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Introduction

The many impressive advances of science and technology have critically relied on the quantification of several static and dynamic properties of our world. In addition to allowing immediate visualizations of these measurements in terms of respective plots, measurements are also combined by using several algebraic operations including addition, subtraction, product, and division, as well as by using many other functions and operations.

While most approaches in scientific modeling and mathematics have been based on algebraic operations, other type of operations including those of Boolean algebra and set theory are also commonly employed in combined fashion. For instance, the following typical definition of the signal operation: sign(x) =    +1 if and only if x > 0 0 if and only if x = 0 -1 if and only if x < 0 [START_REF] Da | Multisets[END_REF] requires a combination of logic, set, relational, and algebraic concepts.

While these combinations are relatively frequent and welcomed, it is possible to develop much more integrated approaches [START_REF] Da | Multisets[END_REF][START_REF] Da | Analogies between boolean algebra, set theory and function spaces[END_REF] in which set operations are intermingled with algebraic operations. These possibilities derive from multiset theory (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF]) adaptations to take into account real, possibly negative values [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Analogies between boolean algebra, set theory and function spaces[END_REF][START_REF] Da | Generalized probabilities[END_REF].

The present work presents the mathematical context and some of the properties of multiset generailzation developed recently [9, 1, 2, 10] including binary operators (in the sense of taking two arguments) that haave allowed impressive performance in several areas and tasks. More specifically, the proposed real-valued J accard and coincidence indices have been shown to be measurements directly related to the Kronecker delta function [START_REF] Da | On similarity[END_REF].

After revising the basic mathematical context, including concepts from classic set and generalized multiset theory, we develop an analogy between the real and multiset products, including the presentation of several interesting properties of the latter. The reported properties pave the way to a number of interesting theoretical and applied possibilities in several related areas.

Classic Set Theory

Given three sets A, B, and C derived from a given Ω, the following properties are satisfied:

Ω = i A i , ∀i (2) 
Ω C = Ω -Ω = φ (3) 
φ C = Ω -φ = Ω (4) 
A C = Ω -A (5) 
A ∪ A C = Ω (6)

A ∩ A C = φ (7) 
A ∪ Ω = Ω (8)

A ∩ Ω = A (9) 
A ∪ φ = A (10)

A ∩ φ = φ (11) 
A ∪ A = A (12) 
A ∩ A = A (13) 
A ∪ B = B ∪ A (14) 
A ∩ B = B ∩ A (15) A ∪ (B ∪ C) = (A ∪ B) ∪ C (16) A ∩ (B ∪ C) = (A ∩ B) ∪ C (17) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (18) 
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (19) (A ∪ B) C = A C ∩ B C (De Morgan) (20) (A ∩ B) C = A C ∪ B C (De Morgan) (21)

Classic Multiset Concepts

By classic multiset theory we here understand multisets with non-negative integer multiplicities (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF]). In particular, we understand that the multiset difference operation is clipped at zero in order to avoid negative multiplicities being respectively obtained. These multisets have the following properties:

Ω = i A i , ∀i (22) 
Ω C = Ω -Ω = φ (23) φ C = Ω -φ = Ω (24) A C = Ω -A (25) A ∪ A C = Ω (26) * * * A ∩ A C = Ω -A (27) 
A ∪ Ω = Ω (28)

A ∩ Ω = A (29) A ∪ φ = A (30) A ∩ φ = φ (31) A ∪ A = A (32) A ∩ A = A (33) A ∪ B = B ∪ A (34) A ∩ B = B ∩ A (35) A ∪ (B ∪ C) = (A ∪ B) ∪ C (36) A ∩ (B ∪ C) = (A ∩ B) ∪ C (37) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (38) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (39) 
Except for the property 25, all other properties are analogous to respective counterparts in classic multiset theory.

Generalized Multiset Theory

The generalized multisets were developed in order to account for real, possibly negative multiplicities [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Da | Analogies between boolean algebra, set theory and function spaces[END_REF][START_REF] Da | Generalized probabilities[END_REF].

Let x and y be real-valued multisets, real values, or real functions of another common variable, e.g. x(t) and y(t), with combined support S, t ∈ S.

A real-valued multiset x is a set of 2-tuples [t, x(t)], where x(t) ∈ R is the multiplicity of the element t in the multiset x.

The union of two multisets x and y is a new multiset z given as:

z = x ∪ y = {| [t, max {x, y}] | } (40)
The intersection of two multisets x and y is a new multiset z given as:

z = x ∩ y = [t, min {x, y}] | } (41)
The addition of two multisets x and y is a new multiset z given as:

z = x + y = {| [t, x + y] | } (42)
The subtraction of two multisets x and y is a new multiset z given as:

z = x -y = [t, x -y] | } (43)
The common union of two multisets x and y is a new multiset z given as:

z = x y = {|s xy [t, max {s x x, s y y}] | } (44)
where s x = sign(x), s y = sign(y), and s xy = s x s y . The common intersection of two multisets x and y is a new multiset z given as:

z = x y = {|s xy [t, min {s x x, s y y}] | } (45)
The absolute union of two multisets x and y is a new multiset z given as:

z = x ˜ y = {| [t, max {s x x, s y y}] | } (46) 
The absolute intersection of two multisets x and y is a new multiset z given as:

z = x ˜ y = {| [t, min {s x x, s y y}] | } (47) 
We have the following, non-exhaustive, properties of generalized multisets:

Ω + = i x, ∀x (48) 
Ω -= i x, ∀x (49) 
Ω C + = φ -Ω + = -Ω + (50) Ω C -= φ -Ω -= -Ω - (51) 
φ C = φ -φ = φ (52) x C = φ -x = -x (53) x ∪ x C = x ∪ (-x) = |x| (54) x ∩ x C = x ∩ (-x) = -|x| (55) 
x

∪ Ω + = Ω + (56) 
x ∪ Ω -= x (57)

x ∩ Ω + = x (58) x ∩ Ω -= Ω - (59) 
x ∪ φ = x (60)

x φ = φ (61) x ∪ x = x (62) x ∩ x = x (63) 
x ∪ y = y ∪ x (64)

x ∩ y = y ∩ x (65) x ∪ (y ∪ z) = (x ∪ y) ∪ z (66) x ∩ (y ∪ z) = (x ∩ y) ∪ z (67) x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (68) x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) (69) (x ∪ y) C = x C ∩ y C (De Morgan) (70) (x ∩ y) C = x C ∪ y C (De Morgan) (71) 
where:

A B = s AiBi min {s Ai A i , s Bi B i } ∈ R (72) 
with s Ai = sign(A i ), s Ai + sign(A i ), and S AiBi = s Ai s Bi .

This operation corresponds to the intersection in the case of real-valued multisets, but also resembles the classic inner product in L2 spaces.

In the case of all possible multisets, we have Ω + = +∞ and Ω -= -∞. In addition, observe that the complement operation is take respectively to the empty set, and not the universe set as in classic set theory.

The Real Product

Given any two real values x and y, their product corresponds to the binary operation:

p(x, y) = xy ∈ R (73) 
Given any two real functions x(t) and y(t), their product corresponds to the binary operation:

p(x(t), y(t)) = x(t)y(t) ∈ R (74) 
For simplicity's sake, we henceforth use x and y to represent both real values or real functions.

The properties of the real product binary operator include:

xy = yx (75) 0x = 0 (76) 1x = x (77) 
x(yz) = (xy)z (78) It has been shown that this product is a similarity measurement related to the Kronecker delta function [START_REF] Da | On similarity[END_REF].

x(y + z) = xy + xz (79) xx ≥ 0, ∀x ∈ R (80) xx = x 2 (81) √ x 2 = |x| (82) (xy) a = x a y a ( 
Let g(x) be a non-decreasing monotonic function, in the sense that x ≥ y =⇒ g(x) ≥ g(y), also being odd, i.e. g(-x) = -g(x).

Then, we can prove that g(x y) = g(x) g(y). This can be done in elementwise manner (i.e. x and y are considered real values) considering the following four situations. Situation 1: s x = s y = +1. Then, we have that:

x y = s xy min {s x x, s y y} = min {x, y} (92) 
g(x y) = g(min {x, y}) (93) g(x) g(y) = min {g(x), g(y)} (94)

If x < y, we have:

g(x y) = g(min {x, y}) = g(x) (95) 
g(x) g(y) = min {g(x), g(y)} = g(x) (96) 
If x ≥ y, we have:

g(x y) = g(min {x, y}) = g(y) (97) 
g(x) g(y) = min {g(x), g(y)} = g(y)

Therefore, it follows that, for s x = s y = +1 we have g(x y) = g(x) g(y). Situation 2: s x = s y = -1, implying:

x y = s xy min {s x x, s y y} = min {|x|, |y|} (99) 
which is analogous to Situation 1. Situation 3: s x = 1, s y = -1. Then, it follows that:

x y = s xy min {s x x, s y y} = -min {|x|, |y|} (100) 
Situation 4: s x = -1, s y = 1, yielding:

x y = s xy min {s x x, s y y} = -min {|x|, |y|} (101) 
Given that Situations 3 and 4 are analogous, it is enough to prove the latter. We start with:

g(x y) = g(-min {|x|, |y|}) (102) g(x) g(y) = -min {|g(x)|, |g(y)|} (103) 
If |x| < |y|, we have:

g(x y) = g(-min {|x|, |y|}) = g(-|x|) (104) g(x) g(y) = -min {|g(x)|, |g(y)|} = = -|g(x)| = g(-|x|) (105) 
If |x| ≥ |y|, we have: QED.

g(x y) = g(-min {|x|, |y|}) = g(-|y|) (106) g(x 
Additional analogous properties can be obtained for non-increasing and even functions.

The properties of the multiset real-valued intersection binary operator include:

x y = y x (108)

φ x = φ (109) 0 x = 0 (110)
x (y z) = (x y) z (111)

x (y z) = x y x z (112) Figure 2 depicts the normalized classic real product and the normalized real-valued multiset intersection. Observe the closer adherence between the latter product and the signed Kronecker delta function [START_REF] Da | Common product neurons[END_REF] shown in Figure 3. [START_REF] Da | Common product neurons[END_REF] is more similar to the normalized real-valued multiset intersection than with the normalized classic real product shown in Fig. 2. That is the main reason why the real-valued multiset intersection typically implements more strict and accurate quantification of pairwise similarity [START_REF] Da | On similarity[END_REF][START_REF] Da | Comparing cross correlationbased similarities[END_REF].

x x = |x| (113) √ x x = |x| (114) 

Concluding Remarks

In this work, we have provided a relatively comprehensive mathematical context to the multiset products.

After presenting the basic concepts and properties from classic set and generalized multiset theories, we developed a comparative study of the classic product and the realvalued multiset intersection, including the derivation of several properties of the latter.

It has also been verified that the real-valued multiset intersection presents several properties that are analogous to those of the real product, including being commutative, having null element, and being associative and distributive. The described real-valued operations and respective properties have found several interesting applications in complex networks [START_REF] Da | Coincidence complex networks[END_REF], self-organizing maps [START_REF] Da | Common product self-organizing map -cpsom[END_REF], as well as correlation [START_REF] Da | Comparing cross correlationbased similarities[END_REF] and hierarchical clustering [START_REF] Da | Real-valued jaccard and coincidence based hierarchical clustering[END_REF].

  ) g(y) = -min {|g(x)|, |g(y)|} = -|g(y)| (107)

Figure 1

 1 Figure 1 illustrates the real product (a) and the realvalued multiset intersection (b) for x ∈ [-1, 1] and y ∈ [-1, 1].

Figure 1 :

 1 Figure 1: The classic real product (a) and the real-valued multiset intersection (b) shown as level sets for better visualization of the respective underlying geometries.

Figure 2 :

 2 Figure 2: The normalized classic real product (a) and the realvalued multiset intersection (b) shown as level sets for better visualization of the respective underlying geometries. All values in these plots are comprised in the interval [-1, 1]. Observe the welcomed anisotropic properties of the normalized real-valued multiset intersection, which also implement a more strict quantification of the similarity between x and y.

Figure 3 :

 3 Figure3: The signed Kronecker product[START_REF] Da | Common product neurons[END_REF] is more similar to the normalized real-valued multiset intersection than with the normalized classic real product shown in Fig.2. That is the main reason why the real-valued multiset intersection typically implements more strict and accurate quantification of pairwise similarity[START_REF] Da | On similarity[END_REF][START_REF] Da | Comparing cross correlationbased similarities[END_REF].

  Given any two real values x and y, it is possible to consider the operation[START_REF] Mirkin | Mathematical Classification and Clustering[END_REF][START_REF] Akbas | Multiplication-free neural networks[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF], 1]: p(x, y) = s xy min {s x x, s y y} = x y ∈ R (91)

						83)
	sign(xy) = sign(x) sign(y)	(84)
	sign(x) x = |x|		(85)
	log(xy) = log(x) + log(y)	(86)
	dxy dt	= x	dy dt	+ y	dx dt	(87)
	(ax)y = a(xy)		(88)
	(ax)(ay) = a 2 (xy)	(89)

(ax + by)z = axz + byz (bilinearity) (90)
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