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et Lettres, 29 rue d’Ulm, 75005 Paris, France

ABSTRACT:
Amplitude modulation (AM) and frequency modulation (FM) provide crucial auditory information. If FM is

encoded as AM, it should be possible to give a unified account of AM and FM perception both in terms of response

consistency and performance. These two aspects of behavior were estimated for normal-hearing participants using a

constant-stimuli, forced-choice detection task repeated twice with the same stimuli (double pass). Sinusoidal AM or

FM with rates of 2 or 20 Hz were applied to a 500-Hz pure-tone carrier and presented at detection threshold. All

stimuli were masked by a modulation noise. Percent agreement of responses across passes and percent-correct detec-

tion for the two passes were used to estimate consistency and performance, respectively. These data were simulated

using a model implementing peripheral processes, a central modulation filterbank, an additive internal noise, and a

template-matching device. Different levels of internal noise were required to reproduce AM and FM data, but a

single level could account for the 2- and 20-Hz AM data. As for FM, two levels of internal noise were needed to

account for detection at slow and fast rates. Finally, the level of internal noise yielding best predictions increased

with the level of the modulation-noise masker. Overall, these results suggest that different sources of internal

variability are involved for AM and FM detection at low audio frequencies.
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I. INTRODUCTION

The auditory perception of amplitude modulation (AM)

and frequency modulation (FM) has received substantial

interest over the last decades because of the repeated dem-

onstration of the crucial role played by AM and FM cues in

robust speech perception (e.g., Shannon et al., 1995; Zeng

et al., 2005) and in environmental sound perception (Singh

and Theunissen, 2003; Thoret et al., 2020). It is generally

assumed that auditory processing of AM and FM overlaps

because of “FM-to-AM conversion” in the cochlea (the

frequency-dependent attenuation of the FM caused by the

tuned cochlear filters resulting in AM cues; Zwicker, 1952;

Saberi and Hafter, 1995). Although questions remain as to

how slow FM is detected by humans at low audio frequen-

cies (Whiteford and Oxenham, 2015; Paraouty et al., 2016;

Paraouty and Lorenzi, 2017; Whiteford et al., 2017; Ewert

et al., 2018; Wallaert et al., 2018; King et al., 2019; Moore

et al., 2019; Parthasarathy et al., 2020; Whiteford et al.,
2020), the consensus that has emerged posits that the per-

ception of AM and fast FM is mediated by AM processing

through a cascade of processing stages including: bandpass

(cochlear) filtering, fast-acting amplitude compression, half-

wave rectification, short-term adaptation with fast time con-

stants, demodulation achieved by lowpass filtering followed

by a modulation filterbank, and a decision stage using either

a template-matching strategy or time-averaged statistics

such as the envelope power (Viemeister, 1979; Strickland

and Viemeister, 1996; Dau et al., 1997a; Dau et al., 1997b;

Ewert and Dau, 2000; McDermott and Simoncelli, 2011).

This general model (hereafter referred to as the

“modulation-filterbank model”; for recent implementations,

see Jepsen et al., 2008; Jørgensen et al., 2013; Biberger and

Ewert, 2016, 2017; Wallaert et al., 2017, 2018; King et al.,
2019; Cabrera et al., 2019) postulates that temporal-

modulation cues in sounds are transformed into so-called

“neural temporal-envelope” cues (i.e., fluctuations in mean

firing rate in auditory neurons) and that fine-timing

“temporal fine structure” (TFS) cues (i.e., carrier informa-

tion) are discarded after demodulation achieved by central

(post-cochlear) processes. This type of model incorporates

an important source of “inefficiency” in temporal-

modulation processing: a Gaussian internal noise added to

the representation of temporal-envelope cues at the output

of modulation filters. Internal noise (Green and Swets,

1966) refers to the accumulation of several sources of vari-

ability such as the stochastic nature of neuronal firing, the

internal state of the observer organism, or fluctuations in

attention (Javel and Viemeister, 2000; Faisal et al., 2008;

Amitay et al., 2013). Internal noise is initially included in

this model of modulation perception to limit the resolution

of the observer and thus auditory sensitivity to temporala)Electronic mail: sarah.attia@ens.fr
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modulation, that otherwise would be perfect. This implies

that the decision processes postulated for temporal-

modulation detection use a degraded representation of

temporal-envelope cues extracted by modulation filters (i.e.,

some envelope information is lost along the auditory path-

way before final decision making). Surprisingly, little effort

has been made to characterize internal noise in temporal-

modulation detection, with the exception of the work by

Ewert and Dau (2004). This study assessed the contribution

of internal noise to AM detection by comparing AM detec-

tion thresholds for random- versus frozen-noise carriers.

Threshold patterns obtained for the frozen-noise carriers

were found to be similar to those obtained for the random-

noise carriers when broadband noise was used as a carrier.

The absence of any variability in the AM stimulus in the

case of the frozen-noise carrier had little impact if any on

the listener’s decisions. This led the authors to conclude that

AM detection performance is affected by a large amount of
internal noise (relative to external variability) in the

temporal-envelope processing pathway. This outcome is

consistent with previous work conducted for other percep-

tual dimensions in the auditory and visual modalities, con-

cluding that the “specific choice generated by an observer

on a given trial depends, to a large extent, on a loud source

of variability that is not under direct experimental control”

(e.g., Barlow, 1956; Green, 1964; Burgess and Colborne,

1988; Pelli and Blakemore, 1990; Neri, 2010).

However, it is important to note that internal noise not

only limits observer sensitivity: it is also a source of neural

variability that determines the consistency of the auditory

judgments made by the observer in a given perceptual task.

In other words, for a given stimulus, a high level of internal

noise is expected to yield more variable responses from trial

to trial. To quote Green (1964) on this issue, “internal noise

is the limiting factor in a trial-by-trial prediction of the sub-

ject’s responses.” This operational definition of internal noise

led to the “double-pass” method (Green, 1964), a psycho-

physical paradigm aiming at inferring the variance of inter-

nal noise for a given task from the agreement of individual

responses between two successive trials using identical stim-

uli. The double-pass technique has been used extensively to

assess internal noise for a wide range of perceptual tasks and

different sensory modalities (e.g., Green, 1964; Spiegel and

Green, 1981; Burgess and Colborne,1988; Lu and Dosher,

2008; Neri, 2010; Hasan et al., 2012; Vilidaite and Baker,

2017). It also proved useful to characterize perceptual learn-

ing in the auditory (Jones et al., 2013) and visual modalities

(Lu and Dosher, 2004, 2008; Lu et al., 2006).

Here, the double�pass method was used to assess and

compare behavioral consistency—and thus the influence of

internal noise—for slow and fast AM and FM detection.

According to the modulation-filterbank model described

above, AM detection should be mediated by (neural)

temporal-envelope cues irrespective of modulation rate.

This implies that both slow (<10 Hz) and fast AM detection

should be limited by the same sources of inefficiency.

Consistent with this assumption, the modulation-filterbank

model uses a single source (and variance) of internal noise

for temporal-envelope processing irrespective of temporal-

envelope rate (Dau et al., 1997a; Dau et al., 1997b). Still,

some doubts remain as to whether slow and fast AM are

processed by the same mechanisms. For instance, Wright

and Dai (1998) showed that the detectability of sinusoidal

AM at unexpected rates differs for slow and fast modulation

rates. Therefore, it is still unknown whether the same source

of internal noise constrains AM processing at slow and fast

rates.

For FM, it is generally assumed that detection is also

mediated by temporal envelope (rate/place) information at

fast modulation rates (higher than 5–10 Hz) or at high carrier

frequencies (higher than 4–10 kHz) (Moore and SeRk, 1994;

Paraouty et al., 2018; Whiteford et al., 2020). As indicated

above, this overlap between AM and FM processing is a

consequence of “FM-to-AM conversion” in the cochlea:

frequency-dependent attenuation of time-varying instanta-

neous frequency in the FM stimulus caused by the tuned

cochlear filters results in AM (i.e., temporal envelope cues)

that is encoded via fluctuations in the mean discharge rate of

auditory-nerve fibers. Still, doubts remain as to how slow

(<10 Hz) FM is detected at low carrier frequencies

(<2–4 kHz). In that case, FM information is potentially con-

veyed by changes over time in the pattern of neural phase

locking of auditory-nerve fibers or neurons in the low brain-

stem (Moore and SeRk, 1996; Paraouty et al., 2018; Wallaert

et al., 2018; Moore and SeRk, 2019; Moore et al., 2019;

Parthasarathy et al., 2020) because the precision of neural

phase locking is constant for frequencies up to about

0.6–2 kHz for most mammals (Palmer and Russell, 1986).

Some psychophysical studies also pointed out that TFS cues

are not used to detect FM with modulation rates above about

10 Hz, arguing that the central mechanism using neural

phase-locking information is sluggish (e.g., Moore and SeRk,

1994). This implies that at low carrier frequencies, slow FM

detection should be limited by sources of inefficiency dis-

tinct from those limiting fast FM and slow and fast AM

detection. Ewert et al. (2018) implemented this assumption

in a “two-path” model of AM and FM detection using differ-

ent sources (and variances) of internal noise for temporal-

envelope (rate/place cues) and TFS (phase-locking cues)

processing.

The general goal of the present study was to test whether

the modulation-filterbank model described above (i.e., a

model of modulation processing using a single source of

additive internal noise) was able to account for double-pass

consistency data in an AM and FM detection task. More spe-

cifically, this study aimed to: (i) assess double-pass consis-

tency of auditory judgments in sinusoidal AM and FM

detection using a slow (2 Hz) and a fast (20 Hz) modulation

rate, a low (500 Hz) carrier frequency and a bandpass (AM

or FM) noise masker (weak or strong in magnitude), and (ii)

compare the results with the predictions of the modulation-

filterbank model using the same tasks and stimuli.

The double-pass method was used to estimate the con-

sistency of auditory judgments in each experimental
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condition. This method (Green, 1964; Burgess and

Colborne, 1988; Lu and Dosher, 2008) is typically per-

formed using two passes. Stimuli presented in each pass are

masked by an external source of noise, as double-pass con-

sistency is determined by the ratio of internal to external

noise (Green, 1964): if external variability outweighs inter-

nal variability, then observer consistency should be high.

Conversely, if internal variability outweighs external

variability, then observer consistency should be low. To

estimate double-pass consistency for modulation detection,

a 2-interval, 2-alternative forced-choice (2I, 2AFC) detec-

tion-in-noise task was run twice with identical sequences of

external noise in the two successive passes. External noises

used for AM and FM detection were generated in the AM

and FM domains, respectively (external variability was

therefore introduced in the dimension—AM or FM—

relevant for the task). Two levels of the variance of external

(modulation) noise were used for each type of noise. The

modulation-filterbank model simulated each experimental

condition. The bandwidth of the simulated cochlear filters

was set to 1 equivalent rectangular bandwidth of a normal-

hearing auditory filter (ERBN; Glasberg and Moore, 1990);

envelope phase was preserved at the output of modulation

filters tuned below 10 Hz, and for each modulation filter

centered at and above 10 Hz, only the Hilbert envelope of

the output was passed on. For each experimental condition,

the model was run for target modulation strengths set to the

mean detection threshold across real participants, and the

magnitude of the additive internal noise was varied system-

atically in order to find the value that minimized the model’s

prediction errors estimated in terms of performance and con-

sistency. A unified account of AM and FM perception would

be achieved if a single level of the variance of internal noise

could minimize the model’s prediction errors estimated in

terms of performance and consistency in all experimental

conditions.

II. METHODS

A. Listeners

Fifteen young normal-hearing listeners aged between

18 and 30 years (mean ¼ 23 years; standard deviation, SD

¼ 3 years) participated in the experiments. Only two of them

had previous experience in psychoacoustic measurements.

They were recruited through the logistic platform RISC

(“Relais d’Information sur les Sciences de la Cognition,
UMS CNRS 332”) at Ecole normale sup�erieure (Paris). Each

listener had pure-tone audiometric thresholds �20 dB hear-

ing level (HL) between 0.25 and 4 kHz (ANSI, 1996) in

both ears, and the audiometric thresholds at the tested fre-

quency (0.5 kHz) ranged between –5 and 20 dB HL (mean

¼ 6.2 dB HL; SD ¼ 5.3 dB HL).

All listeners were fully informed about the goal of the

study and provided written consent before their participa-

tion. This study was approved by the local ethical committee

of University Paris Descartes (CERES, No. IRB:

20143200001072).

B. Stimuli

All stimuli were generated digitally at a sampling rate

of 48 kHz using the MATLAB environment (release 2013b).

They were presented to the right ear of each participant at a

sensation level (SL) of 40 dB using an external soundcard

(DAC audio USB Audioengine D3, 24-bit resolution) and

Sennheiser HD 280 pro headphones with an impedance of

64 ohms (Old Lyme, CT).

The whole series of tests was conducted in an IAC

double-wall soundproof booth and all levels were calibrated

using a Bruel and Kjaer 2250 sound-level meter. The latter

was also used to calibrate the headphone with an artificial

ear (4153 6 cc coupler, IEC Standard-60318-1). Calibration

was performed between 0.125 and 4 kHz.

All experiments were based on a 2I, 2AFC paradigm.

Each trial was divided into two successive observation inter-

vals containing a 500-Hz pure tone modulated (in amplitude

or in frequency) by a modulation-noise masker. Onset and off-

set of the modulation-noise masker were simultaneous with

each 500-Hz tone. In the target interval, a sinusoidal signal at

a fixed rate (2 or 20 Hz) was added to the modulation-noise

masker before being applied to the 500-Hz pure-tone carrier.

The sinusoidal signal had the same duration as the pure-tone

carrier. The target and comparison intervals were presented in

random order. The two observation intervals were separated

by a 400-ms silent interval. The duration of each stimulus was

set to 1-s. A 100-ms raised-cosine ramp was applied to the

beginning and the end of each stimulus. All stimuli were nor-

malized in terms of their root mean square (rms) power.

1. AM detection

A modulation noise was generated by filtering a 1-s

Gaussian white noise nðtÞ with zero mean below 80 Hz using

a 4th-order lowpass Butterworth filter. The SD of the modula-

tion noise, rext
AM

, was set to two values: 0.07 or 0.14

modulation-depth units (m.d.u.). The comparison stimuli were

sinusoidal carriers (with a frequency fc ¼ 500 Hz) with instan-

taneous amplitude modulated using the bandpass noise

masker, nðtÞ. The target stimuli were sinusoidal carriers (with

a frequency fc ¼ 500 Hz) with instantaneous amplitude modu-

lated by the sum of a sinusoidal signal (of modulation rate fm
and AM depth m) and the bandpass noise masker, nðtÞ.

Equation (1) describes the target stimulus TAM (t):

TAM tð Þ ¼ ½1þ msin 2pfmtþ uAMð Þ
þ rext

AM

n tð Þ�sin 2pfctþ ucÞ:ð (1)

Equation (2) describes the comparison stimulus CAM (t),

CAM tð Þ ¼ 1þ rext
AM

n tð Þ
� �

sin 2p fctþ ucð Þ; (2)

where t is the time expressed in seconds (s), m is the AM

depth (ranging between 0 and 100%) of the target signal, fm

J. Acoust. Soc. Am. 150 (5), November 2021 Attia et al. 3633

https://doi.org/10.1121/10.0006811

https://doi.org/10.1121/10.0006811


is the modulation rate of the target signal expressed in Hertz

(2 or 20 Hz), and uAM and uC are the starting phases of the

AM target signal and the carrier, respectively. uAM and uC

were randomly and independently chosen (between 0 and

2p radians) for each stimulus in the setup experiment (mea-

sure of AM detection thresholds) and in the first pass of the

main experiment (measure of double-pass consistency for

AM detection).

2. FM detection

As for the AM task, a modulation noise was generated

by filtering a 1-s Gaussian white noise nðtÞ with zero mean

below 80 Hz using a 4th-order lowpass Butterworth filter.

The SD of the modulation noise, rext
FM

, was set to two values:

0.07 or 0.14 modulation-index units (m.i.u.). The compari-

son stimuli were sinusoidal carriers (with a frequency fc
¼ 500 Hz) with instantaneous frequency modulated using

the bandpass noise masker, nðtÞ. The target stimuli were

sinusoidal carriers (with a frequency fc ¼ 500 Hz) with

instantaneous frequency modulated by the sum of a sinusoi-

dal signal (of rate fm and magnitude b¼D f=fm) and the

bandpass noise masker, nðtÞ.
Equation (3) describes the target stimulus TFM (t),

TFM tð Þ ¼ sin½2pfctþ uc þ bsin 2pfmtþ uFMð Þ
þ rext

FM

n tð Þ�: (3)

Equation (4) describes the comparison stimulus CFM (t),

CFM tð Þ ¼ sin 2pfctþ uc þ rext
FM

n tð Þ
� �

; (4)

where t is the time expressed in seconds (s), b¼D f=fm,

where D f is the frequency excursion of the target signal

expressed in Hertz, fm is the modulation rate of the target

signal expressed in Hertz (2 or 20 Hz), and uFM and uC are

the starting phases of the FM target signal and the carrier,

respectively. uFM and uC were randomly and independently

chosen (between 0 and 2p radians) for each stimulus in the

septup experiment (measure of FM detection thresholds)

and in the first pass of the main experiment (measure of

double-pass consistency for FM detection).

3. Modulation-noise maskers

For both AM- and FM-detection tasks, the modulation-

noise masker, nðtÞ, was refreshed between intervals and

trials in the setup experiment (measure of modulation-

detection thresholds), and in the first pass of the main

experiment (measure of double-pass consistency). The

modulation-noise maskers used in the second pass of the

main experiment were exactly the same as those used in

the first pass of the main experiment (in corresponding tri-

als). Modulation-noise maskers were different across partic-

ipants (each participant was assigned a unique set of

randomly selected modulation-noise maskers, but the statis-

tics of modulation noises remained globally the same for all

participants). Figure 1(A) shows that the long-term modula-

tion spectrum of the modulation-noise maskers is lowpass in

shape, cutting around 80 Hz. The effects of the modulation

noise on the AM and FM targets are illustrated in the

bottom-most panels of Fig. 1, which show the long-term

power spectra [Fig. 1(B)] and modulator waveforms

[Fig. 1(C)] of the AM and FM target stimuli used in the

experiments. Power spectra and modulator waveforms are

shown for a 20-Hz sinusoidal AM [Fig. 1(C), top panels]

and FM [Fig. 1(B), bottom panels] signal. Figure 1(B)

shows that the AM and FM noise maskers introduce audio

frequency components on either side of the sidebands of the

target signal and that the level of these masking audio fre-

quency components increases when the SD of the modula-

tion noise increases from 0.07 to 0.14 units (m.d.u. or

m.i.u.). Figure 1(C) illustrates the corruption caused by the

modulation noise on the target sinusoidal modulators in the

time domain.

C. Procedure

Two experiments were completed in the same order for

each participant: in the first (so-called “setup”) experiment,

an adaptive procedure was used to measure individual AM

and FM detection thresholds corresponding to three distinct

levels of performance. In the second (so-called “main”)

experiment, a double-pass consistency task was used to

measure the percentage of agreement in the same detection

tasks at a fixed level of performance based on individual

detection thresholds measured in the first experiment. The

whole series of experiments was based on one or two hours

per session with several sessions spread out over a 1–4 week

period for each participant. Altogether, the experiments

lasted on average 14 h per participant. For each task and for

each trial, the participant was instructed to choose the inter-

val containing the target sinusoidal modulation.

Each participant was tested for the following 24 experi-

mental conditions: two types of modulation [AM vs FM];

two modulation rates [2 vs 20 Hz]; two levels of the SD of

the (external) modulation-noise masker [0.07 vs 0.14 units

(m.d.u. or m.i.u.)]; three levels of (targeted) performance

[64% (d0 ¼ 0.5), 76% (d0 ¼ 1), and 84% (d0¼1.5) correct

detection]. The two levels of the modulation-noise masker

SD were determined in a pilot experiment to yield distinct

levels of detectability of modulation targets. These

values were also selected to prevent over-modulation. The

individual AM and FM detection thresholds were then

used to set the modulation strength (i.e., the modulation

depth or frequency excursion, respectively) of the target

signals in the subsequent double-pass experiments. Hence,

the AM and FM detection tasks in the double-pass consis-

tency paradigm were performed at the same level of

difficulty.

The double-pass consistency task was conducted with

the purpose of estimating PA in the participant responses
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for corresponding trials in two successive passes. PC was

also calculated across the two successive passes for each

participant.

1. Setup experiment: Detection thresholds

AM detection thresholds (AM depth, m) and FM detection

thresholds (frequency excursion, Df) were first measured for

each participant with adaptive staircases that attempted to con-

verge on 64% (d0¼0.5), 76% (d0¼1), and 84% (d0¼1.5) correct

detection using a 2I, 2AFC paradigm, and a weighted one-up,

one-down method (Garcia-P�erez, 1998).

Each block consisted of a variable number of trials.

Each trial was divided into two successive observation inter-

vals containing the target and comparison stimuli, presented

in random order. The bandpass�noise masker was refreshed

for each interval and trial. Each observation interval was

marked by a red light on the computer screen that was

synchronized with the stimulus presentation. Participants

were instructed to report the observation interval containing

the target stimulus. Visual feedback was given to the partici-

pant after each trial. The dependent variables for these mea-

sures were the modulation depth m for the AM detection

task and the frequency excursion Df for the FM detection

task. At the beginning of each staircase, the modulation

strength of AM and FM targets was set to a supra-threshold

level: The AM target was presented at a modulation depth

of 80% (�2 dB when expressed as 20logm) and the FM tar-

get was presented at a frequency excursion of 8 Hz. At the

beginning of each staircase, the tracking variable (the modu-

lation strength of AM and FM targets) changed by a step (a

factor) up of four after a wrong response and by a step (a

factor) down of two after a correct response. After the first

four reversals, the one-down one-up rule was used up to 16

reversals, using different steps to reach 64%, 76%, and 86%

of correct responses (Garcia-P�erez, 1998). These 20

FIG. 1. Stimuli, Modulation-noise maskers and AM/FM targets. (A) Long-term modulation spectrum of AM and FM modulation-noise maskers. The SD of

the masker, rext
AM;FM

, was set to 0.07 units. Modulation spectra were averaged over 100 stimuli. Bottom panels: (B) long-term power spectra of a 20-Hz sinu-

soidal AM (top panel) and FM (bottom panel) target with (orange and yellow lines) and without (blue lines) AM and FM modulation-noise maskers. Power

spectra were offset (þ/� 2 Hz) for clarity. Blue lines (no masker) are shown here to illustrate the detrimental effects caused by modulation-noise maskers;

AM and FM stimuli were always presented against a modulation-noise maskers in the setup and main experiments. Here, rext
AM;FM

, was set to three values: 0

(no masker), 0.07 or 0.14 units (m.d.u. or m.i.u.). For AM target stimuli, modulation depth was set to 10%. For FM target stimuli, frequency excursion was

set to 3 Hz. Power spectra were averaged over 10 stimuli. (C) Modulator waveforms of the 20-Hz sinusoidal AM (top panel) and FM (bottom panel) target.

Modulator waveforms were obtained for independent samples of modulation noise. a.u. stands for arbitrary units.
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reversals were performed for each series of measures and

the mean threshold was taken as the geometric mean of the

tracking variable during the last 16 reversals. The order of

the conditions was randomized across runs.

AM and FM detection thresholds at 2 and 20 Hz were

first measured once in the absence of any modulation noise

masker in order to familiarize participants with the detection

tasks. AM and FM detection thresholds were then measured

twice in each condition (i.e., 48 staircases). Two measures

of detection threshold were thus carried out in each experi-

mental condition and the final detection threshold for each

condition was taken as the mean of these two estimates.

2. Main experiment: Double-pass consistency

The consistency of auditory judgments in AM and FM

detection was then measured in each experimental condition

and for each participant using the double-pass paradigm

developed by Green (1964). Here, AM and FM detection

were measured using a 2I, 2AFC paradigm with constant

stimuli. In total, each participant was tested over

2� 100¼ 200 trials in each of the 24 experimental condi-

tion. In other words, each participant was run twice with

identical stimuli, making two successive “passes” of 100 tri-

als in each experimental condition. However, for each trial,

the presentation order of the target and comparison stimuli

was randomized (and was thus different across the two

passes) to avoid contextual effects. The 24 experimental

conditions were tested in random order. Thus, 4800 trials

were run per participant. These 4800 trials were split into

ten (shorter) series of double-pass experiments in which all

(24) conditions were completed. Each series was therefore

composed of 480 trials: it consisted of a first block of 240

trials in which all (24) conditions were completed ten times

in random order, repeated with exactly the same stimuli in a

different trial order in a second block of 240 trials (pass 2)

after a 5-min break. Short breaks were given to participants

between each series of double-pass experiments.

Each block therefore consisted of 240 trials. Five train-

ing trials (including random conditions) where modulation

targets were presented at a modulation strength yielding a d0

of 3 were inserted at the beginning of each block to familiar-

ize the participant with the task and stimuli. The AM depth

and frequency excursion used for the training trials were set

on an individual basis at twice the minimum threshold value

corresponding to a d0 of 1.5. For each block, each trial was

divided into two successive observation intervals containing

the target and comparison stimuli, presented in random

order. Each observation interval was marked by a red light

on the computer screen that was synchronized with the stim-

ulus’ presentation. Participants were instructed to report the

observation interval containing the target stimulus.

Participants were not given any visual feedback after each

trial, except for the first five training trials. Participants’

responses to these training trials were not taken into consid-

eration in the assessment of double-pass consistency and

percent-correct detection.

For each experimental condition, double-pass consis-

tency was calculated as the percentage of agreement

between the participants’ responses to corresponding trials

within the first and the second pass. The accuracy of

responses was also calculated as the percentage of correct

responses over the 200 trials [100 trials (pass 1) þ100 trials

(pass 2)] corresponding to a given experimental condition.

III. RESULTS

A. Setup experiment (adaptive tasks)

Individual detection thresholds are plotted as a function

of the SD of the modulation-noise masker (rext
AM;FM

) in each

panel of Fig. 2. The top [Figs. 2(A) and 2(B)] and bottom

panels [Figs. 2(C) and 2(D)] show AM and FM detection

thresholds, respectively. Left [Figs. 2(A) and 2(C)] and right

panels [Figs. 2(B) and 2(D)] show the 2- and 20-Hz data,

respectively. For each panel, detection thresholds are shown

for each level of sensitivity targeted by the adaptive proce-

dure (red: d0 ¼ 0.5; blue: d0 ¼ 1; green: d0 ¼ 1.5).

Linear mixed-effect models were run with R (R Core

Team, 2018) using the lme4 package (Bates et al., 2012).

Independent variables tested were: modulation rate [fm: 2 or

20 Hz], SD of the modulation-noise [r
ext
AM;FM

: 0.07 or 0.14

FIG. 2. Individual detection thresholds as a function of the SD of the

modulation-noise masker (rext
AM;FM

). (A)–(D) show AM and FM detection

thresholds, respectively. (A), (C), and (C), (D) show the 2-Hz and 20-Hz

data, respectively. For each panel, detection thresholds are shown for each

level of sensitivity targeted by the adaptive procedure (red: targeted

d0 ¼ 0.5; blue: targeted d0 ¼ 1; green: targeted d0 ¼ 1.5). Upward triangles

show conditions were participants were not able to perform the AM-

detection task. On each box, horizontal lines indicate the median threshold;

boxes span the 25th–75th percentiles and vertical lines span the minimum

and maximum thresholds.
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units (m.d.u. or m.i.u.)], and targeted level of sensitivity [d0:
0.5, 1, or 1.5]. The dependent variable was: (i) AM detection

thresholds (expressed in dB, 20 logm), or (ii) log-

transformed FM detection thresholds. In the statistical

model, fixed effects corresponded to fm, r
ext
AM;FM

, and tar-

geted d0, with an interaction term between these variables

(to test all significant interactions). Random effects corre-

sponding to individual participants were introduced in the

model to take into account individual variability. All cate-

gorical variables were expressed using contrast coding.

There were no noticeable deviations from homoscedasticity

or normality. p-values were obtained by means of type III

analysis of variance (ANOVA) on linear-mixed models. The

significance level was set at 0.05. The results of these statis-

tical analyses are detailed in Tables I and II of the

Appendix.

1. AM detection thresholds

The analysis revealed, as expected: (i) a significant

main effect of fm on AM detection thresholds [ß¼ 6.6; stan-

dard error (SE)¼ 0.8; v2 (1)¼ 59.8; p < 0.0001], indicating

that AM detection thresholds were significantly lower (bet-

ter) at 20 Hz: AM detection thresholds were on average 7 dB

lower at 20 Hz compared to 2 Hz; (ii) a significant main

effect of r
ext
AM

on AM detection thresholds [ß¼ 4.6;

SE¼ 0.8; v2 (1)¼ 4.6; p < 0.0001], indicating that AM

detection thresholds increased (worsened) with r
ext
AM

: AM

detection thresholds were on average 7 dB higher at

r
ext
AM

¼ 0.14 m.d.u. than at rext
AM

¼0.07 m.d.u.; (iii) a signifi-

cant main effect of targeted sensitivity level on AM detection

thresholds [ß¼ 6.3; SE¼ 0.8; v2 (2)¼ 53.8; p < 0.0001].

There were no significant interactions between independent

variables fm, rext
AM

, and d0 (all p > 0.05).

2. FM detection thresholds

The analysis revealed, as expected: (i) a significant

main effect of rext
FM

on FM detection thresholds [ß¼ 9.7;

SE¼ 1.9; v2 (1) ¼16.2; p < 0.0001], indicating that FM

detection thresholds increased (worsened) with rext
FM

: FM

detection thresholds were on average 1.8 times higher at

rext
FM

¼ 0.14 m.i.u. than at rext
FM

¼ 0.07 m.i.u; (ii) a signifi-

cant main effect of targeted sensitivity level on FM

detection thresholds [ß¼ 8; SE¼ 1.9; v2 (2)¼ 67.8; p
< 0.0001]. There was no significant main effect of fm on

FM detection thresholds and no significant interactions

between independent variables fm, rext
FM

, and d0 (all

p > 0.05).

B. Main experiment (double-pass consistency)

During the adaptive tasks, three participants (referred to as

A, B, C) reached AM detection thresholds above –5 dB in

some experimental conditions, suggesting that they were not

able to perform the task. They are shown by upward triangles

in Fig. 2. More precisely, one participant (A) could not perform

the task in two experimental conditions (2-Hz AM detection,

rext
FM

¼ 0.07 and 0.14 m.d.u., targeted d0 ¼ 1.5) and two partici-

pants (B, C) could not perform the task in a single experimental

condition (participant B: 2-Hz AM detection,

rext
FM

¼ 0.14 m.d.u., targeted d0 ¼ 1; participant C: 2-Hz AM

detection, rext
FM

¼ 0.14 m.d.u., targeted d0 ¼ 1.5). For these three

participants, modulation depth was set to –3 dB in the subse-

quent (double-pass) constant-stimuli experiment in these corre-

sponding conditions. These participants could perform the task

in the double-pass experiment well above chance level (PC

> 75%) and PA scores were not affected. All participants could

perform the adaptive task in the FM detection experiments.

Figure 3 shows the double-pass consistency and perfor-

mance data for each participant. The left [Figs. 3(A), 3(C),

3(G), and 3(E)] and right panels [Figs. 3(B), 3(D), 3(H),

and 3(F)] show the 2- and 20-Hz data, respectively. The top

[Figs. 3(A)–3(D)] and bottom [Figs. 3(E)–3(H)] panels show

the data collected using rext
AM;FM

of 0.07 and 0.14 units (m.d.u.

or m.i.u.), respectively. For each panel, the individual data

are shown for each level of sensitivity targeted by the initial

adaptive procedure (red: targeted d0 ¼ 0.5; blue: targeted

d0 ¼ 1; green: targeted d0 ¼ 1.5). For each experimental condi-

tion, a positive correlation was found between PC and PA

data: as expected, higher detection performance is associated

with higher consistency in listeners’ judgments: Bravais-

Pearson r ranged between 0.6 and 0.99, except for 20-Hz FM

detection, where r ¼ 0.35 for rext
FM

¼ 0.07 m.i.u. and targeted

d0 ¼ 0.5. Mean PA and PC calculated for each modulation

type (AM, FM) and rate (2, 20 Hz) are shown in Table III.

A statistical analysis of double-pass consistency data

were conducted using a linear mixed-effect model with R

(R Core Team, 2018) using the lme4 package for each

dependent variable (PC or PA converted into rationalized

arcsine units). Note that this statistical analysis made on

empirical PA and PC data were purely descriptive (i.e., it

was not testing a specific hypothesis). Modulation type [AM

or FM], fm [2 or 20 Hz], rext
AM;FM

[0.07 or 0.14 units (m.d.u.

or m.i.u.)] and targeted d0 level [0.5,1 or 1.5] were included

as fixed effects together with all interactions between fac-

tors; the participants were included as random intercepts.

The significance level was set at 0.05 and p-values were

obtained using a type III ANOVA on linear-mixed models.

The analysis conducted on PA scores showed that the

main effects of modulation type, fm and rext
AM;FM

were not

significant (all p > 0.05). The analysis only showed a
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significant main effect of targeted d0 on PA [ß ¼10;

SE¼ 1.9; v2(2)¼ 55.3; p < 0.0001]. There was also a signif-

icant interaction between targeted d0 and rext
AM;FM

[ß¼ –3;

SE¼ 1.9; v2(1)¼ 2.7; p¼ 0.046] indicating that PA was sig-

nificantly increased when r
ext
AM;FM

was highest at targeted d0

levels of 0.5 and 1. The analysis did not reveal any signifi-

cant interactions between independent variables modulation

type or fm (all p > 0.05).

The analysis conducted on PC scores confirmed that tar-

geted d0 had a significant main effect on PC data [ß ¼15;

SE¼ 2.9; v2(2) ¼72; p < 0.0001]. The main effects of mod-

ulation type, fm and rext, were not significant (all p > 0.05).

This was expected as listeners were tested at their individual

detection threshold targeting a d0 of 0.5, 1, and 1.5 in each

experimental condition. The analysis did not reveal any

significant interaction between independent variables (all p
> 0.05). The results of these statistical analyses are detailed

in Table IV of the Appendix. The outcome of these statisti-

cal analyses was not affected by removing the three partici-

pants (A, B, and C) that could not perform the task in the

setup experiment.

IV. MODEL SIMULATIONS

The general goal of the present study was to test

whether the modulation-filterbank model was able to

account for the double-pass consistency data collected for

young normal-hearing participants in the AM and FM detec-

tion tasks described above.

A. Model specifications

The model structure was similar to that used by

Wallaert et al. (2017, 2018), King et al. (2019), and Cabrera

et al. (2019). This model implemented a cascade of process-

ing stages including peripheral (i.e., cochlear) filtering, half-

wave rectification, amplitude compression, short-term

adaptation, demodulation (lowpass filtering followed by a

modulation filterbank), and a decision stage using a

template-matching strategy:

(1) A bank of five, 1-ERBN wide gammatone filters, one

centered at the carrier frequency fc of the stimulus, and

the remaining four centered at 1 and 2 Cams (units of

the ERBN number scale; Glasberg and Moore, 1990)

above and below the fc of the stimulus.

(2) A “broken-stick” input-output function for the output of

the gammatone filter tuned to the fc of the stimulus; the

function was linear up to a knee-point of 40 dB sound

pressure level (SPL) and compressive (using a power

law with an exponent of 0.3) above; the remaining four

gammatone filters were not submitted to this non-linear

transform.

(3) Half-wave rectification of the output of each of the five

gammatone filters.

(4) High-pass filtering (1st order, 6 dB/oct roll-off, 3-Hz

cut-off) of the output of each channel to simulate short-

term adaptation (cf. Tchorz and Kollmeier, 1999).

(5) The resulting signal at the output of each channel was

passed to a filterbank (Butterworth filters; �6 dB/oct

rolloff) with ten logarithmically-spaced channels

between 2 and 120 Hz (Moore et al., 2009), each with a

FIG. 3. PC versus PA curves showing double-pass consistency (i.e., percent agreement, PA) and performance (i.e., percent correct, PC) data for each partici-

pant. The top and bottom panels show the data collected using rext
AM;FM

of 0.07 in panels (A), (B), (C), (D) and 0.14 units in panels (E), (F), (G), (H) (m.d.u.

or m.i.u.), respectively. For each panel, the individual data are shown for each level of sensitivity targeted by the initial adaptive procedure (red, targeted

d0 ¼ 0.5; blue, targeted d0¼1; green, targeted d0 ¼ 1.5).
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Q factor of 1 (Lorenzi et al., 2001) to decompose the

modulations of the processed signals, producing 50

channels; envelope-phase information was preserved at

the output of each bandpass modulation filter. For each

modulation filter centered below 10 Hz, the waveform at

the output of the filter was passed on for further process-

ing, while for each filter centered at and above 10 Hz,

only the Hilbert envelope of the output was passed on.

(6) Independent Gaussian noises were added to the output

of each of the 50 channels; this noise had a constant SD

rint expressed in “model” units, m.u. (Wallaert et al.,
2017, 2018; King et al., 2019).

(7) The final decision stage was based on a template-

matching strategy (Wallaert et al., 2017). The model

generated an “optimal” template at the start of each pass

with the modulation strength (the dependent variable: m
or Df) set at a starting value of �2 dB for AM detection

and 8 Hz for FM detection, and without any added exter-

nal and internal noise. The template was calculated as

the difference between the internal representations of

the target and reference stimuli, channel by channel. On

each trial, the target and reference stimulus intervals

were correlated (channel by channel) with the template.

The interval with the largest correlation coefficient

(summed across channels) was selected by the model.

Double-pass consistency was simulated with this gen-

eral model. The model was initially calibrated with a pure

tone presented at 40 dB SPL to map “physical dB SPL” into

model units (m.u.) and to set the knee point of the

amplitude-compression function (see model description,

stage 2). At the beginning of each pass, an internal template

was generated in the absence of (external) modulation noise

masker and by setting the variance of internal noise to zero.

The template was generated using supra-threshold values of

the modulation depth for AM and the excursion frequency

for FM (�2 dB and 8 Hz, respectively). These supra-

threshold values corresponded to those used at the beginning

of the adaptive staircases to assess modulation detection

thresholds for real participants in the setup experiment. The

model was always run with the same stimuli and psycho-

physical procedure used for real participants except that (i)

the starting phase of target modulations was set to p (instead

of being randomized for real participants) because the deci-

sion device of the model calculated the correlation between

the internal template and the output of modulation filters as

in Wallaert et al. (2017); (ii) the number of trials that was

necessary to obtain reliable estimates of PC and PA scores

was increased to 1500 trials per pass (instead of 100 for real

participants). Simulations were run using the same Matlab

environment (AFC psychoacoustics software, version

1.40.1; Ewert, 2013).

Figure 4 illustrates the model’s behavior for this task,

and more specifically the effects of external and internal

noise on PC and PA in two experimental conditions: 2-Hz

AM detection with r
ext
AM

set to 0.07 m.d.u. [Fig. 4(A)] and

0.14 m.d.u. [Fig. 4(B)]. In each experimental condition, the

model was simulated for several levels of the internal noise

ranging from 0 to 150 m.u. For each level of internal noise,

PC and PA were simulated for AM depth varying between

�40 dB (1%) and –3 dB (70%) in 1–5 dB discrete steps.

Figure 4 shows that PC and PA are strongly related (Lu and

Dosher, 2008): a perfect or near-perfect performance is nec-

essarily associated with perfect or near-perfect agreement;

in addition, high PC values cannot be associated with low

PA values (if PA< 100%, there must be one of the two

passes where the observer makes incorrect responses and

therefore PC < 100%). Figure 4 also shows that for a given

PC level, PA decreases with increasing levels of internal

noise: At high levels of internal noise, the PC versus PA

curves are slanted; as internal noise decreases, the PC versus

PA curves become steeper. Finally, a comparison between

the two panels of Fig. 4 shows that PA increases with

increasing levels of external noise rext
AM

. In summary, these

preliminary simulations indicate that PA is governed by the

ratio between internal-noise and external-noise SD: the

higher this ratio, the lower PA.

The model was then run for the 24 experimental condi-

tions described above, and for target modulation strengths

(m or Df) set to the mean detection threshold across partici-

pants. For each experimental condition, the model was sim-

ulated with a range of values of the SD of the additive

internal noise, rint (between 80 and 300 m.u. for AM detec-

tion and between 20 and 160 m.u. for FM detection). For

each value of rint, the absolute error between the model and

the participants’ data (the absolute value of the difference in

PA and PC between simulated and real data, referred to the

“prediction error” below) was calculated.

B. Simulation results

Figure 5 shows the model’s prediction errors (absolute

errors between empirical and simulated data) averaged

across targeted d0 levels as a function of rint for PA [Figs.

5(A) and 5(C)] and PC [Figs. 5(B) and 5(D)] scores. In each

panel, prediction errors are shown for 2-Hz AM (dashed

dark-red lines), 20-Hz AM (continuous dark-red lines), 2-Hz

FM (dashed black lines), and 20-Hz FM (continuous black

lines). Top and bottom panels show the model’s prediction

errors for rext
AM;FM

¼ 0.07 and 0.14 units (m.d.u. or m.i.u.),

respectively. Figure 5 indicates that in each experimental

condition, prediction errors calculated for both PA and PC

were substantially affected by changes in rint. In each exper-

imental condition, the model did not predict PA and PC

scores equally well (error curves did not overlap perfectly

for PA and PC) but prediction errors dropped below 2–5

points of percentage for both PA and PC for specific values

of rint. The level of rint that yielded the lowest prediction

errors changed with modulation type, modulation rate, and

level of the modulation-noise masker. Simulations were run

ten times using these values of rint to check that the model

predictions did not change substantially across simulations.

The coefficient of variation (CV) was calculated for PA and PC
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FIG. 4. Predictions of the modulation-filterbank model for the “double-pass” AM detection task. A 2-Hz sinusoidal AM was used as the target to illustrate

the model’s behavior for this task. The SD of the modulation-noise masker, rext
AM;FM

, was set to 0.07 m.d.u. (A) and 0.14 m.d.u. (B). The model was simulated

for several levels (i.e., SD, expressed in model units, m.u.) of the additive internal noise. Each dot was calculated from 200 trials. For each level of internal

noise (as indicated by the hue code, dark blue corresponding to the highest level), double-pass consistency (percent agreement, PA) and performance (per-

cent-correct detection, PC) were simulated for AM depth varying between �40 dB (1%) and –3 dB (70%) in 1–5 dB discrete steps. For a given PC level, PA

decreases with increasing levels of internal noise and it increases with increasing levels of external modulation noise.

FIG. 5. Prediction errors (average across targeted d0 levels) of the modulation-filterbank model as a function of rint for PA (A and C) and PC (B and D)

scores. In each panel, prediction errors are shown for 2-Hz AM (dark red, dashed lines), 20-Hz AM (dark red, continuous lines), 2-Hz FM (black, dashed

lines), and 20-Hz FM (black, continuous lines). Top (A and C) and bottom (B and D) panels show the model’s prediction errors for rext
AM;FM

¼ 0.07 and 014

units (m.d.u. or m.i.u.), respectively. The x axis is logarithmic.
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in each experimental condition. CV was generally less than 0.5,

indicating that model predictions were quite reproducible.

Overall, the level of rint that yielded the lowest prediction errors

for PA and PC was lower for FM than AM, and lower for 2-Hz

FM than for 20-Hz FM; for each type of modulation, it was

generally lower at the lowest level of the modulation-noise

masker. For each experimental condition, values of rint lower

than this level were associated with simulated PA and PC

scores higher than empirical scores. Conversely, values of rint

higher than this level were associated with simulated PA and

PC scores lower than empirical scores.

The following lines describe the effects of the

modulation-noise masker on simulated PA and PC scores.

When rext
AM

was lowest (0.07 m.d.u.), prediction errors were

lower than 5% points for both PA and PC for 2- and 20-Hz

AM when rint¼ 160 m.u. When rext
AM

was increased to

0.14 m.d.u., higher levels of internal noise were required to

reach a minimum in prediction errors for both PA and PC

for 2- and 20-Hz AM (rint¼ 175 and 250 m.u., respectively).

When rext
FM

was lowest (0.07 m.i.u.), a level of internal noise

of 30 m.u. was associated with prediction errors lower

than 5 points of percentage for both PA and PC for 2-Hz

FM; in comparison, a level of 100 m.u. was required to

reach a minimum in prediction errors for both PA and

PC for 20-Hz FM. When rext
FM

was increased to 0.14 m.i.u.,

a higher level of internal noise was required for 2-Hz FM

only (rint¼ 35 m.u.). It is noteworthy that an increase in

rext
AM

was associated with an over-estimation of PA scores

for AM; an increase in rext
FM

was associated with an over-

estimation of PC for FM. Therefore, the modulation-noise

masker had more impact on simulated PA and PC scores

than on real scores.

In Fig. 5, model’s prediction errors were calculated

with a range of values of the SD of the additive internal

noise, rint, and averaged across the three d0 levels targeted

by the initial adaptive procedure. Figure 6 shows the simu-

lated PA and PC scores for each targeted d0 level (red: tar-

geted d0 ¼ 0.5; blue: targeted d0 ¼ 1; green: targeted d0 ¼ 1.5)

when a fixed level of internal noise was used, that is for

rint¼ 160 m.u. In each panel, the simulated data (open

circles) are plotted along with the empirical data (mean

across participants; closed circles). As indicated above, the

model predicted accurately PA and PC scores for 2- and 20-

Hz AM when rext
AM

was lowest (0.07 m.d.u.). For 2-Hz AM,

increasing rext
AM

to 0.14 m.d.u. yielded accurate predictions

for PC scores, but PA scores were over-estimated (i.e.,

better than observed in real participants). For 20-Hz AM,

both PA and PC scores were over-estimated when

rext
AM

¼0.14 m.d.u. The model failed to account for FM data.

For 2-Hz FM, the model predicted PA and PC scores at or

just above chance level (<60%). For 20-Hz FM, the pre-

dicted PC scores increased up to about 70% for a targeted d0

of 1.5; however, predicted PA scores remained close to

FIG. 6. PC versus PA data for AM and FM detection. Each panel shows the simulation data obtained with rint¼ 160 m.u. plotted along with the empirical

data (mean across participants; closed circles). In each panel, the simulation (closed circles) and real data (open circles) are shown for each level of sensitiv-

ity targeted by the initial adaptive procedure (red, targeted d0 ¼ 0.5; blue, targeted d0 ¼ 1; green, targeted d0 ¼ 1.5).
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chance level, inconsistent with the real data. Thus, the model

failed when the internal noise was fixed. In other words, dif-

ferent levels of internal noise were required to fit all the data.

Taken together, these results indicate that the modulation-

filterbank model was able to reproduce accurately double-pass

consistency data for both slow and fast AM at the lowest level

of the modulation-noise masker (here, rext
AM

¼ 0.07 m.d.u.) but

it was more sensitive to changes in the level of the

modulation-noise masker than the real participants. Still, the

modulation-filterbank model could not account for double-

pass consistency data for both AM and FM detection using a

single source (and level) of additive internal noise. In addition,

two different levels of internal noise were needed to account

for the slow and fast FM data.

V. DISCUSSION

A. Separate source(s) of internal variability for AM
and FM detection at low carrier frequencies

1. Separate sources of internal noise for AM and FM
detection

Our crude implementation of the “modulation-

filterbank model” using a single source (and thus, a single

level) of additive internal noise gave a good account of con-

sistency and detection performance of listeners’ judgments

(mean PA and PC data across listeners) for both slow (2 Hz)

and fast (20 Hz) AM when external variability conveyed by

the modulation-noise masker was relatively low

(rext
AM

¼ 0.07 m.d.u.). The model could also account for slow

and fast FM detection but for levels of the internal noise

smaller than that yielding best model predictions for AM.

Moreover, different levels of internal noise were required to

predict performance and consistency of listeners’ judgments

for slow and fast FM detection.

Taken together, these results are consistent with the

idea that the same sources of sensory and cognitive variabil-

ity constrain slow and fast AM processing. These results

add to those of recent studies demonstrating the capacity of

the modulation-filterbank model to account for a large set of

detection, discrimination or identification data collected in

psychophysical tasks where listeners are expected to rely on

temporal-envelope cues (e.g., Biberger and Ewert, 2016). It

is important to note that the present study tested for the first

time the ability of the modulation-filterbank model to repro-

duce the consistency of human auditory judgments in AM

detection tasks in addition to accuracy.

Our model could not provide a unified account of AM

and FM detection at a low audio frequency (500 Hz). These

results are therefore inconsistent with the notion that slow and

fast FM are detected via a simple frequency-to-place (FM-to-

AM) conversion mechanism operating at the cochlear level

(Whiteford et al., 2017, 2020). More precisely, these results

show that FM-to-AM conversion cues resulting from cochlear

filtering cannot be used by a modulation filterbank to detect

either slow or fast FM. Other mechanisms and thus, other

sources of internal variability make a noticeable contribution

to FM detection irrespective of FM rate. Recent electrophysio-

logical data collected on guinea pigs revealed that both slow

and fast FM are well encoded in the phase-locked discharge

patterns of cochlear-nucleus neurons (Paraouty et al., 2018).

Therefore, these sources of variability may be related to those

constraining the coding of TFS cues via neural phase locking

in auditory-nerve fibers and brainstem neurons (e.g., Moore

and SeRk, 1992). Alternatively, these sources of variability may

be related to those constraining a more central mechanism dis-

tinct from those involved in monaural AM detection. It is still

possible that the latter may be using out-of-phase temporal-

envelope cues at different cochlear place, but they would

require a neural machinery different from that used to detect

AM (this issue is discussed further below). The effects of the

mechanism responsible for FM detection on behavioral

variability—whether it corresponds to neural phase locking to

TFS cues or not—may be estimated within the present frame-

work in terms of an “equivalent” internal noise in the

temporal-envelope domain. The level of this “equivalent”

internal noise is smaller (by a factor 1.5–5) than that constrain-

ing AM detection. This suggests that this mechanism is more
efficient than that operating on temporal-envelope fluctuations

at the output of cochlear filters.

2. Mechanisms of FM detection at low
carrier frequencies

It is perhaps surprising that the modulation-filterbank

model proved unable to predict FM detection scores (PC)

above chance level in the present experimental conditions,

knowing that FM detection thresholds at fast (20 Hz) rate

could be predicted relatively well in previous work (Wallaert

et al., 2018; King et al., 2019) using a comparable implemen-

tation of the modulation-filterbank model. The reason for this

might be the addition of the (FM) modulation-noise masker

in the present FM detection experiments, a crucial aspect of

the double-pass design (Green, 1964). Previous work used

either no masker or a deterministic (sinusoidal) AM masker

when measuring and predicting FM detection thresholds. It

follows that the stochastic fluctuations introduced by the FM-

noise masker prevented the template-matching decision mod-

ule of the current model to make efficient use of the

temporal-envelope cues resulting from FM-to-AM conversion

at the output of cochlear filters.

Additional model simulations were carried out to test

whether the model succeeds in accounting for modulation-

detection data in the absence of modulation-noise masker,

but fails when a modulation-noise masker is present. The

current implementation of the modulation-filterbank model

was simulated with or without external modulation noise in

the adaptive tasks (cf. setup experiment). Here, we used the

level of variance of internal noise rint¼ 160 m.u. that mini-

mized the model’s prediction errors for the double-pass

experiment for 2- and 20-Hz AM in the presence of low

external modulation noise (rext
AM

¼ 0.07 m.d.u.; cf. Fig. 5).

When there was no external modulation noise, the model
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accounted for previously published data for slow and fast

AM and fast FM but failed for slow FM. When external

modulation noise was applied, the model accounted success-

fully for the present AM data, but failed to account for the

present FM data.

More precisely, our model reproduced unmasked AM-

detection thresholds at 2 and 20 Hz very well ( �18.2 and

–25.8 dB, respectively, when targeted d0 ¼ 1; for compari-

son: –17 and –24 dB for real listeners in King et al. (2019)

in comparable conditions) and unmasked FM-detection

thresholds at 20 Hz (3.3 Hz when targeted d0 ¼ 1; for com-

parison: 2.3 Hz for real listeners in King et al. (2019) in

comparable conditions). As in King et al. (2019), our model

underestimated real unmasked 2-Hz FM-detection thresh-

olds by a large amount (7.4 Hz when targeted d0 ¼ 1; for

comparison: 1.8 Hz for real listeners in King et al., 2019, in

comparable conditions).

Our model was also run using 2 and 20-Hz AM and FM

masked by low external modulation noise (rext
AM;FM

¼ 0.07

units) using rint¼ 160 m.u. Our model reproduced the pre-

sent masked AM-detection thresholds at 2 and 20 Hz very

well (�14.2 and –20.7 dB, respectively, when targeted

d0 ¼ 1; for comparison: –13.8 and –21.4 dB for the real lis-

teners tested here). Not surprisingly, our model underesti-

mated the present masked FM-detection thresholds by a

substantial amount at 2 and 20 Hz (12 and 6 Hz, respec-

tively, when targeted d0 ¼ 1; for comparison: 2.4 and 3 Hz,

respectively, for the real listeners tested here). These simula-

tion data are shown in Table V (simulation data are also

shown for targeted d0 of 0.5 and 1.5).

In summary, the modulation-filterbank model as imple-

mented here could successfully account for slow and

fast-AM detection measured in the presence or absence of

modulation maskers with a random structure. The

modulation-filterbank model could also account for fast-FM

detection in the absence of masker or in the presence of a

deterministic masker (e.g., a sinusoidal AM) on the sole

basis of FM-to-AM conversion cues resulting from cochlear

filtering. In other words, the model could use the out-of-

phase envelope patterns elicited by FM at the output of

cochlear filters tuned to frequencies below and above the

carrier frequency to detect fast FM at a performance level

similar to that of real listeners. The modulation-filterbank

model therefore gives a parsimonious account of the fast-

FM data measured in these conditions: no additional mecha-

nism—such as a cross-channel mechanism—is required to

account for these behavioral data. However, the model

clearly fails when fast FM is presented against a masker

with random structure, indicating that FM-to-AM conver-

sion does not convey robust cues for FM detection in noisy

conditions and that an additional mechanism distinct from

that involved in AM detection is required to account for per-

formance and sensitivity of real listeners in this case.

It has been assumed that even at low carrier frequencies

(<2–4 kHz) where phase locking information is available,

FM detection at high rates is mediated by temporal-

envelope cues resulting from FM-to-AM conversion at the

output of cochlear filters because auditory processing of

TFS cues may be too sluggish (e.g., Moore and SeRk, 1994).

Still, electrophysiological (i.e., single-unit) data collected on

guinea pigs indicate that fast FM carried by low-frequency

tones is accurately encoded in terms of neural phase-locking

to TFS cues in the low brainstem, and more precisely, in the

ventral cochlear nucleus (Paraouty et al., 2018). Thus, it

might be the case that at threshold, FM detection at high

rates is mainly mediated by (salient) temporal-envelope

cues resulting from FM-to-AM conversion when FM signals

are presented in quiet or masked by deterministic (that is,

non-random) sounds such as a sinusoidal AM masker, as in

Wallaert et al. (2018) or King et al. (2019); however, neural

TFS cues—although weaker because of sluggish processing

at more central stages—may come into play (in addition to

temporal-envelope cues) when fast-FM signals are corrupted

by concurrent sounds showing random fluctuations in

instantaneous amplitude and frequency, as in the present

study. In other words, temporal-envelope cues resulting

from FM-to-AM conversion may be useful to detect fast FM

but they may not be very useful in the presence of masking

sounds with random structure. This interpretation is compat-

ible with the idea that processing of TFS cues at a relatively

central stage of the auditory system is sluggish: it mainly

suggests that neural TFS cues evoked by fast FM—although

weaker because of such central limitations—may help lis-

teners when temporal-envelope cues cannot be used effi-

ciently by decision-making mechanisms.

Still, it is not possible to exclude the possibility that a

central “cross-channel” mechanism using out-of-phase

envelope cues at different cochlear place is responsible for

both slow and fast FM detection. Neurophysiological and

modelling work is required to determine the plausibility of

such a mechanism.

B. Characterization of internal noise in the
temporal-envelope domain

1. Gaussian internal noise?

Internal noise was modelled as additive and it followed

a Gaussian distribution. Still, it may be the case that other

statistical distributions could yield better predictions. For

instance, Neri (2013) showed that internal noise for visual

detection tasks followed a leptokurtic distribution (a distri-

bution with kurtosis larger than that of a normal distribution)

instead of a normal one. Such a distribution might result

from slow changes in the variance of the distribution over

time (see Goris et al., 2014, for the neural basis of this phe-

nomenon). Further work is thus warranted to explore this

possibility.

2. Nature of internal noise

In the model, internal noise was added at the output of

modulation filters, before the decision device. From the cur-

rent experiments, it is unfortunately impossible to infer

whether this source of internal variability is of sensory or
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cognitive (i.e., attentional, memory) origin, and whether it

results from a single source of neural variability (e.g., spon-

taneous activity in central neurons tuned to specific

temporal-envelope rates) or from many separate sources

located at different (peripheral and central) stages of the

auditory system.

The double-pass procedure was developed to assess the

influence of the total amount of internal noise, both additive

and multiplicative, relative to external noise, on perceptual

processes (Green, 1964; Spiegel and Green, 1981; Lu and

Dosher, 2008). The model used an additive (that is a fixed-

variance) internal noise only. It may be that the relative

inability of the model to account for the effects of external

noise on PA and PC scores using a single level of additive

internal noise resulted from the absence of multiplicative

internal noise in the model, i.e., an additional source

of internal variability whose variance would be proportional

to the envelope power of the stimuli. This would be consis-

tent with the fact that the SD of internal noise that yielded

best model predictions increased with the SD of the

modulation-noise masker. Indeed, Ewert and Dau (2004)

previously showed that a multiplicative noise constrains

temporal-envelope processing and is required to simulate

the Weber’s law behavior for AM-depth discrimination and

the absence of certain carrier effects (i.e., random versus

frozen broadband noise carriers) on AM detection.

Additional work is thus necessary to characterize further the

effects of external variability on AM detection and the con-

tribution of a multiplicative internal-noise source to consis-

tency in AM detection.

C. Limitations and novelty of the present approach

As pointed out in Sec. III (see Fig. 4), response consis-

tency and performance co-vary (Lu and Dosher, 2008).

Therefore, the same conclusion (i.e., separate sources of

internal noise, and thus separate mechanisms constrain AM

and FM detection) would have been reached by measuring

performance only, as indicated by comparable (although not

identical) performance and consistency curves in Fig. 5.

This could be interpreted as an important limitation of the

present approach based on the double-pass paradigm. Still,

it is crucial to keep in mind that the primary goal of this

study was to give a unified account of AM and FM percep-

tion both in terms of response consistency and performance.

This is why consistency and performance curves shown in

Fig. 5 should not be read separately but in conjunction. The

important result here is that, for a given level of external

noise, the same level of internal noise (e.g., 160 m.u.) yields

the best predictions for both consistency and performance

data. It was not clear from the outset that the modulation-

filterbank model could account for both performance and

consistency of human judgments in slow and fast AM detec-

tion tasks, as pointed out by the simulation results shown in

Fig. 4. Demonstrating this was an important step confirming

further the validity of this modelling approach for AM proc-

essing, adding to the outcome of previous studies

demonstrating the capacity of the modulation-filterbank

model to account for a large set of psychophysical data col-

lected in tasks where listeners are expected to rely on

temporal-envelope cues (e.g., Biberger and Ewert, 2016).

This demonstration was also a prerequisite when interpret-

ing the incapacity of the modulation-filterbank model to

account for FM detection (consistency and performance)

data for slow and fast FM presented against noisy maskers.

In particular, it was not anticipated that the modulation-

filterbank model would not be able to account for consis-

tency and performance data in the fast FM condition

because previous simulation studies of Wallaert et al.
(2018) and King et al. (2019) showed that this model could

predict successfully fast FM detection thresholds in the pres-

ence or absence of a sinusoidal AM masker.

D. Implications for the assessment of the perceptual
consequences of ageing and cochlear damage

The present study was conducted with young normal-

hearing participants. Some studies aiming to model AM

detection and discrimination for elderly listeners and listen-

ers with sensorineural hearing loss suggest that the variance

of the additive internal noise may increase substantially (up

to a factor 6–10) because of aging and cochlear lesions

(Derleth et al., 2001; Ives et al., 2014; Paraouty et al., 2016;

Wallaert et al., 2017, 2018). From a behavioral perspective,

this increase in internal noise should yield a decrease in the

consistency of the responses of elderly and hearing-

impaired persons, as measured in the current double-pass

paradigm. However, to the best of our knowledge, this con-

sistency has never been investigated in these two popula-

tions. The degree of consistency of responses and the

estimation of internal noise could be of clinical interest by

complementing the performance and sensitivity measures

traditionally used to characterize suprathreshold deficits

caused by sensorineural hearing loss and presbycusis. These

measures may be related to the degree of neural de-

afferentation (or “synaptopathy”) caused by aging and noise

exposure (Lopez-Poveda, 2014; Marmel et al., 2015), which

is supposed to affect mainly the processing of high sound

amplitudes, and, consequently, the neural coding of

temporal-envelope cues (Furman et al., 2013; Bharadwaj

et al., 2014). Consistent with this hypothesis, a recent

modelling study by Goodman et al. (2018) indicates that

massive loss of auditory-nerve fibers results in an increase

in neural variability and alterations of AM coding at the low

brainstem (cochlear nucleus) level.

In that respect, it is possible that a better understanding

of the impact of aging and cochlear lesions on double-pass

consistency and internal noise would allow for a more accurate

estimation of the limits of signal amplification and speech-

enhancement systems applied by current digital hearing aids.

VI. SUMMARY AND CONCLUSIONS

Response consistency and performance in a

modulation-detection task were estimated for young,
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normal-hearing participants using a double-pass paradigm

and sinusoidal AM and FM targets masked by a modulation-

noise masker. The double-pass data were simulated using a

computational model of temporal-envelope processing

implementing a peripheral filterbank, half-wave rectifica-

tion, instantaneous amplitude compression, adaptation, a fil-

terbank of bandpass modulation filters, an additive internal

noise, and a template-matching decision device.

The results showed that:

(1) Distinct levels (i.e., SD) of additive internal noise were

required to reproduce AM and FM data but a single level of

internal noise could account for the 2- and 20-Hz AM data.

(2) The level of internal noise that yielded the best model

predictions increased with the SD of the modulation-

noise masker.

(3) The level of internal noise yielding best model predictions

for FM detection was smaller (by a factor 1.5–5) than the

one yielding best model predictions for AM detection. In

addition, two different levels of internal noise were needed

to account for slow and fast FM detection.

These results suggest that distinct sources of internal

variability are involved for AM and FM detection at low

audio frequencies. They also suggest that AM detection may

be constrained by an additional source of internal noise

whose variance is proportional to the envelope power of the

stimuli and that the mechanism involved in FM detection is

more efficient than the one operating on temporal-envelope

fluctuations at the output of cochlear filters.

In conclusion, the current study based on the double-

pass paradigm showed that the modulation filterbank-model

is able to give a unified account of slow and fast AM detec-

tion both in terms of response consistency and accuracy.

This demonstrates further the capacity of this modelling

approach to account for a large set of perceptual data.

However, an additional mechanism distinct from that

involved in AM detection must be considered to account for

slow and fast FM detection at low carrier frequencies.
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