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Abstract: This paper presents a guided tour of some specific problems encountered in the
stability analysis of linear dynamical systems including delays in their systems’ representation.
More precisely, we will address the characterization of multiple roots of the corresponding
characteristic function with a particular emphasis on the way these roots are affected by the
system’s parameters and the way that they can be used to control. The paper covers several
approaches (perturbation techniques, hypergeometric functions) leading to some methods
and criteria (frequency-sweeping, multiplicity-induced-dominancy) that can be implemented
(software toolboxes) for analyzing the qualitative and quantitative properties induced by the
delays and other parameters on the system’s dynamics. A particular attention will be paid
to the so-called partial pole placement method based on the multiplicity-induced-dominancy
property. The presentation is as simple as possible, focusing more on the main intuitive ideas
and appropriate mathematical reasoning by analogy in the presentation of the theoretical results
as well as their potential use in practical applications. Illustrative examples complete the paper.

Keywords: delay; dynamical systems; parameter-based methods; frequency-sweeping;
Weierstrass polynomial; multiplicity-induced-dominancy; asymptotic behavior.

1. INTRODUCTION

Time-lag or dead-time, aftereffect, post action, deviating
or lagging argument, heredity or hereditary effects rep-
resent some of the existing synonyms in the literature
to describe the presence of a (time-)delay in the math-
ematical models of systems’ dynamics. Large classes of
physical, chemical and/or biological processes where the
heterogeneity of the temporal phenomena needs a deeper
understanding of the system’s behavior make use of delays
in order to better capture the underlying mechanisms of
such processes. Among others, one may cite: transport
and propagation in interconnected cyber-physical systems
subject or not to communication constraints or incubation
periods, maturation times, age structure, seasonal/diurnal
variations in epidemic models. Such systems belong to the
class of infinite-dimensional systems and there exist sev-
eral ways to represent their dynamics. Functional differen-
tial equations (FDEs) sometimes called delay-differential
equations (DDEs) are, by now, a classical framework for
studying the qualitative and quantitative effects induced

by the delays on the dynamics. Throughout the paper, we
will adopt such a model representation. For a history of
DDEs, in our opinion, the paper by Hale (2006) captures
the most important results concerning the preservation of
stability/instability of equilibria under small (nonlinear)
perturbations in both frequency- (semigroups) and time-
domain (mainly Lyapunov). Intuitively, extending, adapt-
ing ideas from ordinary differential equations (ODEs) to
DDEs was, in some sense, the natural way to develop
the corresponding theory and results concerning existence,
uniqueness and continuation of solutions, the dependence
on parameters 1 are similar to the one derived for ODEs
with a few additional technicalities 2 as pointed out in
Hale and Verduyn Lunel (1993). There exists an abundant
literature on these topics in Mathematics, Physics, Engi-
neering, Economics and Life Sciences since the 1970s (for
older references, see, for instance, the excellent annotated
bibliography by Weiss (1959) completed, a few months
later, by Chosky (1960), both published in Control area).

1 including the delays
2 due to the infinite-dimensional character of the DDEs



In the sequel, we will focus on some problems arising in the
stability analysis of linear DDEs in a frequency-domain
framework. For a basic construction of the elementary
solution of a linear DDEs using the Laplace transform
as well as fundamental spectral properties of DDEs, we
refer to Kappel (2006). As briefly explained in Section 2.1,
and similar to linear ODEs, the location of the roots of
the characteristic function is essential to conclude on the
(asymptotic) stability of linear DDEs. In particular, the
way the system’s parameters may affect the roots location
is important in both quantitative and qualitative analysis
of the system’s behavior.

In the 1940s, the construction of the parametric-plot of
the frequency response of open-loop single-input/single-
output (SISO) linear time-invariant (LTI) and the use of
the Nyquist criterion to analyze the asymptotic stability
analysis of the corresponding closed-loop system became
extremely popular, easy to understand and to apply and
it is at the origin of most of the graphical (stability)
approaches and tests in the open literature. Excepting the
extension of such ideas to deal with some particular classes
of nonlinear systems (mainly, the well-known circle and
Popov criteria), a particular attention was devoted to LTI
systems including one delay in the input/output channel,
and a lot of results published in delay area in the 50s–70s
deal with various extensions of Nyquist and Michailov cri-
teria (see, for instance, Krall (1965)). For a deeper discus-
sion of the Michailov criterion applied to delay systems, we
refer to Barker (1979) and for some connections between
Michailov and Nyquist criteria applied to delay systems
we mention the almost forgotten paper by Chen and Tsay
(1976). Further graphical tests include the well-known
root-locus methods 3 and the Satche’s diagrams (see, e.g.
Satche (1949)), where the last ones can be interpreted as a
variant of the Nyquist criterion and are sometimes called
dual root-locus methods. For a pedagogical presentation
as well as some extensions of the root locus methods and
Nyquist criterion to deal with SISO LTI systems with
one delay in the input/output channel, we refer to Krall
(1968) 4 . Finally, to complete the discussion above, it is
worth mentioning the extension of Popov criteria to delay
systems (see, for instance, Halanay (1966), Răsvan (1975)).

At the beginning of the 80s, Els’golts’ and Norkin (1973)
mention three tests for checking the asymptotic stability
of DDEs: the amplitude-phase method (referring to Tsyp-
kin’s contributions), the so-called D-partition method and
the direct generalization of the Routh–Hurwitz method
(mainly C̆ebotarev’s contributions), with a deeper dis-
cussion of the first two methods by using the argument
principle as well as the Rouché’s lemma.

The D-partition method has a long history started with
the contribution of Vishnegradsky in the 1880s and its
application to DDEs goes back to the 1950s (see, e.g.
Neimark (1949)). For a deeper discussion on the construc-
tion of stability charts for low-order systems including
delays in their system representation, we refer to Pinney
(1958) and Stépán (1989). The so-called amplitude-phase
method, proposed by Tsypkin (1946), is at the origin

3 whose origins go back to the works of Evans at the end of the
1950s see, e.g. Evans (1950) and the references therein
4 see also Krall (1970) for a survey of the root-locus methods

at most of the existing frequency-sweeping tests in the
open literature and it will be briefly addressed in Section
2.1. However, to the best of the authors’ knowledge, the
notion of “frequency-sweeping” was first mentioned Chen
and Latchman (1995) and Chen (1995) into a different
methodological frame. Excepting these methods, at the
end of the 70s, Lee and Hsu (1969) proposed the so-
called τ -partition method that can be seen as the “dual”
of the D-partition method if one takes into account the
way the coefficients and the delay(s) are treated 5 . For its
extension in the most general case for analytical functions
with respect to one delay parameter, we refer to Cooke and
van den Driessche (1986). Independently, a similar analysis
was proposed by Walton and Marshall (1987) one year
later, and both contributions are at the origin of various
results published in the literature in the last 20 years.

The monograph by C̆ebotarev and Mĕıman (1949) collects
some of the developments on the Routh–Hurwitz problem
in the period 30s–50s, including their direct generalization
to quasipolynomials. Since most of these methods are
difficult to apply, starting with the 90s, the use of some ap-
propriate bilinear transformations allowed to reformulate
and to simplify the detection of characteristic roots on the
imaginary axis. Such ideas are at the origin of the so-called
pseudodelay techniques initiated by Rekasius (1980), that
have been further refined by Thowsen (1981) and, more
recently, by Olgac and Sipahi (2002) leading to some new
methods.

The development of robust control methodologies in the
90s allowed to reconsider some of the ideas above in the
new frame and to develop some new techniques. In partic-
ular, the interpretation of delays as uncertain parameters
is at the origin of a series of contributions on the so-
called delay-independent/delay-dependent stability 6 prob-
lem with a particular attention to the computation of the
delay margin in the delay-dependent case 7 . For further
discussions on such topics as well as a long list of refer-
ences, we refer to Niculescu (2001), Gu et al. (2003) and
Fridman (2014) (see also Sipahi et al. (2011) and Richard
(2003)).

Since the earlier studies devoted to the analysis of linear
DDEs in the 50s, the existence of multiple characteristic
roots was mentioned by Hayes (1950) (scalar DDE) Pinney
(1958) (scalar and second-order DDEs) in characteriz-
ing the stability charts in the corresponding parameter
space, but without any attempt to develop an appropriate
methodology in the general case. Extending the ideas of
Stépán (1979) (see also Stépán (1989)), Hassard (1997)
proposed an analytical criterion to count the unstable
roots. Such a criterion, based on the argument princi-
ple, takes into account multiple roots on the imaginary
axis subject to some appropriate constraints. Next, as
mentioned in Hale and Verduyn Lunel (1993), deriving
an abstract perturbation theory for DDEs is not a triv-
ial problem. However, by exploiting the structure of the

5 D-partition: fixed delays with all the other parameters free and
τ -partition: fixed coefficients and the delays are free parameters
6 To the best of the authors’ knowledge, the concepts of stabil-
ity/stabilization “independent of delay” were formally introduced
by Kamen (1982).
7 To the best of the authors’ knowledge, the notion of delay margin
was introduced by Chen (1995) and Chen et al. (1995).



characteristic functions, Chen et al. (2010b) (see also the
companion paper Chen et al. (2010a) and Chen et al.
(2017)) derived an eigenvalue perturbation approach for
characterizing the asymptotic behavior of multiple char-
acteristic roots located on the imaginary axis for some
classes of DDEs 8 , and the underlying ideas are at the
origin of some of the developments in the literature during
the last years (see also the discussions in Michiels and
Niculescu (2014)). Finally, in the case of complete regu-
lar splitting, we mention Michiels et al. (2017) (see also
Mart́ınez-González et al. (2019) for some insights in the
classification).

The contributions of the paper are twofold: first, to offer
a guided tour on some of the approaches developed by the
authors during the last decade on the analysis of the effects
induced by multiple characteristic roots on the system’s
dynamics. Second, we are interested to emphasize the way
that such findings can be used in control. To improve the
readability of the paper, most of the presented results are
completed by illustrative examples.

The paper is organized as follows: the problem statement
and some prerequisites are briefly presented in Section 2
and two motivating examples in Section 3. Sections 4–
6 focus on some approaches to characterize the multiple
characteristic roots located on the imaginary axis and
are strongly related to the so-called τ -partition methods.
Next, Section 7 covers an interesting property valid only
for delay systems — multiplicity-induced-dominancy —
opening interesting perspectives in control. Finally, some
concluding remarks end the paper.

Notations: In this paper, N∗ denotes the set of positive
integers and N = N∗ ∪ {0}. The set of all integers is
denoted by Z and, for a, b ∈ R, we denote Ja, bK = [a, b] ∩
Z, with the convention that [a, b] = ∅ if a > b. For a
complex number λ, ℜ(λ) and ℑ(λ) denote its real and
imaginary parts, respectively; C− and C+ denote the sets
{λ ∈ C : ℜ(λ) < 0} and {λ ∈ C : ℜ(λ) > 0}, respectively;
furthermore, jR (with j =

√
−1) denotes the imaginary

axis. The order of a power series f(x, y) =
∑

i,k ai,kx
iyk

will be denoted by ord (f) and defined as the smallest
number n = i + k such that ai,k ̸= 0. The order of the
power series f with respect to the variable x, will be
denoted by ordx (f) and defined similarly. For n ∈ N, let−→x := (x1, x2, . . . , xn), then the ring of complex formal
power series will be denoted by C[[−→x ]], with subring C{−→x }
of convergent power series.

2. PARAMETERS, DELAYS AND DYNAMICS:
PROBLEM FORMULATION AND PREREQUISITES

Consider a positive integer np ∈ Z+, and an open set
O ∈ Rnp . For a set of parameters −→p ∈ O, introduce the
transcedental complex-valued function ∆ : C × Op 7→ C
defined by:

∆(λ;−→p ,−→τ ) := P0(λ,
−→p ) +

nd∑
i=1

Pi(λ,
−→p )e−λτi(

−→p ), (1)

where the components τi : O 7→ R+, i ∈ J1, ndK of the delay
vector −→τ ∈ Rnd are assumed to be sufficiently smooth,
non-negative and bounded functions for all the parameters
8 retarded DDEs with multiple commensurate delays

−→p ∈ O. Next, Pi, (i ∈ J0, ndK) denote real polynomials in
the complex variable λ depending on the parameters −→p ,
such that the applications −→p 7→ Pi(·,−→p ) are well-defined
and sufficiently smooth on the open O. Assume further
that P0 is a monic 9 polynomial and that n = deg(P0) >
max−→p deg(Pi) for all −→p ∈ O and i ∈ J1, ndK with the
observation that we are not excluding the cases when
leading coefficients of the polynomial Pi may vanish for
some values of the parameters −→p . These last assumptions
allow guaranteeing that the quasipolynomial (if it exists?!)
is always of retarded type.

The transcendental function ∆ in (1) covers a lot of cases
encountered in the analysis of delay systems depending on
parameters. Such parameters may define some particular
structure of the coefficients of the polynomials Pi (i ∈
J0, ndK) and/or of the delays 10 , some dependence between
the coefficients of the polynomials and the delays, or it
may reflect the way the controller’s gains appear in the
characteristic function of the closed-loop system.

To fix better the ideas, consider the strictly proper LTI
SISO linear system Σ(A, b, cT ) with the state-space repre-
sentation:

Σ :

{
ẋ(t) = Ax(t) + bu(t)

y(t) = cTx(t),
(2)

where the transfer function Hyu(λ) of Σ writes as
Hyu(λ) = P1(λ)/P0(λ), for some appropriate real poly-
nomials Pi, i ∈ J0, 1K, whose coefficients are given by the
“entries” of Σ. Assume now that Σ is controlled by the de-
layed output feedback u(t) = −ky(t−τ) with k ∈ Op ⊂ R∗.
In our case, the pair (k, τ) simply represents a “delay-
block” (controller). Under the assumption that the pair
(k, τ) ∈ Op×R+ defines our parameters then, some simple
computations show that the stability of the system in
closed-loop reduces to the analysis of the location of the
spectrum of the quasipolynomial ∆(·; k, τ) given by:

∆(λ; k, τ) := P0(λ) + kP1(λ)e
−λτ ,

In the case when the gain verifies |k| = 1, we refer to Tsyp-
kin (1946) for a first discussion on the stability with respect
to the delay parameter. Finally, it is easy to observe that
we arrive to the same characteristic quasipolynomial ∆ for
the closed-loop system if the delay τ is in the input channel
and not in the output.

Using the same terminology as Bellman and Cooke (1963),
the zeros of ∆ are called characteristic roots. Denote by
σs(∆) ⊂ C the whole set of characteristic roots of ∆. With
these notations and notions, the stability problem can be
formulated as follows: find the whole set of parameters−→p ∈ O guaranteeing that the corresponding characteristic
roots are located in C−.

2.1 Characteristic roots: prerequisites

Under the assumption that P0 is a monic polynomial, we
will further assume that the delay −→τ and the parameter −→p
vectors are independent each-other. Thus, in the retarded
case, for a set of parameters (−→p ,−→τ ) ∈ Op × Rnd

+ , the
characteristic function ∆ : C×Op × Rnd

+ 7→ C writes as:

9 The leading coefficient p0,n of P0 is equal to one: p0,n = 1.
10 for instance, the case of rationally-dependent delays



∆(λ;−→p ,−→τ ) := P0(λ,
−→p ) +

nd∑
i=1

Pi(λ,
−→p )e−λτi , (3)

where deg(Pi) < deg(P0), for all i ∈ J1, ndK and for all −→p ∈
Op. A particular important case of (3) is represented by the
class of quasipolynomials with commensurate delays, that
can be simply written by taking τi = iτ , for all i ∈ J1, ndK.
In the simplest case when nd = 1, (3) rewrites as:

∆(λ;−→p , τ) := P0(λ,
−→p ) + P1(λ,

−→p )e−λτ . (4)

The quasipolynomial ∆ given by (4) has some nice and
interesting properties that will be exploited in the sequel.
For instance, any vertical stripe of the complex plain in-
cludes a finite number of characteristic roots. Furthermore,
there exists a real number γ, such that all the characteristic
roots are confined to the half-plane Cγ : {λ ∈ C : ℜ(λ) < γ}
(see, for instance, Michiels and Niculescu (2014) and the
references therein).

Based on Rouché’s lemma (see, e.g., Ahlfors (1979)), we
have the following:

Theorem 2.1. Under the assumption that P0 is monic
and deg(P0) > deg(P1) for all −→p ∈ Op, let λ0 be a
characteristic root of the quasipolynomial ∆(·;−→p0, τ0) with
multiplicity k. Then there exists a constant ε̄ > 0 such that
for all ε > 0 satisfying ε < ε̄, there exists a δε > 0 such
that ∆(λ; −→p0 + δ−→p0, τ0 + δτ0), where δτ0 ∈ R, |δτ0| < δε,
τ0 + δτ0 ≥ 0, δ−→p0 ∈ Rnp , ∥δ−→p0∥2 < δε,

−→p0 + δ−→p0 ∈ Op has
exactly k zeros (multiplicity taken into account) in the disc
{λ ∈ C : |λ− λ0| < ε}.
Remark 2.2. (“Small” delays case). Consider now the case
∆(λ; τ) = P0(λ) + P1(λ)e

−λτ with deg(P0) > deg(P1), for
a sufficiently small delay value τ = ε > 0. The finite roots
of ∆(·; ε) can be made arbitrarily close to the finite roots of
∆(·; 0) and there exists an infinite number of roots whose
real parts approach negatively infinite 11 . In other words,
when increasing the delay from 0 to 0+, although the
system changes its character 12 , the stability/instability
of the delay-free system is preserved for sufficiently small
delays. However, such a property does not necessarily hold
in all the cases, and there are two particular situations of
interest: (i) neutral case 13 (deg(P0) = deg(P1)) and (ii)
delay-dependent coefficients of P0, P1.
The last case may appear in the PD-control of LTI SISO
systems when the derivative action is implemented by
using an Euler delay-difference approximation scheme, see,
e.g. Mendéz-Barrios et al. (2021). For further discussions
on delay systems including delay-dependent coefficients,
we refer to Chi et al. (2018) and the references therein. 2

2.2 Spectral abscissa function: definition and properties

For the analysis of stability, it is important to know where
the rightmost characteristic root is located as well as the
way it is affected by parameters change. To answer to such
questions, introduce now the spectral abscissa function
(−→p , τ) ∈ Op × R+ 7→ αs(

−→p , τ) ∈ R defined by

αs(
−→p , τ) := sup {ℜ(λ) : ∆(λ; −→p , τ) = 0,−→p ∈ Op} .

As a consequence of Theorem 2.1, we have two properties:

11For an elementary proof, see, e.g., the Appendix of Shaughnessy
and Kashiwagi (1969).
12 from finite- to infinite-dimensional
13not addressed in this paper

(i) If deg(P0) > deg(P1), αs always exists, is bounded
and continuous.

(ii) As the delay and/or parameters vary, the multiplicity
summation of the roots of ∆ in open C+ can change
only if a root appears on or crosses the imaginary
axis 14 .

Thus, understanding the behavior of the characteristic
roots located on jR with respect to the parameters’ change
becomes essential for a complete characterization of the
stability regions in the corresponding parameter-space.

Remark 2.3. The ideas above still hold in the commen-
surate delays case (τi = iτ for i ∈ J1, ndK and τ ∈ R+ in
(3)). For incommensurate delays, by introducing delay rays
{r−→τ : r ∈ R+}, Datko (1978) proved that the continuity of
the spectral abscissa holds with respect to r ∈ R+. 2

Remark 2.4. To construct the stability charts in the scalar
and second-orded DDEs, Pinney (1958) introduced the so-
called (xr, kr) plateau set, that is the set of parameters for
which ∆ has kr and only kr roots of real part greater than
xr. Thus, (0, 0)-root plateau corresponds to the stability
regions, and the minimal value of xr of the (xr, 0)-root
plateau corresponds to the spectral abscissa. 2

2.3 Hyperbolicity, switches and reversals

Reconsider the SISO system (2) in closed-loop under the
assumption that k = 1, i.e., ∆ rewrites as: ∆(λ; τ) :=
P0(λ) + P1(λ)e

−λτ and let us focus on the τ -partition.
Assume further that P0 and P1 are coprime. If

|P1(jω)| < |P0(jω)|, (5)

for all ω ∈ R, then σs(∆)∩ jR = ∅. By using Theorem 2.1,
it follows that the characteristic roots of ∆ can not migrate
from C− to C+ or vice-versa if τ is increased from 0 to +∞.
Such a system is called hyperbolic and it has an interesting
property: the location of the spectrum of the polynomial
P0 + P1 will define the stability/instability of the system
for all delays τ ∈ R+. For further discussions in a more
general setting, we refer to Hale et al. (1985) 15 .

Next, it is easy to see that if 0 ∈ σs(∆(·; 0)), then
∆(0; τ) = 0, ∀τ ∈ R+. Thus, the origin will be an invariant
root 16 . Now, if 0 ̸∈ σ(P0 + P1), checking (5) for ∀ω ∈ R∗

+
is sufficient to guarantee hyperbolicity. Assume now that
σ(P0 + P1) ⊂ C−. As observed by Tsypkin (1946), the
closed-loop system is delay-independently stable if and only
if the condition (5) holds for all ω ∈ R∗

+, and it can be
simply checked from the plot of z1, where the application
ω 7→ z1(ω) := −P0(jω)/P1(jω), for ω ∈ R∗

+ defines the
simplest frequency sweeping curve (FSC).

Consider now the case when the closed-loop system is not
hyperbolic. Then there exists at least one value ωc ∈ R,
such that ∆(jωc; τ) = 0 for some delay τ = τc ∈ R+. Such
a frequency ωc will be called crossing frequency, and the
collection of all “ωc” will define the crossing set :

Ωc := {ω ∈ R : |P0(jω)| = |P1(jω)|} . (6)

14For an elementary proof of such a property, we refer to Cooke and
Grossman (1982) in the case of a second-order system with respect
to the delay parameter
15For the characterization of the commensurate delays case, see, e.g.,
Niculescu (2001).
16The common roots P0 and P1 on jR are also invariant roots with
respect to τ .



At this stage, there are two important remarks:

(i) first, card(Ωc) is finite, and its computation reduces
to the computation of the positive roots of an appro-
priate polynomial;

(ii) second, the knowledge of a crossing frequency ωi,c ∈
Ωc will allow to compute the minimal critical delay
value τ∗i,c ∈ R+

17 that will generate the set of
(critical) crossing delays

T (ωi,c) :=

{
τ∗i,c +

2kπ

ωc
≥ 0, k ∈ Z

}
. (7)

For a deeper discussion of the remarks (i)–(ii) above, see,
for instance, Michiels and Niculescu (2014).

Under the assumption of a simple characteristic root ω0 ∈
Ωc for some delay τ0 ∈ T (ω0), Cooke and Grossman (1982)
discussed the behavior of the characteristic root jω0 for
values close to τ0 by using the “quantity” sgn(ℜ(dλ)dτ)
evaluated a λ = jω0 and τ = τ0. Such an idea was further
refined in Cooke and van den Driessche (1986) and largely
use in the open literature during the last 30 years. More
precisely, if the characteristic root located on the imagi-
nary axis moves towards instability (stability), we will have
a stability switch (reversal) 18 . Finally, the degenerate case
when ℜ(dλ)dτ = 0 needs to take into account higher-order
derivatives (see, for instance, Shaughnessy and Kashiwagi
(1969) and the references therein).

2.4 Quasipolynomial degree and multiplicity

Recall the general quasipolynomial (3). The integer DPS =
nd +

∑nd

k=0 mk is called the degree of ∆ (see, for instance,
Wielonsky (2001)).

Remark 2.5. A classical result known as Pólya–Szegő
bound, see, e.g., Pólya and Szegő (1972) 19 allows to estab-
lish a direct link between the degree of a quasipolynomial
and the number of its roots in horizontal strips of the
complex plane. As an immediate consequence, given a root
λ0 ∈ C of a quasipolynomial (3) of degree DPS , by letting
the horizontal strip a line, one concludes that any root of
a quasipolynomial has multiplicity at most DPS . 2

Remark 2.6. Using a constructive algebraic approach ba-
sed on functional Birkhoff matrices, Boussaada and
Niculescu (2016a) showed that the maximal admissible
multiplicity of quasipolynomial’s roots is the Pólya–Szegő
bound. Furthermore, in the lacunary case 20 , it has been
shown in Boussaada and Niculescu (2016a) that the Pólya–
Szegő bound cannot be reached and some sharper bounds
for the admissible multiplicities has been established in
some configurations. 2

Remark 2.7. The problem of identifying the maximal di-
mension of the eigenspace associated to a multiple sin-
gularity λ = jω0 (with non-vanishing frequency ω0 ̸= 0)

17Such a value always exists and it may be 0.
18To the best of the authors’ knowledge, during the 80s, the notions
of (stability) switches/reversals appear in Cooke’s publications.
19This result was first introduced and claimed in the problems
collection published in 1925 by G. Pólya and G. Szegő. In the
fourth edition of their book (Pólya and Szegő, 1972, Part Three,
Problem 206.2), G. Pólya and G. Szegő emphasized that the proof
was obtained in the meantime by N. Obreschkoff using the principle
argument, see Obreschkoff (1928).
20when some coefficients of the quasipolynomial are identically zero

for time-delay systems as well as the explicit conditions
guaranteeing such a configuration has been addressed in
Boussaada and Niculescu (2016b), and the conclusion is
that the Pólya–Szegő bound for the maximal admissible
multiplicity is never reached when the crossing frequency
is different from zero. 2

3. MOTIVATING EXAMPLES

3.1 Scalar case: Double zero singularity

Consider the following scalar delay-differential system:

ẏ(t) + α (y(t)− y(t− 1)) = 0, (8)

under appropriate initial conditions, where α ∈ R∗. The
corresponding characteristic function rewrites as:

∆(λ;α) := λ+ α
(
1− e−λ

)
. (9)

It is easy to see that ∆(0;α) = 0 for all α ∈ R, showing that
such a root is invariant with respect to α. Furthermore,
since ∆′(λ) = 1 + αe−λ, then the root at the origin is
double if α = −1. With these observations in mind, we
have the following result:

Proposition 3.1. The scalar system (8) is unstable for
all α ∈ (−∞,−1), and the characteristic function ∆α

has one strictly positive real characteristic root. If α ∈
(−1,+∞), excepting the root at the origin, the remaining
characteristic roots of ∆ (if any?!) are located in C−.

We have three important observations:

• First, when the real parameter α is increased from
−∞, one real characteristic root arrives from +∞ and
it will move on the real axis towards to −∞ when α
tends to +∞. In other words, this root is “locked” on
the real axis for all values of the parameter α and the
characteristic function ∆ has always two real roots.

• Second, when α = −1, the system has a double
characteristic root λ = 0. It is easy to show that
for general scalar DDEs including a single delay, the
maximal multiplicity of a characteristic root is two
and it can be reached only on the real axis.

• Finally, surprisingly, the double root at the origin is
dominant in the sense that all the other roots are
located in C−. Such a property, called multiplicity-
induced-dominancy will be further addressed in the
forthcoming sections.
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The behavior of the the roots of ∆(·;α) as α varies in the
interval [−2, 0] is illustrated in Fig. 1, in which different
values of α in [−2, 0] are represented by different colors
and the root at 0 for all α is represented by a black dot.
We remark that, in addition to the root at λ = 0, ∆(·;α)
has another distinct real root for α ∈ (−∞,−1) ∪ (−1, 0),
which is positive if α < −1 and negative if α > −1. Notice
that λ = 0 is the unique root in the case α = 0 and, as
α → 0, the real parts of all other roots of ∆(·;α) converge
to −∞, as previously described in Remark 2.2.

Remark 3.2. A deeper analysis of the existence of double
roots in the scalar case can be found in Nussbaum (2002).
For further discussions the existence of real roots of
the characteristic function for general scalar DDEs with
respect to the system’s coefficients we refer to a series
of papers written by Wright at the end of the 60s (see,
for instance, Wright (1961) and the references therein).
Finally, to the best of the authors’ knowledge, the first
complete characterization of the stability regions in the
scalar case (covering both retarded and neutral cases) can
be found in Hayes (1950). 2

Remark 3.3. The explicit expressions of the characteristic
roots can be done by using the so-called Lambert W
function (see, for instance, Corless et al. (1996) and the
references therein), that is the (multivalued) inverse of
complex function ξ ∈ C 7→ ξeξ ∈ C. It has an infinite,
but countable number of branches Wk(ξ) ∈ {w ∈ C : ξ =
wew}, for k ∈ Z. More precisely, the characteristic roots
of ∆ given by (9) are expressed as:

λk = −α+Wk (αe
α) , ∀k ∈ Z.

Each of these branches is locally analytic excepting the
principal branch W0 that is not differentiable at the
point ξ = −e−1, that corresponds to the case when the
parameter α = −1. A deeper discussion of the general
scalar case by using the Lambert W function can be found
in Asl and Galip Ulsoy (2003) (see also Yu et al. (2010) for
some extensions of these ideas to the analysis and synthesis
of delay systems). 2

Remark 3.4. Observe that any root λ ∆(·;α) necessarily
satisfies:

ℜ(λ) sin(ℑ(λ))−ℑ(λ)eℜ(λ) + ℑ(λ) cos(ℑ(λ)) = 0, (10)

and, conversely, if λ ∈ C satisfies (10) and ℜ(λ) ̸= 0, then
there exists a unique α ∈ R such that ∆(λ;α) = 0 21 .
Fig. 2 represents the set of points in the complex plane
satisfying (10). Notice that the roots represented in Fig. 1
all lie in the set of points represented in Fig. 2. 2

3.2 Inverted pendulum stabilization: Triple zero singularity

Consider now a dynamical system modeling a friction free
inverted pendulum on cart. The adopted model is studied
in Sieber and Krauskopf (2004), Sieber and Krauskopf
(2005), Boussaada et al. (2015) and, in the sequel, we keep
the same notations. In the dimensionless form, the dynam-
ics of the inverted pendulum on a cart in Fig. 3 is governed
by the following second-order differential equation:(
1− 3ϵ

4
cos2(θ)

)
θ̈ +

3ϵ

8
θ̇2 sin(2θ)− sin(θ) + u cos(θ) = 0,

(11)

21The case of points on the imaginary axis satisfying (10) can be
obtained as a limit as α → ±∞
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Fig. 3. Inverted pendulum on a cart.

where ϵ = m/(m+M), M the mass of the cart and m
the mass of the pendulum and u represents the control
law that is the horizontal driving force. Consider now that
such a system is controlled by using a standard delayed PD
controller of the form u(t) = kp θ(t− τ)+ kd θ̇(t− τ), with
(kp, kd) ∈ R2. The local stability of the closed-loop system
is reduced to study the location of the spectrum of the
quasipolynomial ∆(λ; kp, kd, τ) := Q(λ)+P (λ; kp, kd)e

−λτ

where the polynomial P is first-order and includes the
gain parameters (kp, kd). A generalized Bogdanov–Takens
singularity with codimension three is identified in Sieber
and Krauskopf (2004).

Consider now a simpler planar inverted pendulum in
absence of friction:

θ̈(t)− g

l
sin(θ(t)) = u(t), (12)

where θ is the angular displacement 22 , g the gravitational
acceleration, l the pendulum length and u the external
torque. Assume that the controller 23 includes two “delay
blocks” (ki, τi), with i = 1, 2, and the control law has the
form: u(t) = −k1θ(t− τ1)− k2θ(t− τ2). The characteristic
function of the linearized system in closed-loop writes as:

∆(λ; k1, k2, τ1, τ2) := λ2 − g

l
+ k1e

−λτ1 + k2e
−λτ2 . (13)

Assume now that (τ1, τ2) = (τ, 2τ) with τ > 0, that is the
commensurate delays case. Rescaling the time t 7→ t/τ ,

22measured from the natural equilibrium position
23 information available on the “past” (angular) position and not on
the speed



introducing the “new” parameter α2 = τ2g/l ∈ R+ and
choosing k1 = 2α2 and k2 = −α2, one gets:

∆(λ;α) := λ2 − α2 + 2α2e−λ − α2e−2λ. (14)

It is easy to see that ∆ in (14) can be factorized as
∆(λ;α) = (λ − α(1 − e−λ))(λ + α(1 − e−λ)). With no
loss of generality, assume that α ∈ R+. By taking into
account the discussion done for the scalar system, we have
the following observations:

• First, for all α ∈ R+, the characteristic function ∆ in
(14) has always an invariant root at the origin λ = 0;
its multiplicity is either 2 or 3. In fact, the multiplicity
3 is reached if and only if α = 1. Furthermore, it is
easy to show that the characteristic function ∆ has
three roots on the real axis.

• Second, if α = 1, excepting the triple root at the
origin, all the remaining characteristic roots are all
located in C− and, thus, the root at the origin
is dominant and the so-called multiplicity-induced-
dominancy still holds.

• Finally, some basic but tedious algebraic manipula-
tions allow concluding that for all α ∈ (0, 1), except-
ing the double root at the origin, all the remaining
characteristic roots are all located in C−. Such a
result suggests that the dominancy of the root at the
origin is valid not only in the case when the maximal
multiplicity is reached. However, such an observation
is not generally true.
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Similarly to Fig. 1 for (9), we represent in Fig. 4 the
behavior of the the roots of ∆(·;α) from (14) as α varies
in the interval [0, 2], with the black dot representing the
root at λ = 0. Due to the above factorization of ∆, all
roots of (9) for a given α are roots of both ∆(·;α) and
∆(·;−α), a fact that can be observed in Fig. 4. As before,
the λ = 0 is the unique root in the case α = 0 and, as
α → 0, the real parts of all other roots of ∆(·;α) converge
to −∞. Moreover, still exploring the factorization of ∆,
one can check that, as in Remark 3.4, any root of ∆(·;α)
necessarily satisfies (10), and, conversely, for every λ ∈ C
satisfying (10) and not lying on the imaginary axis 24 ,
there exist exactly two values of α ∈ R (a real number
and its opposite) such that λ is a root of ∆(·;α).

24Once again, the case of solutions of (10) on the imaginary axis can
be retrieved in the limit α → ±∞.

Remark 3.5. The planar inverted pendulum model (12)
was discussed by Atay (1999). More precisely, the author
computed the stability regions of (13) in the parameter-
space defined by the controller gains (k1, k2) under the
assumption that the delays are commensurate τ1 = τ and
τ2 = 2τ . The idea to introduce delays in the control laws
goes back to the 80s when Suh and Bien (1979) used the
so-called “proportional-minus-delay (PMD)” controllers
(see also Suh and Bien (1980)). The characterization
of the codimension-three triple zero bifurcation of the
inverted pendulum (11) by using various delay blocks
including the “PMD” controller mentioned above can be
found in Boussaada et al. (2015). A deeper discussion
on necessary conditions guaranteeing that multiple delay
blocks may stabilize LTI SISO systems can be found in
Kharitonov et al. (2005). In the particular case of a chain
of integrators, the explicit construction of the delay blocks
can be found in Niculescu and Michiels (2004). For further
discussions, we refer to Michiels and Niculescu (2014) and
the references therein. 2

Remark 3.6. Assume now that the planar inverted pendu-
lum (12) is controlled by a standard delayed PD controller

u(t) = −kpθ(t − τ) − kdθ̇(t − τ), then the delay margin
τm guaranteeing the stability of closed-loop system for
all τ ∈ [0, τm) is τm =

√
(2l)/g. This case study will

be reconsidered in the forthcoming sections. For further
discussions on such topics, we refer to Stépán (2009) (see
also Stépán (1989) and the references therein as well as
Atay (1999) for some further comparisons). 2

4. NEWTON, PUISEUX, WEIERSTRASS AND
DELAY DYNAMICS

Given an entire function f(x, y), it is possible to reduce
some of the analytic properties of f to appropriate alge-
braic properties. To such a purpose, the following result
(also known as the Weierstrass Preparation Theorem) en-
ables such a connection.

Theorem 4.1. (Mailybaev and Grigoryan (2001)) Suppose
that f (z,−→p ) is an analytic function vanishing at the
singular point z0 ∈ C, −→p 0 ∈ Cn, where z = z0 is an m-
multiple root of the equation f (z,−→p ) = 0, i.e.,

f (z0,
−→p 0) =:

∂f

∂z

∣∣∣∣
(z0,

−→p 0)

= · · · = ∂m−1f

∂zm−1

∣∣∣∣
(z0,

−→p 0)

= 0,

∂mf

∂zm

∣∣∣∣
(z0,

−→p 0)

̸= 0.

Then, there exists a neighborhood U0 ⊂ Cn+1 of
(z0,

−→p 0) ∈ Cn+1 in which f (z,−→p ) can be expressed as

f (z,−→p ) = Wp (z,
−→p ) b (z,−→p ) , (15)

where Wp (z,
−→p ) = (z − z0)

m
+ wm−1 (

−→p ) (z − z0)
m−1

+
· · · + w0 (

−→p ) , and w0(
−→p ),. . . ,wm−1(

−→p ), b (z,−→p ) are an-
alytic functions uniquely defined by the function f (z,−→p )
and wi(

−→p 0) = 0, b (z0,
−→p 0) ̸= 0.

Remark 4.2. The analytic function Wp (z,
−→p ) is known as

the Weierstrass polynomial. 2

Remark 4.3. It can be seen from Theorem 4.1, that
since b(z,−→p ) is an holomorphic non-vanishing function at

(0,
−→
0 ), then there must exists a neighborhood O(0,

−→
0 ) ⊂

Cn+1 at which b(z,−→p ) preserves the same property. Hence,



based on this observation we can ensure that the root-locus
of a given quasipolynomial f = ∆ in the neighborhood O
will be the same than the root-locus of Wp(z,

−→p ). 2

4.1 The Newton Diagram Method and Puiseux Series.

Given a known solution (z0,
−→p 0) of f (z,−→p ), the local

behaviour of the solution z (−→p ) in the neighborhood Cn

of −→p can be obtained by means of the Newton-diagram
method. Thus, in order to introduce such a procedure, let
us consider the following notation (for more details, see, for
instance, Mart́ınez-González et al. (2019) and references
therein). Let f (x, y) be a pseudo-polynomial in y, i.e.,

f (x, y) =

n∑
k=0

ak(x)y
k, (16)

where the corresponding coefficients are given by:

ak (x) = x ρk

∞∑
r=0

arkx
r/q, (17)

and ark ∈ C, x and y are complex variables, ρk ∈ Q+,
q ∈ Z+, an(x) ̸≡ 0, and a0(x) ̸≡ 0. Then a solution of (16)
can be written in the form of a series as

y = y0 + α1 (x− x0)
ϵ1 + α2 (x− x0)

ϵ2 + · · · ,
where ϵ1, ϵ2, . . ., is an increasing sequence of rational
numbers. To determine the possible values of ϵ1, α1, ϵ2,
α2, . . ., it is necessary to consider the Newton’s diagram.
Since by simple translation, any point on a curve can be
moved to the origin, we will only consider expansions of
the solution of f(x, y) = 0 around the origin. In this vein,
we will consider a solution of (16) in the form:

y(x) = yϵ1x
ϵ1 + yϵ2x

ϵ2 + yϵ3x
ϵ3 + · · · , (18)

where ϵ1 < ϵ2 < ϵ3 < · · · , yϵ1 ̸= 0, or, in its compact form,

y(x) = yϵ1x
ϵ1 + o (xϵ1) . (19)

We have the following:

Definition 4.4. (Newton’s diagram and polygon). Given a
pseudo-polynomial of the form (16) with coefficients given
by (17), plot ρk versus k for k for k = 0, 1, . . . , n (if
ak (·) ≡ 0, the corresponding point is disregarded). Denote
each of these points by πk = (k, ρk) and let

Π = {πk : ak(·) ̸= 0} ,
be the set of all plotted points. Then, the set Π will
be called the Newton diagram, and the Newton polygon
associated with f(x, y) will be given by the lower boundary
of the convex hull of the set Π.

For a given pseudo-polynomial f(x, y), Fig. 5 simply illus-
trates Definition 4.4. The following result allows character-
izing the solutions’ structure of a given pseudo-polynomial
(see, for instance, Wall (2004)).

Theorem 4.5. (Puiseux Theorem). The equation f(x, y) =
0, with f given in formal power series such that f(0, 0) = 0,
possesses at least one solution in power series of the form:

x = tq, y =

∞∑
i=1

cit
i, q ∈ N.

4.2 Asymptotic zero behavior characterization

The asymptotic behavior of the critical zeros of the
quasipolynomial f(λ, τ) can be performed by means of the
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Fig. 5. Newton diagram for the pseudo-polynomial f(x, y)
given in (16).

Newton diagram procedure. To this end, since any critical
solution (λ∗, τ∗) can always be translated to the origin by
appropriate shifts λ 7→ λ− λ∗, τ 7→ τ − τ∗, hereinafter we
will assume that (λ∗, τ∗) = (0, 0). Hence, for a m-multiple
root λ = 0 of f at τ = 0, according to the Weierstrass
Preparation theorem we will have that:

f(λ, τ) =
(
λm + wm−1(τ)λ

m−1 . . .+ w0(τ)
)
b(λ, τ). (20)

Now, with the aim of avoiding unnecessary computations,
the following notation will be useful. For i ∈ J0,m − 1K,
denote by ni ∈ N the first nonzero partial derivatives in
(λ, τ) of f at (0, 0), such that:

f(0, 0) =:
∂if

∂λi

∣∣∣∣
(0,0)

= · · · = ∂i+ni−1f

∂λi∂τni−1

∣∣∣∣
(0,0)

= 0, (21a)

∂i+nif

∂λi∂τni

∣∣∣∣
(0,0)

̸= 0. (21b)

The following result discloses the construction of the
Newton diagram for a given quasipolynomial.

Proposition 4.6. Let λ = 0 be a m-multiple root at τ = 0
of the quasipolynomial ∆(λ, τ), and assume that n0 < ∞.
Then, the Newton diagram of f at (0, 0) is given by
Π = {(0, n0), . . . , (m− 1, nm−1), (m, 0)}.
Example 4.7. To illustrate the previous result, consider
the quasipolynomial (borrowed from Cai et al. (2014)):

∆(λ, τ) = −P0 (λ) + P1 (λ) e
−sτ + e−2sτ , (22)

where:

P0(λ) :=
π

2
λ5 +

π

2
λ3 + λ2, P1(λ) :=

π

2
λ3 − λ2 +

π

2
λ+ 1,

and with λ = j a root at τ = π of multiplicity m = 3.
First, we derive the constants ni considered in (21):

∂∆

∂τ

∣∣∣∣
(j,π)

= 0,
∂2∆

∂τ2

∣∣∣∣
(j,π)

= −2 ⇒ n0 = 2,

∂2∆

∂λ∂τ

∣∣∣∣
(j,π)

= 2 + jπ,⇒ n1 = 1,

∂3∆

∂λ2∂τ

∣∣∣∣
(j,π)

= −
(
5π + j(4π2 + 6)

)
⇒ n2 = 1,

∂3∆

∂λ3

∣∣∣∣
(j,π)

= −3π(−6− 5jπ + π2).

Summarizing, we have (n0, n1, n2) = (2, 1, 1). According to
Proposition 4.6, we have: Π = {(0, 2), (1, 1), (2, 1), (3, 0)}.
Such points are depicted in Fig. 6.

Remark 4.8. Note that it is possible to have some κ ∈ N
for which n0 = n1 = · · · = nκ−1 = ∞. Then, under
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Fig. 6. Newton Diagram for the quasipolynomial (22).

this situation, the Newton diagram method can not be
applied directly. However, it is worth noting that since wi

are analytic functions, the previous situation is equivalent
to wi(τ) ≡ 0 for 0 ≤ i ≤ κ − 1. Hence, f will be locally
given by

f(λ, τ)=λκ
[
λm−κ+ wm−κ(τ)λ

m−κ−1+ · · ·+ wκ(τ)
]
b(λ, τ).

Thus, there are κ-invariant solutions at λ = 0 for all τ
and m− κ solutions of the form

λi(τ) =
∞∑
ℓ=1

ci,ℓ τ
ℓ/mi ,

where mi < m. Moreover, under this consideration the
Newton polygon will be given by Π = {(κ, nκ), . . . , (m, 0)}.
If such number κ does not exist (i.e., if such situation does
not happen), then κ will be simply defined as κ := 0. 2

4.3 Puiseux algorithm & Weierstrass polynomial

As seen in Section 4 from Theorem 4.1, we know that

b(z,−→p ) is a holomorphic non-vanishing function at (0,
−→
0 ).

Then, there must exist some neighborhood Ω(0,
−→
0 ) ⊂

Cn+1 at which b(z,−→p ) preserves the same property. Hence,
based on this observation we can ensure that the root-locus
of a given quasipolynomial ∆ in the neighborhood Ω will
be the same as the root-locus of Wp(z,

−→p ). Thus, bearing
this observation in mind, the next result allows computing
the Weierstrass polynomial.

Proposition 4.9. Let ni < ∞ be defined as in (21) such
that n0 > n1 > · · · > nm−1. Then, the coefficients wi(τ)
of the associated Weierstrass polynomial W have order
ord (wi(τ)) = ni. Moreover, the leading terms are given
by:

wi(τ) =

 m!

i!ni!
∂mf
∂λm

∣∣∣
(0,0)

∂i+nif

∂τni∂λi

∣∣∣∣
(0,0)

 τni + o(τni),

for i ∈ J0,m− 1K.

As discussed in Section 4, Theorem 4.5 allows revealing the
solution structure of a given quasipolynomial ∆. In fact,
the equation ∆(λ; τ) = 0 defines a manifold C ∈ C2 which
is composed by the finite union of r branches λi

(
τ1/mi

)
,

each of these branches can be expressed as a Puiseux series:

λiσi
(τ) = ciσi

τ
1

mi + o
(
|τ |

1
mi

)
, (23)

for i ∈ J0, r − 1K, σi ∈ J1,miK, where each branch has
multiplicity mi, such that m = m1+m2+ · · ·+mr. In the

case when r = 1, then λiσi
and ciσi

will be simply denoted
by λσi

and cσi
, respectively.

Now, with the aim to classify the nature of any solution,
let us introduce the following definition.

Definition 4.10. We say that there is a Complete Regular
Splitting (CRS) property of the solution s∗ = 0 at τ∗ = 0 if
ciσi ̸= 0, ∀i. For the Regular Splitting (RS) property, some
of the coefficients ciσi for which mi = 1 may be equal to
zero. In the remaining cases of the coefficient ciσi we say
that Non-Regular Splitting (NRS) property is present.

To deal with the splitting properties of a given solution, we
will consider the Newton diagram method in conjunction
with the Weierstrass polynomial and the Puiseux Theo-
rem. To such an end, Algorithm 1 will be extremely useful.

Algorithm 1 Puiseux Series Expansion Algorithm.

Let f(λ; τ) have a critical pair such that λ∗ = jω∗ is a
m-multiple root at τ = τ∗. Consider the initial values as
r := 0, i−1 := κ and ℓ−1 := nκ.
while ir−1 < m do

set Er :=
{

ℓ−ℓr−1

ir−1−i : (i, ℓ) ∈ Π, and i > ir−1

}
;

let βr := max Er and

Π(r) :=
{
(i, ℓ) ∈ Π : βr ≡ ℓ−ℓr−1

ir−1−i

}
∪ {(ir−1, ℓr−1)};

set (ir, ℓr) ∈ Π(r) such that ir ≥ i, ∀(i, ℓ) ∈ Π(r);
set mr := ir − ir−1 and r = r + 1.

The following result allows splitting identification:

Proposition 4.11. Let λ∗ = jω∗ at τ = τ∗ be a m-multiple
critical root of the quasipolynomial ∆(λ; τ). Assume that
r, βi, (ii, ℓi), mi and Π(i), for i ∈ J0, r − 1K are given by
the Algorithm 1. Then the following properties hold:

(i) if mi ·βi ≡ 1, ∀i ∈ J0, r−1K, then the solution (jω∗, τ∗)
of ∆(λ; τ) has the CRS property;

(ii) if some βi satisfies mi · βi > 1 for mi > 1, then NRS
property for the solution (jω∗, τ∗) occurs;

(iii) if the pairs (mk, βk) that do not fulfill (i), satisfy the
inequality βk ≥ mk ≡ 1, then the solution (jω∗, τ∗)
of ∆(λ, τ) has the RS property.

Corollary 4.12. With the hypothesis above (Proposition
4.11), assume that n0 = 1. Then at τ = τ∗, the m-roots of
∆(·; τ) have the CRS property and can be expanded as:

λσi (τ) = jω∗ + cσi (τ − τ∗)
1
m + o

(
|τ − τ∗|

1
m

)
, (24)

for σi ∈ J1,mK. Moreover, the following properties hold:

(i) if m = 2 and ℜ (csigmai
) ̸= 0 with σi ∈ {1, 2}. Then for

τ > τ∗ sufficiently close to τ∗, one of the zeros λσi
(τ)

will enter C+, whereas the other one will enter C−;
(ii) if m > 2, then at least one of the zeros λσ (τ) will

enter C+.

As mentioned earlier, the Weierstrass polynomial will
allow us to analyze the stability behavior of the imaginary
characteristic roots. In this vein, we have the following:

Proposition 4.13. Let n0 < ∞ and λ∗ = jω∗ be a m-mul-
tiple root of ∆(λ; τ) at τ = τ∗. Assume that r, βi, (ii, ℓi),
mi and Π(i), for i ∈ J0, r − 1K are given by the Algorithm
1. Then, at τ = τ∗ the m-zeros of ∆ can be expanded as



λiσi
(τ) = jω∗ + ciσi

(τ − τ∗)
βi + o

(
|τ − τ∗|βi

)
, (25)

for i ∈ J0, r − 1K, σi ∈ J1,miK and m = m0 + · · · +mr−1.
Where ciσi are roots of the polynomial Pi : C 7→ C,

Pi(z) :=

ii∑
k=ii−1

ak,0z
k−ii−1 , s.t. (k, ηk) ∈ Π(i), (26)

where the coefficient ak,0 ∈ C is given by

ak,0 =

(
m!

k!ηk!
∂m∆
∂λm

∣∣
(0,0)

)
∂k+ηk∆

∂τηk∂λk

∣∣∣∣
(0,0)

. (27)

Furthermore, for τ > τ∗ sufficiently close to τ∗, the zeros
λiσi(τ) will enter C+ (or C−) if

ℜ{ciσi
} > 0 (< 0). (28)

The following results allow a further characterization:

Proposition 4.14. Let λ∗ = jω∗ be a m-multiple root of
∆(λ; τ) at τ = τ∗. Assume that βi and mi for i ∈ Jκ, r−1K
are given by the Algorithm 1. If βi = 1, then the following
statements hold:

(i) the equation ∆(λ; τ) = 0 has mi-solutions of the form

λiσi
(τ) = jω∗ + ciσi

(τ − τ∗) + o (|τ − τ∗|) , (29)

with σi ∈ J1,miK and where ciσi
is a root of the

polynomial Pi defined in (26);
(ii) if ciσi

is a simple root of Pi then, there are mj-
solutions expanded as a Taylor series in the form

λiσi(τ) = jω∗+ciσi (τ − τ∗)+c
(1)
iσi

(τ − τ∗)
1+β

(1)
i +· · · ,

where β
(1)
i ∈ N.

Proposition 4.15. Let λ∗ = jω∗ be a m-multiple root of
∆(λ, τ) at τ = τ∗. Assume that βh, mh and (ih, ℓh) ∈ Π(h)

for h ∈ J0, r − κ − 1K are given by the Algorithm 1. If
βh = 1/mh, then ∆(λ; τ) = 0 has mu-solutions given by

λhσh
(τ) = jω∗ + chΘσh

(τ − τ∗)
1/mh + o(|τ − τ∗|1/mh),

with σh ∈ J1,mjK where Θσh
= exp

(
j θh+2π(σh−1)

mh

)
,

θh = arg(cmh

h ) and ch =
∣∣aih−1,0/aih,0

∣∣1/mh .

Example 4.16. (Inverted pendulum). Reconsider the sta-
bilization of the planar inverted pendulum without fric-
tion (13) under the assumption of commensurate delays
(τ1, τ2) = (τ, 2τ), with τ ∈ R+. Thus, the characteristic
function rewrites as:

∆(λ; τ) = λ2 − g

l
+ k1e

−λτ + k2e
−2λτ . (30)

By setting k1 + k2 = g/l, we have that ∆(λ, 0) = λ2 and
∆(0; τ) = 0, for all τ ∈ R+. Moreover, if k1 = −2k2
the first partial derivative ∂λ∆ evaluated at λ = 0 also
vanishes.
Consider the delay interval 0 < τ <

√
2|k1 + 4k2|,

the root at the origin λ∗ = 0 has multiplicity m =
2. The corresponding Weierstrass polynomial writes as
Wp(λ; τ) = λ2 + w1(τ)λ + w0(τ). For its computation,
the first partial derivatives of ∆ at λ∗ = 0 and τ∗ =√

2(k1 + 4k2) are:
∂n0∆

∂τn0

∣∣∣∣
λ∗=0

= 0,∀n0 ∈ N⇒ n0 = ∞,

∂n1+1∆

∂τn1∂λ

∣∣∣∣
λ∗=0

= 0,∀n1 ∈ N⇒ n1 = ∞,

(31)

implying that κ = 2. In the light of (31), the coefficients
w0 = w1 ≡ 0, ∀τ ∈ R+. Thus, there are two-invariant
solutions at λ = 0 and, around the origin, ∆ can be written

as ∆(λ, τ) ≡ λ2∆̂(λ, τ).
With the parameters choice k2 = −g/l, k1 = 2g/l and

τ∗ =
√
l/g, the multiplicity of λ∗ = 0 is m = 3.

Thus, following the Weierstrass Preparation Theorem, the
corresponding local behavior is captured by ∆(λ; τ) =[
λ3 + w2(τ)λ

2 + w1(τ)λ+ w0(τ)
]
b(λ, τ). Similarly to the

double root case (31), n0 = n1 = ∞, leaving the following
derivatives to be determined:

∂3∆

∂τ∂λ2

∣∣∣∣
(λ∗,τ∗)

= −4
(√

g/l
)3

⇒ n2 = 1,

∂3∆

∂λ3

∣∣∣∣
(λ∗,τ∗)

= 6
√
l/g.

(32)

Therefore, the Weierstrass coefficient w2 ̸= 0, meaning
that κ = 2. In other words, we have 2-invariant solutions
at λ = 0 and a solution λ(τ) = −w2(τ). The first
term in the expansion of w2 can be obtained by using
(32) resulting in the following Weierstrass polynomial
Wp(λ; τ) = λ2 (λ+ w2(τ)). Therefore, two roots λ1,2 ≡ 0
remain invariant under delay variations, and the third root
given by λ3(τ) = −w2(τ). With this results, the Newton
polygon has a single segment with two points as shown
in Table 1. Now, the asymptotic behavior of the of the

Table 1. Summary: Inverted pendulum (30).

Initial Data Algorithm Output {z ∈ C : Pj(z) = 0}

m = 3, n2 = 1 r = 1,m0 = 1, β0 = 1 P0(z) := z + 2g/l

Π={(2, 1), (3, 0)} Π
(0)

= {(2, 1), (3, 0)} {c0,1 = −2g/l}

solution λ3 is obtain by means of Proposition 4.13 Table
1, resulting in λ3(τ) = −2g g

l τ+o(τ). as depicted in Fig. 7.
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∗

λ1,2 (τ) ≡ 0, ∀τ

Fig. 7. Root locus behavior (2-invariant root at λ∗ = 0)
for (30) with l = 2g (k1 = 1, k2 = −0.5)

5. FREQUENCY-SWEEPING CURVES AND
IMAGINARY CHARACTERISTIC ROOTS

Consider now the commensurate delay case and we are
interested on the effects induced by the delay parameter.
The corresponding characteristic function writes as:

∆(λ; τ) = P0(λ) +

nd∑
i

Pi(λ)e
−iλτ , (33)



where Pi ∈ R[x], for all i ∈ J0, ndK with deg(P0) >
maxi(deg(Pi)), for all i ∈ J1, ndK. In this frame, for a criti-
cal pair (λα, τα,k), denote by n ∈ N+ the multiplicity of λα

at τα,k. Clearly, a critical imaginary root is called a simple
critical imaginary root (a multiple critical imaginary root)
if the corresponding index n = 1 (n > 1). In other words,
the index n simply implies that for λ = λα and τ = τα,k,

∆λ0 = · · · = ∆λn−1 = 0, ∆λn ̸= 0. (34)

Next, introduce the index g ∈ N+ at (λα, τα,k), by which
we may artificially treat τα,k as a g-multiple root for
∆(λ; τ) = 0 when λ = λα, having the property that when
λ = λα and τ = τα,k,

∆τ0 = · · · = ∆τg−1 = 0, ∆τg ̸= 0. (35)

Suppose that (α, β) (with β > 0) is a critical pair with the
index n. Near this critical pair, there exist n roots λi(τ)
continuous w.r.t. τ satisfying α = λi(β), i = 1, . . . , n.
Under some perturbation ε (−ε) on β, the n roots are
expressed by λi(β+ε) (λi(β−ε)), i = 1, . . . , n. Denote the
number of unstable roots among λ1(β + ε), . . . , λn(β + ε)
(λ1(β− ε), . . . , λn(β− ε)) by NUα(β

+) (NUα(β
−)). With

these notations, we define:

Var(NUα(β))
∆
= NUα(β

+)−NUα(β
−). (36)

The notation Var(NUα(β)) stands for the change of
NU(τ) caused by the variation of the critical imaginary
root λ = α as τ increases from β − ε to β + ε.

Remark 5.1. To the best of the authors’ knowledge, the
first systematic discussion on the number of unstable roots
by using the continuity of the roots with respect to the
delay parameter can be found in Kashiwagi (1965), where
the author introduced a similar concept to “(NU)” called
stability indicative function. 2

We here give the procedure for generating the frequency-
sweeping curves. The characteristic function ∆(λ; τ) can
be transformed by letting z = e−τλ into a two-variate
(auxiliary) polynomial Pa:

Pa(λ, z) =

nd∑
i=0

Pi(λ)z
i. (37)

Frequency-Sweeping Curves (FSCs): Sweep ω ≥ 0 and for
each λ = jω we have q solutions of z such that Pa(jω, z) =
0 (denoted by zi(jω), i ∈ J1, ndK) leading to nd frequency-
sweeping curves Γi(ω): |zi(jω)| vs. ω, i ∈ J1, ndK.

If (λα, τα,k) is a critical pair with index g, “g” FSCs
intersect ℑ1

25 at ω = ωα and the frequency ωα is called
a critical frequency.

In the sequel, we introduce some necessary notations con-
cerning the asymptotic behavior of FSCs. For a deeper
discussion, we refer to Chapter 8 of Li et al. (2015). Sup-
pose (λα, τα,k), k ∈ N, is a set of critical pairs (as usually
assumed, λα ̸= 0) with the index g (g is a constant w.r.t.
different k, see Property 1.2 of Li et al. (2015)). There
must exist “g” FSCs such that zi(jωα) = zα = e−τα,0λα

intersecting ℑ1 when ω = ωα. Among such g FSCs, we
denote the number of the FSCs when ω = ωα+ε (ω = ωα−
ε) above the line ℑ1 by NFzα(ωα + ε) (NFzα(ωα − ε)).
Introduce now a new notation Var(NFzα)(ωα) as

25We denote by ℑ1 the line parallel to the abscissa axis with ordinate
equal to one.

Var(NFzα)(ωα)
∆
= NFzα(ωα + ε)−NFzα(ωα − ε). (38)

Theorem 5.2. (Li et al. (2017)). Let λα be a critical imag-
inary root of the characteristic function (33). Then
Var(NUλα)(τα,k) is a constant Var(NFzα)(ωα) for all
τα,k > 0.

The contribution of Theorem 5.2 is twofold:

• First, it provides a simple method (observing the
FCS) to compute Var(NUλα)(τα,k), without invoking
the Puiseux series.

• Second, a very interesting invariance property is
claimed: For a critical imaginary root λα, the asymp-
totic behavior has the same effect on the stability
(more precisely, on NU(τ)) at all the corresponding
positive critical delays τα,k > 0.

With the invariance property, we can overcome the pecu-
liarity that a critical imaginary root has infinitely many
critical delays.

Remark 5.3. By using a different argument, Jarlebring
and Michiels (2010) addressed the invariance property in
the case when n = 2 and g = 1. 2

Example 5.4. Consider a time-delay system with the char-
acteristic function ∆(λ; τ) =

∑4
i=0 Pi(λ)e

−iτλ where
P0(λ) = 15

8 π2λ6 + (114 π − 15
8 π2)λ4 + 9

2πλ
3 + (1 + 1

2π −
75
8 π2)λ2+(3+ 9

2π)λ+1− 9
4π−

45
8 π2, P1(λ) =

5
4πλ

5+ 11
2 πλ4+

(1+ 7
2π)λ

3+(π+7)λ2+(11+ 9
4π)λ+4− 9

2π, P2(λ) =
5
4πλ

5+
11
4 πλ4 + (3− π)λ3 + (13 + 1

2π)λ
2 + (15− 9

4π)λ+ 6− 9
4π,

P3(λ) = 3λ3+9λ2+9λ+4, and P4(λ) = λ3+2λ2+2λ+1.
We study the asymptotic behavior of critical pairs (j, (2k+
1)π), with g = 2. The frequency-sweeping curves are given
in Fig. 8. According to Theorem 5.2, we know from Fig. 8
that ∆NUj((2k + 1)π) = 0 for all k ∈ N.
In fact, the asymptotic behavior of critical pairs (j, (2k +
1)π) is complicated. The multiplicity n of the critical
imaginary root λ = j is 2, 3, 4, 2, when τ is π, 3π, 5π, 7π,
respectively. The Puiseux series are all degenerate:

δλ = 0.1592jδτ + (0.5371− 0.3138j)(δτ)2

+o((δτ)2),
δλ = 0.0796jδτ + 0.0063j(δτ)2 + 0.0421j(δτ)3

+(0.0362 + 0.0137j)(δτ)4 + o((δτ)4), δλ = (0.0385 + 0.0698j)(δτ)
1
2 + o((δτ)

1
2 ),

δλ = 0.1592jδτ + 0.0253j(δτ)2 + 0.6696j(δτ)3

+(1.1585 + 0.4376j)(δτ)4 + o((δτ)4),
δλ = −0.1592jδτ + (−05371 + 03644j)(δτ)2

+o((∆τ)2),

δλ = −0.0988j(δτ)
1
3 + (−00356 + 00028j)(δτ)

2
3

+o((δτ)
2
3 ),

δλ = −0.0796jδτ + (−0.0671 + 0.0487j)(δτ)2

+o((δτ)2),
δλ = −0.1592jδτ + 0.0253j(δτ)2 + 0.6615j(δτ)3

+(−1.1585− 0.4363j)(δτ)4 + o((δτ)4),

for k = 0, 1, 2, and 3, respectively. The above Puiseux
series are consistent with the analysis by Theorem 5.2.
In this case, for each k, (i) the Puiseux series has multiple
conjugacy classes; (ii) the Puiseux series involves many
degenerate terms, and, finally, (iii) the structure of Puiseux
series is variable w.r.t. different k. It is evident that the
FSC formalism significantly simplifies the analysis. 2
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In the sequel, we present an example reported in Li
et al. (2019a) to explicitly illustrate that the asymptotic
behavior of a multiple characteristic root may lead to a
stability reversal.

Example 5.5. Consider the quasipolynomial ∆(λ; τ) =

λ5−
∑4

ℓ=0 αℓλ
ℓ−(

∑4
ℓ=0 βℓλ

ℓ)e−τλ. where α0 = π
2 −

π2

8 −1,

α1 = −2 + π
2 , α2 = −π2

4 + π − 10, α3 = −3 + π
2 ,

α4 = −π2

8 + π
2 −8, β0 = −1, β1 = −1, β2 = −10, β3 = −1,

and β4 = −8.
For this system, NU(τ) = 0 for τ ∈ [0, 1.2525) and
NU(τ) = 2 if τ ∈ (1.2525, π). At τ = π, a critical
imaginary root λ = j with n = 2 and g = 1 appears, whose
asymptotic behavior corresponds to the Puiseux series:

δλ = 0.1468j(δτ)
1
2 + (−0.0033− 0.1473j)(δτ) + . . .

It implies that when τ passes through π, a stability reversal
is caused by the asymptotic behavior of the double root
λ = j. The system possesses two and only two stability
intervals of τ . More precisely, it is asymptotically stable
iff τ ∈ [0, 1.2525) ∪ (π, 4.0549). The asymptotic behavior
issue and the stability can be easily addressed by using the
frequency-sweeping approach (see Fig. 9). 2

6. MULTIPLE CHARACTERISTIC ROOTS AND
MULTIPLE DELAYS

Let us consider the following quasipolynomial:

∆(λ,−→τ ) =

2∑
k=0

Pk(λ)e
−τkλ, τk ≥ 0, (39)

where −→τ := (τ1, τ2), τ0 := 0, τ1, τ2 ∈ R+ and,

P0(λ) := λn +

n−1∑
ℓ=0

a0ℓλ
ℓ, Pk(λ) :=

n−1∑
ℓ=0

akℓλ
ℓ, k = 1, 2.

This section focuses on computing the first approxima-
tion of the solution of quasipolynomials around multiple
imaginary roots. To such an end, we will derive conditions
allowing to express the solutions of ∆ as a Puiseux series
expansion, that is:

λ(τ1, τ2) = c(τ
1/d
2 )τβ1 + o(τ

1/d
1 τ

1/d
2 ),

where β = α/d and α ∈ N.
Inspired by the approach adopted in Section 4, we will
compute the associated Weierstrass polynomial of ∆. In
this vein, following Mailybaev and Grigoryan (2001) for
the case of a holomorphic function, f(z,−→x ) of complex
variables with −→x = (x1, x2) and z = 0 a m-multiple root
at (x1, x2) = (0, 0) the computation is given as follows.
The coefficients wi (20) are analytic, wi(0, 0) = 0 and can
expressed as convergent power series:

wi(x1, x2) =

∞∑
h1+h2=1

1

h1!h2!
w

i,
−→
h
xh1
1 xh2

2 ,

where
−→
h = (h1, h2). It is not difficult to see that the

coefficients w
i,
−→
h

can be computed as follows:

w
i,
−→
h
=

∂h1+h2wi

∂xh1
2 ∂xh2

1

∣∣∣∣∣
(0,0)

.

Since the analytic function locally satisfies f = Wb, its
partial derivatives satisfy the following recursive relations:

w
i,
−→
h
=

i∑
r=0

αirFr,
−→
h
, (40)

F
r,
−→
h
= f

r,
−→
h
−

r∑
k=0

∑
−→
h ′+

−→
h ′′=

−→
h

c
(
r, k;

−→
h ′,

−→
h ′′
)
w

k,
−→
h ′br−k,

−→
h ′′ ,

with
−→
h ′ ̸= −→

0 ,
−→
h ′′ ̸= −→

0 and constant coefficients:

αrr :=
m!

r!f
m,

−→
0

, αir := − m!

f
m,

−→
0

i−1∑
k=r

f
m+i−k,

−→
0
αkr

(m+ i− k)!
,

c
(
r, k;

−→
h 1,

−→
h 2

)
:=

r!

(r − k)!

2∏
s=1

(h′
s + h′′

s )!

h′
s!h

′′
s !

,

and for
−→
h ′ ̸= 0, k′ = k +m, b

k,
−→
h

is given by

k!

(m+k)!

f
k′,

−→
h
−
m−1∑
r=0

∑
−→
h ′+

−→
h ′′=

−→
h

c
(
k′, r;

−→
h ′,

−→
h ′′
)
w

r,
−→
h ′bk′−j,

−→
h ′′

.
In the sequel, we will adopt the following notations.

Definition 6.1. Let the natural numbers n
(r)
i , for i ∈

J0,m − 1K and r = 1, 2, denote the first nonzero partial
derivative in (z, x1, x2) of f , such that:

f(0, 0, 0)=
∂if

∂zi
= · · · = ∂i+n

(r)
i

−1f

∂zi∂τ
n
(r)
i

−1
r

= 0,
∂i+n

(r)
i f

∂zi∂τ
n
(r)
i

j

̸= 0,

with derivatives evaluated at (0, 0, 0). For n
(r)
i = ∞ we

have derivatives

∂if

∂zi
= · · · = ∂i+n′

i−1f

∂zi∂τ
n′
i
−1

2

= 0,
∂i+n′

if

∂zi∂τ
n′
i

2

̸= 0,

evaluated at (z,−→x ) = (0, 0, 1), with n′
i ∈ N ∪ {0}.



Leading terms of coefficients wi can be easy found up

to the n
(r)
i and n′

i derivatives. More precisely, as a first
observation we give the following result:

Proposition 6.2. Suppose that the Weierstrass polynomial
has first nonzero partial derivative, such that

n
(r)
i > n

(r)
i+1, 0 ≤ i < m and r = 1, 2.

Then, the leading terms of wi(
−→x ) are given by

wi(x1, x2) = αi,ifi,(n(1)
i

,0)
x
n
(1)
i

1 + αi,ifi,(0,n(2)
i

)
x
n
(2)
i

2 + · · · .

If n
(r)
i = ∞, we have

wi(x1, x2) = αi,ifi,(n′
i
,η)x

n′
i

1 xη
2 + · · · .

Remark 6.3. As in the single parameter case, there may
be a situation in which

f
i,
−→
h

∣∣∣
(0,0,0)

= 0 ∀ h1, h2 ∈ N.

Since wi are analytic functions, this is equivalent to
wi(

−→x ) ≡ 0 for i ≤ i ≤ κ− 1. Thus, according to Theorem
4.1 f has the following local structure:

zκ
[
zm−κ + wm−κ(

−→x )zm−κ−1 + · · ·+ wκ(
−→x )
]
b(z,−→x ).

Thus, there are κ-invariant solutions z = 0 for all −→x . If
such number κ does not exist (i.e., if such situation does
not occur), then κ will be simply defined as κ := 0. 2

6.1 Newton diagram method: An extension

For a given πk ∈ Π, we consider the order of wk in x1,

taking x2 as an element of C
[[
x
1/d
2

]]
(for an appropriate

d ∈ N). For such a purpose, the following definition will
be useful:

ρk := ordx1
(wk(x1, x2)) = ord (wk(x1, 1)) . (41)

Then, the Newton polygon of Wp(z,
−→x ), with respect to

x1, is defined by the lower boundary of the convex hull of
the points (k, ρk) ∈ Π. Hence, in order to apply the the
Newton diagram procedure, the solution z will take the
following structure

z(x1, x2) =
∑
i

ci(x2)x
i/d
1 ,

where the coefficient ci(x2), is in general, given by a single
parameter Puiseux series in x2.
Therefore, with the aim to compute such a Puiseux series,
let us suppose that we have determined the Newton
diagram of the Weierstrass polynomial of ∆. Since we are
dealing with a monic polynomial, the Newton polygon has
a finite number of segments, each one with a corresponding
set of points Π(ℓ) and rational numbers βℓ ≥ 0 satisfying

β0 > β1 > · · · > βr.

In this regard, the segments are presented in two possible
ways. The first one corresponds to a Newton polygon with
a horizontal segment with βi = 0, and the second one
where βj > 0 (for i ̸= j). In this vein, for 0 ≤ ℓ < m, the
Newton Diagram Π is given as the set Π = Π′ ∪Π′′:

{(0, ρ0), . . . , (ℓ, 0)} ∪ {(ℓ, 0) , . . . , (k, ρk), . . . , (m, 0)} .
Assuming that at the first step of the process we found
a horizontal segment with a slope βr = 0, the following
result allows characterizing the solution structure.

Proposition 6.4. Let Wp(z,
−→x ) be a Weierstrass polyno-

mial of a given quasipolynomial ∆. Suppose that at least
one coefficient wi(

−→τ ) possesses order ρi = 0. Then, the
equation Pi(z; τ1) = 0 of the corresponding i-horizontal

segment has solutions ck(τ
1/d
2 ) in the form of Puiseux

series.

Remark 6.5. In the above result, Pi is built in the same
fashion as in (26). 2

Now, assuming that at the first step of the process we
found a segment with a negative slope βr < 0, the following
result proposes an appropriate change of variable that will
allow us to pursue the procedure.

Proposition 6.6. Let Wp(z,
−→τ ) be a Weierstrass polyno-

mial of a given quasipolynomial ∆ and assume that the
first Newton diagram possesses a segment with negative
slope. Then, there exist a change of variables (λ, τ1, τ2) 7→
(ξ, y1, y2) such that the polynomial Pi(z; y2) has Puiseux

series solutions ck(y
1/d
2 ).

6.2 Puiseux series expansion

Since any critical solution (λ∗, τ∗1 , τ
∗
2 ) can always be trans-

lated to the origin by appropriate shifts λ 7→ λ − λ∗,
τ1 7→ τ1 − τ∗1 , τ2 7→ τ2 − τ∗2 , hereinafter we will assume
that (λ∗, τ∗1 , τ

∗
2 ) = (0, 0, 0).

Proposition 6.7. Let λ∗ = jω∗ be a m-multiple root of
∆(λ,−→τ ) at −→τ ∗ := (τ∗1 , τ

∗
2 ). Assume that κ = 0 and r, βh,

(ih, ℓh), mh and Π(h), for h ∈ J0, r − 1K are given by the
Algorithm 1. Then, at −→τ = −→τ ∗ the m-zeros of ∆(λ,−→τ )
can be expanded as

λhq(
−→τ ) = jω∗ + chq(τ2) (τ1 − τ∗1 )

βh

+ o
(
|τ1 − τ∗1 |

βh |τ2 − τ∗2 |
β′
h

)
,

for h ∈ J0, r − 1K, q ∈ J0,mhK and m = m0 + · · · +mr−1.
For βh > 0, chq(τ2) are roots of the polynomial:

Ph(z; τ2)=

ih∑
k=ih−1

w
k,(n

(1)

k
,n′

k
)
τ
n′
k

2 zk−ih−1,
(
k, n

(1)
k

)
∈Π(h),

when βr−1 = 0, the coefficients are given by the solution
of

Ph(z; τ2)=

ih∑
k=ih−1

w
k,(0,n

(2)

k
)
τ
n
(2)

k
2 zk−iq−1, (k, 0)∈Π(r−1),

where n
(1)
k , n

(2)
k , n′

k are given by the first nonzero partial
derivatives of Definition 6.1; the constant terms wk,(n,η) ∈
C are computed using (40).

To illustrate the previous results, consider the following:

Example 6.8. Consider the quasipolynomial ∆(λ; τ1, τ2)
:= P0(λ) + P1(λ)e

−τ1λ + P2(λ)e
−τ2λ where

P0(λ) := λ5+λ4+
4 + π

2
λ3+2λ2+

2 + π

2
λ+2, (42a)

P1(λ) := 1, P2(λ) := 2λ4+4λ2 + 2. (42b)

For−→τ ∗ = (π, 1), ∆ has a double root at λ = j. The shifting

from (j, π, 1) to the origin leads to ∆̃. Next, by computing
the first nonzero partial derivatives of the quasipolynomial
at (0, 0, 0), one gets:

∆0,(1,0) = j ⇒ n
(1)
0 = 1, ∆0,(0,n) = 0 ⇒ n

(2)
0 = ∞,



∆1,(1,0) = 1− jπ ⇒ n
(1)
1 = 1, ∆1,(0,n) = 0 ⇒ n

(2)
1 = ∞.

Hence, by Proposition 6.2, we have that ρh = n
(1)
h

for h = 1, 2. The Newton diagram is given by Π =
{(0, 1), (1, 1), (2, 0)}. Table 2 summarizes the results de-
riving from Algorithm 1.

Table 2. Results summary for ∆ given by (42).

Initial Data Algorithm Output Z := {z ∈ C : Ph(z) = 0}

m = 2, κ = 0. ρ0 = 1 r = 1, m0 = 2, β0 = 1/2 P0(z) := z2 + w0,(1,0)

Π = {(0, 1), (1, 1), (2, 0)} Π
(0)

= {(0, 1), (2, 0)}
{
c0,q = ±√

w0,(1,0)

}
Since w1 is not over the Newton polygon, following Propo-
sition 6.2, we compute the leading term of wi(

−→τ ) as:

w0(
−→τ ) =

−2j

(8 + π2) + j(8− 3π) + 16e−j
τ1 + · · · .

From the algorithm output, we get a segment with slope
β0 = 1/2. According to Proposition 6.7, we need to solve:

P0(z) = z2 − 2j

(8 + π2) + j(8− 3π) + 16e−j
= 0,

and, for q ∈ {0, 1}, the solutions are given by

λ0,q(
−→τ )=j+

(−1)q
√
2j3/2√

(8+π2)+j(8−3π)+16e−j
(τ1−π)1/2+· · · .

Remark 6.9. It is worth mentioning that the frequency-
sweeping approach can be also extended to handle multiple
characteristic roots on imaginary axis for delay systems
including incommensurate delays, see, e.g. Li et al. (2019b)
for an iterative frequency-sweeping method. 2

7. HYPERGEOMETRIC FUNCTIONS AND
MULTIPLICITY-INDUCED-DOMINANCY

We consider in this section the DDE given by:

y(n)(t) +

n−1∑
k=0

aky
(k)(t) +

m∑
k=0

αky
(k)(t− τ) = 0, (43)

where y is real-valued, n is a positive integer, m ∈ J0, nK,
τ > 0 is the delay, and a0, . . . , an−1, α0, . . . , αm are real
coefficients. Its characteristic function is

∆(λ;−→a ,−→α ) = λn +

n−1∑
k=0

akλ
k + e−λτ

m∑
k=0

αkλ
k. (44)

The problem of characterizing regions in the space of pa-
rameters of (43) ensuring exponential stability is a highly
non-trivial problem of ongoing interest, and, thanks to
classical results, such a problem is equivalent to character-
izing regions in the space of the coefficients of (44) ensuring
that all its roots λ satisfy ℜ(λ) ≤ −γ for some γ > 0
(see, e.g., Michiels and Niculescu (2014)). This question
is naturally related to control-theoretical problems, since
(43) can be seen as the closed-loop system obtained by
applying a linear (possibly delayed) feedback law to a
controlled delay-differential equation, and in this case, by
suitably choosing the coefficients of the feedback law, one
may choose (some of) the coefficients of (43).
Since (44) admits infinitely many roots but has only
m + n + 1 parameters, one cannot expect to be able to
choose arbitrarily the location in C of all roots of ∆. Some
works are interested in methods to choose the location
of finitely many roots of ∆, trying to guarantee that the

other roots have negative real part and are separated
from the imaginary axis, a technique known as partial
pole placement. Trial-and-error methods, such as those in
Ram et al. (2011), have been proposed in the literature,
but techniques guaranteeing that the non-assigned roots
have negative real part are more difficult to obtain. The
numerical paradigm known as continuous pole placement,
introduced in Michiels et al. (2002), exploits continuity of
roots of ∆ with respect to the coefficients of the system
in order to move roots with positive real part to the left
half-plane while ensuring that no stable roots becomes
unstable.

In the sequel, we present a recent technique for partial pole
placement, based on the property known as multiplicity-
induced-dominancy, or MID for short (see, e.g., Boussaada
et al. (2020)). The MID property states that, if a real root
of (44) attains its maximal multiplicity (which is equal to
m+n+1, cf. Remark 2.5), then this root necessarily is the
rightmost root in the complex plane. Hence, a technique
for partial pole placement based on the MID property
consists in choosing the coefficients of the system in order
to ensure the existence of a negative real root of maximal
multiplicity. More precisely, we have the following:

Theorem 7.1. Consider the quasipolynomial ∆ given by
(44) and let λ0 ∈ R. The number λ0 is a root of maximal
multiplicity m+ n+ 1 of ∆ if and only if

ak = (−1)
n−k

n!

n∑
i=k

(
i
k

)(
m+n−i

m

)
λi−k
0

i! τn−i
, k ≤ n− 1,

αk = (−1)
n−1

eλ0τ
m∑
i=k

(−1)
i−k

(m+ n− i)!λi−k
0

k! (i− k)! (m− i)! τn−i
, k ≤ m.

(45)
If m < n and (45) is satisfied, then ℜ(λ) < λ0 for
every root λ ̸= λ0 of ∆. If m = n and (45) is satisfied,
then ℜ(λ) = λ0 for every root λ of ∆. In particular, the
trivial solution of (43) is exponentially stable if and only

if an−1 > −n(m+1)
τ .

Theorem 7.1 was proved in the case m = n− 1 in Mazanti
et al. (2021) and extended to any m ∈ J0, nK (including
thus the neutral case m = n) in the recent paper Bous-
saada et al. (2021a). Let us briefly present the main ideas
of its proof. Up to a change of variables corresponding
to a translation and a scaling, it suffices to prove the
theorem in the case τ = 1 and the desired root of maximal
multiplicity is at the origin, i.e., λ0 = 0. In this case,
λ0 = 0 is a root of maximal multiplicity m+ n+ 1 if and
only if ∆(0) = · · · = ∆(m+n)(0) = 0, which gives a linear
system in them+n+1 coefficients a0, . . . , an−1, α0, . . . , αm

admitting (45) as its unique solution.

To prove the properties on the dominance of λ0, the main
ingredient is that, under (45) and with τ = 1 and λ0 = 0,
∆ can be factorized as

∆(λ;−→a ,−→α ) =
n!λm+n+1

(m+ n+ 1)!
Φ(m+ 1,m+ n+ 2,−λ),

where Φ is Kummer confluent hypergeometric function,
which admits the integral representation

Φ(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1eztdt



for every a, b, z ∈ C with ℜ(b) > ℜ(a) > 0, where Γ
denotes the Gamma function. In particular, proving the
last part of Theorem 7.1 amounts to showing that all
roots of Φ(m + 1,m + n + 2, ·) have positive real part
if m < n and real part zero if m = n. As detailed in
Boussaada et al. (2021b), these facts can be established
by applying the technique developed in Hille (1922) to a
family of special functions related to Kummer functions,
known as Whittaker functions, and exploring the fact
that Whittaker functions satisfy a second-order ordinary
differential equation.

7.1 Inverted pendulum: Delay, PD control & MID

The MID property may hold even when the multiplicity of
a given quasipolynomial’s root does not reach its maximal
value. Hereafter, we illustrate such a claim on the standard
comprehensive problem of the stabilization of the inverted
pendulum. The equation of motion of an inverted pendu-
lum controlled by a delayed PD-controller writes as:

φ̈(t) + a0φ(t) = u(t) ,

u(t) = −b0φ(t− τ)− b1φ̇(t− τ) ,
(46)

with τ > 0 and a0 < 0. The characteristic function
corresponding to (46) is:

∆(λ; b0, b1, τ) = P0(λ) + P1(λ) e
−λτ , (47)

with P0(λ) = λ2 + a0 and P1(λ; b0, b1) = b0 + b1λ. The
critical delay of system (46) is given by:

τcrit =
√
− 2

a0
, (48)

that is, the closed-loop system (46) is asymptotically stable
if and only if τ < τcrit. The critical delay (48) can be ob-
tained by studying the multiple roots of ∆(·; b0, b1, τ). In-
deed, assume that ∆ has a real root λ0 with algebraic mul-
tiplicity at least degP (λ) + 1 = 3. Then ∆(λ0; b0, b1, τ) =
∆′(λ0; b0, b1, τ) = ∆′′(λ0; b0, b1, τ) = 0 give

λ2
0 + a0 + e−λ0τ (b0 + b1λ0) = 0 ,

2λ0 + e−λ0τ (−τ(b0 + b1λ0) + b1) = 0 ,

2 + e−λ0τ (τ2(b0 + b1λ0)− 2τb1) = 0 .

(49)

From (49) we obtain
b0 = eλ0τ

(
τλ3

0 + λ2
0 + a0τλ0 − a0

)
,

b1 = −eλ0τ
(
τλ2

0 + 2λ0 + a0τ
)
,

λ0 =
−2±

√
2− a0τ2

τ
=: λ±.

(50)

It can be shown that the triple root λ+ is negative and
dominant for every 0 < τ < τcrit, and therefore system (46)
is asymptotically stable, see, e.g., Boussaada et al. (2017,
2020). In particular, at the upper bound τ = τcrit the triple
root is λ+ = 0 and it is the dominant (rightmost) root of
(47) with control “gains” b0 = −a0 and b1 = −a0τcrit.
Alternatively, for a given λ+ = γ < 0, (49) can be solved
for b0, b1 and τ . The smallest positive solution for τ is the
critical delay τcrit(γ) associated with γ-stability.

Remark 7.2. The dominancy of λ+ has been shown by
using the argument principle, see, for instance (Boussaada
et al., 2020). A constructive proof of the dominancy of λ+

may be also shown using the corresponding quasipolyno-
mial factorization introduced in Bedouhene et al. (2020)
and recently extended in Balogh et al. (2022) to arbitrary
order systems such that in open-loop they admit only real-
rooted modes. 2

7.2 A control oriented MID property

In this section we consider delayed feedback systems whose
characteristic function is a quasipolynomial of the form

∆(λ;
−→
b , τ) = P0(λ) + P1(λ,

−→
b ) e−λτ , (51)

where τ ∈ R+, deg(P0) = n, deg(P1) = n−1. Assume that

the coefficients of P0 are known and that
−→
b ∈ Rn denotes

the parameter vector including the coefficients of P1.
Assume further that the coefficients bi are independently
adjustable) control parameters:

P0(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 ,

P1(λ;
−→
b ) = bn−1λ

n−1 + bn−2λ
n−2 + · · ·+ b1λ+ b0 .

(52)

The problem to be considered is to find the values of τ such
that (51) is γ-stabilizable. To give a sufficient condition for
γ-stabilizability 26 we utilize the MID-property: the con-
trol parameters bi are tuned such that the characteristic
function ∆(λ) has a real root λ0 with multiplicity n + 1.
The result from Balogh et al. (2022) emphasizes the way
to factorize a quasipolynomial admitting a multiple root.

Proposition 7.3. If the quasipolynomial (51)-(52) admits a

real root λ0 with multiplicity at least n then ∆(λ;
−→
b , τ) =

(λ− λ0)
n

(
an +

∫ 1

0

e−(λ−λ0)τt
τRn−1(λ0; τt)

(n− 1)!
dt

)
, (53)

where the family of polynomials Rk(λ; τ) is defined as

Rk(λ; τ) =

k∑
i=0

(
k

i

)
P

(i)
0 (λ)τk−i, k ∈ N∗ . (54)

Some sufficient conditions for the dominancy are given by:

Proposition 7.4. Let λ0 be a real root of the quasipolyno-
mial (51) with multiplicity at least n+1. If Rn−1(λ0; τt) ≤
0, ∀t, 0 < t ≤ 1 then λ0 is the dominant root of (51).

7.3 Imaginary roots, MID & applications

We consider in this subsection a retarded delay-differential
equation of second order under the form ÿ(t) + a1ẏ(t) +
a0y(t) + α1ẏ(t − τ) + α0y(t − τ) = 0, where a1, a0, α1, α0

are real parameters to be tuned. Its characteristic function
is the quasipolynomial ∆ defined by

∆(λ) = λ2 + a1λ+ a0 + (α1λ+ α0) e
−λτ . (55)

All previous results on multiplicity-induced-dominancy
concern only real roots with high multiplicity, and a
natural question is whether one may choose as dominant
roots a pair of complex-conjugate nonreal multiple roots.
The answer, at least for (55), is affirmative, as stated in
the next result.

Theorem 7.5. Let λ0 ∈ C, denote σ0 = ℜ(λ0) and θ0 =
ℑ(λ0), and assume that θ0 ̸= 0. Then λ0 and its conjugate
λ0 are roots of multiplicity 2 of ∆ from (55) if and only if

a1 = −2σ0 − θ0
2τθ0−sin(2τθ0)
τ2θ2

0−sin2(τθ0)
, (56a)

a0 = σ2
0 +

σ0θ0(2τθ0−sin(2τθ0))+τ2θ4
0+θ2

0 sin2(τθ0)

τ2θ2
0−sin2(τθ0)

, (56b)

α1 = 2θ0e
σ0τ τθ0 cos(τθ0)−sin(τθ0)

τ2θ2
0−sin2(τθ0)

, (56c)

26 In other words, the spectral abscissa αs of the closed-loop system
should verify the condition αs ≤ γ for the corresponding set of
parameters.



α0 = 2θ0e
σ0τ (σ0−τθ2

0) sin(τθ0)−τσ0θ0 cos(τθ0)

τ2θ2
0−sin2(τθ0)

(56d)

Moreover, if (56) is satisfied, then all roots λ of ∆ which
are different from λ0 and from λ0 satisfy ℜ(λ) < ℜ(λ0).

As θ0 → 0, the expressions in (56) converge to those for
the existence of a real root of multiplicity 4 at λ = σ0,
as stated in Theorem 7.1, for which it is known that σ0 is
dominant. The proof of Theorem 7.5, presented in Mazanti
et al. (2020), uses this fact and the continuity of roots
as functions of θ0 in order to show that dominance of
the roots λ0 and λ0 is preserved as θ0 increases from 0
to any positive value, taking appropriate care of possible
roots coming from ∞. Based on Mazanti et al. (2020), we

Fig. 10. Primary structure (P), with an active vibration
absorber (A) to suppress displacement xp induced by
harmonic disturbance force f(t)

illustrate the application of Theorem 7.5 to active vibration
suppression (AVS), in which we desire to suppress vibra-
tions from an excitation force of a known frequency ω (see
Fig. 10). The system main body is a vibrating platform P
excited by a periodic external force f(t) = F cos(ωt), and
the absorber A is actuated with the active feedback u(t)
to compensate the vibrations. The absorber dynamics is
then ẍa(t) + 2ζΩẋa(t) + Ω2xa(t) =

1
ma

u(t).

Remark 7.6. The delayed resonator scheme by Olgac and
Holm-Hansen (1994) consists in guaranteeing vibration
suppression by ensuring the overall system to have zeros
at ±jω, and we adapt that scheme here by placing zeros of
multiplicity two at ±jω using Theorem 7.5. For a different
adaptation, we refer to Kuře et al. (2018). 2

Choosing the delay as τk = kπ
ω for some k ∈ N∗,

Theorem 7.5 ensures that ±jω is a double root of ∆ if
and only if

∆ω(λ) = λ2 +
2

τk

(
(−1)ke−λτk − 1

)
s+ ω2. (57)

Introducing the active feedback u(t) = ma(Ω
2−ω2)xa(t)+

2ma

(
ζΩ+ 1

τk

)
ẋa(t)−2ma

(−1)k

τk
ẋa(t−τk), the characteristic

function of the active absorber is given by (57), with a
double root at ±jω. As shown, e.g., in Kuře et al. (2018),

the transfer function f → xp is in the form G(λ) = ∆ω(λ)
M(λ) .

Therefore, as required, the double roots at ±jω become
double zeros of Gxaf , implying that no vibrations are
transferred from f to xp and the platform is fully silenced.

8. CONCLUDING REMARKS

This paper presents several approaches and methods for
handling multiple characteristic roots in time-delay sys-

tems represented by linear DDEs. More precisely, pertur-
bation theory techniques, frequency-sweeping based ap-
proach and multiplicity-induced-dominancy method are
explicitly discussed. For a better understanding of the
concepts, notions as well as of the proposed methods,
several illustrative examples complete the presentation.
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edges the financial support of CentraleSupélec (France)
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Kuře, M., Vyhĺıdal, T., Michiels, W., and Boussaada, I.
(2018). Spectral design of robust delayed resonator by
double-root assignment. IFAC-PapersOnLine, 51(14),
72–77.

Lee, M.S. and Hsu, C.S. (1969). On the τ -decomposition
method of stability analysis for retarded dynamical
systems. SIAM Journal of Control, 7, 242–259.

Li, X., Liu, J.C., Li, X.G., Niculescu, S.I., and Çela,
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