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Abstract
We introduce and investigate a new generalized convexity notion for functions called
prox-convexity. The proximity operator of such a function is single-valued and firmly nonex-
pansive.We provide examples of (strongly) quasiconvex, weakly convex, and DC (difference
of convex) functions that are prox-convex, however none of these classes fully contains the
one of prox-convex functions or is included into it. We show that the classical proximal
point algorithm remains convergent when the convexity of the proper lower semicontinuous
function to be minimized is relaxed to prox-convexity.

Keywords Nonsmooth optimization · Nonconvex optimization · Proximity operator ·
Proximal point algorithm · Generalized convex function

1 Introduction

The first motivation behind this study comes from works like [12,19,22,23] where proximal
point type methods for minimizing quasiconvex functions formulated by means of Bregman
distances were proposed. On the other hand, other extensions of the proximal point algorithm
for nonconvex optimization problems (such as the ones introduced in [10,18,20,24]) cannot
be employed in such situations due to various reasons. Looking for a way to reconcile these
approaches we came across a new class of generalized convex functions that we called prox-
convex, whose properties allowed us to extend the convergence of the classical proximal
point algorithm beyond the convexity setting into a yet unexplored direction.

In contrast to other similar generalizations, the proximity operators of the proper prox-
convex functions are single-valued (and firmly nonexpansive) on the underlying sets. To the
best of our knowledge besides the convex and prox-convex functions only the weakly convex
ones have single-valued proximity operators (cf. [16]). This property plays an important role
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in the construction of proximal point type algorithms as the new iterate is thus uniquely
determined and does not have to be picked from a set. Moreover, the prox-convexity of the
functions can be considered both globally or on a subset of their domains, that can be of
advantage when dealing with concrete applications from practice. Various functions, among
which several (strongly) quasiconvex, weakly and DC (i.e. difference of convex) ones, fulfill
the definition of the new notion we propose. As a byproduct of our study we also deliver new
results involving (strongly) quasiconvex functions.

Different to other extensions of the proximal point algorithm, the one we propose has a
sort of a local nature, however not in the sense of properties of a function that hold in some
neighborhoods, but concerning the restriction of the function to a (convex) set. We are not
aware of very similar work in the literature where the proximity operator of a function is
taken with respect to a given set, however in papers like [6,13] such constructions with some
employed functions not split from the corresponding sets were already considered.

Given a proper, lower semicontinuous and convex function h : Rn → R := R ∪ {±∞},
for any z ∈ R

n the minimization problem

min
x∈Rn

[
h(x) + 1

2
‖z − x‖2

]
(1.1)

has (even in more general frameworks such as Hilbert spaces) a unique optimal solution
denoted by Proxh(z), that is the value of the proximity operator of the function h at the point
z. A fundamental property of the latter is when z, x ∈ R

n (see, for instance, [5, Proposition
12.26])

x = Proxh(z) ⇐⇒ z − x ∈ ∂h(x), (1.2)

where ∂h is the usual convex subdifferential.
These two facts (the existence of an optimal solution to (1.1) and the characterization

(1.2)) are crucial tools for proving the convergence of the proximal point type algorithms for
continuous optimization problems consisting inminimizing (sums of) proper, lower semicon-
tinuous and convex functions, and even for DC programming problems (see [4] for instance).
For the class of prox-convex functions introduced in this article the first of them holds while
the second one is replaced by a weaker variant and we show that these properties still guar-
antee the convergence of the sequence generated by the proximal point algorithm towards a
minimum of a prox-convex function.

The paper is constructed as follows. After some preliminaries, where we define the frame-
work and recall some necessary notions and results, we introduce and investigate the new
classes of prox-convex functions and stronglyG-subdifferentiable functions, showing that the
proper and lower semicontinuous elements of the latter belong to the first one, too. Finally, we
show that the classical proximal point algorithm can be extended to the prox-convex setting
without losing the convergence.

2 Preliminaries

By 〈·, ·〉 we mean the inner product of Rn and by ‖·‖ the Euclidean norm on R
n . Let K be

a nonempty set in R
n and we denote its topological interior by int K and its boundary by

bd K . The indicator function of K is defined by δK (x) := 0 if x ∈ K , and δK (x) := +∞
elsewhere. By B(x, δ) we mean the closed ball with center at x ∈ R

n and radius δ > 0. By
Id : Rn → R

n we denote the identity mapping on R
n .
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Given any x, y, z ∈ R
n , we have

〈x − z, y − x〉 = 1

2
‖z − y‖2 − 1

2
‖x − z‖2 − 1

2
‖y − x‖2. (2.1)

For any x, y ∈ R
n and any β ∈ R, we have

‖βx + (1 − β)y‖2 = β‖x‖2 + (1 − β)‖y‖2 − β(1 − β)‖x − y‖2. (2.2)

Given any extended-valued function h : Rn → R := R ∪ {±∞}, the effective domain
of h is defined by dom h := {x ∈ R

n : h(x) < +∞}. We say that h is proper if dom h is
nonempty and h(x) > −∞ for all x ∈ R

n .
We denote by epi h := {(x, t) ∈ R

n ×R : h(x) ≤ t} the epigraph of h, by Sλ(h) := {x ∈
R

n : h(x) ≤ λ} (respectively S<
λ (h) := {x ∈ R

n : h(x) < λ}) the sublevel (respectively
strict sublevel) set of h at the height λ ∈ R, and by argminRn h the set of all minimal points
of h. We say that a function is L-Lipschitz when it is Lipschitz continuous with constant
L > 0 on its domain. We adopt the usual conventions sup∅ h := −∞, inf∅ h := +∞ and
0(+∞) = +∞.

A proper function h with a convex domain is said to be

(a) convex if, given any x, y ∈ dom h, then

h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y), ∀ λ ∈ [0, 1]; (2.3)

(b) semistrictly quasiconvex if, given any x, y ∈ dom h, with h(x) �= h(y), then

h(λx + (1 − λ)y) < max{h(x), h(y)}, ∀ λ ∈ ]0, 1[; (2.4)

(c) quasiconvex if, given any x, y ∈ dom h, then

h(λx + (1 − λ)y) ≤ max{h(x), h(y)}, ∀ λ ∈ [0, 1]. (2.5)

We say that h is strictly quasiconvex if the inequality in (2.5) is strict (see [15, page 90]).

Every convex function is quasiconvex and semistrictly quasiconvex, and every semistrictly
quasiconvex and lower semicontinuous function is quasiconvex (see [7, Theorem 2.3.2]). The
function h : R → R, with h(x) := min{|x |, 1}, is quasiconvex, without being semistrictly
quasiconvex.

A function h is said to beneatly quasiconvex (see [3,Definition 4.1]) if h is quasiconvex and
for every x ∈ R

n with h(x) > inf h, the sets Sh(x)(h) and S<
h(x)(h) have the same closure (or

equivalently, the same relative interior). As a consequence, a quasiconvex function h is neatly
quasiconvex if and only if every local minimum of h is global minimum (see [3, Proposition
4.1]). In particular, every semistrictly quasiconvex function is neatly quasiconvex, and every
continuous and neatly quasiconvex function is semistrictly quasiconvex by [3, Proposition
4.2]. The function in [3, Example 4.1] is neatly quasiconvex without being semistrictly
quasiconvex. Recall that

h is convex ⇐⇒ epi h is a convex set;
h is quasiconvex ⇐⇒ Sλ(h) is a convex set for all λ ∈ R.

For algorithmic purposes, the following notions from [5, Definition 10.27] (see also [29,
30]) are useful.

A function h with a convex domain is said to be strongly convex (respectively strongly
quasiconvex), if there exists β ∈]0,+∞[ such that for all x, y ∈ dom h and all λ ∈ [0, 1],
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we have

h(λy + (1 − λ)x) ≤ λh(y) + (1 − λ)h(x) − λ(1 − λ)
β

2
‖x − y‖2, (2.6)(

respectively h(λy + (1 − λ)x) ≤ max {h(y), h(x)} − λ(1 − λ)
β

2
‖x − y‖2.

)
(2.7)

For (2.7), sometimes one needs to restrict the value β to a subset J in ]0,+∞[ and then h is
said to be strongly quasiconvex on J .

Every strongly convex function is strongly quasiconvex, and every strongly quasiconvex
function is semistrictly quasiconvex. Furthermore, a strongly quasiconvex function has at
most one minimizer on a convex set K ⊆ R

n that touches its domain (see [5, Proposition
11.8]).

A function h : Rn → R is said to be

(a) supercoercive if

lim inf‖x‖→+∞
h(x)

‖x‖ = +∞; (2.8)

(b) coercive if
lim‖x‖→+∞ h(x) = +∞; (2.9)

(c) weakly coercive if

lim inf‖x‖→+∞
h(x)

‖x‖ ≥ 0; (2.10)

(d) 2-weakly coercive if

lim inf‖x‖→+∞
h(x)

‖x‖2 ≥ 0. (2.11)

Clearly, (a) ⇒ (b) ⇒ (c) ⇒ (d). The function h(x) = √|x | is coercive without being
supercoercive; the function h(x) = −√|x | is weakly coercive without being coercive (more-
over, it is not even bounded from below). Finally, the function h(x) = −|x | is 2-weakly
coercive without being weakly coercive. Recall that h is coercive if and only if Sλ(h) is a
bounded set for every λ ∈ R. A survey on coercivity notions is [8].

The convex subdifferential of a proper function h : Rn → R at x ∈ R
n is

∂h(x) := {
ξ ∈ R

n : h(y) ≥ h(x) + 〈ξ, y − x〉, ∀ y ∈ R
n}

, (2.12)

when x ∈ dom h, and ∂h(x) = ∅ if x /∈ dom h. But in case of nonconvex functions
(quasiconvex for instance) the convex subdifferential is too small and often empty, other
subdifferential notions (see [14,25]) being necessary, like the Gutiérrez subdifferential (of h
at x), defined by

∂≤h(x) := {
ξ ∈ R

n : h(y) ≥ h(x) + 〈ξ, y − x〉, ∀ y ∈ Sh(x)(h)
}
, (2.13)

when x ∈ dom h, and ∂≤h(x) = ∅ if x /∈ dom h, or the Plastria subdifferential (of h at x),
that is

∂<h(x) :=
{
ξ ∈ R

n : h(y) ≥ h(x) + 〈ξ, y − x〉, ∀ y ∈ S<
h(x)(h)

}
, (2.14)

when x ∈ dom h, and ∂<h(x) = ∅ if x /∈ dom h. Clearly, ∂h ⊆ ∂≤h ⊆ ∂<h. The reverse
inclusions do not hold as the function h : R → R given by h(x) = min{x,max{x − 1, 0}}
shows (see [26, page 21]). A sufficient condition for equality in this inclusion chain is given
in [26, Proposition 10].
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Note that both ∂≤h and ∂<h are (at any point) either empty or unbounded, and it holds
(see [14,25,26])

0 ∈ ∂<h(x) ⇐⇒ 0 ∈ ∂≤h(x) ⇐⇒ x ∈ argmin
Rn

h ⇐⇒ ∂<h(x) = R
n . (2.15)

However, one may have ∂≤h(x) �= R
n at some minimizer of h.

We recall the following results originally given in [25, Theorem 2.3], [31, Proposition 2.5
and Proposition 2.6] and [9, Theorem 20], respectively.

Lemma 2.1 Let h : Rn → R be a proper function. The following results hold.

(a) If h is quasiconvex and L-Lipschitz, then ∂<h(x) �= ∅ for all x ∈ R
n. Moreover, there

exists ξ ∈ ∂<h(x) such that ‖ξ‖ ≤ L.
(b) If h is neatly quasiconvex and L-Lipschitz, then ∂≤h(x) �= ∅ for all x ∈ R

n. Moreover,
if u ∈ ∂≤h(x), u �= 0, then L 1

‖u‖ u ∈ ∂≤h(x).

For γ > 0 we define the Moreau envelope of parameter γ of h by

γ h(z) = inf
x∈Rn

(
h(x) + 1

2γ
‖z − x‖2

)
. (2.16)

The proximity operator of parameter γ > 0 of a function h : Rn → R at x ∈ R
n is

defined as

Proxγ h : Rn ⇒ R
n, Proxγ h(x) = arg min

y∈Rn

{
h(y) + 1

2γ
‖y − x‖2

}
. (2.17)

When h is proper, convex and lower semicontinuous, Proxγ h turns out to be a single-valued
operator. By a slight abuse of notation, when Proxγ h is single-valued we write in this paper
Proxγ h(z) (for some z ∈ R

n) to identify the unique element of the actual set Proxγ h(z).
Moreover, when γ = 1 we write Proxh instead of Prox1h .

For studying constrained optimization problems, the use of properties restricted to some
sets becomes important since they ask forweaker conditions. Indeed, for instance, the function
h : R → R given by h(x) = min{|x |, 2} is convex on K = [−2, 2], but is not convex on R.

For a nonempty set K in R
n , by ∂K h(x), ∂

≤
K h(x) and ∂<

K h(x), we mean the convex,
Gutiérrez and Plastria subdifferentials of h at x ∈ K restricted to the set K , that is,

∂K h(x) := ∂ (h + δK ) (x) = {
ξ ∈ R

n : h(y) ≥ h(x) + 〈ξ, y − x〉, ∀ y ∈ K
}
,

as well as ∂
≤
K h(x) := ∂≤(h + δK )(x) and ∂<

K h(x) := ∂<(h + δK )(x).
For K ⊆ R

n , a single-valued operator T : K → R
n is called

(a) monotone on K , if for all x, y ∈ K , we have

〈T (x) − T (y), x − y〉 ≥ 0; (2.18)

(b) firmly nonexpansive if for every x, y ∈ K , we have

‖T (x) − T (y)‖2 + ‖(Id−T )(x) − (Id−T )(y)‖2 ≤ ‖x − y‖2, ∀ x, y ∈ K , (2.19)

According to [5, Proposition 4.4], T is firmly nonexpansive if and only if

‖T (x) − T (y)‖2 ≤ 〈x − y, T (x) − T (y)〉, ∀ x, y ∈ K . (2.20)

As a consequence, if T is firmly nonexpansive, then T is Lipschitz continuous andmonotone.
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3 Prox-convex functions

In this section, we introduce and study a class of functions for which the necessary funda-
mental properties presented in the introduction are satisfied.

3.1 Motivation, definition and basic properties

We begin with the following result, in which we provide a general sufficient condition for
the nonemptiness of the values of the proximity operator.

Proposition 3.1 Let h : Rn → R be a proper, lower semicontinuous and 2-weakly coercive
function. Given any z ∈ R

n, there exists x ∈ Proxh(z).

Proof Given z ∈ R
n , we consider the minimization problem:

min
x∈Rn

hz(x) := h(x) + 1

2
‖x − z‖2. (3.1)

Since h is lower semicontinuous and 2-weakly coercive, hz is lower semicontinuous and
coercive by [8, Theorem 2(i i)]. Thus, there exists x ∈ R

n such that x ∈ argminRn hz , i.e.,
x ∈ Proxh(z). ��

One cannot weaken the assumptions of Proposition 3.1 without losing its conclusion.

Remark 3.1 (i) Note that every convex function is 2-weakly coercive, and every bounded
from below function is also 2-weakly coercive. The function h : R

n → R given by
h(x) = −|x | is 2-weakly coercive, but is neither convex nor bounded from below.
However, for any z ∈ R

n , Proxh(z) �= ∅.
(i i) The 2-weak coercivity assumption can not be dropped in the general case. Indeed, the

function h : R → R given by h(x) = −x3 is continuous and quasiconvex, but fails to
be 2-weakly coercive and for any z ∈ R one has Proxh(z) = ∅.
Next we characterize the existence of solution in the definition of the proximity operator.

Proposition 3.2 Let h : Rn → R be a proper function. Given any z ∈ R
n, one has

x ∈ Proxh(z) ⇐⇒ h(x) − h(x) ≤ 1

2
〈x + x − 2z, x − x〉, ∀x ∈ R

n . (3.2)

Proof Let z ∈ R
n . One has

x ∈ Proxh(z) ⇐⇒ h(x) + 1

2
‖x − z‖2 ≤ h(x) + 1

2
‖x − z‖2 ∀ x ∈ R

n

⇐⇒ h(x) − h(x) ≤ 1

2
‖x − z‖2 − 1

2
‖x − z‖2 ∀ x ∈ R

n

⇐⇒ h(x) − h(x) ≤ 〈x − z, x − x〉 + 1

2
‖x − x‖2 ∀ x ∈ R

n

⇐⇒ h(x) − h(x) ≤ 1

2
〈x + x − 2z, x − x〉 ∀ x ∈ R

n .

��
Relation (3.2) is too general for providing convergence results for proximal point type

algorithmswhile relation (1.2) has proven tobe extremelyuseful in the convex case.Motivated
by this, we introduce the class of prox-convex functions below. In the following, we write

Proxh(K , z) := Prox(h+δK )(z). (3.3)
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Note that closed formulae for the proximity operator of a sum of functions in terms of
the proximity operators of the involved functions are known only in the convex case and
under demanding hypotheses, see, for instance, [1]. However, constructions like the one in
(3.3) can be found in the literature on proximal point methods for solving different classes
of (nonconvex) optimization problems, take for instance [6,13].

Definition 3.1 Let K be a closed set in R
n and h : Rn → R be a proper function such that

K ∩ dom h �= ∅. We say that h is prox-convex on K if there exists α > 0 such that for every
z ∈ K , Proxh(K , z) �= ∅, and

x ∈ Proxh(K , z) �⇒ h(x) − h(x) ≤ α〈x − z, x − x〉, ∀x ∈ K . (3.4)

The set of all prox-convex function on K is denoted by	(K ), and the scalar α > 0 for which
(3.4) holds is said to be the prox-convex value of the function h on K . When K = R

n we say
that h is prox-convex.

Remark 3.2 (i) One can immediately notice that x ∈ Proxh(K , z) (from (3.4)) yields x ∈
K ∩ dom h, and, on the other hand, (3.4) is equivalent to a weaker version of (1.2),
namely

x ∈ Proxh(K , z) �⇒ z − x ∈ ∂

(
1

α
(h + δK )

)
(x).

(i i) The scalar α > 0 for which (3.4) holds needs not be unique. Indeed, if h is convex, then
α = 1 by Proposition 3.4. However, due to the convexity of h, 〈x − z, x − x〉 ≥ 0. Hence,
x ∈ Proxh(K , z) implies that

h(x) − h(x) ≤ 〈x − z, x − x〉 ≤ γ 〈x − z, x − x〉, ∀ γ ≥ 1, ∀ x ∈ K .

Note however that a similar result does not necessarily hold in general, as 〈x − z, x − x〉
might be negative.

(i i i) Note also that, at least from the computational point of view, an exact value of α needs
not be known, as one can see in Sect. 4.

In the following statement we see that in the left-hand side of (3.4) one can replace
the element-of symbol with equality since the proximity operator of a proper prox-convex
function is single-valued and also firmly nonexpansive.

Proposition 3.3 Let K be a closed set in R
n and h : Rn → R a proper prox-convex function

on K such that K ∩ dom h �= ∅. Then the map z → Proxh(K , z) is single-valued and firmly
nonexpansive on K .

Proof Suppose that h is a prox-convex function with prox-convex value α > 0 and assume
that for some z ∈ K one has {x1, x2} ⊆ Proxh(K , z). Then

h (x1) − h(x) ≤ α〈x1 − z, x − x1〉, ∀x ∈ K , (3.5)

h (x2) − h(x) ≤ α〈x2 − z, x − x2〉, ∀x ∈ K . (3.6)

Take x = x2 in (3.5) and x = x1 in (3.6). By adding the resulting equations, we get

0 ≤ α〈x1 − x2, x2 − z + z − x1〉 = −α‖x1 − x2‖2 ≤ 0.

Hence, x1 = x2, consequently Proxh(K , ·) is single-valued.
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Let z1, z2 ∈ K and take x1 ∈ Proxh(K , z1) and x2 ∈ Proxh(K , z2). One has

h (x1) − h(x) ≤ α〈x1 − z1, x − x1〉, ∀ x ∈ K , (3.7)

h (x2) − h(x) ≤ α〈x2 − z2, x − x2〉, ∀ x ∈ K . (3.8)

Taking x = x2 in (3.7) and x = x1 in (3.8) and adding them, we have

‖x1 − x2‖2 ≤ 〈z1 − z2, x1 − x2〉.
Hence, by [5, Proposition 4.4], Proxh(K , ·) is firmly nonexpansive. ��

Next we show that every lower semicontinuous and convex function is prox-convex.

Proposition 3.4 Let K be a closed and convex set in R
n and h : Rn → R be a proper and

lower semicontinuous function such that K ∩dom h �= ∅. If h is convex on K , then h ∈ 	(K )

with α = 1.

Proof Since h is convex, the function x �→ h(x) + (β/2)‖z − x‖2 is strongly convex on K
for all β > 0 and all z ∈ K , in particular, for β = 1. Thus Proxh(K , z) contains exactly one
element, say x ∈ R

n . It follows from [5, Proposition 12.26] that z − x ∈ ∂(h + δK )(x), so
relation (3.4) holds for α = 1. Therefore, h ∈ 	(K ). ��

Prox-convexity goes beyond convexity as shown below.

Example 3.1 Let us consider K := [0, 1] and the continuous and real-valued function h :
R → R given by h(x) = −x2 − x . Note that

(i) h is strongly quasiconvex on K without being convex (take β = 1);
(i i) For all z ∈ K , Proxh(K , z) = argminK h = {1};

(i i i) ∂
≤
K h(1) = K since, by (i i), K ∩ Sh(1)(h) = {1}, i.e., ∂≤

K h(1) = K by (2.15);
(iv) h satisfies condition (3.4) for all α ∈ ]0, 2]. Indeed, for all z ∈ K\{1}, Proxh(K , z) =

argminK h = {1}, thus the right-hand side of (3.4) turns into−2+x2+x ≤ α(1−z)(x−1)
for all x ∈ [0, 1], that is further equivalent to (x + 2) ≥ α(1 − z) for all x ∈ [0, 1], and
then to

α ≤ x + 2

1 − z
= x

1 − z
+ 2

1 − z
∀ x ∈ [0, 1].

The last inequality is fulfilled for all x, z ∈ [0, 1] with z �= 1 when α ∈ ]0, 2].
(v) h ∈ 	(K ).

In order to formulate a reverse statement of Proposition 3.4, we note that if h : Rn → R

is a lower semicontinuous and prox-convex function on some set K ∩ dom h �= ∅ which
satisfies (3.4) for α = 1, then h is not necessarily convex. Indeed, the function in Example
3.1 satisfies (3.4) for all α ∈ ]0, 2], but it is not convex on K = [0, 1].

In the following example, we show that lower semicontinuity is not a necessary condition
for prox-convexity. Note also that although the proximity operator of the function mentioned
in Remark 3.1(i i) is always empty, this is no longer the case when restricting it to an interval.

Example 3.2 Take n ≥ 3, Kn := [1, n] and the function hn : Kn → R given by

hn(x) =
{

1 − x3, if 1 ≤ x ≤ 2,
1 − x3 − k, if k < x ≤ k + 1, k ∈ {2, . . . , n − 1}.
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Note that hn is neither convex nor lower semicontinuous, but it is quasiconvex on Kn . Due
to the discontinuity of hn , the function fn(x) = hn(x) + (1/2)‖x‖2 is neither convex nor
lower semicontinuous on Kn , hence hn is not c-weakly convex (in the sense of [17]) either
and also its subdifferential is not hypomonotone (as defined in [10,18,24]). However, for any
z ∈ Kn , Proxhn (Kn, z) = {n}, and ∂

≤
Kn

hn(n) = Kn . Therefore, hn ∈ 	(Kn).

Another example of a prox-convex function that is actually (like the one in Example 3.1)
both concave and DC follows.

Example 3.3 Take K = [1, 2] and h :]0,+∞[→ R defined by h(x) = 5x + ln(1+ 10x). As
specified in [21], both the prox-convex function presented in Example 3.1 and this one repre-
sent cost functions considered in oligopolistic equilibrium problems, being thus relevant for
studying also from a practical point of view. One can show that Proxh(K , z) = argminK h =
{1} for all z ∈ K and (3.4) is fulfilled for α ∈ ]0, 5[.
Remark 3.3 (i) One can also construct examples of c-weakly convex functions (for some

c > 0) that are not prox-convex, hence these two classes only contain some common
elements without one of them being completely contained in the other.

(ii) While Examples 3.1 and 3.3 exhibit prox-convex functions that are also DC, the prox-
convex functions presented in Example 3.2 are not DC. Examples of DC functions that
are not prox-convex can be constructed as well, consequently, like in the case of c-weakly
convex functions, these two classes only contain some common elements without one
of them being completely contained in the other. Note moreover that different to the
literature on algorithms for DC optimization problems (see, for instance, [2,4]) where
usually only critical points (and not optimal solutions) of such problems are determinable,
for the DC functions that are also prox-convex proximal point methods are capable of
delivering global minima (on the considered sets).

(iii) The remarkable properties of the Kurdyka-Łojasiewicz functions made them a standard
tool when discussing proximal point type algorithms for nonconvex functions. As their
definition requires proper closedness and the prox-convex functions presented inExample
3.2 are not closed, the class of prox-convex functions can be seen as broader in some
sense than the one of the Kurdyka-Łojasiewicz ones. Similarly one can note that prox-
convexity is not directly related to hypomonotonicity of subdifferentials (see [10,18,24],
respectively).

(iv) At least due to the similar name, a legitimate question is whether the notion of prox-
convexity is connected in any way with the prox-regularity (cf. [10,20,24]). While the
latter asks a function to be locally lower semicontinuous around a given point, the notion
we introduce in this work does not assume any topological properties on the involved
function.Another differencewith respect to this notion can be noticed in Sect. 4,wherewe
show that the classical proximal point algorithm remains convergent towards a minimum
of the function to be minimized even if this lacks convexity, but is prox-convex. On the
other hand, the iterates of the modified versions of the proximal point method employed
for minimizing prox-regular functions converge towards critical points of the latter. Last
but not least note that, while in the mentioned works one uses tools specific to nons-
mooth analysis such as generalized subdifferentials, in this paper we employ the convex
subdifferential and some subdifferential notions specific to quasiconvex functions.

Necessary and sufficient hypotheses for condition (3.4) are given below.

Proposition 3.5 Let K be a closed set in R
n and h : Rn → R be a proper, lower semicon-

tinuous and prox-convex function such that K ∩ dom h �= ∅. Let α > 0 be the prox-convex
value of h on K , and z ∈ K . Consider the following assertions
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(a) Proxh(K , z) = {x};
(b) z − x ∈ ∂K

( 1
α

h
)
(x);

(c) ( 1
α

h)z(x) − ( 1
α

h)z(x) ≤ − 1
2‖x − x‖2 for all x ∈ K ;

(d) x ∈ Prox 1
α

h(K , z).

Then

(a) �⇒ (b) ⇐⇒ (c) �⇒ (d).

If α = 1, then (d) implies (a) and all the statements are equivalent.

Proof (a) ⇒ (b): By definition of prox-convexity.
(b) ⇔ (c): One has

z − x ∈ ∂K (
1

α
h)(x) ⇐⇒ (

1

α
h)(x) − (

1

α
h)(x) ≤ 〈x − z, x − x〉, ∀x ∈ K

⇐⇒ 1

α
h(x) − 1

α
h(x) ≤ 1

2
‖z − x‖2 − 1

2
‖z − x‖2 − 1

2
‖x − x‖2, ∀x ∈ K

⇐⇒ 1

α
h(x) + 1

2
‖z − x‖2 − 1

α
h(x) − 1

2
‖z − x‖2 ≤ −1

2
‖x − x‖2, ∀x ∈ K

⇐⇒ (
1

α
h)z(x) − (

1

α
h)z(x) ≤ −1

2
‖x − x‖2, ∀x ∈ K . (3.9)

(c) ⇒ (d): As −(1/2)‖x − x‖2 ≤ 0 for all x ∈ K , (3.9) yields x ∈ Prox(1/α)h(K , z).
When α = 1, the implication (d) ⇒ (a) is straightforward. ��

Remark 3.4 It follows from Proposition 3.5(d) that if h is prox-convex on K with prox-
convex value α > 0, then the function (1/α)h is also prox-convex on K with prox-convex
value 1. Moreover, Prox(1/α)h = Proxh .

If h is prox-convex with prox-convex value α, then we know that Prox(1/α)h = Proxh is
a singleton, hence

1
α h(z) = min

x∈K

(
h(x) + α

2
‖z − x‖2

)
= h(Proxh(z)) + α

2
‖z − Proxh(z)‖. (3.10)

Consequently, 1/αh(z) ∈ R for all z ∈ R
n . Furthermore, we have the following statements.

Proposition 3.6 Let h : R
n → R be proper, lower semicontinuous and prox-convex with

prox-convex value α > 0 on a closed set K ⊆ R
n such that K ∩ dom h �= ∅. Then

1/αh : Rn → R is Fréchet differentiable everywhere and

∇
(

1
α h

)
= α

(
Id−Prox 1

α
h

)
, (3.11)

is α-Lipschitz continuous.

Proof Let x, y ∈ K with x �= y. Set γ = 1/α, x = Proxh(K , x) and y = Proxh(K , y). As
h is prox-convex with prox-convex value α, we have

h(z) − h(x) ≥ α〈x − x, z − x〉 ∀ z ∈ K �⇒ h(y) − h(x) ≥ 1

γ
〈x − x, y − x〉.
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From (2.17), we get

γ h(y) − γ h(x) = h(y) − h(x) + 1

2γ

(‖y − y‖2 − ‖x − x‖2)

≥ 1

2γ

(
2〈x − x, y − x〉 + ‖y − y‖2 − ‖x − x‖2)

= 1

2γ

(‖y − y − x + x‖2 + 2〈y − x, x − x〉)

≥ 1

γ
〈y − x, x − x〉. (3.12)

Exchanging above x with y and x with y, one gets

γ h(x) − γ h(y) ≥ 1

γ
〈x − y, y − y〉. (3.13)

It follows from equations (3.12) and (3.13) that

0 ≤ γ h(y) − γ h(x) − 1

γ
〈y − x, x − x〉

≤ − 1

γ
〈x − y, y − y〉 − 1

γ
〈y − x, x − x〉

= 1

γ
‖y − x‖2 + 1

γ
〈y − x, x − y〉.

As ProxK ,h is firmly nonexpansive on K , 〈y − x, y − x〉 ≥ ‖y − x‖2 ≥ 0, then

0 ≤ γ h(y) − γ h(x) − 1

γ
〈y − x, x − x〉 ≤ 1

γ
‖y − x‖2

�⇒ lim
y→x

γ h(y) − γ h(x) − 1
γ
〈y − x, x − x〉

‖y − x‖ = 0.

Thus, 1/αh is Fréchet differentiable at every x ∈ R
n , and ∇(1/αh) = α(Id− Proxh).

Since Proxh is firmly nonexpansive, Id−Proxh is also firmly nonexpansive, so ∇(1/αh) is
α-Lipschitz continuous. ��

3.2 Strongly G-subdifferentiable functions

Further we introduce and study a class of quasiconvex functions whose lower semicontinuous
members are prox-convex.

Definition 3.2 Let K be a closed and convex set inRn and h : Rn → R be a proper and lower
semicontinuous function such that K ∩ dom h �= ∅. We call h strongly G-subdifferentiable
on K if

(a) h is strongly quasiconvex on K for some β ∈ [1,+∞[;
(b) for each z ∈ K there exists x ∈ R

n such that Proxh(K , z) = {x} and
1

2
(z − x) ∈ ∂

≤
K h(x). (3.14)

Next we show that a lower semicontinuous and strongly G-subdifferentiable function on
K is prox-convex.
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Proposition 3.7 Let K be a closed and convex set in R
n and h : Rn → R be a proper and

lower semicontinuous function such that K ∩dom h �= ∅. If h is strongly G-subdifferentiable
on K , then h ∈ 	(K ).

Proof Let h be a lower semicontinuous and strongly G-subdifferentiable function. Then for
every z ∈ K , there exists x ∈ K with x = Proxh(K , z). Hence, given any y ∈ K , we take
yλ = λy + (1 − λ)x with λ ∈ [0, 1]. Thus, by the definition of the proximity operator and
the strong quasiconvexity of h on K for some β ≥ 1, we have

h(x) ≤ h(λy + (1 − λ)x) + 1

2
‖λy + (1 − λ)x − z‖2 − 1

2
‖x − z‖2

= h(λy + (1 − λ)x) + λ〈x − z, y − x〉 + λ2
1

2
‖y − x‖2

≤ max{h(y), h(x)} + λ〈x − z, y − x〉 + λ

2
(λβ + λ − β)‖y − x‖2.

We have two possible cases.

(i) If h(y) > h(x), then

h(x) − h(y) ≤ λ〈x − z, y − x〉 + λ

2
(λβ + λ − β)‖y − x‖2, ∀λ ∈ [0, 1].

Hence, for λ = 1/2 and since β ≥ 1, one has

h(x) − h(y) ≤ 1

2
〈x − z, y − x〉 + 1

4
(
1

2
− β

2
)‖y − x‖2

≤ 1

2
〈x − z, y − x〉, ∀y ∈ K\Sh(x)(h).

(i i) If h(y) ≤ h(x), then y ∈ Sh(x)(h), it follows from Definition 3.2(b) that

1

2
(z − x) ∈ ∂

≤
K h(x) ⇐⇒ h(x) − h(y) ≤ 1

2
〈x − z, y − x〉, ∀y ∈ K ∩ Sh(x)(h).

Therefore, it follows that h satisfies (3.4) for α = 1/2, i.e., h ∈ 	(K ).

��
Remark 3.5 (i) When h : Rn → R is lower semicontinuous and strongly quasiconvex, as

strongly quasiconvex functions are semistrictly quasiconvex, h is quasiconvex and every
localminimumof h is a globalminimum, too, so h is neatly quasiconvex, i.e., ∂<h = ∂≤h
(see [26, Proposition 9]). Therefore, we can replace ∂

≤
K h by ∂<

K h in condition (3.14).
(i i) Strongly G-subdifferentiable functions are not necessarily convex as the function in

Example 3.1 shows.

A family of prox-convex functions that are not strongly G-subdifferentiable can be found
in Remark 3.6, see also Example 3.2.

Now,we study lower semicontinuous strongly quasiconvex functions forwhich theGutier-
réz subdifferential is nonempty. To that end, we first recall the following definitions (adapted
after [11, Definition 3.1]).

Definition 3.3 Let K be a nonempty set in R
n and h : Rn → R with K ∩ dom h �= ∅. We

say that h is

(a) inf-compact on K if for all x ∈ K , Sh(x)(h) ∩ K is compact;
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(b) α-quasiconvex at x ∈ K (α ∈ R), if there exist ρ > 0 and e ∈ R
n , ‖e‖ = 1, such that

y ∈ K ∩ B(x, ρ) ∩ Sh(x)(h) �⇒ 〈y − x, e〉 ≥ α‖y − x‖2; (3.15)

(c) positively quasiconvex on K if for any x there exists α(x) > 0 such that h is α(x)-
quasiconvex on Sh(x)(h).

The following result presents a connection between strongly quasiconvex functions and
positively quasiconvex ones.

Proposition 3.8 Let h : Rn → R be a strongly quasiconvex function, x ∈ R
n and α > 0.

Then the following assertions hold

(a) If ξ ∈ ∂ ((1/α)h) (x), then

〈ξ, y − x〉 ≤ − β

2α
‖y − x‖2, ∀y ∈ Sh(x)(h). (3.16)

(b) If ξ ∈ ∂≤h(x), then

〈ξ, y − x〉 ≤ −β

2
‖y − x‖2, ∀y ∈ Sh(x)(h). (3.17)

As a consequence, in both cases, h is positively quasiconvex on R
n.

Proof The proofs are similar, so we only show (a). Take x ∈ R
n and ξ ∈ ∂ ((1/α)h) (x).

Then,

α〈ξ, z − x〉 ≤ h(z) − h(x), ∀z ∈ R
n .

Take y ∈ Sh(x)(h) and z = λy + (1 − λ)x with λ ∈ [0, 1]. Then
λα〈ξ, y − x〉 ≤ h(λy + (1 − λ)x) − h(x)

≤ max{h(y), h(x)} − λ(1 − λ)
β

2
‖y − x‖2 − h(x)

= −λ(1 − λ)
β

2
‖y − x‖2.

Then, for every y ∈ Sh(x)(h), by dividing by λ > 0 and taking the limit when λ descends
towards 0, we have

〈ξ, y − x〉 ≤ lim
λ↓0

(
−(1 − λ)

β

2α
‖y − x‖2

)
= − β

2α
‖y − x‖2.

Now, since h is strongly quasiconvex, argminRn h has atmost one point. If x ∈ argminRn h,
then condition (3.15) holds immediately. If x /∈ argminRn h, then ξ �= 0, i.e., condition (3.15)
holds for β/(2α‖ξ‖) > 0.

Therefore, h is positively quasiconvex on Rn . ��
As a consequence, we have the following result.

Corollary 3.1 Let h : Rn → R be a lower semicontinuous and strongly quasiconvex function
with β = 1, let z ∈ R

n and x ∈ Proxh(z). If there exists ξ ∈ ∂≤h(x) such that

hz(x) − hz(x) ≤ 〈ξ, y − x〉, ∀y ∈ Sh(x)(h), (3.18)

then h is prox-convex on its sublevel set at the height h(x), i.e., h ∈ 	(Sh(x)(h)).
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Proof If ξ ∈ ∂≤h(x), and since h is lower semicontinuous and strongly quasiconvex with
β = 1, then by Proposition 3.8(b), we have

hz(x) − hz(x) ≤ 〈ξ, y − x〉 ≤ −1

2
‖y − x‖2, ∀y ∈ Sh(x)(h),

�⇒ h(x) − h(x) ≤ 1

2
‖z − y‖2 − 1

2
‖z − x‖2 − 1

2
‖y − x‖2, ∀y ∈ Sh(x)(h)

⇐⇒ h(x) − h(x) ≤ 〈x − z, x − x〉, ∀y ∈ Sh(x)(h).

Therefore, h ∈ 	(Sh(x)(h)). ��
Another consequence is the following sufficient condition for inf-compactness under an

L-Lipschitz assumption, which revisits [29, Corollary 1].

Corollary 3.2 Let h : Rn → R be an L-Lipschitz and strongly quasiconvex function. Then h
is inf-compact on R

n.

Proof If h is strongly quasiconvex, then h is neatly quasiconvex, and since h is L-Lipschitz,
∂≤h(x) �= ∅ for all x ∈ R

n by Lemma 2.1(b). Now, by Proposition 3.8(b), it follows that h
is positively quasiconvex on R

n . Finally, h is inf-compact on R
n by [11, Corollary 3.6]. ��

We finish this section with the following observation.

Remark 3.6 There are (classes of) prox-convex functions which are neither convex nor
strongly quasiconvex. Indeed, for all n ∈ N, we take Kn := [−n,+∞[ and the conti-
nuous quasiconvex functions hn : Kn → R given by hn(x) = x3. Clearly, hn is neither
convex nor strongly quasiconvex on Kn hence also not strongly G-subdifferentiable either.

Take n ∈ N. Then for all z ∈ Kn , argminKn
hn = Proxhn (z) = {−n}, thus Shn(x)(hn) =

{x}, i.e., ∂≤
Kn

hn(x) = R
n . Therefore, hn ∈ 	(Kn) for all n ∈ N. Taking also into considera-

tion Corollary 3.1 one can conclude that the classes of strongly quasiconvex and prox-convex
functions intersect without being included in one another.

Remark 3.7 All the prox-convex functions we have identified so far are semistrictly qua-
siconvex, too, while there are semistrictly quasiconvex functions that are not prox-convex
(for instance h : R → R defined by h(x) = 1 if x = 0 and h(x) = 0 if x �= 0), hence
the connection between the classes of prox-convex and semistrictly quasiconvex functions
remains an open problem.

For a further study on strong quasiconvexity, positive quasiconvexity and inf-compactness
we refer to [11,29,30].

4 Proximal point type algorithms for nonconvex problems

In this sectionwe show (following the proof of [5, Theorem28.1]) that the proximal point type
algorithm remains convergent when the function to be minimized is proper, lower semicon-
tinuous and prox-convex (on a given closed convex set), but not necessarily convex. Although
the algorithm considered below is the simplest and most basic version available and some
of the advances achieved in the convex case, such as accelerations and additional flexibility
by employing additional parameters, are at the moment still open in the prox-convex setting,
our investigations show that the proximal point type methods can be successfully extended
towards other classes of nonconvex optimization problems.
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Theorem 4.1 Let K be a closed and convex set in R
n and h : Rn → R be a proper, lower

semicontinuous and prox-convex on K function such that argminK h �= ∅ and K ∩ dom h �=
∅. Then for any k ∈ N, we set

xk+1 = Proxh(K , xk) (4.1)

Then {xk}k is a minimizing sequence of h over K , i.e., h(xk) → minx∈K h(x) when k → +∞,
and it converges to a minimum point of h over K .

Proof Since h is prox-convex on K , denote its prox-convex value by α > 0 and for all k ∈ N

one has

xk+1 = Proxh(K , xk) �⇒ xk − xk+1 ∈ ∂

(
1

α
h + δK

)
(xk+1)

⇐⇒ α〈xk − xk+1, x − xk+1〉 ≤ h(x) − h(xk+1), ∀x ∈ K . (4.2)

Take x = xk ∈ K , and since α > 0, we have

0 ≤ 〈xk − xk+1, xk − xk+1〉 ≤ 1

α

(
h

(
xk

)
− h

(
xk+1

))
, (4.3)

which yields h(xk+1) ≤ h(xk) for all k ∈ N.
On the other hand, take x ∈ argminK h. Then, for any k ∈ N, by taking x = x in equation

(4.2), we have

‖xk+1 − x‖2 = ‖xk+1 − xk + xk − x‖2
= ‖xk+1 − xk‖2 + ‖xk − x‖2 + 2〈xk+1 − xk, xk − x〉
= −‖xk+1 − xk‖2 + ‖xk − x‖2 + 2〈xk+1 − xk, xk+1 − x〉
≤ ‖xk − x‖2 + 2

α

(
h(x) − h

(
xk+1

))
≤ ‖xk − x‖2, (4.4)

where we used that h(x) ≤ h(xk+1). Thus, {xk − x}k is bounded. Then by [5, Theorem 28.1]
xk converges to a point in argminK h when k → +∞. Finally, since h is lower semicontinuous
and K is closed, we have lim infk→+∞ h(xk) = minx∈K h(x), which yields the conclusion
by (4.3). ��
Remark 4.1 From (4.4) one can deduce straightforwardly that the known O(1/n) rate of
convergence of the proximal point algorithm holds in the prox-convex case, too.

Remark 4.2 Although the function to be minimized in Theorem 4.1 bymeans of the proximal
point algorithm is assumed to be prox-convex, its prox-convex value α > 0 needs not be
known, even if it plays a role in the proof.

Remark 4.3 One can modify the proximal point algorithm by replacing in (4.1) the proximal
step by Proxh(Sh(xk )(h), xk) without affecting the convergence of the generated sequence.
Note also that taking K = R

n in Theorem 4.1 one obtains the classical proximal point
algorithm adapted for prox-convex functions and not for a restriction of such a function to a
given closed convex set K ⊆ R

n .

Example 4.1 Let K = [0, 2]×R and consider the function h : K → R given by h(x1, x2) =
x22 − x21 − x1. Observe that h is strongly quasiconvex in the first argument, and convex and
strongly quasiconvex in the second argument, hence h is strongly quasiconvex without being
convex on K . Furthermore, by Example 3.1 h is prox-convex on K . The global minimum
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of h over K is (2, 0)� and it can be found by applying Theorem 4.1, i.e., via the proximal
point algorithm, although the function h is not convex. First one determines the proximity
operator

Proxh

(
K , (z1, z2)

�)
=

({
0, if z1 ≤ −2
2, if z1 > −2

,
z2
3

)�
, z1, z2 ∈ R.

Taking into consideration the way K is defined, it follows that the proximal step in Theorem
4.1 delivers xk+1 = (2, xk

2/3)
�, where xk = (xk

1 , xk
2 )

�. Whatever feasible starting point
x1 ∈ K of the algorithm is chosen, it delivers the global minimum of h over K because
xk
1 = 2 and xk

2 = x12/(3
k−1) for all k ∈ N.

5 Conclusions and future work

We contribute to the discussion on the convergence of proximal point algorithms beyond con-
vexity by introducing a new generalized convexity notion called prox-convexity. We identify
some quasiconvex, weakly convex and DC functions (and not only) that satisfy the new
definition and different useful properties of these functions are proven. Then we show that
the classical proximal point algorithm remains convergent when the convexity of the proper
lower semicontinuous function to be minimized is relaxed to prox-convexity (on a certain
subset of the domain of the function).

In a future work, we aim to uncover more properties and develop calculus rules for prox-
convex functions as well as to extend our investigation to nonconvex equilibrium problems
and nonconvexmixed variational inequalities, to Hilbert spaces and to splitting methods, also
employing Bregman distances instead of the classical one where possible.
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6. Boţ, R.I., Csetnek, E.R.: Proximal-gradient algorithms for fractional programming. Optimization 66,
1383–1396 (2017)

7. Cambini, A., Martein, L.: Generalized convexity and optimization. Springer-Verlag, Berlin-Heidelberg
(2009)

8. Cambini, R., Carosi, L.: Coercivity concepts and recession function in constrained problems. Int. J. Math.
Sci. 2, 83–96 (2003)

9. Censor, Y., Segal, A.: Algorithms for the quasiconvex feasibility problem. J. Comput. Appl. Math. 185,
34–50 (2006)

10. Combettes, P.L., Pennanen, T.: Proximalmethods for cohypomonotone operators. SIAMJ.ControlOptim.
43, 731–742 (2004)
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