p,j * ∪ C sel (p, j *) where j * is the j-th index, by increasing value, in [k] \ {j p , j p }. Again we notice that |Z p,j | = O(k).
Here is a path-decomposition of G of width O(k) in case every P p \ P p is empty:

Y 1 , Y 1 ∪ Z 1,1 , Y 1 ∪ Z 1,2 , . . . , Y 1 ∪ Z 1,k-2 , Y 1 ∪ Y 2 , Y 1 ∪ Y 2 ∪ Z 2,1 , Y 1 ∪ Y 2 ∪ Z 2,2 , . . . , Y 1 ∪ Y 2 ∪ Z 2,k-2 , Y 2 ∪ Y 3 , . . . , Y p-2 ∪ Y p-1 , Y p-2 ∪ Y p-1 ∪ Z p-1,1 , Y p-2 ∪ Y p-1 ∪ Z p-1,2 , . . . , Y p-2 ∪ Y p-1 ∪ Z p-1,k-2 , Y p-1 , Y p-1 ∪ Z p,1 , Y p-1 ∪ Z p,2 , . . . , Y p-1 ∪ Z p,k-2 .
Indeed the maximum bag size is O(k) and each edge of G appears in at least one bag. Two crucial properties used in this path-decomposition are that (1) the removal of P p ∪ P p+1 , so in particular of Y p ∪ Y p+1 , disconnects H p+1 from the rest of G, and (2) there is no edge between Z p,j and Z p,j for j = j ∈ [k -2] and p ∈ [m].

In the general case, a path-decomposition of width O(k) for G is obtained from the previous decomposition by observing the following rule. Each time a vertex of H p appears in a bag for the first time, we introduce and immediately remove each of its neighbors in P p \ P p one after the other.

Designing ad hoc gadgets

We now build specific gadgets for Subset Feedback Vertex Set, Subset Odd Cycle Transversal, and Even Cycle Transversal. For these problems, we always use S to denote the prescribed subset of vertices through which no cycle, no odd cycle, or no even cycle should go, respectively.

Column selector gadgets

We begin with the column selector gadget G 1 (C) used for Subset FVS and Subset OCT, followed by the gadget G 2 (C) used for ECT. The column selector gadget G 1 (C) attached to a column C p,j is defined as follows. It comprises 3k additional vertices. These 3k vertices are all added to S, and they form an independent set. Each of the first k vertices, d p,j (1, 1), . . . , d p,j (k, 1) ∈ S, are adjacent to all vertices in i∈[k] {v p (i, j, 1)}, so these vertices induce a biclique. The next k vertices, d p,j (1, 2), . . . , d p,j (k, 2) ∈ S, also twins, are adjacent to all vertices in i∈[k] {v p (i, j, 2)}. We add d p,j (1), . . . , d p,j (i), . . . , d p,j (k) and, for each i ∈ [k], we link d p,j (i) to all the vertices in {v p (i, j, 1)} ∪ i ∈[k]\{i} {v p (i , j, 2)}. Finally we make every distinct pair v p (i, j, z), v p (i , j, z) adjacent, except if i = i . See Figure 2 for an illustration.

vp(1, j, 1) dp,j [START_REF] Baste | Hitting minors on bounded treewidth graphs[END_REF][START_REF] Baste | Hitting minors on bounded treewidth graphs[END_REF] vp(1, j, 2) dp,j(1, 2)

vp(2, j, 1) dp,j(2, 1) vp(2, j, 2) dp,j(2, 2) vp(3, j, 1) dp,j(3, 1) vp(3, j, 2) dp,j(3, 2) dp,j(1) dp,j(2) dp,j(3)
Figure 2 The column selector gadget G1(C). Doubly-circled vertices are in S. Blue edges linking boxes denote bicliques between the two surrounded vertex sets. The gadget G2(C) is obtained by subdividing each red edge once, and adding a false twin to dp,j(k, 1) (or equivalently, any dp,j(i, 1)) and a false twin to dp,j(k, 2).

We obtain the column selector gadget G 2 (C) from G 1 (C) by adding, for each z ∈ [2], a vertex d p,j (k + 1, z) adjacent to all vertices in i∈[k] {v p (i, j, z)}, and by subdividing each edge d p,j (i)v p (i, j, 1) once. We first show that the only Π-legal (2k -2)-deletions within G 1 (C) are the sets C p,j \ {v p (i, j, 1),

v p (i, j, 2)} (for i ∈ [k]), for Π ∈ {Subset FVS, Subset OCT}. For every p ∈ [m], j ∈ [k], and z ∈ [2], the biclique K k,k between i∈[k] {v p (i, j, z)} and i∈[k] {d p,j (i, z)} ⊆ S
forces the removal of all but at most one vertex of i∈ [k] {v p (i, j, z)}, or all the vertices in i∈[k] {d p,j (i, z)}. Indeed, recall that the former set is a clique, while the latter set is an independent set and is contained in the prescribed set S. Hence keeping at least one vertex in i∈[k] {d p,j (i, z)} and at least two in i∈ [k] {v p (i, j, z)} results in an odd cycle (a triangle) going through at least one vertex of S. Thus the only Π-legal (2k -2)-deletions within G 1 (C) have to remove exactly k -1 vertices in i∈ [k] {v p (i, j, 1)} and exactly k -1 vertices in i∈ [k] {v p (i, j, 2)}. Let Y denote such a deletion set, and observe that Y ∩ S = ∅. We further claim that if v p (i, j, 1) is not in Y , then v p (i, j, 2) is also not in Y . Assume, for the sake of contradiction, that v p (i, j, 1) and v p (i , j, 2) are two (adjacent) vertices, not in Y , with i = i . Then d p,j (i) ∈ S forms a surviving triangle with v p (i, j, 1) and v p (i , j, 2). Thus Y = C p,j \ {v p (i, j, 1), v p (i, j, 2)} for some

i ∈ [k].
This finishes the proof that G 1 (C) is a column selector gadget for Subset FVS and Subset OCT. We now adapt the arguments for G 2 (C) and Π = ECT. Now the biclique K k,k+1 between i∈[k] {v p (i, j, z)} and i∈[k+1] {d p,j (i, z)} ⊆ S forces the removal of all but at most one vertex of i∈ [k] {v p (i, j, z)}, or all but at most one vertex of i∈[k+1] {d p,j (i, z)}, otherwise there would be a surviving even cycle C 4 . Since only k -1 vertices can be removed from each Π-obstruction i∈ [k]

{v p (i, j, z)} ∪ i∈[k+1] {d p,j (i, z)} ⊆ S (with z ∈ [2]
), the only Π-legal (2k -2)-deletions within G 2 (C) remove all but one vertex in i∈ [k] {v p (i, j, 1)} and in i∈ [k] {v p (i, j, 2)}. The end of the proof is similar to the previous paragraph since the triangle d p,j (i)v p (i, j, 1)v p (i , j, 2) is now a C 4 (recall that we subdivided the edge d p,j (i)v p (i, j, 1) once).

Row selector gadgets

The row selector G 1 (R), attached to R p,i , consists of two additional vertices r 1 (p, i), r 1 (p, i) ∈ S made adjacent to every vertex in j∈ [k] {v p (i, j, 1)}. The row selector G 2 (R) consists of three additional vertices r 2 (p, i), r 2 (p, i), r 2 (p, i), each adjacent to all vertices in j∈[k] {v p (i, j, 1)}. We put only r 2 (p, i) in S, and we add an edge between r 2 (p, i) and r 2 (p, i).

Lemma 7. G 1 (R) is a row selector gadget for Subset Feedback Vertex Set and Even Cycle Transversal, and G 2 (R) is a row selector gadget for Subset Odd Cycle Transversal.

Proof. The gadgets G 1 (R) and G 2 (R) add 2 and 3 new vertices, respectively, thus O(1). Their edge set respects the specification of the row selector.

The set {r 1 (p, i), r 1 (p, i), v p (i, j, 1), v p (i, j , 1)} is a Π-obstruction, for every pair j = j ∈ [k], for every problem Π ∈ {Subset FVS, ECT}. Indeed it induces an even cycle (a C 4) and, in the case of Subset FVS, we note that this cycle goes through two vertices of S. The set {r 2 (p, i), r 2 (p, i), r 2 (p, i), v p (i, j, 1), v p (i, j , 1)} is a Π-obstruction, for every pair j = j ∈ [k], for Π = Subset OCT. Indeed it contains an odd cycle

r 2 (p, i)v p (i, j, 1)r 2 (p, i)v p (i, j , 1)r 2 (p, i) going through r 2 (p, i) ∈ S.
Crucially for the intended-solution property, the odd cycle r 2 (p, i)v p (i, j, 1)r 2 (p, i) does not contain any vertex of S.

Edge gadgets

Let G 1 (E) be the following edge gadget, that we present for e p = (i, j)(i , j). We add an edge between v p (i, j, 1) and v p (i , j , 1). We add a vertex s p adjacent to both v p (i, j, 1) and v p (i , j , 1). We add s p to the set S ⊆ V (G). The edge gadget G 2 (E) is obtained from G 1 (E) by subdividing the edge s p v p (i , j , 1) once. Lemma 8. G 1 (E) is an edge gadget for Subset Feedback Vertex Set and Subset Odd Cycle Transversal, and G 2 (E) is an edge gadget for Even Cycle Transversal.

Proof. Both gadgets introduce a constant number of additional vertices (1 and 2, respectively, so O(k)), and their edge set respects the specification. The gadget G 1 (E) is an odd cycle (a triangle) with a vertex in S, hence an obstruction for Subset Feedback Vertex Set and Subset Odd Cycle Transversal. The gadget G 2 (E) is an even cycle (a C 4), hence an obstruction for Even Cycle Transversal.

Propagation gadgets

We present G 1 (P), a propagation gadget inserted between H p and H p+1 . We first add an independent set of 2k vertices. Among them, the k vertices r p,1 , . . . , r p,k represent the row indices in H p and H p+1 , while the k other vertices c p,1 , . . . , c p,k represent the column indices. We link r p,i to all the vertices in j∈[k] {v p (i, j, 2)} ∪ j∈[k] {v p+1 (i, j, 1)}. Similarly, we link c p,j to all the vertices in i∈[k] {v p (i, j, 2)} ∪ i∈[k] {v p+1 (i, j, 1)}. Finally, we add a vertex c p ∈ S adjacent to all the vertices c p,1 , . . . , c p,k .

The gadget G 2 (P) is defined similarly, except that we subdivide the edge r p,i v p (i, j, 2) once, for each i, j ∈ [k]. Finally the gadget G 3 (P) adds to G 2 (P), a vertex c p,j , for each j ∈ [k]. The vertex c p,j is linked to c p,j and to c p . Lemma 9. G 1 (P) is a column selector gadget for Subset Feedback Vertex Set, G 2 (P) is a column selector gadget for Subset Odd Cycle Transversal, and G 3 (P) is a column selector gadget for Even Cycle Transversal.

Proof. Let P 1

p := {r p,1 , . . . , r p,k , c p,1 , . . . , c p,k , c p }. The gadget G 1 (P) adds to the base the set P 1 p of size 2k + 1, thus O(k). Hence it trivially satisfies the technical condition of the propagation gadget. The gadget G 2 (P) adds a further k 2 vertices, stemming from the subdivision of the edges r p,i v p (i, j, 2). These vertices have exactly one neighbor in H p ∪ H p+1 and the rest of their neighbors in P 1 p , so satisfy the specification. For the same reason, G 3 (P) also satisfies the specification. We denote by P 2 p the set of 2k + 1 + k 2 vertices consisting of P 1 p plus the subdivision vertices, and P 3 p the set of 3k + 1 + k 2 vertices added in G 3 (P). The edge sets of G 1 (P), G 2 (P), G 3 (P) respect the specification of the propagation selector.

For every i, j = j ∈ [k], P 1 p ∪ {v p (i, j, 2), v p+1 (i, j , 1)} is a Π-obstruction for Π = Subset FVS. Indeed r p,i v p (i, j, 2)c p,j c j c p,j v p+1 (i, j , 1) is a cycle (a C 6) going through c j ∈ S. Similarly P 2 p ∪ {v p (i, j, 2), v p+1 (i, j , 1)} is a Π-obstruction for Π = Subset OCT, the same cycle being now of odd length (a C 7), due to the subdivision of r p,i v p (i, j, 2). Finally P 3 p ∪ {v p (i, j, 2), v p+1 (i, j , 1)} is a Π-obstruction for Π = ECT since r p,i w p (i, j, 2)v p (i, j, 2)c p,j c p,j c j c p,j v p+1 (i, j , 1) is an even cycle (a C 8), where w p (i, j, 2) is the subdivided vertex stemming from the edge r p,i v p (i, j, 2). Proof. We need to check that these problems satisfy the preconditions of Theorem 5. Sections 3.2.1 to 3.2.4 and Lemmas 6 to 9 show how to build the four types of gadgets. Which problem uses which version of the gadget is summarized in Table 1. See Figure 3 for a schematic representation of the construction for Subset FVS.

Wrap-up

column selector row selector edge gadget propagation gadget

Subset Feedback Vertex Set G1(C) G1(R) G1(E) G1(P) Subset Odd Cycle Transversal G1(C) G2(R) G1(E) G2(P) Even Cycle Transversal G2(C) G1(R) G2(E) G3(P)
Table 1 The different gadgets used for the different problems.

Finally we have to check that the problems have the intended-solution property. We shall prove that every set [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF] {v p (i, j i , z)}, with {j 1 , . . . , j k } = [k] and intersecting all the edge gadgets is Π-legal in any graph G obtained by attaching to the base the four types of gadgets with respect to their specification of Section 3.1. The set X is a solution to Π ∈ {Subset FVS, Subset OCT, ECT}, if and only if no 2-connected component (i.e., a block of size at least 3) of G -X is a Π-obstruction. Indeed no cycle can go through a cut-vertex.

X := p∈[m],i∈[k],z∈
We first note that there is no 2-connected component within

G 1 (C), G 2 (C), G 1 (R), G 1 (E), G 2 (E) restricted to G -X.
For the latter two gadgets, this is because, by assumption, X intersects every edge gadget. In a gadget G 2 (R) restricted to G -X, there is one 2-connected component, namely a triangle; but none of its vertices belongs to S.

We now observe that every vertex c p is a cut-vertex in G 1 (P), G 2 (P), and G 3 (P) restricted to G -X. So the remaining 2-connected components of G -X are induced cycles C 4 of the form r p,i v p (i, j, 2)c p,j v p+1 (i, j, 1) when G 1 (P) is used, or induced C 5 when G 2 (P) is used, or triangle and induced cycle C 5 when G 3 (P) is used. In the first two cases, none of the vertices of the cycles belongs to S. In the third case, no cycle is even. This establishes that Subset FVS, Subset OCT, and ECT with their respective combination of gadgets have the intended-solution property.

s 1 s 2 s 3 row column c 1 row column c 2 C sel C sel C sel C sel C sel C sel C sel C sel C sel Figure 3
Example of the overall picture for Subset Feedback Vertex Set. The first three edges (in green) in the reduction from k × k-Permutation Independent Set, with k = 3, to Subset FVS. The doubly-circled vertices are vertices in S. The column selector gadget C sel , of size O(k), forces that only one pair of homologous vertices is retained in each column (see Figure 2). We did not represent the row selector gadget.

Lower bound for Node Multiway Cut

For Node Multiway Cut we will also start from the base p∈[m] H p but we will deviate from the gadget specification of Section 3.1. We will "communalize" the selector, edge, and propagation gadgets. That way, we are able to show the claimed lower bound even when the number of terminals is linearly tied to the pathwidth. This is unlike our constructions for Subset FVS and Subset OCT in Theorem 10 where the size of the prescribed subsets S is significantly larger than the pathwidth. Proof. We now reduce from k × k-Independent Set. Again let H be an m-edge k × k-Independent Set instance. We build an equivalent Node Multiway Cut instance (G, T, k := 2(k -1)km), with |T | = k + 2, by adding only 2k + 2 new vertices to the base p∈[m] H p . We link every non-homologous pair of vertices within each column C p,j (for p ∈ [m], j ∈ [k]). We add two terminals t, t ∈ T . For every edge e p = (i p , j p)(i p , j p) ∈ E(H), we make v p (i p , j p , 2) and v p (i p , j p , 2) adjacent. We also link t to v p (i p , j p , 2), and t to v p (i p , j p , 2).

We add k terminals r 1 , . . . , r k ∈ T . We link every vertex on an i-th row (R p,i) to r i , except if the vertex is already adjacent to t or t . This exception concerns the vertices v p (i p , j p , 2) and v p (i p , j p , 2). Finally we add k (non-terminal) vertices c 1 , . . . , c k . For each p ∈ [m], j ∈ [k], i ∈ [k], we add an edge between v p (i, j, 1) and c i . This finishes the construction of G. The set of terminals is T := {t, t , r 1 , . . . , r k }. We ask for a deletion set of size k := 2(k -1)km. The pathwidth of G is O(k), since it is obtained by adding 2k + 2 vertices ({t, t , r 1 , . . . , r k }) to a graph satisfying the gadget specification of Section 3.1 (with "empty" row selector and propagation gadgets).

We now show the correctness of this reduction. Assume that the graph H admits an independent set [START_REF] Baste | A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary[END_REF] H m \ {v p (i j , j, z)} is a solution to the Node Multiway Cut instance. We first observe that the connected component of G -X containing t (and similarly t) does not contain any other terminal. Indeed, since I is an independent set, at most one of v p (i p , j p , 2) and v p (i p , j p , 2) is preserved in G -X when (i p , j p)(i p , j p) is an edge of H. Hence each vertex v p (i p , j p , 2) or v p (i p , j p , 2) that exists in G -X has degree 1: it is adjacent only to t or t . So the connected component in G -X of t (resp. t) is a star centered at t (resp. t) whose leaves are all in p∈[m] H p , hence are non-terminals. We now observe that there is no path between r i and r i (with i = i) in G -X. Such a path would have to go through a vertex c j . Indeed, no edge within a column C p,j is preserved in G -X (nor the edges v p (i p , j p , 2)v p (i p , j p , 2)), so there is no other way to go from one row to another. But each vertex c j is adjacent to a single row in G -X, since we kept only one pair v p (i, j, 1), v p (i, j, 2) per column C p,j , and we made the same choice in every H p .

I := {(i 1 , 1), (i 2 , 2), . . . , (i k , k)}. We claim that X := p∈[m],j∈[k],z∈
Let us now assume that X is a solution to the Node Multiway Cut instance (G, T, k). A first observation is that no edge within a column C p,j can be present in G -X, otherwise there is a 3-edge path between a pair of terminals in {r 1 , . . . , r k , t, t }, since every edge within C p,j is between non-homologous vertices, and every vertex in C p,j is adjacent to a terminal. This implies that for each p ∈ [m] and j ∈ [k], we have {v p (i p,j , j, 1), v p (i p,j , j, 2)} ⊆ C p,j \ X for some i p,j ∈ [k]. In fact, since at least 2(k -1)k vertices of H p must be removed for each p ∈ [m], and the solution X has size at most 2(k -1)km, we have C p,j \ X = {v p (i p,j , j, 1), v p (i p,j , j, 2)}. In particular,

X ⊆ p∈[m] H p , so c i / ∈ X for each i ∈ [k]
. We now show that the i p,j 's coincide for each p ∈ [m]. Assume for the sake of contradiction that v p (i, j, 1) and v p (i , j, 1) are both present in G -X with p = p and i = i . Then r i v p (i, j, 1)c j v p (i , j, 1)r i is a path in G -X, a contradiction. Therefore i 1,j = . . . = i m,j . Let i j denote this common value. We claim that {(i 1 , 1), . . . , (i k , k)} is an independent set in H. Suppose there is an edge (i j , j)(i j , j) ∈ E(H) for distinct j, j ∈ [k]. Then there is a path tv p (i j , j, 2)v p (i j , j , in G for some p ∈ [m], between the terminals t and t , a contradiction.

Lower bound for Multiway Cut

To obtain the lower bound for Multiway Cut, we reduce from k × k-Permutation Clique.

However, we note that reducing from Semi-Regular k × k-Permutation Clique, where all the vertices of a column have the same degree towards another column, and there is no edge with both endpoints in the same row, would make the construction cleaner. So the first reflex is to try and show the same 2 o(k log k) lower bound for this variant. Ensuring the semi-regularity condition can be done rather smoothly; it requires revisiting the grouping technique from, say, 3-Coloring, and using known results on equitable colorings. An interested reader can find a complete proof in the appendix. Nonetheless, getting rid of the "horizontal" edges (with both endpoints in the same row) in order to obtain an instance k × k-Permutation Clique, while preserving the semi-regularity, is unnecessarily complex. In particular, the reduction from k × k-Clique to k × k-Permutation Clique presented in the seminal paper [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF] does not preserve semi-regularity. To prove the next theorem, we will instead directly reduce from k × k-Permutation Clique and "regularize" the degree by some ad hoc gadgetry. Proof. We reduce from an instance H of k × k-Permutation Clique, so we may assume that there is no edge of H with both endpoints in the same row. Let µ be the number of edges of H, and let ∆ be the maximum degree of vertices of H. We associate each v ∈ V (H) to the non-negative integer δ(v) := ∆ -d H (v), where d H (v) is the degree of v. It is useful to consider the graph H obtained from H by attaching δ(v) pendant leaves to each v ∈ V (H), where each vertex in V (H) has degree ∆ in H . We set m := k 2 ∆, and observe that m µ corresponds to the number of edges in H .

We build an equivalent Multiway Cut instance (G, T, k), with |T | = k + 1, by adding a polynomial number of vertices to the base p∈[µ+k 2] H p . We do not need the vertices v p (i, j, 2), so we rename every v p (i, j, 1) into simply v p (i, j). Now R p,i is the set {v p (i, 1), . . . , v p (i, k)} and C p,j is {v p (1, j), . . . , v p (k, j)}.

We encode weighted edges in the following way. When we say that we add an edge of weight w ∈ N between two vertices u, v, we mean that we add w "parallel" 2-edge paths between u and v. None of the introduced vertices are terminals, so the instance behaves equivalently as with the weighted edge. Thus, for the sake of simplicity, we will treat these parallel paths as a weighted edge. If we require an edge to be "undeletable", we give it weight k + 1, just above the total budget. All the weights of the construction are encoded with polynomially many vertices and unit-weight edges. Therefore the lower bound does apply to the unweighted version of Multiway Cut.

We set h := 12m -k∆ -k 2 and k := (h + 1)(k -1)k(µ + k 2) + h. We add k terminals r 1 , . . . , r k ∈ T , and we link every vertex in the i-th row (that is, in a set R p,i) to r i by an edge of weight h + 1. We add k non-terminals c 1 , . . . , c k and for each p

∈ [µ + k 2], j ∈ [k], i ∈ [k],
we add an edge of weight k + 1 (an undeletable edge) between v p (i, j) and c i . For every e p = (i p , j p)(i p , j p) ∈ E(H) with p ∈ [µ], we add the following edge gadget between v p (i p , j p) and v p (i p , j p). We first build a 5-vertex path where the edge weights are, from one endpoint to the other, 5, 3, 3, 5. We denote by z p the central vertex, and we link the second vertex, x p , and the fourth vertex, y p , by an edge of weight 3. We link the first vertex (one endpoint) of the gadget to v p (i p , j p) and to r ip by edges of weight 3, and the last vertex (the other endpoint) to v p (i p , j p) and to r i p by edges of weight 3. Finally we link z p to an additional terminal t (common to every p ∈ [µ]) by an edge of weight k + 1. See Figure 4 for an illustration of the edge gadget and how it is attached to the terminals. So far we

z p y p x p v p (i p , j p) v p (i p , j p) 3 3 3 5 5 3 3 r ip r i p t h + 1 3 h + 1 3 k + Figure 4
The edge gadget for Multiway Cut.

have added edge gadgets to the first µ copies H 1 , . . . , H µ . We now describe what we (potentially) add to the last k 2 copies H µ+1 , . . . , H µ+k 2 . We put an arbitrary total order over V (H), say, the natural where (i, j) is interpreted as n(i, j) = i + (j -1)k. We attach to v µ+n(i,j) (i, j), r i , and t the following simple gadget, called a degree-equalizer, which can be seen as a degenerate case of an edge gadget with multiplicity δ((i, j)) (henceforth we simply write δ(i, j) for the sake of legibility). We add a vertex w µ+n(i,j) (i, j), and link it to t by an edge of weight 11δ(i, j), and to v µ+n(i,j) (i, j) and r i by edges of weight 6δ(i, j) each. This finishes the construction of (G, T := {r 1 , . . . , r k , t}, k :

= (h + 1)(k -1)k(µ + k 2) + h).
The pathwidth of G is O(k) following the arguments for the Node Multiway Cut construction. We now show the correctness of the reduction. Assume that there is a clique

C := {(i 1 , 1), . . . , (i k , k)} in H, with {i 1 , . . . , i k } = [k].
We build the following edge deletion-set X for the Multiway Cut instance. We start by including in X all the edges of weight h + 1 between r i and v p (i, j)

(p ∈ [µ + k 2]) such that (i, j) / ∈ C. This represents k(k -1)(µ + k 2)
weighted edges, and (h + 1)k(k -1)(µ + k 2) unit-weight edges.

We distinguish three cases for the edge gadget of every e p = (i p , j p)(i p , j p) (p ∈ [µ]). If {(i p , j p), (i p , j p)}∩C = ∅ (i.e., e p has no endpoint in C), we add to X the four weight-3 edges incident to v p (i p , j p), r ip , v p (i p , j p), and r i p ; a total of 12 edges. If |{(i p , j p), (i p , j p)} ∩ C| = 1, say, without loss of generality, that (i p , j p) ∈ C, then we add the weight-5 edge incident to x p and the two weight-3 edges incident to v p (i p , j p) and r i p . This consists of 11 edges in total. In the symmetric case (i p , j p) ∈ C, we would remove the weight-5 edge incident to y p and the two weight-3 edges incident to v p (i p , j p) and r ip . Finally if |{(i p , j p), (i p , j p)} ∩ C| = 2, we add the 9 edges of the weighted triangle x p y p z p to X.

For every degree-equalizer gadget attached to H µ+n(i,j) , we add to X the weight-11δ(i, j) edge incident to t if (i, j) ∈ C, and the two weight-6δ(i, j) edges incident to w µ+n(i,j) (i, j) if (i, j) / ∈ C. Note that these numbers of edges correspond to what we would remove in δ(i, j) copies of an edge gadget where the other endpoint is not in C. This finishes the construction of X.

There are

(h + 1)k(k -1)(µ + k 2) + h = k as imposed. Let G be the graph (V (G), E(G) \ X).
We show that every connected component of G contains at most one terminal. Observe that in G -{t}, each vertex z p is in a connected component contained in the edge gadget of e p (and, in particular, not containing a terminal). Since t is only adjacent (by weighted edges) to the vertices z p and w µ+n(i,j) (i, j), it follows that the connected component in G containing t has no other terminals. Note furthermore that the removal of the edges in X disconnects every pair v p (i p , j p), v p (i p , j p) in the edge gadget of e p = (i p , j p)(i p , j p) for p ∈ [µ]. Thus the vertices reachable from r i in G are {c j } ∪ p∈[m] C p,j , such that j is unique integer of [k] with i j = i, as well as some non-terminal vertices in some edge and degree-equalizer gadgets. In particular there is no path between r i and r i , with i = i , in G . Thus X is a solution.

Let us now assume that the Multiway Cut instance (G, T, k) has a solution X, and let G be (V (G), E(G)\ X). A first observation is that there is a path in G between any pair of vertices in the j-th column, say v p (i, j) and v p (i , j), since there are undeletable edges between c j and each vertex v p (i, j). Thus there is a component of G containing p∈[µ+k 2] C p,j , for each j ∈ [k], and this component contains at most one terminal. With a budget of (h + 1)k(k -1)(µ + k 2) + h, one can remove at most k(k -1)(µ + k 2) edges of weight h + 1. Since no two edges r i v p (i, j) and

r i v p (i , j) can remain in G , for distinct i, i ∈ [k], j ∈ [k], and p ∈ [µ + k 2], at least k(k -1) edges of weight h + 1 incident to a vertex in H p must be in X, for each p ∈ [µ + k 2]
, for a total of at least k(k -1)(µ + k 2) edges of weight h + 1. Now the only possibility is that, for each j ∈ [k], there exists an i j ∈ [k] such that X contains all the edges of weight h + 1 from p∈[µ+k 2] C p,j to {r 1 , . . . , r k } except those incident to r ij . We set C := {(i 1 , 1), . . . , (i k , k)}, and we will now show that C is a clique in H. In particular {i 1 , . . . , i k } = [k] since there is no edge of H with endpoints in the same row.

First we consider an edge e p = (i p , j p

)(i p , j p) ∈ E(H) such that {(i p , j p), (i p , j p)} ∩ C = ∅. Note that, in this case, v p (i p , j p) (resp. v p (i p , j p)) is, in G , in the connected component of r ij p = r ip (resp. r i j p = r i p).
We then need to separate the seven pairs: (r ip , v p (i p , j p)), (t, v p (i p , j p)), (r ip , t), (r i p , v p (i p , j p)), (t, v p (i p , j p)), (r i p , t), and (r ip , r i p). This requires 12 edge deletions. We now consider an edge e p = (i p , j p)(i p , j p) ∈ E(H) such that |{(i p , j p), (i p , j p)} ∩ C| = 1. We assume that (i p , j p) ∈ C (the other case is symmetric). In this case, v p (i p , j p) is, in G , in the connected component of r i j p = r i p . We then need to separate the six pairs: (t, v p (i p , j p)), (r ip , t), (r i p , v p (i p , j p)), (t, v p (i p , j p)), (r i p , t), and (r ip , r i p). This requires 11 edge deletions: the weight-5 edge incident to x p and the two weight-3 edges incident to v p (i p , j p) and to r i p . Finally let us assume that e p = (i p , j p)(i p , j p) ∈ E(H) is such that |{(i p , j p), (i p , j p)} ∩ C| = 1. Here we need to separate the five pairs: (t, v p (i p , j p)), (r ip , t), (t, v p (i p , j p)), (r i p , t), and (r ip , r i p). This requires 9 edge deletions: the three weight-3 edges in the triangle x p y p z p .

We now turn to the degree-equalizer gadgets. If (i, j) / ∈ C, then we need to separate the three pairs (r i , v µ+n(i,j) (i, j)), (t, v µ+n(i,j) (i, j)), and (r i , t). This requires 12δ(i, j) edge deletions (the weighted edges r i w µ+n(i,j) (i, j) and v µ+n(i,j) (i, j)w µ+n(i,j) (i, j)). If on the contrary (i, j) ∈ C, we only need to separate the two pairs (t, v µ+n(i,j) (i, j)) and (r i , t). This requires 11δ(i, j) deletions (the weighted edge tw µ+n(i,j) (i, j)).

We denote by s the number of edges in H[C]. Since the edge and degree-equalizer gadgets are pairwise edgedisjoint, what we have shown implies that X contains at least 9s + 11(k∆ -2s) + 12(m -k∆ + s) = 12m -k∆ -s edges in the edge gadgets. As X is of size at most k , we have that s has to be equal to k 2 . This implies that C is a clique.

By the simple reduction from Multiway Cut to Restricted Edge-Subset Feedback Edge Set, given in the introduction, we obtain the following as a corollary.

Theorem 13. Unless the ETH fails, Restricted Edge-Subset Feedback Edge Set cannot be solved in time 2 o(p log p) n O (1) on n-vertex graphs where p = pw + |S| is the sum of the pathwidth of the input graph and the number of undeletable (terminal) edges.

It is not difficult to adapt the construction of Theorem 12 for the directed variant of Multiway Cut. Theorem 14. Unless the ETH fails, Directed Multiway Cut cannot be solved in time 2 o(pw log pw) n O (1) on n-vertex directed graphs whose underlying undirected graph has pathwidth pw.

Slightly superexponential algorithms

In this section, we present 2 O(tw log tw) n 3 -time algorithms for the weighted variants of the considered problems with the exception of ECT.

We first present in Theorem 17 a 2 O(tw log tw) n 3 -time algorithm for Subset OCT. Then, we show that with simple modifications this algorithm can solve Subset FVS. We deduce the algorithms for the other problems by reducing these problems to the weighted variant of Subset FVS.

Let us focus on the Subset OCT problem. For a graph G and a vertex set S of G, we say that G is S-bipartite if it has no odd cycle containing a vertex of S. Solving Subset OCT is equivalent to find an S-bipartite induced subgraph of maximum size. The following characterization of S-bipartite graphs will be useful.

Lemma 15. A graph G is S-bipartite if and only if for every block B of G, either B has no vertex of S, or it is bipartite.

Proof. (⇒) Assume toward a contradiction that G is S-bipartite and that a block B of G contains a vertex s ∈ S and B is not bipartite. Because B is not bipartite, there exists an odd cycle C in B. Since G is S-bipartite by assumption, C does not contain s.

Since B is 2-connected and has at least 3 vertices, there exist two paths P sc and P c s between s and two distinct vertices c, c of C such that the internal vertices of P sc and P c s and the vertices of C are pairwise distinct. Let P cc and P cc be the two paths between c and c in C. The concatenations C 1 = P sc • P cc • P c s and C 2 = P sc • P cc • P c s are two S-traversing cycles. Since C is an odd cycle, the parity of P cc and P cc are not the same. Hence, one of the two cycles C 1 and C 2 is an odd S-traversing cycle. This yields a contradiction.

(⇐) Assume that G is not S-bipartite. Then, G contains an odd S-traversing cycle C. This cycle is contained in a block B of G. Thus G has a block that is not bipartite and that contains at least one vertex in S.

One can easily modify the proof of the first direction of Lemma 15 to prove the following fact. Proof. In the following, we fix a graph G, S ⊆ V (G), and a weight function w : V (G) → R. Using Theorem 3 and Lemma 4, we obtain a nice tree decomposition of G of width at most 5tw + 4 in time O(c tw • n) for some constant c. Let (T, {B t } t∈V (T)) be the resulting nice tree decomposition. For each node t of T , let G t be the subgraph of G induced by the union of all bags B t where t is a descendant of t.

Let t be a node of

T . A partial solution of G t is a subset X ⊆ V (G t) such that G[X] is S-bipartite.
In the following, we introduce a notion of auxiliary graph in order to design an equivalence relation ≡ t between partial solutions such that

X ≡ t Y if, for every W ⊆ V (G t), G[X ∪ W] is S-bipartite if and only if G[Y ∪ W] is S-bipartite.
Let X ⊆ V (G) (not necessarily contained in G t). We denote by Inc(X) the block-cut tree of G[X], that is the bipartite graph whose vertices are the blocks and the cut vertices of G[X] and where a block B is adjacent to a cut vertex v if v ∈ V (B). Observe that Inc(X) is by definition a forest.

We say that a vertex v of Inc(X) is active (with respect to t) if:

v is a cut vertex of G[X] in B t , v is a block of G[X] that contains at least two vertices in B t , or v is a block of G[X]
that contains exactly one vertex in B t that is not a cut vertex. Note that every vertex in B t is an active cut vertex or it is in an active block of G[X]. Intuitively, the auxiliary graph associated with a partial solution X needs to encode how the active blocks of Inc(X) are connected together.

We construct the auxiliary graphs Aux p (X, t) and Aux(X, t) from Inc(X) by the following operations: 1. We remove recursively the leaves and the isolated vertices that are inactive. Let Aux p (X, t) be the resulting graph (p for "prototype").

2.

For every maximal path P of Aux p (X, t) between u and v and with inactive internal vertices of degree 2, we remove the internal vertices of P and we add an edge between u and v (shrinking degree 2 nodes that are inactive). Figure 5 illustrates the constructions of Aux p (X, t) and Aux(X, t). Observe that Operation 1 removes the inactive blocks of G[X] that contain one vertex in B t . Thus, every block in Aux p (X, t) that contains vertices in B t is active. By construction, Aux(X, t) is a forest whose vertices are the active vertices of Inc(X) and the inactive vertices that have degree at least 3 in Aux p (X, t). An important remark is that the algorithm uses the graphs Aux(X, t) for X ⊆ V (G t) and in the proof we will use Aux(X, t) and Aux p (X, t) for

X ⊆ V (G t) or X ⊆ B t ∪ V (G t).
By Step 2, any edge uv of Aux(X, t) corresponds to an alternating sequence P of cut vertices and blocks A 1 , A 2 , . . . , A x that forms a path from u = A 1 to v = A x in Inc(X). We define the graph M uv as the union of the blocks in P . Note that one of A 1 and A 2 is a cut vertex and one of A x-1 and A x is a cut vertex. We say that these cut vertices are the endpoints of M uv .

Inc(X) G[X]

Aux(X, t) Let X and Y be two partial solutions of G t . We say that X ≡ t Y if X ∩ B t = Y ∩ B t , and there is an isomorphism ϕ from Aux(X, t) to Aux(Y, t) such that the following conditions are satisfied: 1. For every vertex v in Aux(X, t), v is active if and only if ϕ(v) is active. 2. For every vertex v in Aux(X, t), v is a block if and only if ϕ(v) is a block.

3.

For every active cut vertex v in Aux(X, t), we have ϕ(v) = v. 4. For every active block B in Aux(X, t):

a. V (B) ∩ B t = V (ϕ(B)) ∩ B t , b. V (B) ∩ S = ∅ if and only if V (ϕ(B)) ∩ S = ∅,
v ∈ B t ∩ V (B)
that is a child of B in Inc(X), and set φ(B) = v. Clearly, φ is an injection, and it shows that the number of active blocks of G[X] is at most k. We deduce that Aux(X, t) contains at most 2k active vertices as there are at most k active blocks and at most k active cut vertices.

By construction, all the vertices of degree at most 2 in Aux(X, t) are active vertices of Inc(X). In particular, the leaves of Aux(X, t) are active vertices. The leaves connected to vertices of degree at least 3 induce an independent set in Aux(X, t). We can easily show from this fact that there are at most k leaves connected to vertices of degree 3 (at most the number of part in a partition of k elements). Since Aux(X, t) is a forest, the number of vertices of degree at least 3 is at most k. We deduce that Aux(X, t) has at most 2k active vertices and k inactive vertices. Hence, there are at most (2k + 1)(k + 1) possibilities for Condition 1 as it is at most the number of ways of choosing two numbers one in [0, 2k] and one in [0, k]. By Cayley's formula [START_REF] Cayley | A theorem on trees[END_REF], the number of forests on 3k labeled vertices is (3k + 1) 3k-1 . Thus, there are 2 O(tw log tw) non-isomorphic graphs in {Aux(W, t) | W is a partial solution of G t }.

For Condition 2, there are 2 possibilities for each vertex in Aux(X, t): either it is a block or a cut vertex. Thus, there are at most 2 3k possibilities for this condition.

We claim that there are 2 O(k log k) possibilities for Conditions 3 and 4.a. Let v 1 , . . . , v d be the cut vertices of G[X] in B t and X 1 , . . . , X be the intersections between B t and the vertex sets of the active blocks of G[X]. Note that for every distinct X i and X j , |X i ∩ X j | ≤ 1. Moreover, since they came from Inc(X), there is no cyclic structure; that is,

X i1 -v i2 -X i3 • • • -v iα-1 -X iα
where X i1 = X iα and each v ij only belongs to X ij and X ij+1 . This means that the number of possibilities for v 1 , . . . , v d and X 1 , . . . , X is the same as the number of ways of partitioning a set of k vertices into blocks and cut vertices, as isolated vertices are single blocks.

We claim that the number of ways of partitioning a set of k vertices into blocks and cut vertices is 2 O(k log k) . Let T be a set of k vertices. First take a partition P of T . There are at most 2 k log k possibilities for P. Choose among the singletons of P the cut vertices. There are at most 2 k possibilities. The other parts of P indicate the vertex set of blocks after removing cut vertices. We add k new dummy parts to P representing the possible blocks that may contain only cut vertices. Now, we have at most 2k parts in P. Observe that any forest between the parts of P that represent the cut vertices and those that represent the blocks induces one way of decomposing the k vertices into blocks and cut vertices. A dummy part adjacent to the singletons containing the vertices w 1 , w 2 , . . . , w indicate that {w 1 , w 2 , . . . , w } forms a block. By Cayley's formula [START_REF] Cayley | A theorem on trees[END_REF], the number of forests on r labeled vertices is (r + 1) r-1 . So, there are at most (2k + 1) 2k-1 ways. Hence, the number of ways of partitioning a set of k vertices into blocks and cut vertices is at most 2 O(k log k) .

For Conditions 4.b and 4.c, there are 3 possibilities for each active block of Aux(X, t). Indeed, since G[X] is S-bipartite and by Lemma 15, if a block is not bipartite, then it cannot contain vertices in S. Thus, there are at most 3 k possibilities for Condition 4.b and 4.c.

For Condition 5, there are 6 possibilities for each edge uv of Aux(X, t): 3 possibilities for the parity of paths between the endpoints of M uv and two for the existence of a vertex in S in M uv . Since Aux(X, t) is a forest with at most 3k vertices, we have at most 6 3k-1 possibilities for Condition 5.

It remains to upper bound the number of possibilities for Condition 6 on the parities of the paths between the vertices in B t . Let u and v be two vertices in X ∩ B t . If there is no path between u and v, then we can see this in Aux(X, t) as it implies that there is no path between the active vertices associated with u and v.

Assume that u and v are connected in G[X]. Let P uv be a path between u and v in G[X]. Let B u be the block of G[X] that contains u and its neighbor in P uv . Similarly, let B v be the block that contains v and its neighbor P uv . Observe that we can have B u = B v if and only if u and v are in the same block. By construction, there exists a unique path P between B u and B v in Aux(X, t) (this path can have length 0 if B u = B v). If there exists a block B in P that is not bipartite, then by Fact 16, we deduce that there exist an odd path and an even path between u and v. If such a non-bipartite block B exists, then either B = B u = B v or there exists an edge uv used by P such that M uv contains B. If B = B u = B v , then B is an active block of Inc(X) since it contains at least two vertices in B t . In this case, Condition 4.b stores the information that B is not bipartite. Otherwise, if there is an edge uv used by P such that M uv contains B, then M uv is not bipartite and Condition 5 stores this information.

Suppose now that every block in P is bipartite. Let H be the subgraph that is the union of the bipartite blocks in G[X], and let (X 1 , X 2) be a bipartition of H. By assumption the union of the blocks in P is a subgraph of H. Thus, every path between u and v has the same parity and this only depends on whether u and v belong to the same part of (X 1 ∩ B t , X 2 ∩ B t). We deduce that the number of possibilities for Condition 6 are at most 2 k .

For each condition on ≡ t , we proved that the number of possibilities are 2 O(k) or 2 O(k log k) . Since k = B t ≤ 5tw + 4, we conclude that ≡ t has at most 2 O(tw log tw) equivalence classes.

Claim 19. Let t be a node of T and X, Y be two partial solutions associated with t.

If X ≡ t Y , then, for every Z ⊆ V (G t), the graph G[X ∪ Z] is S-bipartite if and only if G[Y ∪ Z] is S-bipartite. Proof. Assume that X ≡ t Y and let Z ⊆ V (G t) such that G[Y ∪ Z] is S-bipartite.
Let ϕ be the isomorphism from Aux(X, t) to Aux(Y, t) given by ≡ t . We show that G[X ∪ Z] is S-bipartite. This will prove the claim because ≡ t is an equivalence relation. To prove that G

[X ∪ Z] is S-bipartite, by Claim 15, it is sufficient to prove that every block B of G[X ∪ Z] is S-bipartite. Let G X := G[X], G Y := G[Y], and
G Z := G[Z ∪ (B t ∩ X)]. We observe that G[X ∪ Z] := (G X , (B t ∩ X)) ⊕ (G Z , (B t ∩ X)) and G[Y ∪ Z] := (G Y , (B t ∩ X)) ⊕ (G Z , (B t ∩ X)). Let B be a block of G[X ∪ Z]. Observe that if B is a block of G[X], then it is S-bipartite because X is a partial solution. Moreover, if B is a block of G[Z], then it is S-bipartite because G[Y ∪ Z] is S-bipartite.
In the following, we assume that B contains vertices from X and Z. Consequently, B has at least 2 vertices in B t . Observe that for every block

B of G X or G Z , either |V (B) ∩ V (B)| ≤ 1, or B is fully contained in B. Thus, all the blocks of G X or G Z contained in B are in Aux p (X, t) or Aux p (Z ∪ (X ∩ B t), t).
We will take a corresponding 2-connected subgraph in G[Y ∪ Z]. Let B X be the set that contains the blocks and the cut vertices of Aux(X, t) contained in B. We take the subset Y B of Y that contains (1) ϕ(v) for every cut vertex v in B Y , (2) V (ϕ(B)) for every blocks B in B X and (3) V (M ϕ(u)ϕ(v)) for every edge uv of Aux(X, t)

with u, v ∈ B X . Let F := G[Y B ∪ (V (B) ∩ Z)].
G[Y ∪ Z]. Let F Y := F ∩ G Y and F Z := F ∩ G Z . (1) (F is 2-connected.) It is not difficult to see that F is connected from the construction of Y B and because Y ≡ t X implies that (1) V (B) ∩ B t = V (ϕ(B)) ∩ B t for
:= U 1 . For each i ∈ {1, 2}, if U i is block in Aux(Y, t), let V i = ϕ -1 (U i), otherwise, if U i is a block in Aux(V (G Z), t), let V i = U i . Because of the construction, V 1 and V 2 are blocks contained in B. We choose a vertex c X in B corresponding to c in F . If c ∈ B t ∪ Z, then we set c X = c. Otherwise, c ∈ Y \ B t
and c must be a cut vertex in G Y and either (A) c is a vertex of Aux(Y, t) with neighbors U 1 and U 2 or (B) U 1 U 2 is an edge of Aux(Y, t) and c is a vertex of M U1U2 . If (A) holds, then we set c X = ϕ -1 (c) and if (B) holds, then we take c X a cut vertex in M ϕ -1 (U1)ϕ -1 (U2) (every M uv admits at least one cut vertex by definition).

Since B is 2-connected, there is a path

p 1 p 2 • • • p m from V 1 -c X to V 2 -c X in B -c X .
This provides a sequence B 1 , B 2 , . . . , B m of blocks that appear in Aux(X, t) or Aux(V (G Z), t) such that B 1 = V 1 and B m = V 2 and for every i ≤ m -1, either B i B i+1 is an edge in Aux(X, t) or in Aux(V (G Z), t), or B i and B i+1 are contained in distinct parts of G X and G Z and they share a vertex in B t .

For every i ≤ m , let

B i be B i if B i is a block in Aux(V (G Z), t) or ϕ(B i) if B i is a block in Aux(X, t). Let i ≤ m -1. If B i and B i+1 is an edge of Aux(X, t), then ϕ(B i)ϕ(B i+1) = B i B i+1 is
V (B i) ∩ B t = V (B i) ∩ B t .
We deduce that B i and B i+1 = B i+1 share a vertex in B t . From the sequence B 1 , . . . , B m , we conclude that there exists a path in F between U 1 -c and U 2 -c in F -c. This contradicts the assumption that c is a cut vertex.

(2) (F contains a vertex of S if and only if B contains a vertex of S.) Observe that for each block U of Aux(Y, t), U contains a vertex of S if and only if ϕ(U) contains a vertex of S, and for every edge uv of Aux(Y, t), M uv has a vertex of S if and only if M ϕ(u)ϕ(v) has a vertex of S. Since F ∩ G Z = B ∩ G Z , we obtain the result.

(3) (F is bipartite if and only if B is bipartite.) Suppose that B is bipartite. We take the bipartition (L, R) of B. As a connected bipartite graph has a unique bipartition, this is unique up to changing L and R.

As

F ∩ G Z = B ∩ G Z , this gives a bipartition (L , R) of F ∩ G Z . Let u, v ∈ V (F) ∩ B t be vertices that are contained in the same connected component of F ∩ G Y . Assume u, v
are contained in the same part of L and R . Since u, v are also contained in the same connected component of B ∩ G X and they are in the same part of L and R, all the paths from u to v in B ∩ G X have even length. Note that the blocks containing edges of the path from u to v are all contained in B, and those blocks appear in Aux p (X, t). As B is bipartite, each of these blocks is bipartite.

Since Aux(Y, t) is isomorphic to Aux(X, t), there is a corresponding sequence of blocks whose last blocks contain u and v, respectively, and all these blocks are bipartite. By the last condition of the equivalence relation ≡ t , there is an even path from u to v in G Y . This shows that a bipartition of F ∩ G Y is compatible with the bipartition (L , R) of F ∩ G Z . Thus, F is bipartite. X ≡ t X ∪ {v} and w(X) ≥ w(X ∪ {v}). It is not difficult to check that X ≡ t X by considering G t and the sum (G t , B t \ {v}) ⊕ (G[B t], B t \ {v}) and applying Claim 21.

2) t is a forget node with child t and B t \ B t = {v}:

We set R[t, I] = reduce t (R[t , I] ∪ R[t , I ∪ {v}]). We easily deduce that R[t, I] is a reduced set of P[t, I] from the fact that, by definition, P[t, I] = P[t , I] ∪ P[t , I ∪ {v}].

3) t is a join node with two children t 1 and t 2 :

We set R[t, I] = reduce t (A) where A is the set that contains X 1 ∪X 2 for every X 1 ∈ R[t 1 , I] and X 2 ∈ R[t 2 , I]. We claim that R[t, I] is a reduced set of P[t, I]. Let X ∈ P[t, I]. For each i ∈ {1, 2}, let X i := X ∩ V (G ti). It is not difficult to see that X i ∈ P[t i , I], as it is a partial solution of G ti .

Since R[t i , I] is a reduced set of P[t i , I], there exists X i ∈ R[t i , I] such that X i ≡ t X i and w(X i) ≥ w(X i). By construction, X 1 ∪ X 2 ∈ A, and there exists X ∈ R[t, I] such that X ≡ t X 1 ∪ X 2 and w(X) ≥ w(X 1 ∪ X 2). It is not difficult to check that X ≡ t X by considering G t and the sum (G t1 , B t) ⊕ (G t2 , B t2) and applying Claim 21 twice. As w(X 1 ∪ X 2) ≥ w(X 1 ∪ X 2) = w(X), we conclude that R[t, I] is a reduced set.

It remains to prove the correctness and the running time of our algorithm. We can assume w.l.o.g. that the bag B r associated with the root r of T is empty. By definition P[t, ∅] contains an optimal solution. Since R[t, ∅] is a reduced set, we conclude that R[t, ∅] also contains an optimal solution.

For the running time, we use the fact that we can compute reduce t (A) in time |A|2 O(tw log tw) n 2 . This follows from the upper bound of Claim 18 on the number of equivalence classes of ≡ t and the fact that for every partial solutions X, Y of G t , we can decide whether X ≡ t Y in time O(n 2).

Let t be a node of T that is not a leaf. Observe that we set R[t, I] = reduce t (A) where A is some sets that depends on the type of the node t. Let k be maximum size of a reduced set R[t , I] for t ∈ V (T) and I ⊆ B t . By construction, if t is an introduce node, then the size of A is at most k. If t is a forget node, then the size of A is at most 2k. And if t is a join node, then the size of A is at most k 2 . From Claim 18, we have k ≤ 2 O(tw log tw) . We deduce that, for every node t and I ⊆ B t , we can compute R[t, I] in time 2 O(tw log tw) • n 2 . Since T has at most O(n • tw 2) nodes and there are at most 2 O(tw) possibilities for I, the running time of our algorithm is 2 O(tw log tw) n 3 .

The dependency n 3 on the input size n in Theorem 17 was obtained because we keep the partial solutions themselves, and have to check their equivalences. We believe that with a careful argument by keeping only auxiliary graphs Aux(X, t), we can reduce the dependence of the input size; however, for simplicity, we present the running time with n 3 factor. Now, we solve the other problems.

Theorem 20. Subset Feedback Vertex Set, Restricted Edge-Subset Feedback Edge Set, Node Multiway Cut, and their weighted variants can be solved in time 2 O(tw log tw) n 3 on n-vertex graphs with treewidth tw.

Proof. It is easy to check that a graph has no S-traversing cycle if and only if every block of size at least 3 has no vertex of S. So, for Subset FVS, we can simply adapt the algorithm for Subset OCT, to ignore checks for bipartiteness. A partial solution at a node t is a subset Y of V (G t) such that G t [Y] is a graph having no S-traversing cycles.

We use the same auxiliary graph Aux(Y, t), and use the equivalence relation obtained by removing the conditions for bipartiteness in the equivalence relation for Subset OCT. More specifically, we say that two partial solutions are equivalent for Subset FVS if X ∩ B t = Y ∩ B t , and there is an isomorphism ϕ from Aux(X, t) to Aux(Y, t) such that the following conditions are satisfied:

For every vertex v in Aux(X, t), v is active if and only if ϕ(v) is active.

For every vertex v in Aux(X, t), v is a block if and only if ϕ(v) is a block. For every active cut vertex v in Aux(X, t), we have ϕ(v) = v.

For every active block B in Aux(X, t): V (B) ∩ B t = V (ϕ(B)) ∩ B t , and V (B) ∩ S = ∅ if and only if V (ϕ(B)) ∩ S = ∅.

A Semi-regular instances of k × k-Clique

Here we show the claimed ETH lower bound for Semi-Regular k × k-Clique, namely that it is not easier than k × k-Clique. We insist that we do not need this result in the paper, but we believe that it may be helpful in a different context. We recall that by semi-regular, we mean that every vertex of a given column has the same degree towards another fixed column. The known parameterized reduction from k-Clique on general graphs to k-Clique on regular graphs will not work here, since it would increase the parameter polynomially (which we cannot afford). We take a couple of steps back and show how to partition the vertex set V (G) of a hard instance of Bounded-Degree 3-Coloring in such a way that the seminal reduction from 3-Coloring to k × k-Clique only produces semi-regular instances. Let us recall that the latter reduction builds one vertex per 3-coloring of a part of the partition, and links by an edge every pair of consistent partial colorings (i.e., the union of the colorings is proper in the graph induced by the two parts). If the number of parts k is chosen so that 3 |V (G)|/k ≈ k, we obtain a "square" k-by-k instance of Clique. Now we want to ensure, in addition, that each 3-coloring of a part P has the same number of consistent 3-colorings of another part P .

It is a folklore consequence of the Sparsification Lemma [START_REF] Impagliazzo | Which Problems Have Strongly Exponential Complexity?[END_REF] and known reductions that 3-coloring a boundeddegree n-vertex graph cannot be done in 2 o(n) . For instance Cygan et al. show the following.

Theorem 21 (Lemma 1 in [START_REF] Cygan | Tight lower bounds on graph embedding problems[END_REF]). Unless the ETH fails, 3-Coloring on n-vertex graphs of maximum degree 4 cannot be solved in 2 o(n) .

Ultimately this result is a reduction from 3-SAT. The 3-Coloring instances produced by that reduction serve as our starting point. Proof. Let G be a hard instance of 3-Coloring with maximum degree 4, produced by the reduction of Theorem 21. G 2 , the square of G, (with an edge between two vertices at distance at most 2) has degree [START_REF] Fiorini | Planar graph bipartization in linear time[END_REF]. By Hajnal-Szemerédi Theorem, G 2 admits an equitable coloring using 17 colors. This equitable coloring can further be found in polynomial time, by Kierstead and Kostochka [START_REF] Kierstead | A short proof of the Hajnal-Szemerédi Theorem on equitable colouring[END_REF]. We refine this 17 classes arbitrarily into k classes of equal size, such that k log 3 k = |V (G)|. Let us call P the obtained partition of V (G). We perform the reduction of 3-Coloring to k × k-Clique with this equipartition P. The resulting instance is semi-regular. By design, for every pair of parts P = P ∈ P, G[P ∪ P] consists of some isolated edges between P and P , and isolated vertices. Indeed an edge within P , or within P , or a degree-2 vertex would all contradict the coloring of G 2 (with 17 colors). Thus any 3-coloring of P is consistent with the same number of 3-colorings of P . This shared number is 3 times the number of isolated vertices of G[P ∪ P] in P times twice the number of edges in G[P ∪ P].

 Consequently, it is enough to keep a partial solution of maximum weight for each equivalence class of ≡ B . Intuitively, the equivalence relation ≡ B is based on the information: (1) how the blocks of G[X] intersecting B are connected, (2) whether important blocks (that have the possibility to create an S-traversing odd cycle later) contain a vertex of S, and (3) the parity of the paths between the vertices in B. Since ≡ B has 2 O(tw log tw) equivalence classes, we deduce from this equivalence relation a 2 O(tw log tw) n 3 -time algorithm with standard dynamic programming operations. The polynomial factor n 3 appears because we can test X ≡ B Y in time O(n 2).

Lemma 6 .

 6 G 1 (C) is a column selector gadget for Subset Feedback Vertex Set and Subset Odd Cycle Transversal, and G 2 (C) is a column selector gadget for Even Cycle Transversal. Proof. The gadgets G 1 (C) and G 2 (C) add 3k and 4k + 2, respectively, new vertices, thus O(k). Their edge set respects the specification of the column selector.

Theorem 10 .

 10 Unless the ETH fails, the following problems cannot be solved in time 2 o(pw log pw) n O(1) on n-vertex graphs with pathwidth pw: Subset Feedback Vertex Set, Subset Odd Cycle Transversal, and Even Cycle Transversal.

Theorem 11 .

 11 Unless the ETH fails, Node Multiway Cut cannot be solved in time 2 o(p log p) n O(1) on n-vertex graphs where p = pw + |T | is the sum of the pathwidth of the input graph and the number of terminals.

Theorem 12 .

 12 Unless the ETH fails, Multiway Cut cannot be solved in time 2 o(p log p) n O(1) on n-vertex graphs where p = pw + |T | is the sum of the pathwidth of the input graph and the number of terminals.

Fact 16 .

 16 If a graph G is 2-connected and not bipartite, then there exists an odd path and an even path between every pair of vertices.Theorem 17. (Weighted) Subset Odd Cycle Transversal can be solved in time 2 O(tw log tw) n 3 on n-vertex graphs with treewidth tw.

Figure 5

 5 Figure 5 Example of graphs Inc(X) and Aux(X, t) constructed from a graph G[X]. The vertices in Bt are white filled.The red vertices and edges in Inc(X) are those we remove to obtain Auxp(X, t).

Theorem 22 .

 22 Unless the ETH fails, Semi-Regular k × k-Clique cannot be solved in time 2 o(k log k) .

 has an edge between every pair of vertices in X. A graph with vertex set X ∪ Y that has an edge between every vertex x ∈ X and y ∈ Y is called a biclique, and is denotedK |X|,|Y | .For a vertex v in G, we denote by N G (v) the set of neighbors of v in G, and

 For every pair (u, v) of vertices in B t ∩ X and every path P X between u and v in G[X], there exists a path P Y in G[Y] between u and v with the same parity as P X .Claim 18. For every node t of T , the equivalence relation ≡ t has 2 O(tw log tw) equivalence classes.Proof. Let t be a node and X be a partial solution of G t . Let k = |B t |. In the following, we will upper bound the number of possibilities for the conditions in the definition of ≡ t . Notice that there are at most 2 k possibilities for X ∩ B t . Now, observe that the number of active blocks of G[X] is at most k. Note that if an active block contains one vertex of B t , then it is not a cut vertex of G[X], and if an active block intersects at least two vertices of B t , then it contains either two cut vertices of G[X] contained in B t , or it contains at least one vertex of B t that is not a cut vertex of G[X]. We consider Inc(X) as a rooted forest (where each tree has a root), and give an injection φ from the set of active blocks to B t as follows. For each active block B, if it contains a vertex in B t that is not a cut vertex of G[X], then choose such a vertex v and set φ(B) = v, and if all vertices of B t ∩ V (B) are cut vertices of G[X], then |B t ∩ V (B)| ≥ 2 and we choose one vertex

	and
	c. B is bipartite if and only if ϕ(B) is bipartite.
	5. For every edge uv in Aux(X, t):
	a. M uv is bipartite if and only if M ϕ(u)ϕ(v) is bipartite, and
	b. V (M uv) ∩ S = ∅ if and only if V (M ϕ(u)ϕ(v)) ∩ S = ∅.
	6.

 Since all the blocks in Aux(X, t) with vertices in S are active, Condition 4.a of ≡ t guarantees that V (B) ∩ B By Lemma 15, this will imply that B is S-bipartite, because F is a subgraph of the S-bipartite graph

t = V (F) ∩ B t . We claim that F is a 2-connected induced subgraph of G[Y ∪ Z] such that F contains a vertex of S if

and only if B contains a vertex of S, F is bipartite if and only if B is bipartite.

 every active block of G[X] and (2) two blocks B , B of Aux(X, t) are connected if and only if ϕ(B) and ϕ(B) are connected in Aux(Y, t).Assume towards a contradiction that F has a cut vertex c. Let a 1 , a 2 be the neighbors of c that are contained in distinct components of F -c.For each i ∈ {1, 2}, let U i be a block of G Y or G Z containing a i c. Note that U 1 and U 2 are fully contained in F , because every block of G Y or G Z containing two vertices of F is contained in F . Therefore, U i appears in Aux p (Y, t) if it is a block of G Y andit appears in Aux p (V (G Z), t) otherwise. Now, we choose U 1 and U 2 in Aux(Y, t) and Aux(V (G Z), t) related to U 1 and U 2 , respectively. (Case 1. U 1 , U 2 are in the same part of Aux p (Y, t) or Aux p (V (G Z), t).) Let us assume that both U 1 and U 2 are in Aux p (Y, t). A similar argument holds for the other case. As c is the intersection of U 1 and U 2 which are blocks of G Y , c is a cut vertex of G Y , and it appears in Aux p (Y, t). Following the path of Aux p (Y, t) with direction from c to U i , we choose the first vertex U i in Aux(Y, t).

(Case 2. U 1 , U 2 are not in the same part of Aux p (Y, t) or Aux p (V (G Z), t).) Without loss of generality, we assume that U 1 is in Aux p (Y, t) and U 2 is in Aux p (V (G Z), t). We explain how to choose U 1 . The symmetric argument is applied to U 2 . In this case, U 1 and U 2 share c, and therefore, either c is an active cut vertex in G Y , or U 1 is an active block of G Y . In the former case, following the path of Aux p (Y, t) with direction from c to U 1 , we choose the first vertex U 1 in Aux(Y, t). In the latter case, we set U 1

 an edge in Aux(Y, t). Now, suppose that B i and B i+1 are contained in distinct parts of G X and G Z and assume w.l.o.g. that U i is a block in G Y . By Condition 4.a in the definition of ≡ t , we have

Observe that we switch the columns and the rows compared to the original definition of k × k-Clique[START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF]. While this is of course equivalent, it will make the representation of some gadgets slightly more conducive to the page layout.

O(1) vertices will actually suffice for all the gadgets of Section

3.2.

We are now ready to describe our algorithm. For each node t of T and I ⊆ B t , let P[t, I] be the set of all partial solutions X of G t where X ∩ B t = I. A reduced set R[t, I] is a subset of P[t, I] satisfying that for every partial solution X ∈ P[t, I], there exists X ∈ R[t, I] where X ≡ t X and w(X) ≥ w(X), and no two partial solutions in R[t, I] are equivalent. We will recursively compute a reduced set R[t, I] for every node t of T and I ⊆ B t . Claim 18 guarantees that

We describe how to compute a reduced set R[t, I] depending on the type of the node t, and prove the correctness and the running time of each procedure. We fix a node t and I ⊆ B t . For each leaf node t and I = ∅, we assign R[t, I] := ∅. For A ⊆ 2 V (Gt) , we define reduce t (A) as the operation which removes the elements of A that does not induce S-bipartite graph and then returns a set that contains, for each equivalence class C of ≡ t over A, a partial solution of C of maximum weight.

This work was initiated while the authors attended the "2019 IBS Summer research program on Algorithms and Complexity in Discrete Structures", hosted by the IBS discrete mathematics group. The third author received support from the Leverhulme Trust (RPG-2016-258). The fourth author is supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050294) and supported by the Institute for Basic Science (IBS-R029-C1).

It is straightforward to adapt an algorithm for Subset OCT to Subset FVS with this equivalence relation. We conclude that Subset FVS admits a 2 O(tw log tw) n 3 -time algorithm.

For the weighted variant of Node Multiway Cut, we use the reduction to Subset FVS described in the introduction. Given an instance (G, S, k) of Weighted Node Multiway Cut with weight function w : V (G) → R, we construct an equivalent instance (G , S , k) of Weighted Subset FVS with tw(G) ≤ tw(G) + 1 as follows. We add a new vertex v to G adjacent to all the vertices in S. Let G be the resulting graph and S = {v }. Since we only add a single vertex, tw(G) ≤ tw(G) + 1. For every vertex v in G, we set the weight of v to be "infinite" if v ∈ S ∪ {v } and w(v) otherwise. Consequently, a solution cannot contain vertices in S ∪ {v }. One can easily prove that (G, S, k) is a yes-instance of Weighted Node Multiway Cut if and only if (G , S , k) is a yes-instance of Weighted Subset FVS. Hence, Node Multiway Cut and its weighted variant admit 2 O(tw log tw) n 3 -time algorithms.

It remains to prove that the theorem holds for Weighted Restricted Edge-Subset Feedback Edge Set (WSFES for short). For doing so, we use a reduction to Weighted Subset FVS. Let (G, S, k) be a instance of WSFES with weight function w : E(G) → R. We will construct a instance (G , S , k) of Weighted Subset FVS where tw(G) = tw(G).

Let G be the graph obtained by subdividing the edges of G. Since subdivisions do not increase the treewidth, we have tw(G) = tw(G). For every edge e of G, we call v e the vertex in G created from the subdivision of e. Let S be the set {v e | e ∈ S}. We give "infinite" weights to the vertices of G that belong to V (G) ∪ S . Moreover, for every edge e ∈ E(G) \ S, we give to v e the same weight as e. Consequently, a solution cannot contain vertices in V (G) ∪ S . It is easy to prove that (G, S, k) is a yes-instance of WSFES if and only (G , S , k) is a yes-instance of Weighted Subset FVS. We conclude that WSFES admits a 2 O(tw log tw) n 3 -time algorithm.