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Abstract

West Africa is one of the regions the most concerned with structural food and nutrition security.
Consequently, agricultural development pathways and scenarios are under high scientific and
political scrutiny in this region. Rice, as a rapidly growing staple plays a key role in the West African
diet representing close to 40% of the total volume of cereal consumed in the region. In the context
of the 2008 food price crisis several West African countries have since proclaimed rice
self-sufficiency as a target. Here, we show that rice yields tend to be, on average over the entire
region, less stable (by a range of 15%-30%) than that of alternative crops, possibly substitutable in
diets. The regions where yields of alternative crops are more stable than those of rice correspond to
the main climatic regions where these crops are grown: sorghum, millet in the Sahelian and
Sudanian regions and tubers in the Guinean region. Rice yields are significantly less stable for 33%
of the comparisons considered and are significantly more stable than any alternative crop for 15%
of the comparisons in few areas without clear longitudinal patterns. Models accounting for climate
variability explain up to 17% of the variance of the data and reveal that yield variability differences
between rice and alternative crops tends to widen in the areas where the monsoon precipitation is
more variable between-years. The highest levels of variability of rice yields compared to alternative

crops are recorded in regions where the monsoon varies strongly between years. Our analysis
advocates for an explicit account of yield stability in West African rice expansion scenarios and

supply strategies.

1. Introduction

With a large fraction of structurally food insecure
people (from about 11% in 2009 to 14% in 2019),
West Africa is one of regions of the world most con-
cerned about food availability and access. A com-
bination of contextual factors underlies this situ-
ation [1]. Strong population growth [2] and rapid
urbanization [3], international food prices volatil-
ity [4], biotic and abiotic adverse conditions [5],
climate variability and change [6, 7], and political
instability or wars [7], affect both food availability
and access under continuous demand growth. This

© 2021 The Author(s). Published by IOP Publishing Ltd

region is characterized by a relatively small diversity
of plant-based foods [8, 9], and staples (i.e. cereals
and roots and tubers) form the basis of food secur-
ity and represent about 68% of the daily West African
caloric supply [10]. The relative share of rice in West
African diets has been progressively growing in the
last decades, and its consumption has reached about
22 million tons or about 36% of the total cereal con-
sumed in the region in 2018 [10, 11]. The average
annual rate of demand growth is about 4.6% since
the early 1990s and is expected to continue grow-
ing in the near future [12]. This rapid growth, asso-
ciated with the ‘rice diet transition’ [12, 13], now
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generates a structural imbalance between production
and imports with imported rice volumes contributing
to about 50% of the total rice supply in West Africa
[11]. In the context of the 2008 food price crisis—
in which international rice prices tripled in a few
months [14], this situation has been regularly ques-
tioned and several countries have since proclaimed
rice self-sufficiency as a target (e.g. in Senegal and in
Mali) [12]. More recently, the Economic Community
of West African States (ECOWAS) proclaimed to tar-
get rice self-sufficiency in the region by 2025 [15].

West African rice production has been steadily
increasing from about 3.2 million tons in 1980 to 18.5
million tons in 2018 [16]. This increase has primarily
relied on an extension of agricultural land dedicated
to rice production with an annual increase of harves-
ted areas of about 7.5% (especially in Nigeria, Senegal,
Mali, Ghana and Cote d’Ivoire) [17, 18]. Over roughly
the same time period, yields increased from about
1-2.1 t ha™!, i.e. reaching about half of worldwide
average rice yields [18]. Unless the rice yield gaps are
reduced within the coming decade, regional expan-
sion of rice harvested areas seems unavoidable to meet
self-sufficiency targets [19]. If allocating more agri-
cultural land to rice would help increase average rice
production in the region, one important unknown
concerns the stability of the rice production especially
compared to alternative crop species.

Climate variability has been shown to explain
about one third of global maize, rice, wheat and soy-
bean yield variability [20]. In West Africa, the char-
acteristics of the West African monsoon is a key
determinant of precipitation levels, generating high
variability from intra-seasonal to multi-decadal time
scales [21, 22], with impacts on rainfed crops, includ-
ing rice [23]. Due to its important water needs,
rice yields are known to be sensitive to water stress
[24]. The recurrently limited availability in surface
water may disproportionately affect rice produc-
tion compared to more resilient crop species, bet-
ter adapted to sporadic water unavailability (e.g. mil-
let and sorghum) [25]. It has already been shown,
for example, that rice yields are more sensitive to
extreme climatic conditions (e.g. very high temper-
atures or droughts) than alternative crops yields (i.e.
finger millet, sorghum, pearl millet and maize) in
India [24]. The comparative yield stability of rice to
alternative crops (defined here as crop species that are
as important as rice in annual volume of production
and possibly substitutable in diets) is hence a salient
element in this context. Are those crops more or less
stable than rice? If so, what are the geographical and
climatic determinants of this stability?

Contrary to the dynamics of average crop yields
and farm profitability, which are widely studied
[26-32], much smaller attention has been given to
yield interannual variability. Several recent studies
analyzed yield stability of one or several crop species
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in various parts of the world [20, 24, 33-38], with
only a few including rice [20, 34, 38, 39] and only
a few covering West African countries [20, 39-42].
Hence, only two studies analyzed rice yield stabil-
ity in West Africa [20, 39]. These are based on (a)
a downscaling of national data and (b) simulations
of yield potential. Hence, a data-based analysis of the
comparative stability of rice over West Africa, at sub-
national scales is still lacking in the literature. Here,
to make progress, we compare the levels of yield vari-
ability of rice to five alternative major staple crops
in West African regions and evaluate the impact of
climate local features on these between-crops differ-
ences. We rely on yield time-series at the scale of
small regions (administrative level 1) over the total-
ity of the West African region. Our comparisons are
based on normalized yield residuals standard devi-
ation (henceforth referred to as standard deviation
ratio (SDR) in the following, see section 2). In the last
section, we thrive to explain SDR variability based on
the interannual variability of cumulated precipitation
and indices of monsoon continuity.

2. Materials and methods

2.1.Yield data
We rely on publicly available data at subnational
level 1 over the 15 countries defining West Africa as
defined by the Food and Agriculture Organization
of the United Nation (FAO) classification (exclud-
ing islands). These are Benin, Burkina Faso, Cote
d’Ivoire, the Gambia, Ghana, Guinea, Guinea-Bissau,
Liberia, Mali, Mauritania, Niger, Nigeria, Senegal,
Sierra Leone, Togo. Two distinct datasets, based on
public statistical offices, are available for time peri-
ods up to 23 consecutive years between 1984 and 2015
(a) FAOCountrySTAT [43] and (b) AgroMAPS [44].
FAOCountrySTAT and AgroMAPS cover adminis-
trative levels 1 and 2 and inform annual produc-
tion (in tons) and annual harvested areas (in ha).
We compute yields from these two variables. In total,
there are 201 geographical units at administrative
level 1 over West Africa. The maximum number of
available yield time-series is 1206 (i.e. number of
units X number of alternative crops). The five most
produced alternative crops to rice in the region (in
fresh weight), according to FAOSTAT annual data are
cassava, maize, millet, sorghum and yams (with 81,
19, 10, 12, 57 million tons per year respectively, on
average in the last decade, see figure S1 (available
online at stacks.iop.org/ERL/16/124005/mmedia)).
We apply several selection criteria to the raw time-
series collected based on (a) the precision of yield
values (i.e. we select yield values informing at least
two decimals); (b) the coherency of yield values:
we remove outliers above crop-dependent maximum
potential yields estimated from the literature (see
table S1), we remove the geographical areas where
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yield, production and area harvested are equal to 0 or
any duplicate; (c) the length of the time-series (i.e. we
select those with at least nine years with gaps of length
inferior to three consecutive years). These three cri-
teria are completed in 316 time-series from FAO-
CountrySTAT and 267 time-series from AgroMAPS.
In a final step, we merge both datasets and remove
redundant values, obtaining a total of 399 yield times
series at administrative level 1 for time periods of
length 9-23 years between 1984 and 2015 (see figure
S2). Note that in the merging process we have pri-
oritized FAOCountrySTAT data because it is a more
recent dataset. In the supplement we present the
length, time-span and origin of each of the 399 selec-
ted time-series (see table S2).

We detrend each yield time-series to remove any
signal due to low frequency variability, for example
expected from long-term technological changes or
low-frequency climate variability. To this end, a poly-
nomial regression of degrees 1, 2 or 3 is fitted to each
of the 399 time-series independently. The best model
is selected according to the Akaike Information Cri-
teria (AIC). To assess the sensitivity of our results to
the detrending method, we also compute yield trends
based on local regressions (spline and loess, see figure
S3) and compare with solutions obtained without any
detrending (see figure S4). We rely on normalized
yield values by dividing yields or yield residuals by
average or expected yvields, respectively. Normalized
yield residuals are computed following:

YViij= i~ Yuig (1
Yiij

where i indicates crop species (i.e. rice, cassava, maize,
millet, sorghum, yams) and j indicates the area (at
administrative level 1). Y;;; is the observed yield at
year t, for species 7, in the area j. i/ty,'yj is the expected
yield at year  (estimated from the fitted yield trends),
for species i, in the area j. Y, ;; is thus the normal-
ized yield residual at year #, for species i, in the area
j- Note that in the main document we present the
results obtained from polynomial detrending only,
the results obtained with the other two methods
or for non-detrended yields being presented in the
supplements.

2.2. Climate data

We compute four annual precipitation variables
based on the CHIRPS precipitation dataset. CHIRPS
merges satellite information on cloud temperatures
and rain gauge data to estimate daily precipitation
from 1981 to 2020 at a 0.05° x 0.05° resolution. We
only use grid cells where at least 1% of the areas are
cultivated (see supplements section A for more detail
on the method used) to compute the aggregated cli-
mate variables of interest at the administrative level 1.
We consider (a) the yearly sum of precipitation based
on the calendar year (mm™!); (b) monsoon length,
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defined as the number of days between onset and
retreat days. The onset monsoon day is defined as the
day following a sequence of rainy events as in [45].
If the onset day is estimated to have occurred after
the 1 of October, it is filled out as missing value by
default. The retreat day is computed as the last day
of a sequence of rainy days, as defined by Diaconescu
et al [45]. When occurring after the end of the cal-
endar year, it is replaced by the 31 of December. (c)
Monsoon precipitation, defined as the sum of pre-
cipitation from onset to retreat; (d) the number of
dry spells is calculated as the number of dry epis-
odes of strictly more than seven consecutive calen-
dar days between onset and retreat. A day is defined
as dry when it receives less than 1 mm precipitation.
These four precipitation variables are then spatially-
averaged, over cultivated areas (with a threshold of
1%, see above), on each administrative area (level
1) for the time period corresponding to that of each
SDR. We compute the average, interannual standard
deviation and coefficient of variation for each climate
time-series to obtain 12 climate indices in each con-
sidered area over the totality of West Africa. Note that
these four precipitation variables tend to be strongly
correlated (see figure S8). For example, the average
occurrence of dry spells is positively correlated to pre-
cipitation variability and to the variability of mon-
soon length.

2.3. Statistical analysis of ratios of yield standard
deviation

We estimate a ratio of standard deviation of yield for
each alternative crop 7 and region j as:

SDR;j =~~~ (2)
L]

where SDR;; is the ratio of rice normalized yield
residual standard deviation (SDyc. ;) to that of altern-
ative crop i (SD; ;) in area j. We only compute ratios
for yield times series composed of the exact same
years for rice and the alternative crop considered (i.e.
cassava or maize or millet or sorghum or yams). We
obtain 261 SDR in total over West Africa. We then
estimate the SDR confidence intervals based on (a) a
bootstrapping method with 500 resamples per couple
of crop species and areas (b) analytical estimations
based on the Nakagawa et al (2015) formulas for
estimating the variance of standard deviations ratios
[46]. Note that both of the above-mentioned meth-
ods chosen to estimate SDR confidence intervals do
not rely on Gaussian assumptions.

Next, we estimate SDR for each of the five altern-
ative crops considered in our study over the totality
of West Africa based on the following random-effect
model:

log (SDRiJ) = Wi+ bj + ejj (3)
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where p; is the mean log of SDR for crop i (i.e. cassava,
maize, millet, sorghum or yams) and b; is a random
regional effect and e;; is the residual error. Model (3)
is fitted to the data using the method REML imple-
mented with the function Imer of the package Ime4 of
R [47]. During the fitting process, the values of SDRs
are weighted by their variances relying on [46]. The
fitted model is used to estimate the mean log vari-
ability ratio of rice to each alternative crop species.
The estimated log ratios are then back transformed
to estimate the variability ratios. The uncertainty is
described by computing the 95% confidence inter-
val. Rice to alternative crops yield variability are con-
sidered significantly different when the confidence
intervals do not include one. To assess the role played
by irrigation in offsetting the effects of monsoon vari-
ability, we identify areas where irrigated rice is pre-
dominant (i.e. superior to 80% of the total rice area)
according to the SPAM2000 dataset [48] (see supple-
ment section B for details). We then assess the impact
of 12 climate indices on relative rice yield variabil-
ity (i.e. the SDR) in the areas where rainfed systems
(i.e. lowland and upland) are predominant. We also
identified the areas where irrigation is predominant
according to two other datasets, namely MIRCA 2000
and GAEZv3, and compared the results obtained with
these two alternative datasets. This sensitivity analysis
does not reveal any substantial difference (see supple-
ments section B). When yield data for several altern-
ative crops is available in one given area, several SDR
can be computed (i.e. one per crop species). A ran-
dom regional effect is included to relax the assump-
tion that SDR common to one area are independent.
We test possible effects of the climate indices on the
261 SDR altogether based on a model with all the
alternative crops together and location fixed effects:

log (SDR; ;) = a + fx; + bj + e (4)

where v and f3 are fixed parameters (common to all
species), x; is one of the 12 climate indices measured
in area j, b; is a random regional effect and e;; is the
residual error. Model (4) is fitted to the data using the
method REML implemented with the function Imer
of the package Ime4 of R [47]. During the fitting pro-
cess, the values of SDRs are weighted by their vari-
ances relying on [46].

We also build a model for each alternative crop i
separately:

log (SDR,‘J') =a;+ f; Xj + ejj (5)

where «; and f3; are species-specific fixed parameters,
x;j is one of the 12 climate indices measured in area j
and e; is the residual error. The analysis is expanded
by combining several factors (crop species and cli-
mate indices) with or without interaction. Note that,
in all models, the data are weighted by their variances.

M Duvallet et al

Model’s summaries are presented in tables S7, S8, S12
and S15.

3. Results

3.1. Inconsistent relative levels of rice yield
variability

We estimate a yield variability difference between
rice and each of the five alternative crops based on
261 SDR in 80 administrative level 1 areas over West
Africa. We show that yields tend to be, on average
over the entire region, more variable for rice than for
the alternative crops (figure 1). In other words, rice
yields tend to be less stable than that of the alternative
crops. The mean effect sizes are 1.15 (p-value = 0.25),
1.14 (p-value = 0.16), 1.25 (p-value < 0.05), 1.23
(p-value < 0.05) and 1.23 (p-value < 0.1) for cas-
sava, maize, millet, sorghum and yams respectively,
when irrigated areas are included. When excluded,
the ratios are only marginally changed (figure 1).
While millet, sorghum and yams exhibit a signific-
ant stability advantage over rice, there are no signi-
ficant differences between alternative crops. Hence,
we cannot rank the five alternative crops in terms
of their relative stability. This explains the pattern
shown in figure 2 in which there is no evident sys-
tematic stability advantage for one given crop spe-
cies over West Africa. Figure 2 also shows that 33%
(when confidence intervals are estimated based on
[46] or 28% via bootstrapping, see section 2) of
the computed SDR are significantly higher than one
(13 SDR for cassava, 19 for maize, 20 for millet, 17
for sorghum and 11 for yams). In these 45 regions
(a few regions sometimes cumulate several SDR),
rice yields are significantly more variable than the
alternative crops. Fewer areas are characterized by
rice yields significantly more stable than alternative
crops with about 15% (or 9% via bootstrapping)
of the SDR significantly lower than one. A signific-
ant higher yield stability for rice is estimated from
[45] for Sud-Ouest (Burkina Faso), North Bank, West
Coast (Gambia), Gao, Kayes, Mopti, Tombouctou
(Mali), Abia, Benue, Ebonyi, Enugu, Gombe, Kaduna,
Kwara, Sokoto (Nigeria), Tambacounda (Senegal),
Centrale, Kara (Togo) (figure 3). There are also at
least half of SDR regional confidence intervals which
include one (about 52%, or 63% via bootstrapping).
In these regions, rice yield interannual variability is
not significantly different from that of the altern-
ative crops. This reflects a large uncertainty in the
estimated regional stability ratios due to the relat-
ively small number of yield data available within each
region.

For clarity, we divide the area into three broad
climatic zones defined by average cumulated pre-
cipitation since 1980. The Guinean, Sudanian and
Sahelian regions correspond to average total precip-
itation above 1200 mm, between 700 and 1200 mm



10P Publishing

Environ. Res. Lett. 16 (2021) 124005

&)
o
L
T
. g

1.00

=]
~
o

Cassava Maize Millet

M Duvallet et al

I Irrigated areas
| I * NT
L SPAM
B IRCA
+ GAEZ
Sorghum Yams

Figure 1. Mean effect sizes of rice yield variability compared to that of alternative crops over West Africa, measured without
removing predominantly irrigated areas (i.e. ' NT’) and measured after removing predominantly irrigated areas identified from
SPAM2000 (i.e. ‘SPAM’), MIRCA2000 (i.e. ‘MIRCA’) and GAEZ v3.0 (i.e. ‘GAEZ’). Mean effect sizes are estimated from equation
(3) for all regions of West Africa. Average yield variability of rice compared to alternative crops are represented in brown for
cassava, in dark green for maize, in orange for millet, in red for sorghum and yellow for yams. 95% confidence intervals are
estimated based on the standard error of each estimate. The grey horizontal bar delineates SDR equal to one (rice yield variability
is equal to that of the other crop species). A ratio superior to one indicates that rice yield variability is higher than that of the other

crop (i.e. rice is less stable than the alternative crop).

and below 700 mm, inspired by FAO definitions [49]
(see figure S13). Note that there is no systematic pat-
tern in any of these broad climatic areas (figure 2).
Areas with SDR significantly superior (alt inferior)
to one are distributed on a large range of latitudes
across the West African region, i.e. they are not spa-
tially aggregated. For example, the areas where rice
yields are significantly more stable than the altern-
ative crops are dispersed among these three broad
regions. The most intensive rice production basins,
characterized by large-scale irrigation schemes, high
meccanization level and intensive use of inputs (e.g.
Senegal River Valley and Office du Niger in Segou,
Mali [12]) are not associated with SDR significantly
lower than one. In other words, intensive rice yields
are not more stable than alternative crops in these
regions. In Segou, millet and sorghum SDR are 2.04
and 1.85, respectively. This means that the yields of
alternative crops are nearly twice as stable than rice
yields, on average in this region. In St Louis region,
SDR are non-significant.

Noticeably, the areas where alternative crops have
more stable yields than rice (i.e. SDR > 1) tend to
be located in the climatic regions where these crops
are mostly cultivated. In the Sahelian and Sudanian
regions, where cereals constitute the larger share of
the production, sorghum, millet and maize yields
tend to be more stable while in the Guinean region,
which produces large quantities of tubers cassava and
yams tend to exhibit more stable yields (figures 3
and S14).

3.2. Monsoon patterns explains a significant but
small fraction of yield variability differences

We look for climatic determinants of SDR variability
across crops and areas. We analyze the relationship
between a series of 12 monsoon indices and SDR vari-
ability. These indices measure monsoon interannual
variability both in terms of cumulated precipitation
and dry spells events. We show that the coefficient of
variation of monsoon precipitation (measuring the
interannual variability of monsoon cumulated pre-
cipitation, see table S8) explains a small fraction of
SDR variability across West Africa with the model
including all alternative crops (model (4)). Monsoon
precipitation coefficient of variation has a signific-
ant positive impact on SDR (p-value = 8 x 1074,
see table S8). This means that yield variability dif-
ferences between rice and alternative crops tends to
widen in the areas where the monsoon precipitation
is more variable between-years: rice yields are the
most variable relative to alternative crops in regions
where the monsoon varies strongly between years.
When considering all alternative crops together, other
precipitation indices (such as dry spell events) do not
significantly impact SDR. We also test model (5)
independently for each alternative crop to rice ratio.
Note that, because the areas considered in this study
extend over a wide geographical area, the distribution
of values for climate indices differ between alternative
crop species (see figure 4). More complex models do
not explain a higher fraction of total variability (see
table S16).
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Figure 2. SDRs in the Guinean (A), Sudanian (B) and Sahelian (C) regions of West Africa. SDR are measured via equation (2).
Results are presented per crop region combination for cassava (brown), maize (dark green), millet (orange), sorghum (orange)
and yams (yellow). Note that one area where several crops of interest are cultivated is represented several times. Confidence
intervals estimated via bootstrapping (dotted lines) and based on Nakagawa et al [46] analytical approximations (bold lines). The
areas written in bold refer to the predominantly irrigated areas (i.e. >80% of the total area is irrigated), identified from
SPAM?2000. The points are organized by ascending order for each of the three broad climatic regions with the Guinean region
delineated by cumulative annual rainfall superior to 1200 mm, the Sudanian region with cumulative rainfall between 700 and
1200 mm and the Sahelian below 700 mm (see figure S13). Areas are split into the three climatic regions, according to the
geographical position of their barycentre. Grey horizontal bar delineates SD ratio equal to one (rice yield variability is equal to
that of the other crop species). A ratio superior to one indicates that rice yield variability is higher than that of the other crop (i.e.
rice is less stable than its alternative). A confidence interval including one indicates non-significant results.

For each rice-alternative crop comparison we
select models with covariates that present smallest
AIC and highest slope significance: monsoon precip-
itation coefficient of variation for cassava and yams,
average and standard deviation of the number of dry
spells occurring during the monsoon season for maize
and sorghum respectively and monsoon length coef-
ficient of variation for millet (figure 4). Note that
these models have very similar performances (see

table S15). Per-food crop selected models explain a
relatively small share of the total variance, about 17%
of the total variance for maize and millet, about 15%
for cassava, about 10% for yams and less than 10%
for sorghum. For yams, the slope is barely significant
(p = 0.0546). The stability of cassava, maize and mil-
let yields are significantly improved, relative to rice,
in the areas where the monsoon is the most variable,
either in terms of interannual variation of cumulated
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Figure 3. Spatial pattern of yield variability differences across west Africa. We present the spatial distribution of average ratios
presented in figure 1. Full green areas delineate the regions where the yields of at least one alternative crop is significantly more
stable than rice (i.e. SDR superior to one with a probability of 95%). Filled circles indicate the alternative crop species which are
more stable than rice (brown for cassava, dark green for maize, orange for millet, red for sorghum and yellow for yams). Dashed
green areas delineate the regions where rice yields are significantly more stable than any alternative crop species. Open triangles
indicate which alternative crop species were compared to rice yields in these regions. When the SDR are not significantly different
from one (either superior or inferior to one) the areas are colored in grey. A delimitation between three west African climatic
regions are indicated with dashed black line (the isohyet 700 mm is the frontier between the Sahelian region at the North and the
Sudanian region at the South and the isohyet 1200 mm is the frontier between the Sudanian region at the North and the Guinean
region at the South). Spatial patterns of yield variability differences detailed per crops are presented in figure S14.
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Figure 4. Relationship between climate indices, and the variability of rice yields compared to cassava (A), maize (B), millet (C),
sorghum (D), and yams (E) yields variability, after removing areas where irrigated rice predominates (i.e. more than 80% of
irrigated rice areas), identified from SPAM2000. Climatic indices are selected based on the AIC criteria. Selected best indices are
the normalized variability of monsoon precipitation (CV (monsoon precipitation)) or of monsoon length (CV (monsoon
length)), the average or standard deviation of dry spells occurrences mean (monsoon seven dry spell) and sd (monsoon seven dry
spell). Median relationship (bold lines) and 95% confidence intervals are computed based on model (5). Boxplot represents the
distribution of the observed values of corresponding climate indices. Note that the time-periods on which these relationships are
computed may vary between crops. Grey horizontal dotted lines indicate SD ratios equal to one (rice yield variability is equal to
that of another crop species) with values above one indicating higher variability of rice yields (or lower stability) in comparison to
alternative crops. AIC criteria, slope value and significance and R2 are informed for each model independently.
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precipitation, monsoon duration, or occurrence of
7 d dry spell events (p-value = 0.0159 for cassava, p-
value = 6 x 10* for maize and p = 0.0027 for millet;
see table S12). This impact of monsoon precipitation
variability is the highest for rice yield variability relat-
ive to millet: for a 0.1 unit increase in relative variab-
ility of monsoon duration (i.e. the coefficient of vari-
ation of interannual monsoon duration), the yield
variability difference is doubled.

4, Discussion and conclusion

Here, we show that, on average over the entirety of
West Africa, alternative food crops yields tend to be
more stable than rice. This stability difference is sig-
nificant for millet and sorghum but not for maize,
yams and cassava; these differences are somewhat
affected by the inclusion or not of predominantly
irrigated areas (figure 1). This pattern and its robust-
ness are heterogeneous across latitude (figure 2).
Fewer areas are characterized by rice yields signi-
ficantly more stable than any alternative crop also
cultivated in these administrative regions (figure 2).
While the areas characterized by more stable rice
yields are located in diverse climatic regions, the
areas where alternative crops have more stable yields
than rice tend to be located in the climatic regions
where these crops are mostly cultivated (figures 2, 3
and S14). For example, sorghum and millet tend to
have more stable yields than rice in the Sahelian and
Soudanian areas, whereas cassava, tubers and yams
yields tend to be more stable in the Guinean areas
(figure 3). This remains true when excluding irrig-
ated areas (figure 2). Monsoon precipitation variab-
ility and mean dry spell occurrence explain a small
part of these yields’ variability differences (figure 4).
The robustness of our results may suffer from two
types of impediments. The 1st ones pertain to the
quality and availability of the data and the second,
to the statistical methods on which we base our ana-
lysis. This study relies on statistical data collected by
the FAO according to national declarations. Hence,
the consistency of the data depends on national sur-
vey or estimation methodologies (which sometimes
includes indirect estimates from harvested or planted
areas and corrections based on cropping conditions,
com pers). Note though, that our initial data treat-
ment and selection procedure addresses such pos-
sible heterogeneities (see section 2). We also com-
pared our dataset with data from alternative sources
to assess the consistency of our yield standard devi-
ations estimates. We relied on simulated rice and
maize from a global gridded yield dataset [50] and
qualitatively compared the distribution of yield vari-
ability estimated from these data to (a) the ones
estimated from our administrative level 1 data and
(b) national estimates from USDA [51] and FAOSTAT
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[16] datasets (see figure S15). We find that the mean
standard deviations measured from [50] are similar
to the ones estimated with administrative level 1 data
when grouped by countries. Yield variability distribu-
tion estimated from [50] noticeably tends to be nar-
rower. This is perhaps due to the fact that [50] simu-
lations are based on a secondary disaggregation from
national and satellite data, i.e. the subnational variab-
ility is estimated. Yield standard deviations estimated
from the aggregation of administrative level 1 time-
series are similar to the ones estimated at national
level with FAOSTAT and USDA yield data. Mean yield
variability tends to be smaller at national level than at
subnational level (see figure S15): yield interannual
variability tends to decrease when the area of the geo-
graphical units studied increase, consistent with pre-
vious findings [52, 53]. Note that despite our efforts,
we did not succeed in collecting data over the total-
ity of West Africa (for data availability see figure S16,
e.g. no data is available for the western part of the
Guinean sub-region). Finally, SDRs are based on nor-
malized detrended yields. Note that detrending or
the detrending method chosen has little to no effect
on our estimates since the time-span of yield time-
series is rather short (see table S2 and figure S4). Cli-
mate indices are also associated with uncertainties
in particular regarding observed precipitation data-
sets for observation-poor regions such as West Africa
[54, 55]. Satellite retrievals are useful in that con-
text, especially when corrected with in situ observa-
tions, but also present some challenges [56]. Different
datasets can be used in order to characterize observa-
tional uncertainties [57], but there is no other avail-
able dataset at the high spatial and temporal resolu-
tion needed in this study.

The estimated yield variability differences we
find here may be due to the fact that the areas
encompassed by rice cultivation cover the entire West
African sub-continent, i.e. there is an absence of geo-
graphical specialization for rice while on the other
hand, traditional crops are cultivated in narrower
agroecological areas. These differences may also be
the result of a stronger adaptation to precipitation
variability or more broadly, higher resistance of tradi-
tionally cropped species such as millet and sorghum
in arid and semi-arid areas [25, 42] or tuber species
such as yam and cassava in more humid areas [58].
Sorghum and millet farmers are, for example, known
to develop strategies designed to cope with precip-
itation uncertainty [59]. A small negative impact
of monsoon precipitation variability on the rice to
sorghum SDR measured here, tends to support this
hypothesis.

The width of administrative level 1 regions typ-
ically spans from 100 km in the Guinean region to
1000 km in the Sahelian region. The regions studied
are composed of a large diversity of cropping systems
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(e.g. different types of soil, hygrometric conditions,
topography). West African rice cropping systems can
be classified according to local hydrological and topo-
graphic conditions and water management practices.
The most commonly found rice cropping systems are
rainfed upland systems (about 43% of the total west
African rice area in 1990-2000), followed by rain-
fed lowland and irrigated lowland systems (40% and
12%, respectively) [23]. The relative proportion of
these systems varies spatially [23]. The effects of mon-
soon characteristics on the relative stability of rice to
alternative crop species is significant but small (i.e.
from about 9% to less than 18%). This means that the
bulk fraction of the differences in stability between
rice and alternative crop species is due to other
factors. Topographic conditions (i.e. plateaus, hydro-
morphic slopes, valley bottom, floodplains, rivers,
lagoons and deltas) cropping systems (in particular
water management practices) and agronomic factors
(e.g. fertilizers, pesticides or crop cultivars) certainly
explain part of these differences. The effects of these
factors may be direct (e.g. precipitation accumulation
in valley bottom) or indirect (increased yield average
and variance through fertilization). Note that results
with and without areas with predominant irrigation
reveal negligible to small effects on our conclusions.
Geographically explicit information on the use of
fertilizers and pesticides would obviously be needed
to formally test the response of yield variability to
increased input use. A unified database at the scale of
West Africa would be very relevant to precisely evalu-
ate the direct and indirect effects of agronomic prac-
tices on the relative stability of rice. Such a database
may be built from, national and subnational statist-
ics, field or farm scale surveys and quantitative expert
elicitation.

Our results suggest that, at constant production
systems, expanding West African rice production may
impact the stability of the caloric supply mix pro-
duced in this region. This stability may be enhanced
or hindered depending on regional stability and cli-
matic specificities. For example, rice production may
be enhanced in the areas where rice yield stabil-
ity is significantly higher. Similarly, we have shown
that alternative food crops may, for some species-
regions combinations, improve the relative stabil-
ity of the regional caloric supply, including when
climatic conditions are less favorable. In terms of
imports, the three biggest rice suppliers of West Africa
(i.e. India, Thailand and Vietnam) tend to have a
higher relative stability (see figure S17) which may
give them a competitive advantage. But, the relation-
ship between domestic production stability and the
stability of exports is complex and perhaps nonlin-
ear as exports are the result of public policies which
depend on domestic or global economic shocks.
Hence, our results advocate for an explicit account
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of yield stability in West African rice expansion scen-
arios and supply strategies.
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