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Abstract

With the emergence of new online channels and information technology, digital ad-

vertising tends to substitute more and more to traditional advertising by offering the

opportunity to companies to target the consumers/users that are really interested by their

products or services. We introduce a novel framework for the study of optimal bidding

strategies associated to different types of advertising, namely, commercial advertising for

triggering purchases or subscriptions, and social marketing for alerting population about

unhealthy behaviours (anti-drug, vaccination, road-safety campaigns). Our continuous-

time models are based on a common framework encoding users online behaviours via their

web-browsing at random times, and the targeted advertising auction mechanism widely

used on Internet, the objective being to efficiently diffuse advertising information by means

of digital channels. Our main results are to provide semi-explicit formulas for the optimal

value and bidding policy for each of these problems. We show some sensitivity properties

of the solution with respect to model parameters, and analyse how the different sources of

digital information accessible to users including the social interactions affect the optimal

bid for advertising auctions. We also study how to efficiently combine targeted advertising

and non-targeted advertising mechanisms. Finally, some classes of examples with fully

explicit formulas are derived.
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1 Introduction

Through the emergence of new online channels and information technology, targeted ad-

vertising plays a growing role in our society and progressively replaces traditional forms

of advertising like newspapers, billboards, etc. Indeed, companies can minimize wasted

advertising costs by targeting directly individuals that are potentially interested by the

product the advertiser is promoting. Modern targeted media use historical data on inter-

net (cookies) such as tracking online or mobile web activities of consumers.

Optimal control is a suitable mathematical tool for studying advertising problems, and

there is already a large literature on this topic. In the classical approach, a dynamical sys-

tem for the sales process is modeled and the optimisation is performed over the advertising

expenditures process. We mention the pioneering works by [12], [16], and then important

papers by Sethi and his collaborators, see [4] for an overview of this research field up to the

90s, the more recent paper in [8], and other references in [13], as well as in the handbook

[17]. We also mention two other works, one about optimal advertising with delay, studied

in [6], and the other [10] on a model of optimal advertising with singular control.

The past decade has seen a growing academic interest in the economic and operations

research community for digital advertising. We mention for instance the paper [9] on the

design of online advertising markets, [18] for a survey on real-time bidding advertising, [5]

for a study of bidding behaviour by learning, [7] for a multi-agent reinforcement learning

algorithm to bid optimisation, or [2], [14] for an optimal bid control problem in online ad

auctions, see also [3] for a recent literature review on online display advertising.

In this paper, we address the following problem. We consider an Agent A (com-

pany/association) willing to spread some advertising information I to Users/Individual,

like e.g. (i) the existence of a new product, a new service, or (ii) the danger of some

behaviour (drug, virus, etc). These informations correspond to the following two types of

advertising models that we shall study:

1. Commercial advertising, modeling situations where informing an individual trig-

gers a reward for the agent. We shall consider two types of rewards: purchase-based

reward, corresponding to a punctual payment from the individual to the agent, and

subscription-based reward, corresponding to a subscription of the individual to a ser-

vice proposed by the agent, who then receives a regular fee.

2. Social marketing, modeling situations where informing an individual cancels a cost

continuously perceived by the agent. In contrast with commercial advertising model,

the objective of the agent is not to make profit but is rather philanthropic. The aim

is to change people’s behaviours and to promote social change by raising awareness

about dangers. Classical social marketing campaigns are anti-drugs, vaccination

campaigns, road-safety, or low-fat diet campaigns. From the agent’s viewpoint, any

individual who is not behaving safely is considered to represent a continuous cost to

her.

The issue for Agent A is how to diffuse efficiently the information I by means of “mo-

dern” online channels (digital ad, social networks, etc)? With that aim, we propose a
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continuous-time model for optimal digital advertising strategies, and an important feature

is to consider online behaviours of individuals/users that may interact with each other, and

to derive how advertising will affect their information states. Compared to the classical

models that focus directly on macroscopic variables like sales process controlled by an

advertising process, but often without an explicit modelling of the underlying mechanism,

our approach starts from a more “atomic” level by describing the individual’s behaviours,

their social interactions, by an explicit modelling, hence easier to justify from an intrinsic

point of view. In particular, we encode the feature of auctions for targeted advertising in

our models, which is a crucial component of online advertising. The counterpart, in general,

is that such microscopic model is often less tractable than classical macro-scale models. In

this work, we aim to provide a detailed model with reasonably realistic description while

keeping it enough tractable in order to obtain explicit solutions.

Auctions, in targeted advertising, are used to determine which company will have its ad

displayed to a given individual. There are marketplaces for digital advertising, called Ad

exchange, that enable automated buying and selling of ad space. Each time an individual

browsers through a publisher content (e.g Google, Yahoo, etc), an ad request is sent out

for ad space to be viewed, and the Ad exchange collects the data and information about

the viewer via cookies. Then, an auction process is set up in real time where several

advertisers (companies, influencers) declare their bid for ad display, and the highest bidder

wins the ad space by paying a cost according to the first-price or second-price auction rule.

The long history of auctions, starting from the groundbreaking works of John Nash ([11])

and later William S. Vickrey ([15]), and their omnipresence on Internet, illustrate the

crucial importance of auction theory, also evidenced by the 2020 Nobel prize in economics,

awarded to Milgrom and Wilson, for their contributions to auction theory.

The output of auctions can be quite challenging to predict even in simple frameworks,

and as the overall framework of our models is enough complex, we will not model en-

dogenously each bidding company (which would turn our optimal control models into

games/equilibrium models) and instead assume that at each targeted advertising auction,

the exogenous maximal bid from companies other than our agent is a random variable

independent from the past, and identically distributed across auctions. This assumption

has the practical advantage to keep the control problem tractable. Finally, one of our

models will also encode social interactions allowing individuals who saw the ad to be-

come themselves vectors of information. Again, our modeling of social interactions will

be quite simple and symmetric, to keep the problem tractable. For a detailed overview of

information spreading models in populations, we refer to [1].

Besides the different nature of their applications, the both aforementioned studies also

differ in their goals. On one hand, commercial targeted advertising is already widely spread

on the Internet, and in this case, our study proposes a model that could potentially improve

company’s bidding strategies. On the other hand, social marketing does not seem currently

to use targeted advertising a lot, instead relying more on classical non-targeted advertising,

and in this case, our model proposes a method to combine non-targeted advertising with

targeted advertising for any organisation or association with that philanthropic purpose.
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Our main contributions. Our first contribution is to propose four advertising models,

based on a common core framework explicitly modelling on the one hand individuals

online behaviours via their web-browsing at Poisson random times, and on the other hand

advertising auctions, each designed for various types of advertising, as described above.

For each of these problems, we obtain a semi-explicit form of the optimal value function

and optimal bidding policy.

Our second contribution is to propose in one of these models a rich population model,

involving individuals spontaneously finding an information, combining targeted advertising

and non-targeted advertising auctions, and highlighting the role of social interactions.

Our third contribution is to provide classes of examples where the solutions (optimal

value and bidding policy) are fully explicit.

By analysing the form of the solutions, we are able to clearly understand some inter-

esting points: (1) we observe that the optimal bid to make in a given targeted advertising

auction depends not only upon the distribution of other bidders’ maximal bids, but also

upon the online behaviour of the individual (intensities at which he connects at random

times to various types of websites); (2) in the fourth model, involving a population, and

adding non-targeted advertising and social interactions in the population, we are able to

understand (i) how the presence of social interactions impact the optimal bid to make, and

(ii) how the optimal bid to make for non-targeted advertising auctions relates to the opti-

mal bid for targeted advertising auctions and to the proportion of already informed people.

More generally, this work shows how the different sources of information (targeted/non-

targeted advertising, websites containing the information, and social interactions) affect

each other, and in particular how they affect the optimal bids to make in advertising

auctions. This is our fourth contribution.

The mathematical method for solving these problems is based on martingale tools, in

particular, on techniques involving Poisson processes and their compensators. By means of

these techniques and with a suitable change of variable in order to reformulate the problem

in terms of proportion of informed individuals, we essentially prove the results in two steps:

1) bounding from above (resp. from below) the optimal value when it is a gain (resp. a

cost), and then 2) providing a well chosen policy such that the inequalities in 1) become

equalities, thus simultaneously proving that the optimal value is equal to its bound, and

obtaining an optimal policy reaching it.

Outline of the paper. We introduce in Section 2 the core framework of our different

models. In Section 3, we study two targeted advertising models designed for applications to

commercial advertising, the first one modeling advertising to trigger a purchase, the second

one modeling advertising to trigger a subscription. In Section 4, we study two advertising

models applied to social marketing, the first one with an arbitrary discount factor, the

second one with no discounting, but with extra features of non-targeted advertising and

social interactions. We also derive some insightful properties of the solution related to the

sensitivity of the optimal bidding strategies with respect to the individual online behaviour

and social interactions effect. Section 5 presents some classes of examples where fully

explicit formulas can be derived, The proofs of our main results are postponed in Section

6, and we conclude in Section 7 by highlighting some extensions and perspectives.
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2 Basic framework

In this section, we introduce the framework on which all the subsequent models are based,

and then enrich it in various ways.

The core framework essentially consists in modeling (i) the concept of information, (ii)

an individual’s online behaviour, (iii) the targeted advertising auction mechanism, (iv)

a targeted advertising bidding strategy, and finally in describing how these four features

combine together to determine the information dynamic of an individual.

2.1 The Information and the Agent

In this work, all our models will be about some Information. We shall denote it with a

capital “I” to emphasize that it is a specific piece of information. It could a priori be any

information. Let us give a few examples, further discussed in this work. The Information

can be:

• the existence of a new company,

• the existence of a new service (e.g. in Netflix, Amazon, etc),

• the existence of a new product (smartphone, computer),

• the unhealthiness or healthiness of a behaviour (drug/alcohol consuming, road safety,

sexual safety, etc).

In the various models studied in this paper, each model will naturally correspond to one of

these three types of information, but for now, let us simply consider a generic Information.

The main characteristic of the Information is that any individual can either not know

it or know it. In other words, the Information is naturally associated to a binary state for

any individual: an individual in state 0 means that he is not aware of the Information,

while an individual in state 1 means that he is aware of the Information.

In our work, the Agent A will represent any entity (company, association, etc) desiring

to spread the Information to individuals or population.

• In the case of a new service or product, she corresponds naturally to the company

that proposes this service or sells this product.

• In the case of the unhealthiness or healthiness of a given behaviour, she represents a

philanthropic association or a governmental entity aiming to work for social welfare.

The main characteristics of the Agent is that 1) she wants to spread the Information, 2)

she has a gain or cost function depending upon how the information spreads, and 3) she

will use a digital advertising strategy as a channel to diffuse the Information.

2.2 The Individual and the Action

Let us start by modelling the general behaviour of an individual. Our model is in continu-

ous time. An individual is associated to some random times when he browses on Internet

with the following possible choices:
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• Spontaneously connect to a website providing the Information. Websites intrinsically

providing the information are numerous, depending upon the kind of information:

specialized websites relaying the Information, company/association’s own website,

etc. Essentially, any website such that the Information is in the actual website’s

content, as opposed to the alternative option:

• Visit a website not providing a priori the information, but displaying targeted ads,

and thus susceptible to display the Information whenever the agent (company, as-

sociation, etc) wins the ad auction and pays for it. Important websites displaying

targeted ads typically are social networks and search engines.

An Individual is associated to independent Poisson processes (N I, NT) with respective

intensities ηI, ηT. N I counts the times when the Individual connects to websites intrinsi-

cally providing the Information, while NT counts the times when the Individual connects

to websites displaying targeted ads. We shall, in our fourth model, introduce a popula-

tion with several individuals modeled on this basis, each with their own Poisson processes,

independent across individuals.

The Agent aims to spread the Information in order to trigger an Action from indi-

viduals. The Action depends upon the type of the Information:

• If the Information is about the existence of a service, the expected Action is a sub-

scription.

• If the Information is about the existence of a product, the expected Action is a

purchase.

• If the Information is about an unhealthy behaviour, the expected Action is a healthier

behaviour.

In this work, we assume that the Agent knows the individuals well enough to be aware of

who would do the Action if they had the Information (who would subscribe to the service

if he learns that it exists, buy the product if he learns that it exists, or stop some behaviour

if he learns that it is unhealthy).

The individuals who would not perform the Action, even informed, are dismissed: the

Agent does not try to send them an ad. Therefore, we can assume that the individuals

considered in this work are all such that

Getting the Information ⇒ Doing the Action.

2.3 The targeted advertising auctions and bidding strategies

When the Individual connects to websites displaying targeted ads, in reality, many influ-

encers are competing to win the right to display their ads to him. The mechanism used by

the website to choose which influencer will display her ad is to make them bid for it. Each

influencer has the possibility to propose a bid associated to the Individual’s characteristics

(intensities of his Poisson processes). This ad emplacement allocation mechanism is what

we call targeted advertising auctions.
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Auctions are complex to study. They involve several bidders, and are thus part of game

theory. The current framework is even more complicated since it is dynamic: an auction is

opened each time the Individual connects to a website displaying targeted ads. Our goal

is to focus on providing a strategic tool to the Agent, and keeping the problem tractable

is important in this work.

A good compromise to both take targeted advertising auctions into account while

having a strategically solvable problem is to model the maximal bid make by the other

bidders (i.e. other than the Agent) as random variables, i.i.d. among auctions. We thus

introduce a sequence of i.i.d. real (nonnegative) random variables (BT

k )k∈N, such that for

k ∈ N, BT

k represents the maximal bid of other bidders during the k-th targeted advertising

auction of the problem.

We next introduce the notion of targeted advertising bidding strategies. In essence,

a targeted advertising bidding strategy is simply a real valued process β which depends

at most from the past, i.e. which cannot depend upon the future (in other words non

anticipative), such that at each time t ∈ R+, βt represents the bid that the Agent would

make if the Individual connects to a website displaying targeted ads.

To rigorously formalize this, let us introduce the filtration F = (Ft)t∈R+ generated by

the processes (N I, NT, BT

NT), i.e.,

Ft = σ((N I

s , N
T

s , BT

NT
s
)0≤s≤t), t ≥ 0,

which thus represents all the information about event triggered before time t.

The set of open-loop bidding controls, denoted by ΠOL, is then the set of nonnegative

processes β predictable and progressively measurable w.r.t. the filtration F.

2.4 Information dynamic, constant bidding, and advertising cost

We can now combine all the pieces of modeling previously introduced to define the infor-

mation dynamic of the Individual, the notion of constant efficient bidding policy, and the

advertising cost. Given an open-loop bidding control β ∈ ΠOL, the information dynamic

of the Individual is the {0, 1}-valued process Xβ satisfying the relation

{

Xβ

0− = 0,

dXβ
t = (1 −Xβ

t−)(dN
I
t + 1βt≥BT

NT
t

dNT
t ), t ≥ 0.

Let us interpret this dynamic. The individual starts uninformed (Xβ

0− = 0). Once he is

informed (Xβ
t = 1), he stays informed (hence the (1 − Xβ

t−) part). As long as he is not

informed, the remaining part of the dynamic is effective: when the individual connects to

a website intrinsically providing the Information, he becomes informed (dN I
t part). When

he connects to a website displaying targeted ads (dNT
t part), he becomes informed if and

only if the Agent’s ad is displayed to him, which happens if and only if the Agent wins the

auction (1βt≥BT

NT
t

part).

Advertising cost. In the subsequent models, the gain or cost function of the agent will

be the combination of 1) a component depending upon the information dynamic of the
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Individual, and 2) an advertising cost component. The component 1) will depend upon

the model, but the advertising cost will always have the same form, namely:

C(β) = E

[

∫ ∞

0

e−ρt1βt≥BT

NT
t

c(βt, B
T

NT
t
)dNT

t )
]

. (2.1)

The interpretation is the following:

• ρ ∈ R+ is a discount rate. Usually, discount rate is chosen to be strictly positive

in order to avoid infinite rewards or costs. However, in one of our models (the last

one), we will specifically assume ρ = 0, and it will be an important assumption to

make the problem solvable. We shall see that in this model, infinite rewards/costs

will never occur despite this assumption.

• When the Individual connects to a website displaying targeted advertising (dNT
t

part), if the targeted advertising auction is won by the agent (1βt≥BT

NT
t

part), the

agent has to pay a price c(βt, B
T

NT
t

), where c : R2 → R is a function depending upon

the paying rule defined by the auction. In this paper, the auction payment rule is

assumed to be one of the two following standard rules:

1. First-price auctions. Under this auction rule, the winner of the auction pays her

bid, and thus, we have c(b, B) = b.

2. Second-price auctions. Under this rule, the winner of the auction pays the second

winning bid, i.e. the bid that she beat. In this case, we have c(b, B) = B.

Constant bidding policy. A constant bidding policy is a constant b ∈ R+. The constant

bidding control βb ∈ ΠOL associated to a constant bidding policy is defined by the feedback

form constraint βb
t = (1 − Xβb

t−)b. It simply models a strategy where the Agent makes a

constant bid b as long as the Individual is not informed (notice that it would be useless to

make a positive bid once he is informed).

We have now introduced all the elements of the core framework. In the sequel, we shall

study several advertising problems based on this framework:

• In Section 3, we model commercial advertising problems, i.e. problems where the

Agent is a company either trying to sell a service or a product. The common property

of both situations is that informing the Individual triggers an Action bringing a

reward to the company (subscription regular fee, purchase punctual fee).

• In Section 4, we model social marketing problems, i.e. problems where the Agent

is an association or government trying to alert people about unhealthy behaviours

(anti-drug/alcohol campaigns, road-safety campaigns, etc). The particularity of such

type of advertising is that informing people does not bring a reward to the Agent,

but instead, it cancels a cost: as long as an individual has an unhealthy behaviour, he

incurs a continuous cost to the philanthropic association. Once informed, he behaves

healthier and stops incurring such cost.
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3 Commercial advertising model

In this section, we study models for commercial advertising. The Agent is thus a company

trying to maximize its gain. We will study two types of commercial gains: the subscription-

based gain, and the purchase-based gain.

3.1 Purchase-based gain function

We consider the situation where the Information is the existence of a product, where the

Agent is a company selling this product, and where the Action of the Individual, once

informed, is to purchase the product. We thus define the following purchase-based gain

function:

V (β) = E

[

∫ ∞

0

e−ρtKdXβ
t

]

− C(β), for β ∈ ΠOL. (3.1)

where K is a nonnegative constant. Let us interpret this gain function. The part C(β)

is just the advertising cost from the core framework as defined in (2.1). ρ is still the

discount rate, and the part
∫∞

0
e−ρtKdXβ

t simply represents a punctual payment K from

the Individual to the Agent when he becomes informed (dXβ
t part). This naturally models

the reward obtained by the Agent when the individual buys the product. Therefore, V (β)

represents the net profit of the Agent in the situation of selling a product.

We now state the main result of this section.

Theorem 3.1 We have

V ⋆ := sup
β∈ΠOL

V (β) = sup
b∈R+

V (βb),

with

V (βb) =
ηIK + ηTE

[(

K − c(b, BT
1 )

)

1b≥BT

1

]

ηI + ρ+ ηTP[b ≥ BT
1 ]

, ∀b ∈ R+. (3.2)

Furthermore, any b⋆ ∈ argmax
b∈R+

V (βb) yields an optimal constant bid policy, i.e. an optimal

open-loop bid control βb⋆ taking the form of a constant bid.

Interpretation. Let us interpret this result by first understanding the role of ρ. It is

well known that a discount rate is mathematically equivalent to a random termination date

of the problem following an exponential distribution E(ρ) with parameter ρ. Up to adding

this random termination time, we can thus consider that the problem has no discount rate.

Given this interpretation, and assuming that the Agent plays a constant bidding policy b,

notice that the inner fraction in V (βb) can be written as

πIK + πρ × 0 + πTE[K − c(b, BT

1 ) | b ≥ BT

1 ]

where (πI, πρ, πT) are probability weights proportional to (ηI, ρ, ηTP[b ≥ BT
1 ]). This ex-

pression should be seen as the expected reward of the Agent computed in terms of how

the problem terminates:
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• When it terminates with the Individual finding the Information by himself with

probability πI, the Agent only perceives the reward K.

• When it terminates at the random time associated to E(ρ), the Individual has not

had the time to be informed: the Agent perceives nothing.

• When it terminates with the Individual getting informed by viewing the Agent’s

targeted ad with probability πT, the Agent perceives K and pays c(b, BT
1 ) because

he had to pay the auction’s price.

Besides the quantitative aspect of this result, an important qualitative property is that

a constant bidding policy is enough to reach the optimal value over all open-loop bid-

ding controls. This is particularly interesting from a model-free viewpoint (reinforcement

learning) as it means that one can restrict the search for an optimal strategy to the set of

nonnegative constant bidding policies, which is a reasonably “small” set.

Remark 3.1 (Cost dual viewpoint) Another interesting way to formulate the optimal

value and bid is from a cost viewpoint (and this is actually how we prove this formula in

this paper): the idea is to consider the best possible scenario for the Agent, which arises

when the Individual directly connects to a website containing the information from the

very beginning, and then look at the real scenario relatively to this best scenario. The real

scenario necessarily brings a smaller gain than the best scenario, and thus, it is as if the

Agent won the best scenario gain but then pays a cost corresponding to this difference.

From this viewpoint, the goal is to minimize this cost. The best scenario gain is clearly

equal to K, and we can rewrite the optimal value from (3.2) as

sup
β∈ΠOL

V (β) = K − inf
b∈R+

ρK + ηTE
[

c(b, BT
1 )1b≥BT

1

]

ηI + ρ+ ηTP[b ≥ BT
1 ]

,

and any b⋆ ∈ R+ such that

b⋆ = argmin
b∈R+

ρK + ηTE
[

c(b, BT
1 )1b≥BT

1

]

ηI + ρ+ ηTP[b ≥ BT
1 ]

yields an optimal constant bid.

We next introduce the following special optimal minimal bidding policy.

Definition 3.1 (Smallest optimal constant bid policy) We denote b⋆min the constant

bidding policy such that

b⋆min = min argmax
b∈R+

V (βb).

b⋆min is called the smallest optimal constant bidding policy.

Remark 3.2 From the proofs of our results, it is possible to see that the open-loop bidding

control βb⋆min is the smallest optimal open-loop bidding control, i.e. for all optimal open-

loop bidding control β, we have β
b⋆min

t ≤ βt, (ω, t)-a.e.

10



We have the following result about the sensitivity to parameters and upper bounds of

the optimal value and smallest minimal optimal bidding policy.

Proposition 3.1 The optimal value V ⋆ is increasing in ηI, ηT and decreasing in ρ, and

the smallest optimal constant bidding policy b⋆min is decreasing in ηI, ηT and increasing in

ρ. Finally, we have

V ⋆ ≥
ηIK

ηI + ρ
, b⋆min ≤ K − V ⋆ ≤

ρK

ηI + ρ
.

The interpretation of the above Proposition is the following.

Properties for V ⋆. The higher ηI is, the more frequently the Individual connects to a

website containing the Information, and thus the sooner he would learn by this channel

the Information, which, at fixed constant bid b, naturally increases the expected gain of

the Agent. This explains why the gain with any constant bid b, and thus the optimal

gain, of the Agent is increasing in ηI. Given η̃T ≤ ηT, the Agent can always “emulate”

any scenario associated to a constant bid b and a frequency η̃T of connection to a website

displaying targeted ads, simply by constraining himself to bid b only with probability η̃T

ηT

and 0 otherwise at each auction: by a standard property of Poisson processes, it will be

equivalent to always bid b at auctions occurring with intensity η̃T. Consequently, with the

intensity ηT, the Agent can replicate all the gains that an intensity η̃T could yield, and

thus his optimal gain is increasing in ηT. Finally, the larger ρ is, the more impatient the

Agent is, and thus the less value he gives to potential future rewards, which explains why

his optimal gain V ⋆ is decreasing in ρ. The lower bound of V ⋆ simply corresponds to the

gain associated to the constant bidding policy consisting in bidding 0 at each auction, i.e.

never displaying any ad, and thus simply waiting that the individual informs himself on a

website containing the Information.

Properties for the smallest optimal constant bid. When an auction is opened, two

scenarii can occur: 1) the Agent wins the auction, receives K and pays the auction price,

or 2) the Agent loses the auction, and the problem of informing the individual keeps going,

with an optimal value V ⋆. In other words, if we put the auction price apart, an auction

can be seen as providing a reward K when it is won, and V ⋆ when it is lost. Notice that it

is equivalent to consider that V ⋆ is won anyway, and that the auction is a standard static

auction providing the additional reward K − V ⋆ if the auction is won, and 0 if it is lost.

The larger V ⋆ is, the smaller K−V ⋆ is, and thus the smaller the bid that the Agent should

be willing to make to win K − V ⋆ is. The smallest optimal bid is thus decreasing in V ⋆,

which explains why its sensitivity to all the parameters are reversed w.r.t. the sensitivity

of V ⋆. In such auction, it is also clear that the Agent would have no interest in paying

more than K − V ⋆ to win the auction, which justifies the upper bound K − V ⋆. The

greater upper bound ρK

ηI+ρ
directly comes from the lower bound of V ⋆. In particular, this

implies that for getting an optimal bidding constant strategy, we can restrict the search of

the supremum over b in V (βb) to the bounded interval [0, ρK
ηI+ρ

].
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3.2 Subscription-based gain function

We now consider the situation where the Information is the existence of a service, where

the Agent is the company proposing this service, and where the Action of the Individual,

once informed, is to subscribe to the service. To that aim, we then simply consider the

following subscription-based gain function:

V (β) = E

[

∑

n∈N

e−(τβ+n)ρK
]

− C(β), for β ∈ ΠOL, (3.3)

where τβ := inf{t ∈ R+ : Xβ
t = 1} is the time of information of the individual.

Let us interpret this gain function. Again, the part C(β) is the advertising cost de-

scribed in the core framework, and ρ is still the discount rate. The other part represents

the gain coming from the Individual’s information dynamic. It corresponds to a regu-

lar payment of K every period 1 from the time of information τβ (and thus the time of

subscription) of the Individual.

We can now state the main result of this section.

Theorem 3.2 We have

sup
β∈ΠOL

V (β) = sup
b∈R+

V (βb),

with

V (βb) =
ηI K

1−e−ρ + E
[(

K
1−e−ρ − c(b, BT

1 )
)

1b≥BT

1
]

ηI + ρ+ P[b ≥ BT
1 ]

,

and any b⋆ ∈ argmax
b∈R+

V (βb) yields an optimal constant bid, i.e. an optimal open-loop bid

control taking the form of a constant bid.

Interpretation. Notice that the regular payment of K every period of duration 1 from

the time of information is, from the Agent’s viewpoint, equivalent to a unique payment of
K

1−e−ρ at the time of information. We are thus reduced to the previous case of purchase-

based gain.

4 Social marketing models

We now model a quite different type of advertising, called social marketing. Social market-

ing is the activity of making advertising campaigns not to make profit but to alert people,

in particular about unhealthy behaviours (anti-drug campaigns, road-safety campaigns,

sexual-safety campaigns, etc). The Agent, here, is either a philanthropic association or a

governmental entity working for social welfare, and considers that each Individual not be-

having healthily incurs a cost to her. As opposed to commercial advertising from previous

section, informing an Individual here does not bring a reward to the Agent, but instead,

cancels a cost.

For this application, our study will be split in two sub-cases:
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1. The case with a positive discount rate ρ, based on the same framework as previous

models but with a cost function, and

2. The important case with no discount rate (i.e. ρ = 0), where we shall be able to

enrich the basic framework by introducing a population of M individuals as well as a

non-targeted advertising mechanism, therefore turning the model into a population

control problem.

In both cases the Agent’s goal will be to minimize her cost function.

4.1 Case with a discount rate

We start by the case, with no social interaction nor non-targeted advertising, but with

an arbitrary discount rate ρ. Besides the processes N I and NT, we consider a third

Poisson process ND (D for “Dangerous behaviour”) , independent from the others, with

normalized intensity ηD = 1, counting the times when the Individual behaves unsafely.

In this social marketing problem, the cost function of the Agent is defined by

V (β) = E

[

∫ ∞

0

e−ρtK(1−Xβ
t−)dN

D

t

]

+ C(β), for β ∈ ΠOL. (4.1)

The part C(β) is the advertising cost, and the part E
[

∫∞

0 e−ρtK(1−Xβ
t−)dN

D

t

]

measures

the (discounted) cost perceived in the period before the Individual was informed, assuming

that the Individual incurs a cost K to the Agent every time he behaves unsafely.

We have the following result.

Theorem 4.1 We have

V ⋆ := inf
β∈ΠOL

V (β) = inf
b∈R+

V (βb),

with

V (βb) =
K + ηTE

[

c(b, BT
1 )1b≥BT

1

]

ηI + ρ+ ηTP[b ≥ BT
1 ]

and any b⋆ ∈ argmin
b∈R+

V (βb) yields an optimal constant bid, i.e. an optimal open-loop bid

taking the form of a constant bid.

Interpretation. Here again, we interpret ρ as the parameter of a random terminal time

with exponential distribution. Notice that in the case of social marketing, there is already

a random terminal time: the time when the Individual connects on the website intrinsically

containing the information. Indeed, in such case, the cost stops and the problem stops as

well. Both terminal times are exponential random variables with respective parameters ηI

and ρ. It is known that they can be compressed in a unique terminal time (the minimum

of both) with parameter ηI+ ρ. In other words, up to replacing the original intensity ηI of
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connection to a website containing the Information by ηI+ρ, we are reduced to a problem

with no discount rate (ρ = 0). The inner fraction can be split as follows:

K + ηTE
[

c(b, BT
1 )1b≥BT

1

]

ηI + ρ+ ηTP[b ≥ BT
1 ]

=
K

ηI + ρ+ ηTP[b ≥ BT
1 ]

+
ηTE

[

c(b, BT
1 )1b≥BT

1

]

ηI + ρ+ ηTP[b ≥ BT
1 ]

, (4.2)

and has the following interpretation. ηI + ρ + ηTP[b ≥ BT
1 ] is the intensity of the time

of information of the Individual, and thus 1
ηI+ρ+ηTP[b≥BT

1 ]
is the expected time before

information. During this time, a continuous cost K is essentially perceived, which explains

the first term in the r.h.s. of (4.2). The second term is essentially the expected cost

perceived at the time of termination of the problem, given that in this case, no reward,

and only the ad cost, is paid.

As in the commercial advertising case, we introduce the following special optimal min-

imal bidding policy.

Definition 4.1 (Smallest optimal constant bid policy) We denote b⋆min the constant

bidding policy such that

b⋆min = min argmin
b∈R+

V (βb).

b⋆min is called the smallest optimal constant bidding policy.

We have the following result about the sensitivity to parameters and upper bounds of

the optimal value and smallest minimal optimal bidding policy.

Proposition 4.1 The optimal value V ⋆ and the smallest optimal bid are decreasing in

ηI, ηT, and ρ, and we have

V ⋆ ≤
K

ηI + ρ
, b⋆min ≤ V ⋆ ≤

K

ηI + ρ
.

The interpretation of the above proposition is the following.

Properties for V ⋆. The higher ηI is, the more frequently the Individual connects to a

website containing the Information, and thus the sooner he would learn by this channel the

Information, and stop inducing a cost to the Agent, which naturally decreases the expected

cost of the Agent. The justification of the sensitivity in ηT is similar to the corresponding

interpretation for commercial advertising. Finally, the larger ρ is, the more impatient the

Agent is, and thus the less value she gives to potential future costs, which explains why

her optimal cost V ⋆ is decreasing in ρ. The lower bound of V ⋆ corresponds to the cost

associated to the constant bidding policy consisting in bidding 0 at each auction, and thus

waiting that the individual informs himself on a website containing the Information.

Properties for the smallest optimal constant bid. When an auction is opened, two

scenarii can occur: 1) the Agent wins the auction, and the cost stops, or 2) the Agent

loses the auction, and the problem of informing the individual keeps going on, with an

optimal cost V ⋆. In other words, if we put the auction price apart, an auction can be seen
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as incurring a cost 0 when it is won, and V ⋆ when it is lost. Notice that it is equivalent

to consider that the cost V ⋆ is incurred anyway, and that the auction is a standard static

auction providing the compensating reward V ⋆ if the auction is won, and 0 if it is lost.

Thus, the larger V ⋆ is, the greater the bid that the Agent should be willing to make to win

V ⋆ is. The smallest optimal bid is thus increasing in V ⋆, which explains why its sensitivity

to all the parameters are the same as V ⋆. In such auction, it is also clear that the Agent

would have no interest in paying more than V ⋆ to win the auction, which justifies the

upper bound V ⋆. The greater upper bound K
ηI+ρ

follows from the upper bound of V ⋆.

4.2 Case with no discount rate, with social interactions and non-

targeted advertising

In this section, we consider a social marketing model with no discounting, but with much

more features than previous models. We do not simply model websites intrinsically contain-

ing the Information and websites displaying targeted ads, but also model the alternative

for users to connect on website displaying non-targeted ads, and to socially interact with

each other. The arguments for introducing these two extra features is twofold:

1. For relevance in terms of applications. Social marketing nowadays still widely hap-

pens via non-targeted advertising (TV campaigns, etc). Although our model proposes

to use targeted advertising, it thus seems important to not completely dismiss the

current method, and instead propose a way to combine both mechanisms.

2. Mathematical reason. The absence of discount rate allows the problem to still be

tractable even by adding these features.

Let us reintroduce for sake of completeness and self-contained reading each component

of the framework together with these additional features.

The population. We now consider a population with M individuals, with online be-

haviour characterised by:

• a family of M i.i.d. triplets (Nm,I, Nm,T, Nm,NT, Nm,D), for m ∈ J1,MK, where

Nm,I, Nm,T, Nm,NT, and Nm,D are four independent Poisson processes with re-

spective intensities ηI, ηT, ηNT, and ηD = 1. Notice that we assume that the

population is homogeneous, i.e. each individual shares the same intensities.

• a family (Nm,i,S)m,i∈J1,MK of i.i.d. Poisson processes with intensity ηS, independent

from the other Poisson processes.

For all m ∈ J1,MK, the processes Nm,I, Nm,T, and Nm,D, have the same interpretation

as in the previous model: Nm,I counts the times when individual m visits a website

intrinsically containing the Information (in this case, it would be an association’s website,

the website specialized in health, etc). Nm,T counts the times when individual m connects

to a website displaying targeted ads, and Nm,D counts the time when he behaves unsafely.

The new features are: Nm,NT, counting the times when individual m visits a website

displaying non-targeted ads, and for m, i ∈ J1,MK, Nm,i,S counting the social interactions

between individuals m and i in the population.
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Targeted and non-targeted advertising auctions.

• Targeted advertising auctions. For each individual m ∈ J1,MK, whenever he connects

to a website displaying targeted ads, an auction is automatically opened where several

agents bid to win the right to display their ads to the individual. As in previous

models, we model the maximal bid from other bidders (other than our Agent), by

introducing an i.i.d. family of nonnegative random variables (Bm,T
k )k∈N,m∈J1,MK,

where Bm,T
k represents the maximal bid from other bidders at the k-th targeted

advertising auction concerning individual m. We also denote by cT : R2 → R the

paying rule function of this targeted auction, which is again assumed to be either of

first-price or second-price auction rule.

• Non-targeted advertising auctions. In this model, we also consider non-targeted ad-

vertising. Each time when an individual (regardless of his index) connects to a

website displaying non-targeted ads, here again, agents will compete to display their

ads (with the only difference that they cannot make their bid depending upon the

individual who connects to the website, hence the name “non-targeted advertising”).

An auction is thus also opened at each such connection. As before, we model the

maximum bid from other bidders (i.e. not the Agent) by introducing an i.i.d. family

of nonnegative random variables (BNT

k )k∈N, where B
NT

k represents the maximal bid

of other bidders during the k-non-targeted advertising auction (in all the population).

The paying rule on this non-targeted auction is defined by a function cNT : R2 → R,

which is also assumed to be either of first-price or second-price auction rule. We

stress that the auction rules used for the targeted advertising and the non-targeted

advertising auctions do not necessarily have to be the same.

Advertising bidding map strategies. Given that there are now M individuals,

targeted advertising, and non-targeted advertising, a general bidding map control will take

a more complex form with respect to previous model. Informally, a bidding map control

is a random process, depending only upon past events (i.e. non anticipative), and valued

in R
M+1. The idea is that this vector process will store the M bids that the Agent would

like to make for each individual m ∈ J1,MK if he were to connect to a website displaying

targeted ads, and the remaining coordinate corresponds to the bid that the Agent would

like to make if someone (anonymous) connects to a website using non-targeted advertising.

Therefore, M + 1 potential bids are required at any time, hence the term bidding map.

To formalise this concept, let us introduce the filtration F = (Ft)t∈R+ generated by the

processes

((Nm,I, Nm,T, Nm,NT, Nm,D, Bm,T

Nm,T , N
m,S)m∈J1,MK, B

NT

NNT , ((N
m,i,S)m,i∈J1,MK)

where NNT :=
∑M

m=1 N
m,NT globally counts the connections to a website displaying

non-targeted ads. An open-loop bidding map control, denoted by β ∈ ΠOL, is a process

β = (βm)m=0,...,M , valued in R
M+1
+ , predictable and progressively measurable w.r.t. the

filtration F. For m = 1, ...,M , βm
t is the bid that the Agent would make if a targeted

advertising auction for individual m happened at time t. The remaining coordinate, β0
t

is the bid that the Agent would make if a non-targeted advertising auction occurs at
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time t. In other words, if an individual connects to a website displaying targeted ads

(resp. non-targeted ads), the website will open the targeted advertising auction for this

individual (resp. the non-targeted auction for this connection), look at the bidding map

βt = (βm
t )m=0,...,M , and automatically use the bid βm

t for the connected individual m ∈

J1,MK (resp. the bid β0
t ) inscribed in this bidding map as the bid of the Agent for this

auction. This allows the agent to specify a different bid for each individual, which encodes

the idea of targeted-advertising, or a bid that do not depend upon who is connecting, which

encodes the idea of non-targeted advertising.

The information dynamic. Given an open-loop bidding map control β, we define

the information dynamic process Xm,β valued in {0, 1} of any individual m ∈ J1,MK of

the population as follows:



















Xm,β

0− = 0,

dXm,β
t = (1 −Xm,β

t− )(dNm,I
t + 1

βm
t ≥B

m,T

N
m,T
t

dNm,T
t

+ 1β0
t≥BNT

N
NTt
t

dNm,NT

t +
∑M

i=1 X
i,β
t− dNm,i,S

t ), t ≥ 0.

The interpretation of this dynamic is similar to previous sections for the first two terms

(but they are now related to a given individual m ∈ J1,MK), and with additional terms

which are essentially related to the new features of non-targeted advertising and social

interactions. Each individual m starts uninformed (Xm,β

0− = 0). Once individual m is

informed (Xm,β
t = 1), he stays informed ((1−Xm,β

t− ) part). As long as he is not informed, he

can receive the information either by connecting to to a website intrinsically containing the

Information (dNm,I
t part), or by connecting to a website displaying targeted ads (dNm,T

t

part), and when the Agent’s ad is displayed to him, i.e. iff the Agent wins the targeted

advertising auction (1
βm
t ≥B

m,T

N
m,T
t

part). Furthermore, individual m has the possibility to

• browse through websites displaying non-targeted ads (dNm,NT

t part), in which case

he will get informed if and only if the Agent’s ad is displayed to him, i.e. iff the

Agent wins the non-targeted advertising auction (1β0
t≥BNT

N
NTt
t

part),

• and socially interact with individual i (dNm,i,S
t part). In this case, he will get in-

formed whenever individual i is informed (X i,β
t part).

Proportion-based bidding policy. A proportion-based bidding policy is defined

by a pair of functions b = (bT, bNT) defined both from PM := { k
M

: k = 0, . . . ,M − 1}

into R+. To any such policy we associate the open-loop bidding map control βb satisfying

the feedback form constraint

βm,b
t = b

T

( 1

M

M
∑

i=1

X i,βb

t−

)

(1−Xm,βb

t− ), m ∈ J1,MK,

β0,b
t = b

NT

( 1

M

M
∑

i=1

X i,βb

t−

)

1 1
M

∑
M
i=1 X

i,βb

t− <1
, t ≥ 0.

17



In other words, a bidding map control associated to a proportion-based bidding policy

formalises a strategy where in the targeted auction, the Agent makes a bid for an individual

m that depends only on the proportion of informed people 1
M

∑M
i=1 X

i,βb

t− at any time t,

and whether the individual m is informed or not, and where in the non-targeted auction,

she makes a bid depending only on the proportion of informed people.

Cost function. Given a bidding map control β, the expected cost incurred to the

Agent is defined by

V (β) = E

[

M
∑

m=1

(

∫ ∞

0

K(1−Xm,β
t− )dNm,D

t +

∫ ∞

0

1
βm
t ≥B

m,T

N
m,T
t

cT(bm,T
t , Bm,T

N
m,T
t

)dNm,T
t

+

∫ ∞

0

1β0
t≥BNT

NNT
t

cNT(β0
t , B

NT

NNT
t

)dNm,NT

t

)]

. (4.3)

This cost function is similar to previous model in Section 4.1 except that there is a cost

for each individual m ∈ J1,MK in the population, (
∑M

m=1 part), and that there is an

additional term
∫∞

0 1β0
t≥BNT

NNT
t

cNT(β0
t , B

NT

NNT
t

)dNm,NT

t that measures the the non-targeted

advertising cost of the strategy.

We now state the main result for this model.

Theorem 4.2 The minimal cost is given by

V ⋆ := inf
β∈ΠOL

V (β) =
∑

p∈PM

v(p),

where v(p) = infbT,bNT∈R+
vb

T,bNT

(p), with

vb
T,bNT

(p) =

K + ηTE
[

cT(bT, BT
1 )1

bT≥B
1,T
1

]

+ ηNT
E

[

c
NT(bNT,BNT

1 )
1−p

1
bNT≥

B
1,NT

1
1−p

]

ηI + ηTP
[

bT ≥ B1,T
1

]

+ ηNTP
[

bNT ≥ BNT
1

]

+ pηS
.

For all p ∈ PM , the set argmin
bT,bNT∈R+

vb
T,bNT

(p) is not empty, and any proportion-based bidding

policy b
⋆ = (b⋆,T, b⋆,NT) such that

(b⋆,T(p), b⋆,NT(p)) ∈ argmin
bT,bNT∈R+

vb
T,bNT

(p), ∀p ∈ PM . (4.4)

yields an optimal bidding map control βb
⋆

. Moreover, in the case with fully second-price

auctions, i.e. cT(b, B) = cNT(b, B) = B, we have v(p) = infb∈R+ vb,(1−p)b(p). The set

argmin
b∈R+

vb,(1−p)b(p) is not empty, and any proportion-based bidding policy defined by b
⋆,T(p)

= b⋆(p), b⋆,NT(p) = (1− p)b⋆(p) with

b⋆(p) = argmin
b∈R+

vb,(1−p)b(p), ∀p ∈ PM ,

yields an optimal bidding map control βb
⋆

.
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Interpretation. Let us provide some interpretations of the formulas in Theorem 4.2.

• The sum part “
∑

p∈PM
”. We can split the problem in several successive problems

each consisting in optimally going from a proportion k
M

of informed people to a

proportion k+1
M

, for k ∈ {0, ...,M − 2}. The fact that there is no discount rate

implies that the time when each problem starts does not matter, and therefore, these

successive problems can be optimised independently, i.e. one by one.

• The term in the sum. The justification of the form of the terms in the sum is similar

to the justification given for the previous model: the fraction can be split into two

fractions, one corresponding to the expected cost perceived during this period, and

the other one corresponding to the expected cost perceived at the termination time

of this period.

• The term
c
NT(b,BNT

1 )
1−p

. Notice that in the formula, B1,T
1 and

BNT

1

1−p
play symmetric

roles. It is as if the non-targeted advertising mechanism with price BNT
1 is equivalent

to a targeted advertising mechanism with price
BT

1

1−p
. In other words, making the

advertising mechanism not targeted essentially is equivalent to multiply the ad cost

by 1
1−p

. This is natural since when the ad mechanism is not targeted, there is a

probability p that it displays the ad to an already informed individual. This means

that only a proportion 1− p of the paid ads will be useful, and thus, for each useful

ad, an average number of 1
1−p

ads has to be paid (including the useful one). In

other words, we have to pay the price of 1
1−p

ads to display an ad to an uninformed

individual.

• The term pηS. Notice that in the formula, pηS plays the same role as ηI. This is

consistent with the intuition that socially interacting with an informed individual has

the same effect as visiting a website containing the information: it will inform the

individual and not cost anything to the Agent. The more individuals are informed,

the more likely such interaction is to occur. More precisely, each informed individual

“plays the role” of a website containing the information, such that an individual has

intensity 1
M
ηS to “visit” it, and thus, with a k informed individuals, it yields an

intensity k
M
ηS = pηS.

We introduce the following special optimal proportion-based bidding policy.

Definition 4.2 (Smallest optimal proportion-based bidding policy) There exists a

unique proportion-based bidding policy b
⋆
min = (b⋆,Tmin, b

⋆,NT

min ) such that any proportion-

based bidding policy b
⋆ = (b⋆,T, b⋆,NT) as in Theorem 4.2 satisfies b

⋆,T
min(p) ≤ b

⋆,T(p) and

b
⋆,NT

min (p) ≤ b
⋆,NT(p) for all p ∈ PM . b

⋆
min is called the smallest optimal proportion-based

bidding policy.

Remark 4.1 The above result comes from the identity

argmin
bT,bNT∈R+

vb
T,bNT

(p)

= argmax
bT∈R+

E

[

(v(p) −B1,T
1 )1

bT≥B
1,T
1

]

× argmax
bNT∈R+

E

[

(

(1− p)v(p)−BNT

1

)

1bNT≥BNT

1

]
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which follows from a Bellman and verification result type property, essentially allowing to

see, in this dynamic problem, the long term optimal bid for a targeted advertising auction

(resp. for a non-targeted advertising auction) as a greedy optimal bid for a static auction

with immediate reward v(p) (resp. (1 − p)v(p)) when the auction is won. Consequently,

we have, for all p ∈ PM ,

b
⋆,T
min(p) = min argmax

bT∈R+

E

[

(v(p)−B1,T
1 )1

bT≥B
1,T
1

]

,

b
⋆,NT

min (p) = min argmax
bNT∈R+

E

[

(

(1− p)v(p) −BNT

1

)

1bNT≥BNT

1

]

.

It is also possible to see, from the proof of Theorem 4.2, that the open-loop bidding map

control βb
⋆
min is the smallest optimal open-loop bidding map control, i.e. for all optimal

open-loop bidding map control β = (βm)m∈J0,MK, we have β
m,b⋆

min

t ≤ βm
t for all m ∈ J0,MK,

(ω, t)-a.e., i.e. for almost every (ω, t) ∈ Ω× R+ w.r.t. the measure P⊗ B(R+).

We have the following properties about the sensitivity to parameters and upper bounds

of the optimal value and smallest minimal optimal bidding policy.

Proposition 4.2 The optimal value V ⋆ and the smallest optimal proportion-based bidding

policies b⋆,Tmin(p) and b⋆,NT

min (p) for targeted and for non-targeted advertising are decreasing

in ηI, ηT, ηNT, and ηS. Furthermore, b⋆,NT

min (p) is decreasing in p, while b⋆,Tmin(p) is

• decreasing in p when there is no non-targeted advertising (ηNT = 0),

• increasing in p when there is no social interactions (ηS = 0).

Finally, we have for all p ∈ [0, 1],

b⋆,Tmin(p), b
⋆,NT

min (p) ≤ v(p) ≤
K

ηI + pηS
.

The interpretation of the above proposition related to the monotonicity of the optimal

value and smallest proportion-based bidding policies with respect to the intensity param-

eters is similar as in the previous section. Let us discuss the monotonicity properties with

respect to the proportion p of informed individuals. Recall that the agent has at disposal

four channels of information: (1) her website which informs without cost the individual,

(2) the social interaction which also informs with probability p the individual and without

cost, (3) the targeted ad which informs surely the individual with cost cT, and (4) the

non-targeted ad which informs with probability 1 − p the individual with cost cNT. It is

then a trade-off to choose the most efficient channel for diffusing the information. So, in

the case where the fourth channel is not accessible (ηNT = 0), and when p is increasing,

this will only affect positively the efficiency of the social interactions (second channel),

and therefore the agent will bid less for the targeted ad. On the other hand, in the case

where the second channel is absent (ηS = 0), and when p is increasing, this will only affect

the fourth channel, which loses in efficiency since many individuals are already informed.

Consequently, it becomes more interesting to bid on the targeted ad. In the general case,

when p is increasing, the second channel gains in efficiency but the fourth channel become

more costly.
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Remark 4.2 The monotonicity properties of the smallest optimal proportion-based bid-

ding policies with respect to p has useful implications regarding their computational cost.

Indeed, the practical implementation of these optimal bids require to compute (via the search

of the infimum in (4.4)) (b⋆,Tmin(p), b
⋆,NT

min (p)) for any p ∈ PM . This is a priori very expensive

for large M . However, by taking advantage of the monotonicity in p of (b⋆,Tmin(p), b
⋆,NT

min (p)),

one can considerably reduce the computational complexity. For instance, if one starts by

computing optimal bids for p = 1
2 , the computation of b⋆,NT

min (12 ) allows to limit the search

for b
⋆,NT

min (p) to [0, b⋆,NT

min (12 )] for p > 1
2 , and to [b⋆,NT

min (12 ),
K

ηI+pηS ] for p < 1
2 . In partic-

ular, one can search b
⋆,NT

min (34 ) in [0, b⋆,NT

min (12 )] and b
⋆,NT

min (14 ) in [b⋆,NT

min (12 ),
K

ηI+ 1
4η

S
]. The

computation of (b⋆,NT

min (p))
p∈

J0,MJ
M

can thus clearly be made by dichotomy. For example, let

us assume that there is only non-targeted advertising, and to simplify, let us assume that

M = 2L for some L ∈ N. Then, only L = log2(M) dichotomies have to be made, and at

the ℓ-th dichotomy, there are 2ℓ minimizers to find in 2ℓ consecutive intervals with total

(i.e. cumulative) length upper bounded by K
ηI . Assuming that the computational time of the

search for a minimizer is proportional to the length of the interval on which it is searched,

the computational complexity of each dichotomy iteration is thus O(K
ηI ), and therefore, the

total computational complexity of the whole minimal bidding policy is O(K
ηI log2(M)) and

is thus only logarithmic in the size M of the population, which suggests that this algorithm

should be tractable even for large population.

Remark 4.3 (Mean-field approximation) As in any population models with enough

symmetry, it is expected that when M gets large, we obtain a mean-field limit. Let us

check formally how it is derived. Notice that the mean over the population of the Agent’s

optimal value is equal to

1

M
V ⋆ =

1

M

∑

p∈PM

v(p),

which thus takes the form of a Riemann sum, hence when M → ∞,

1

M
V ⋆ ≃

∫ 1

0

v(p)dp.

where v is extended on [0, 1) with the same expression as in Theorem 4.2. Such result can

be useful for two reasons:

1. To obtain an analytical approximation of the optimal value in some cases where the

integral can be explicitly computed,

2. and to provide a way to numerically approximate the optimal value, by discretising

the integral with a suitable discretisation step. This can be useful with very large

population, where one might want to speed up the computation.

It is also possible to formally derive a differential optimal control problem on the proportion

of informed users (pt)t∈R+ such that the optimal value and optimal control from this model

are the limit of the corresponding objects in our model when M → ∞. The controlled
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dynamic is defined by

dpβt
dt

= (1− pβt )
(

ηI + ηTP[βT

t ≥ BT

1 ] + ηNT
P[βNT

t ≥ BNT

1 ] + ηSpβt
)

,

with deterministic control β = (βT, βNT), and with cost functional

V (β) =

∫ ∞

0

{

(1− pβt )
(

K + ηTE[cT(βT

t , BT

1 )1βT
t ≥BT

1
]
)

+ ηNT
E
[

cNT(βNT

t , BNT

1 )1βNT
t ≥BNT

1

]

}

dt.

5 Examples with explicit computations

Notice that the results of all the models presented in this work have a solution (optimal

value and policy) that can be expressed in the form

inf
b∈R+

/ sup
b∈R+

/argmin
b∈R+

/argmax
b∈R+

a1 + a2E[c(b, B
T
1 )1b≥BT

1
] + a3E[c(b, B

NT
1 )1b≥BNT

1
]

a4 + a5P[b ≥ BT
1 ] + a6P[b ≥ BNT

1 ]

with well chosen parameters (ai)i≤6. In this section, we discuss two types of distributions

for BT
1 and BNT

1 that will lead to fully explicit formulas for the optimal bidding policy.

5.1 Constant maximal bid from other bidders

We consider the case where the maximal bids from other bidders, i.e. (BT

k )k∈N for the

targeted advertising auctions, and (BNT

k )k∈N for the non-targeted advertising auctions,

are constant, i.e. BT

k = BT ∈ R+ and BNT

k = BNT ∈ R+. Under this assumption, the

first-rice auction or second-price auction cases essentially become equivalent, and we focus

on the second price type of auction, i.e. the auction payment rule c(b, B) = B. Let us

study two cases:

1. The commercial advertising problem with purchase-based gain function, and

2. The social marketing problem with no discount factor and with social interactions

and non-targeted advertising.

5.1.1 Commercial advertising with purchase-based gain function

In this case, we have

V (βb) =
ηIK + ηT(K −BT)1b≥BT

ηI + ρ+ ηT1b≥BT

,

and any b⋆ ∈ argmax
b∈R+

V (βb) yields an optimal constant bid. Notice that V (βb) only takes

two possible values, one for b < BT and one for b ≥ BT. The optimisation thus reduces
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to choose either b < BT (for instance b = 0), either b ≥ BT (for instance b = BT). Hence,

an optimal bid is b⋆ ≥ BT iff

ηIK + ηT(K −BT)

ηI + ρ+ ηT
>

ηIK

ηI + ρ
,

which can be rewritten equivalently after some straightforward calculation as

BT <
ρ

ηI + ρ
K.

We clearly see what we had already established in the general case: the optimal bids are

“decreasing” in ηI and “increasing” in ρ. Namely, the smallest optimal bid is BT1BT≤
ρ

ηI+ρ
,

which is clearly a decreasing (resp. increasing) function of ηI (resp. of ρ).

There is another interesting optimal bid, that is, the bid ρ
ηI+ρ

K. Indeed, this bid is

the only one to be optimal regardless BT. In other words, by assuming (or knowing) that

other bidders’ maximal bid is constant, we obtain a dominant bidding strategy ρ
ηI+ρ

K,

which is optimal whatever (hence robust to) the constant value of BT.

5.1.2 Social marketing problem with no discount factor and with social

interactions and non-targeted advertising

In this case, the optimal bidding map control is obtained from a proportion-based bidding

policy b
⋆ = (b⋆,T, b⋆,NT) with b

⋆,T(p) = b⋆(p) and b
⋆,NT(p) = (1− p)b⋆(p), where

b⋆(p) ∈ argmin
b∈R+

K + ηTBT1b≥BT + ηNT BNT

1−p
1
b≥BNT

1−p

ηI + ηT1b≥BT + ηNT1
b≥BNT

1−p

+ pηS
.

In order to obtain simple and interpretable formula, let us assume that there is only one

type of advertising.

Only targeted advertising. If there is only targeted advertising, i.e. if ηNT = 0,

we have

b
⋆,T(p) ∈ argmin

b∈R+

K + ηTBT1b≥BT

ηI + ηT1b≥BT + pηS
.

Here again, we are reduced to compare two costs:

K

ηI + pηS
and

K + ηTBT

ηI + ηT + pηS
,

the first one being obtained for b < BT, and the second one for b ≥ BT. The best option

will be b
⋆,T(p) ≥ BT if and only if

K

ηI + pηS
>

K + ηTBT

ηI + ηT + pηS
,
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which is equivalent to

p <
K
BT − ηI

ηS
=: p⋆.

This means that before the proportion of informed individuals attains the threshold in-

formed proportion p⋆, one should bid higher than BT (and thus display ads), and when the

informed proportion exceeds p⋆, one should bid lower than BT (and thus stop displaying

ads). Assuming that K ≥ ηIBT, we also notice that this threshold p⋆ is decreasing in ηI

and in ηS. This is interpreted as follows:

• First of all, the fact that there is an informed proportion threshold under which the

Agent should display ads and above which she should not display ads necessarily

comes from the social interactions. Indeed, in no-social interaction case (ηS = 0),

this threshold p⋆ = ∞. The fact that the presence of social interactions is susceptible

to introduce a finite threshold proportion above which the Agent should stop dis-

playing ads, can be also understood as follows: suppose that an individual connects

to a website displaying targeted ads. With social interactions, the more people are

informed, the sooner this individual will learn the Information anyway, by interacting

with an informed individual. Therefore, the incentive of the Agent to display the ad

to him is weaker as the proportion of informed individuals increases, which justifies

that the bid she is willing to make is smaller, and once it is small enough to fall below

BT, the Agent will stop displaying ads.

• The interpretation of the decreasing nature of the threshold proportion in ηI and

ηS is the following. For a fixed proportion of informed individuals p, increasing the

intensity of social interactions ηS will also make more likely a soon interaction with an

informed people, thus weakening the Agent’s incentive to display an ad, such that this

incentive will be fully compensated after a smaller informed proportion. Likewise,

increasing the intensity ηI of connections to a website containing the information will

make people inform themselves faster, thus catalyzing the increase of the informed

proportion, in turn decreasing the Agent’s incentive to display an ad.

Finally, we can estimate the optimal value when M → ∞, by using the mean-field

approximation as observed in Remark 4.3. First, consider the case when p⋆ ≥ 1. In this

case, we have b
⋆,T(p) ≥ BT, for all p ∈ [0, 1], and so

1

M
V ⋆ ≃

∫ 1

0

v(p)dp =

∫ 1

0

K + ηTBT1b⋆,T(p)≥BT

ηI + ηT1b⋆,T(p)≥BT + pηS
dp =

∫ 1

0

K + ηTBT

ηI + ηT + pηS
dp

=
K + ηTBT

ηS
ln
[ηI + ηT + ηS

ηI + ηT

]

.

24



When 0 ≤ p⋆ < 1, we have

1

M
V ⋆ ≃

∫ 1

0

K + ηTBT1b⋆,T(p)≥BT

ηI + ηT1b⋆,T(p)≥BT + pηS
dp =

∫ p⋆

0

K + ηTBT

ηI + ηT + pηS
dp +

∫ 1

p⋆

K

ηI + pηS
dp

=
K + ηTBT

ηS
ln
[ηI + ηT + p⋆η

S

ηI + ηT

]

−
K

ηS
ln
[ηI + p⋆η

S

ηI + ηS

]

=
K + ηTBT

ηS
ln
[ηT + K

BT

ηI + ηT

]

−
K

ηS
ln
[ K

BT

ηI + ηS

]

.

Only non-targeted advertising. If there is only non-targeted advertising, i.e. if

ηT = 0, we have

b
⋆,NT(p) ∈ argmin

b∈R+

K + ηNT BNT

1−p
1b≥BNT

ηI + ηNT1b≥BNT + pηS
.

Here again, we are reduced to compare two costs:

K

ηI + pηS
and

K + ηNTBNT

1−p

ηI + ηNT + pηS
,

the first one being obtained for b < BNT, and the second one for b ≥ BNT. The best

option will be b
⋆,NT(p) ≥ BNT if and only if

K

ηI + pηS
>

K + ηNT BNT

1−p

ηI + ηNT + pηS
,

which is equivalent to

p <
K − ηIBNT

K + ηSBNT
=: p̄⋆.

This means that below the informed proportion threshold p̄⋆, one should bid higher than

BNT (and thus display ads), and above the informed proportion p̄⋆, one should bid lower

than BNT (and thus stop displaying ads). When K ≥ ηIBNT, we notice, as in the “only

targeted advertising” case, that the informed proportion p̄⋆ is decreasing in ηI and in ηS.

The same interpretations as in the “only targeted advertising” case still hold, but there is

an additional argument. Indeed, recall that in the “only targeted advertising” case, it is

argued that the presence of such threshold comes from the presence of social interactions,

and that when they are absent (ηS = 0), or more generally when ηS is small enough,

there is no threshold (the optimal bidding strategy is a constant bid). Here, notice that

p̄⋆ < 1, even if ηS = 0 (recall that we assumed that ηI > 0). Thus, as opposed to the

previous “only targeted advertising” case, the existence of such threshold does not only

come from social interactions. Displaying non-targeted ads always comes with the risk to

display ads to already informed people, and thus paying for a useless ad. The more people

are informed, the higher the risk. This explains why after some proportion threshold, it is

not worth to pay for displaying an ad, and thus the Agent has to stop doing so.
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5.2 Uniform maximal bid from other bidders

We now consider the case where the other bidders’ maximal bid is uniformly distributed.

Regarding the auction payment rule, we shall focus on the first-price auction rule, i.e.,

c(b, B) = b (the same argument applies to the second-price auction rule).

We focus on the example of the purchase-based commercial advertising model, but the

same argument can be adapted to the other models. From Theorem 3.1, the gain value

associated to a constant bid strategy is equal to

V (βb) =
ηIK + ηT(K − b)P[b ≥ BT

1 ]

ηI + ρ+ ηTP[b ≥ BT
1 ]

, b ∈ R+.

Denoting by [b−, b+] with b− < b+, the support of the uniform distribution for BT
1 , we can

restrict the search for the argmax of b 7→ V (βb) to the interval [b−, b+], and so

b⋆ ∈ argmax
b∈[b−,b+]

ηIK + ηT(K − b) b−b−

b+−b−

ηI + ρ+ ηT b−b−

b+−b−

.

By making the change of variable

b′ = ηI + ρ+ ηT
b− b−

b+ − b−
, i.e. b = λ1 + λ2b

′

with

λ1 = b− − (b+ − b−)
ηI + ρ

ηT
, λ2 =

b+ − b−

ηT
,

we see that b⋆ = λ1 + λ2b
′,⋆, with

b
′,⋆ ∈ argmax

b′∈[b′−,b′+]

a0 + a1b
′ + a2b

′2

b′
=: argmax

b′∈[b′−,b′+]

g(b′), (5.1)

with

a0 = λ1(η
I + ρ)−Kρ, a1 = K − λ1 + λ2(η

I + ρ), a2 = −λ2 < 0,

and

b′− = ηI + ρ, b′+ = ηI + ρ+ ηT.

By writing the first-order condition for g(b′) in (5.1), we see that its derivative is equal to

a2 −
a0

b′2
which is negative, for b′ ∈ [b′−, b′+] ⊂ R+, if and only if b′2 ≥ a0

a2
, and thus if and

only if b′ ≥

√

(

a0

a2

)

+
. The argmax for g in [b′−, b′+] is thus given by

b
′,⋆ = max

[

b′−,min
(

b′+,

√

(a0
a2

)

+

)]

and thus

b⋆ = max
[

b−,min(b+, b̄)
]

where (after some straightforward calculation)

b̄ = b− − (b+ − b−)
ηI + ρ

ηT
+

√

b+ − b−

ηT

(

Kρ− b−(ηI + ρ) +
b+ − b−

ηT
(ηI + ρ)2

)

+
.
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6 Proof of main results

We first prove the results in the social marketing model with no discount rate, and then

show how the other results can be reduced as particular cases of this model.

6.1 Proof of results in Section 4.2

6.1.1 Proof of Theorem 4.2

Fix an arbitrary open-loop bidding map control β, and denote by

pβt =
1

M

M
∑

m=1

Xm,β
t , t ∈ R+,

the proportion of informed individuals at each time t ∈ R+. The underlying idea of this

proof is a change of variable from the numerous Poisson processes of the problem to the

proportion pβt in the cost function. In other words, the suitable approach to look at the

problem is to express the optimisation of the cost V (β) over the proportion pβ running

into {0, 1/M, . . . , 1} rather than over the times of jumps of the numerous Poisson processes

N I, ND, NT, NNT defined in our model. Notice that Poisson and proportion process are

piece-wise constant processes, and thus the change of variable has to be done carefully. To

deal with this technical issue, we shall rely on the compensated processes of the Poisson

processes, and use martingale arguments in order to express V (β) first with dt thanks to

the intensity processes, then make a continuous-time change of variable to obtain another

intensity process, and then move back to jump processes with dpβ .

Step 1: Intensity process of pβ. From the dynamics of Xβ, we have

dpβt =
1

M

M
∑

m=1

(1−Xm,β
t− )

(

dNm,I
t + 1

βm
t ≥B

m,T

N
m,T
t

dNm,T
t .

+ 1β0
t≥BNT

NNT
t

dNm,NT

t +
M
∑

i=1

X i,β
t− dN i,m,S

t

)

=
1

M

M
∑

m=1

(1−Xm,β
t− )

(

dNm,I
t + 1

βm
t ≥B

m,T

N
m,T
t−

+1

dNm,T
t

+ 1β0
t≥BNT

NNT
t−

+1

dNm,NT

t +

M
∑

i=1

X i,β
t− dNm,i,S

t

)

.

It follows that the process

t 7−→ pβt −

∫ t

0

1

M

∑

m∈J1,MK

(1 −Xm,β
s− )

(

ηI + 1
βm
s ≥B

m,T

N
m,T
s−

+1

ηT (6.1)

+ 1β0
s≥BNT

NNT
s−

+1

ηNT +
∑

i∈J1,MK

X i,β
s−ηS

)

ds,

27



is a martingale. Indeed, a classical result of martingale theory for Point process, is that for

any Poisson process N with intensity η, its compensated process, defined by (Nt − ηt)t∈R+

is a martingale w.r.t. its natural filtration, but also, clearly, w.r.t. any filtration generated

by N and any process Y independent of N . This implies that all the Poisson processes

considered in this model are martingales w.r.t. the filtration F̃ = (F̃t)t∈R+ defined by

F̃t = σ((Bm,T
k )m∈J1,MK,k∈N⋆

, (BNT

k )k∈N⋆
, (Nm,I

s , Nm,T
s , Nm,NT

s , Nm,i,S
s , Nm,D

s )m,i∈J1,MK,s≤t).

Notice that the processes in the integrand in (6.1) is F̃-predictable, which thus implies that

the process in (6.1) is a F̃-martingale. Since Ft ⊂ F̃t for all t ∈ R+, this implies that for

any bounded positive F-predictable process H ,

E

[

∫ ∞

0

Htdp
β
t

]

= E

[

∫ ∞

0

Ht

1

M

∑

m∈J1,MK

(1−Xm,β
t )

(

ηI + 1
βm
t ≥B

m,T

N
m,T
t−

+1

ηT

+ 1β0
t≥BNT

NNT
t−

+1

ηNT +
∑

i∈J1,MK

X i,β
t− ηS

)

dt
]

= E

[

∫ ∞

0

Ht

1

M

∑

m∈J1,MK

(1−Xm,β
t )

(

ηI + P[b ≥ Bm,T
1 ]b:=βm

t
ηT

+ P[b ≥ BNT

1 ]b:=β0
t
ηNT +

∑

i∈J1,MK

X i,β
t ηS

)

dt
]

.

This expression can be rewritten as

E

[

∫ ∞

0

Htdp
β
t

]

= E

[

∫ ∞

0

HtG
β
t dt

]

, (6.2)

where αβ
t :=

∑M
m=1(1−X

m,β

t−
)P[b≥BT

1 ]b:=βm
t

M(1−p
β

t−
)

, and

Gβ
t := (1− pβt )

(

ηI + ηTαβ
t + ηNT

P[b ≥ BNT

1 ]b:=β0
t
+ ηSpβt

)

, ∀t ∈ R+. (6.3)

This means that Gβ is the intensity process of pβ .

Step 2: Lower bound for V (β). From (4.3), and using the intensities of the Poisson

processes, we rewrite the cost function as

V (β) = E

[

M
∑

m=1

∫ ∞

0

(

K(1−Xm,β

t−
) + 1

βm
t ≥B

m,T

N
m,T
t

cT(βm
t , Bm,T

N
m,T
t

)ηT

+ 1β0
t≥BNT

NNT
t

cNT(β0
t , B

NT

NNT
t

)ηNT

)

dt
]

= E

[

M
∑

m=1

∫ ∞

0

(

K(1−Xm,β

t−
) + ηTE[cT(b, B1,T

1 )1
b≥B

1,T
1

]b:=βm
t

+ ηNT
E[cNT(b, BNT

1 )1b≥BNT

1
]b:=β0

t

)

dt
]

.

28



Now, we can bound from below the part E[cT(b, B1,T
1 )1

b≥B
1,T
1

]b:=βm
t
by (1−Xm,β

t−
)E

[

cT(b, B1,T
1 )1

b≥B
1,T
1

]

b:=βm
t

and the part E[cNT(b, BNT
1 )1b≥BNT

1
]b:=β0

t
by 1

p
β

t−
<1E[c

NT(b, BNT
1 )1b≥BNT

1
]b:=β0

t
, so that

V (β) ≥ ME

[

∫ ∞

0

(

K(1− pβ
t−
) +

1

M

M
∑

m=1

(1−Xm,β

t−
)ηTE

[

cT(b, B1,T
1 )1

b≥B
1,T
1

]

b:=βm
t

+ 1
p
β

t−
<1η

NT
E
[

cNT(b, BNT

1 )1b≥BNT

1

]

b:=β0
t

)

dt
]

= ME

[

∫ ∞

0

HtG
β
t dt

]

, (6.4)

where Ht = H̃t(p
β

t−
) with H̃t(p) defined for p ∈ [0, 1] by

H̃t(p) :=

K + ηT

M(1−p)

M
∑

m=1

(1−Xm,β
t− )E[cT(b, B1,T

1 )1
b≥B

1,T
1

]b:=βm
t
+ 1p<1η

NT
E
[cNT(b, BNT

1 )

1− p
1b≥BNT

1

]

b:=β0
t

ηI + ηTαβ
t + ηNTP[b ≥ BNT

1 ]b:=β0
t
+ ηSp

,

(with the convention that 0
0 = 0) by recalling the definition of Gβ in (6.3). For such H ,

which is clearly a positive and F-predictable bounded process, we have from (6.4) and (6.2)

V (β) ≥ ME

[

∫ ∞

0

H̃t(p
β

t−
)dpβt

]

.

The above r.h.s. is turned into a sum over successive values of pβt as

V (β) ≥ E

[

∑

p∈PM

H̃
τ
β
p
(p)

]

,

where τβp = inf{t ∈ R+ : pβt = p + 1/M} for p ∈ PM . Notice that in H̃
τ
β
p
(p), the terms

∑M
m=1(1−Xm,β

τ
β
p −

)E[cT(bm,T, B1,T
1 )1

b≥B
1,T
1

]b:=βm

τ
β
p

and the sum in the definition of αβ

τ
β
p

are

only summing over the M(1 − p) indices m such that Xm,β

τ
β
p −

= 0. We can thus clearly

bound from below H̃
τ
β
p
(p), for p ∈ PM , by

H̃
τ
β
p
(p) ≥ inf

bm,T,bNT∈R+
m∈J1,M(1−p)K

w(p; (bm,T)m∈J1,M(1−p)K, b
NT),

with

w(p; (bm,T)m∈J1,M(1−p)K, b
NT)

:=

K + ηT

M(1−p)

M(1−p)
∑

m=1

E
[

cT(bm,T, B1,T
1 )1

bm,T≥B
1,T
1

]

+ ηNT
E
[cNT(bNT, BNT

1 )

1− p
1bNT≥BNT

1

]

ηI + ηT

M(1−p)
∑

m=1

P[bm,T ≥ BT

1 ]

M(1−p) + ηNTP[bNT ≥ BNT
1 ] + ηSp

,
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so that for any open-loop bidding map control β ∈ ΠOL,

V (β) ≥
∑

p∈PM

v(p), (6.5)

with

v(p) := inf
bm,T,bNT∈R+
m∈J1,M(1−p)K

w(p; (bm,T)m∈J1,M(1−p)K, b
NT), p ∈ PM . (6.6)

Step 3: Attaining the lower bound. By definition of v(p) in (6.6), we have for all bm,T ∈ R+,

m ∈ J1,M(1− p)K, and bNT ∈ R+,

K +
ηT

M(1− p)

M(1−p)
∑

m=1

E[cT(bm,T, B1,T
1 )1

bm,T≥B
1,T
1

] + ηNT
E[

cNT(bNT, BNT
1 )

1− p
1bNT≥BNT

1
]

≥ v(p)
(

ηI + ηT
∑M(1−p)

m=1 P[bm,T ≥ BT
1 ]

M(1− p)
+ ηNT

P[bNT ≥ BNT

1 ] + ηSp
)

which is equivalent to

K − v(p)(ηI + pηS) +
ηT

M(1− p)

M(1−p)
∑

m=1

E
[(

cT(bm,T, B1,T
1 )− v(p)

)

1
bm,T≥B

1,T
1

]

+ ηNT
E

[(cNT(bNT, BNT
1 )

1− p
− v(p)

)

1bNT≥BNT

1

]

≥ 0.

Moreover, we have equality if and only if bm,T ∈ R+, m ∈ J1,M(1 − p)K, and bNT ∈ R+

attains the infimum in (6.6). This means that

argmin
bm,T,bNT∈R+
m∈J1,M(1−p)K

w(p; (bm,T)m∈J1,MK, b
NT)

= argmin
bm,T,bNT∈R+
m∈J1,M(1−p)K

{ ηT

M(1− p)

M(1−p)
∑

m=1

E[(cT(bm,T, B1,T
1 )− v(p))1

bm,T≥B
1,T
1

]

+ ηNT
E

[(cNT(bNT, BNT
1 )

1− p
− v(p)

)

1bNT≥BNT

1

]}

=
(

∏

m∈J1,M(1−p)K

argmin
bm,T∈R+

E[(cT(bm,T, B1,T
1 )− v(p))1

bm,T≥B
1,T
1

]
)

× argmin
bNT∈R+

E

[(cNT(bNT, BNT
1 )

1− p
− v(p)

)

1bNT≥BNT

1

]

=
(

argmax
bT∈R+

E
[(

v(p) − cT(bT, B1,T
1 )

)

1
bT≥B

1,T
1

]

)M(1−p)

× argmax
bNT∈R+

E

[(

v(p)−
cNT(bNT, BNT

1 )

1− p

)

1bNT≥BNT

1

]

. (6.7)
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Relation (6.7) shows that the original argmin over M(1 − p) + 1 arguments in v(p) is

reduced into the search of two argmax for the optimal bid of static auctions, one with

respect to maximal bid distribution L(B1,T
1 ) for the targeted auction, and the other with

respect to the maximal bid distribution L(BNT
1 ) of the non-targeted auction.

Let us check that these sets are not empty. We study the set

argmax
bT∈R+

E[(v(p) − cT(bT, B1,T
1 ))1

bT≥B
1,T
1

], (6.8)

the other set being treated similarly, and distinguish the two cases of paying auction rules:

1. First-price auction: cT(b, B) = b. In this case, the set in (6.8) is written as

argmax
bT∈R+

{

(v(p)− bT)P[bT ≥ B1,T
1 ]

}

.

Notice that for bT > v(p), the expression (v(p)−bT)P[bT ≥ B1,T
1 ] is strictly negative,

and thus smaller than its value for bT = 0. The maximisation can thus be restricted to

[0, v(p)]. Notice that bT 7→ v(p)− bT is positive and continuous on [0, v(p)], and thus

upper semi-continuous, and bT 7→ P[bT ≥ B1,T
1 ] is positive, non-decreasing and càd-

làg, and thus upper semi-continuous. It follows that bT 7→ (v(p) − bT)P[bT ≥ B1,T
1 ]

is positive and upper semi-continuous on [0, v(p)], and thus reaches its maximum.

2. Second-price auction case: cT(b, B) = B. In this case, the set (6.8) is written as

argmax
bT∈R+

E[(v(p) −B1,T
1 )1

bT≥B
1,T
1

],

and it is clear that the maximum is attained by bT = v(p).

This proves that the set (6.7) is not empty. Moreover, any bm,T ∈ R+, m ∈ J1,M(1− p)K,

and bNT ∈ R+ in the set (6.7) reaches the infimum in (6.6). Given the form of the set

(6.7), one can clearly take an element of the form ((bT)m∈J1,M(1−p)K, b
NT) in this set (i.e.

the same bid bT for the targeted advertising bid associated to all individuals who are not

informed yet). Thus, the infimum in (6.6) is written as

v(p)

= inf
bT,bNT∈R+

K + ηT

M(1−p)

∑M(1−p)
i=1 E[cT(bT, B1,T

1 )1
bT≥B

1,T
1

] + ηNT
E[

c
NT(bNT,BNT

1 )
1−p

1bNT≥BNT

1
]

ηI + ηT
∑M(1−p)

i=1 P[bT≥BT

1 ]

M(1−p) + ηNTP[bNT ≥ BNT
1 ] + ηSp

= inf
bT,bNT∈R+

vb
T,bNT

(p), (6.9)

with

vb
T,bNT

(p) :=
K + ηTE[cT(bT, B1,T

1 )1
bT≥B

1,T
1

] + ηNT
E[

c
NT(bNT,BNT

1 )
1−p

1bNT≥BNT

1
]

ηI + ηTP[bT ≥ BT
1 ] + ηNTP[bNT ≥ BNT

1 ] + ηSp
.
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Therefore, we have by (6.5)

V ⋆ = inf
β∈ΠOL

V (β) ≥
∑

p∈PM

v(p) =
∑

p∈PM

inf
bT,bNT∈R+

vb
T,bNT

(p).

Now, by considering the control βb
⋆

associated to the proportion-based bidding policy b
⋆

= (b⋆,T, b⋆,NT) defined by

(bT(p), bNT(p)) ∈ argmin
bT,bNT∈R+

vb
T,bNT

(p),

and retracing the above derivations, we see that all the inequalities turn into equalities.

More precisely, the first inequality (6.4) becomes an equality whenever the bidding control

used comes from a proportion-based policy. Indeed, in this case,

E[cT(b, B1,T
1 )1

b≥B
1,T
1

]b:=(βb)mt
= E[cT(b, B1,T

1 )1
b≥B

1,T
1

]
b:=(1−X

m,βb

t−
)(βb)mt

= (1−Xm,βb

t−
)E

[

cT(b, B1,T
1 )1

b≥B
1,T
1

]

b:=(βb)mt

and

E[cNT(b, BNT

1 )1b≥BNT

1
]b:=(βb)0t

= E[cNT(b, BNT

1 )1b≥BNT

1
]b:=1

p
βb

t−
<1

(βb)0t

= 1
p
βb

t−
<1

E[cNT(b, BNT

1 )1b≥BNT

1
]b:=(βb)0t

,

The next steps of the proof thus lead to the equality

V (βb
⋆

) = E

[

∑

p∈PM
H̃

τ
βb⋆

p

(p)
]

,

and the only other lower bound performed is H̃
τ
β
p
(p) ≥ v(p), but this bound is clearly,

by definition of b⋆, reached by βb
⋆

, i.e. we have H̃
τ
βb⋆

p

(p) = v(p), and thus V (βb
⋆

) =
∑

p∈PM
v(p), which implies that βb

⋆

is an optimal bidding map control: V (βb
⋆

) = V ⋆.

Case of a second-price auction rule, i.e. cT(b, B) = cNT(b, B) = B. In this case, relation

(6.7) is written as

argmin
bm,T,bNT∈R+
m∈J1,M(1−p)K

w(p; (bm,T)m∈J1,MK, b
NT)

=
(

argmax
bT∈R+

E
[(

v(p)−B1,T
1 )

)

1
bT≥B

1,T
1

]

)M(1−p)

× argmax
bNT∈R+

E

[(

v(p)−
BNT

1

1− p

)

1bNT≥BNT

1

]

. (6.10)

We then notice that the element ((v(p))m∈J1,M(1−p)K, (1−p)v(p)), belongs to the set (6.10).

It follows that the infimum in (6.6) (or (6.9)) can be reduced to a single parameter opti-

misation problem, namely

v(p) = inf
b∈R+

vb,(1−p)b(p).
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Moreover, we obtain an optimal bidding map control βb
⋆

associated to a proportion-based

bidding policy in the form b
⋆(p) = (b⋆(p), (1− p)b⋆(p)), p ∈ [0, 1] with

b⋆(p) ∈ argmin
b∈R+

vb,(1−p)b(p).

6.1.2 Proof of the well-posedness of Definition 4.2

Let us first prove that

argmin
bT,bNT∈R+

vb
T,bNT

(p)

= argmax
bT∈R+

E
[

(v(p) − cT(bT, B1,T
1 ))1

bT≥B
1,T
1

]

× argmax
bNT∈R+

E

[(

v(p)−
cNT(bNT, BNT

1 )

1− p

)

1bNT≥BNT

1

]

.

By definition, for any bT, bNT ∈ R+, we have vb
T,bNT

(p) ≥ v(p), with equality if and only

if bT, bNT reach the infimum in the definition of v(p). This is formulated as

K + ηTE[cT(bT, B1,T
1 )1

bT≥B
1,T
1

] + ηNT
E[

c
NT(bNT,BNT

1 )
1−p

1bNT≥BNT

1
]

ηI + ηTP[bT ≥ BT
1 ] + ηNTP[bNT ≥ BNT

1 ] + ηSp
≥ v(p),

which is written equivalently as

K − (ηI + ηSp)v(p) + ηTE
[

(cT(bT, B1,T
1 )− v(p))1

bT≥B
1,T
1

]

+ ηNT
E

[(cNT(bNT, BNT
1 )

1− p
− v(p)

)

1bNT≥BNT

1

]

≥ 0, (6.11)

again with equality if and only if bT, bNT reach the infimum in the definition of v(p). This

clearly means that bT, bNT reach the infimum in the definition of v(p) if and only if they

minimize (6.11) over bT, bNT ∈ R+, i.e. if and only if

(bT, bNT) ∈ argmax
bT∈R+

E[(v(p)− cT(bT, B1,T
1 ))1

bT≥B
1,T
1

]

× argmax
bNT∈R+

E

[(

v(p)−
cNT(bNT, BNT

1 )

1− p

)

1bNT≥BNT

1

]

.

It is thus clear, that there exists a unique proportion-based policy b
⋆
min, defined by

b
⋆,T
min(p) = min argmax

bT∈R+

E[(v(p) − cT(bT, B1,T
1 ))1

bT≥B
1,T
1

] (6.12)

b
⋆,NT

min (p) = min argmax
bNT∈R+

E

[(

v(p)−
cNT(bNT, BNT

1 )

1− p

)

1bNT≥BNT

1

]

, (6.13)

such that (b⋆,Tmin(p), b
⋆,NT

min (p)) reaches the infimum in the definition of v(p), and that for

any other (b⋆,T,b⋆,NT) reaching this infimum, we have b
⋆,T
min(p) ≤ b⋆,T(p), b⋆,NT

min (p) ≤

b⋆,NT(p).
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6.1.3 Proof of Proposition 4.2

It is clear from the formula that for all p ∈ PM , v(p) is decreasing in ηI and ηS. Regarding

the sensitivity in ηT and ηNT, let us first prove that we have

v(p) = inf
bT,bNT∈L(Ω,R+),⊥⊥B

1,T
1 ,B

1,NT

1

vb
T,bNT

(p), (6.14)

i.e. that the inf can be taken over the set of random variables bT,bNT ∈ L(Ω,R+),⊥⊥

B1,T
1 , B1,NT

1 instead of over bT, bNT ∈ R+, without changing the infimum. Denote by ṽ(p)

the right hand side of (6.14), and let us check that ṽ(p) = v(p). By definition, for any

bT,bNT ∈ L(Ω,R+),⊥⊥ B1,T
1 , B1,NT

1 , we have vb
T,bNT

(p) ≥ ṽ(p), with equality if and

only if bT,bNT reach the infimum in the definition of ṽ(p). This is formulated as

K − (ηI + ηSp)v(p) + ηTE
[

(cT(bT, B1,T
1 )− v(p))1

bT≥B
1,T
1

]

+ ηNT
E

[(cNT(bNT, BNT
1 )

1− p
− v(p)

)

1bNT≥BNT

1

]

≥ 0, (6.15)

with equality if and only if bT,bNT reach the infimum in the definition of ṽ(p). This

clearly means that bT,bNT reach the infimum in the definition of ṽ(p) if and only if they

minimize (6.15) over bT,bNT ∈ L(Ω,R+),⊥⊥ B1,T
1 , B1,NT

1 . By conditioning, it is clear that

(6.15) will reach the same infimum if minimized over bT, bNT ∈ R+. This in particular

implies that the infimum in ṽ(p) will be reached if it is only taken over bT, bNT ∈ R+,

which means that ṽ(p) = v(p).

In the sequel, we stress the dependence of vb
T,bNT

(p) and v(p) in ηT by writing

vb
T,bNT

ηT (p) and vηT(p). Let us consider η̃T < ηT and let us denote by Z a Bernoulli ran-

dom variable with parameter η̃T

ηT , independent from (B1,T
1 , B1,NT

1 ). For any bT, bNT ∈ R+,

we define bT = ZbT and bNT = bNT. Notice then that,

vb
T,bNT

ηT (p) = vb
T,bNT

η̃T (p)

Then, we have

vηT(p) = inf
bT,bNT∈L(Ω,R+),⊥⊥B

1,T
1 ,B

1,NT

1

vb
T,bNT

ηT (p) ≤ inf
bT,bNT∈R+

vZbT,bNT

ηT (p)

= inf
bT,bNT∈R+

vb
T,bNT

η̃T (p) = vη̃T(p),

and thus vηT(p) ≤ vη̃T(p), which means that vηT(p) is decreasing in ηT. The same ar-

gument allows to prove that v(p) is decreasing in ηNT. To summarize, v(p) (and thus

infβ∈ΠOL
V (β)) is decreasing in all the model’s intensity parameters θ = (ηI, ηS, ηT, ηNT).

Let us now study the monotonicity of the smallest optimal bid with respect to θ. We

then stress the dependence of vb
T,bNT

(p), v(p), b⋆,Tmin(p) and b
⋆,NT

min (p) in θ = (ηI, ηS, ηT, ηNT)

by writing vb
T,bNT

θ (p), vθ(p), b
⋆,T
min,θ(p) and b

⋆,NT

min,θ(p). Let us now consider θ̃ = (η̃I, η̃S, η̃T, η̃NT)

such that η̃I ≤ ηI, η̃S ≤ ηS, η̃T ≤ ηT, η̃NT ≤ ηNT. We then know from above that

vθ(p) ≤ vθ̃(p). Let us then prove that b
⋆,T
min,θ(p) ≥ b

⋆,T

min,θ̃
(p). Assume on the con-

trary that b
⋆,T
min,θ(p) < b

⋆,T

min,θ̃
(p). From (6.12), we have in particular that b

⋆,T
min,θ(p) ∈
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argmax
bT∈R+

E[(vθ(p)− cT(bT, B1,T
1 ))1

bT≥B
1,T
1

], and thus for bT = b
⋆,T

min,θ̃
(p), we obtain

E[(vθ(p)− cT(b⋆,Tmin,θ(p), B
1,T
1 ))1

b
⋆,T

min,θ
(p)≥B

1,T
1

(6.16)

≥ E[(vθ(p)− cT(b⋆,T
min,θ̃

(p), B1,T
1 ))1

b
⋆,T

min,θ̃
(p)≥B

1,T
1

].

On the other hand, since b
⋆,T

min,θ̃
(p) = min argmax

bT∈R+

E[(vθ̃(p) − cT(bT, B1,T
1 ))1

bT≥B
1,T
1

], by

(6.12), we have that for all b′T < b
⋆,T

min,θ̃
(p),

b′T 6∈ argmax
bT∈R+

E[(vθ̃(p)− cT(bT, B1,T
1 ))1

bT≥B
1,T
1

].

Therefore, by taking b′T = b
⋆,T
min,θ(p) < b

⋆,T

min,θ̃
(p), we get

E[(vθ̃(p)− cT(b⋆,Tmin,θ(p), B
1,T
1 ))1

b
⋆,T

min,θ
(p)≥B

1,T
1

] (6.17)

< E[(vθ̃(p)− cT(b⋆,T
min,θ̃

(p), B1,T
1 ))1

b
⋆,T

min,θ̃
(p)≥B

1,T
1

].

By subtracting (6.16) to (6.17), we obtain

E[(vθ̃(p)− vθ(p))1b
⋆,T

min,θ
(p)≥B

1,T
1

] < E[(vθ̃(p)− vθ(p))1b
⋆,T

min,θ̃
(p)≥B

1,T
1

],

and thus P[b⋆,Tmin,θ(p) ≥ B1,T
1 ] > P[b⋆,T

min,θ̃
(p) ≥ B1,T

1 ], which contradicts the inequality

b
⋆,T
min,θ(p) < b

⋆,T

min,θ̃
(p). This shows that b

⋆,T
min,θ(p) ≥ b

⋆,T

min,θ̃
(p). The same arguments

applies to prove that b⋆,NT

min,θ(p) ≥ b
⋆,NT

min,θ̃
(p).

Let us now study the variations of the smallest optimal bid w.r.t. the proportion of

informed people p. By definition of v(p), we have the following properties:

• If there is only targeted advertising (ηNT = 0), then v(p) is decreasing in p, and the

above argument applied to two proportions p̃ < p (instead of two model parameters

θ, θ̃) show that b⋆,T
min(p̃) ≥ b

⋆,T
min(p).

• If there is no social interactions (ηS = 0), v(p) is increasing in p, and the above

argument applied to two proportions p̃ < p (instead of two model parameters θ, θ̃)

show that b⋆,T
min(p̃) ≤ b

⋆,T
min(p).

By (6.13), we have

b
⋆,NT

min (p) = min argmax
bNT∈R+

E

[(

v(p)−
cNT(bNT, BNT

1 )

1− p

)

1bNT≥BNT

1

]

= min argmax
bNT∈R+

E

[(

(1− p)v(p)− cNT(bNT, BNT

1 )
)

1bNT≥BNT

1

]

.

Notice that from the definition of v(p) we see that (1 − p)v(p) is always decreasing in

p. By the same argument as before applied to two proportions p̃ < p (instead of two

model parameters θ, θ̃), and with (1 − p)v(p) playing the role of v(p), we deduce that

b
⋆,NT

min (p̃) ≥ b
⋆,NT

min (p).
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Let us prove that b
⋆,T
min(p) ≤ v(p) and b⋆,NT

min (p) ≤ v(p). We check this result for

b
⋆,NT

min (p), the other being similarly proved. If the targeted ads are sold with first price

auctions, i.e. if cT(b, B) = b, then notice that for all bT > v(p), we have

E[(v(p) − bT)1
bT≥B

1,T
1

] < 0 ≤ E[(v(p) − 0)10≥B
1,T
1

].

This implies that any bid bT > v(p) cannot be optimal, and thus that the smallest optimal

bid b
⋆,NT

min (p) is smaller than v(p). If the targeted ads are sold with second price auctions,

we clearly have

E[(v(p) −B1,T
1 )1

v(p)≥B
1,T
1

] = argmax
bT∈R+

E[(v(p)− bT)1
bT≥B

1,T
1

],

and thus v(p) is an optimal bid, which implies that the smallest optimal bid b
⋆,NT

min (p) is,

again, smaller than v(p). In particular, given that

v(p) ≤ v0,0(p) =
K

ηI + pηS
,

the smallest optimal bid b
⋆,NT

min (p) is bounded from above by K
ηI+pηS .

6.2 Proof of results in Section 4.1

6.2.1 Proof of Theorem 4.1

Let us fix an open-loop bidding control β. From (4.1), we have

V (β) = E

[

∫ ∞

0

e−ρt(K(1−Xβ

t−
)dND

t + 1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

≥ E

[

∫ ∞

0

e−ρt
(

K(1−Xβ
t−) + (1 −Xβ

t−)1βt≥BT

NT
t

BT

NT
t
ηT

)

dt
]

= E

[

∫ ∞

0

P[τ > t](1 −Xβ
t−)

(

K + 1βt≥BT

NT
t

BT

NT
t
ηT

)

dt
]

= E

[

∫ ∞

0

1τ>t(1 −Xβ
t−)

(

K + 1βt≥BT

NT
t

BT

NT
t
ηT

)

dt
]

= E

[

∫ τ

0

(1−Xβ
t−)

(

K + 1βt≥BT

NT
t

BT

NT
t
ηT

)

dt
]

,

where we introduced an independent random time τ with exponential distribution of pa-

rameter ρ. Notice also that the first inequality becomes an equality if the bidding control

β makes null bids once the individual is informed. Let us next consider a Poisson process

N with intensity ρ, whose first time of jump is given by τ , and independent of the other

random variables, and denote by X̃β the process satisfying the dynamic

X̃β

0− = 0

dX̃β
t = (1− X̃β

t−
)(dN I

t + dNt + 1βt≥BT

NT
t

dNT

t ), t ≥ 0.
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Notice that X̃β has exactly the same dynamic as Xβ except that there is an additional

cause of transition to state 1 given by the term dN . It is then clear that we have

E

[

∫ τ

0

(1−Xβ
t−)(K + 1βt≥BT

NT
t

BT

NT
t
ηT)dt

]

= E

[

∫ ∞

0

(1 − X̃β

t−
)(K + 1βt≥BT

NT
t

BT

NT
t
ηT)dt

]

= E

[

∫ ∞

0

(K(1− X̃β

t−
)dND

t + 1β̃t≥BT

NT
t

BT

NT
t
dNT

t )
]

,

where β̃t = (1 − X̃β

t−
)βt. By noting Ñ I = N I + N , we obtain a Poisson process Ñ I with

intensity ηI + ρ, and the dynamic of X̃β is rewritten as

X̃β

0− = 0

dX̃β
t = (1 − X̃β

t−
)(dÑ I

t + 1βt≥BT

NT

dNT

t ), t ≥ 0.

The cost V (β) is thus bounded from below by the cost associated to the bidding map

control β = (0, β̃) of problem in Section 6.1.1, with a population of M = 1 individual, with

an intensity ηI+ρ for the counting number of connections on the website with information

I, and where ηNT = ηS = 0, i.e. the individual never connects to a website displaying non-

targeted ads, and individuals do not socially interact. From the result proved in Section

6.1.1, we then know that V (β) is thus bounded from below by:

V (β) ≥ inf
b∈R+

K + ηTE[BT
1 1

b≥B
1,T
1

]

ηI + ρ+ ηTP[b ≥ BT
1 ]

.

It is then direct to retrace this derivation with the particular bidding control βb⋆ associated

to the constant bidding policy b⋆ such that

b⋆ = argmin
b∈R+

K + ηTE[BT
1 1b≥BT

1
]

ηI + ρ+ ηTP[b ≥ BT
1 ]

,

and to turn inequalities into equalities. This concludes the result for this case.

6.2.2 Proof of Proposition 4.1

Notice that the optimal value V ⋆ corresponds to the optimal value of the problem solved

in Theorem 4.2 with M = 1, ηNT = 0 and ηI replaced by ηI + ρ. The sensitivity of the

optimal value and smallest optimal bids to the model’s parameters directly follows.
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6.3 Proof of results in Section 3.1

6.3.1 Proof of Theorem 3.1

The idea is again to reduce to the previous case. Given an open-loop bidding control β,

we have by (3.1) and denoting by τβ = inf{t ≥ 0 : Xβ
t = 1}:

V (β) = E

[

e−ρτβ

K −

∫ ∞

0

e−ρt1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

= E

[

∫ ∞

τβ

ρe−ρtK −

∫ ∞

0

e−ρt1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

= E

[

∫ ∞

0

e−ρtρKXβ
t−dt−

∫ ∞

0

e−ρt1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

.

The problem is thus reduced to a continuous gain problem, with continuous reward ρK

from the time of information. This continuous gain problem is then turned into a contin-

uous cost problem as follows:

V (β) = K − E

[

∫ ∞

0

e−ρt(ρK(1−Xβ
t−)dt+ 1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

= K − E

[

∫ ∞

0

e−ρt(ρK(1−Xβ
t−)dN

D

t + 1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

.

We are reduced to the previous case (social marketing with discount factor). This concludes

the proof.

6.3.2 Proof of Proposition 3.1

The cost dual viewpoint reduces the problem to the problem of social marketing with

discount factor ρ and continuous cost ρK. This directly yields the sensitivity of the optimal

value and smallest optimal bid in all the model’s parameters except ρ, since here ρ also

appears in the continuous cost ρK. For the sensitivity in ρ, it is suitable to use the gain

viewpoint of the optimal value, in Theorem 3.1. In this expression, it is clear that V ⋆ is

decreasing in ρ. From this property, a similar argument as used several times in the proof

of Proposition 4.2 allows to conclude that the smallest optimal bid is then increasing in ρ.

6.4 Proof of Theorem 3.2

Given an open-loop bidding control β, we have by (3.3)

V (β) = E

[

∑

n∈N

e−ρ(τβ+n)K −

∫ ∞

0

e−ρt1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

= E

[

e−ρτβ K

1− e−ρ
−

∫ ∞

0

e−ρt1βt≥BT

NT
t

BT

NT
t
dNT

t )
]

.

This reduces the problem to the purchase-based case studied in the previous section, and

concludes the proof.
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7 Conclusion

In this paper, we have developed several targeted advertising models with semi-explicit

solutions. An important feature of these models is a very concrete description of the

“modern” advertising problem. One or several individuals are really modelled through their

behaviours that involve connections to various types of websites at random times as well

as social interactions. The advertising auctions are also precisely defined by considering

various auction rules (second-price auctions, first-price auctions). Several variants of our

models, that we did not study in this work for the sake of conciseness, can be easily

analysed with the techniques developed in this work. For instance, in the first three

models with a single Individual, one could study a model where first-price auctions and

second-price auctions coexist, which would lead to more general formulas. There is also

room for exploration to enrich the models while keeping them tractable with semi-explicit

solutions: in the fourth model with an interacting population, it might be possible to add

a bit of heterogeneity in the population connections and social interactions. It would be

also interesting and useful in practice to consider the alternative for individuals not to

be receptive with some probability to the information (hence not purchasing a product,

or continuing to behave “dangerously”). Another opportune development, regarding the

auctions, could be to model the maximal bid from other bidders more realistically than with

an i.i.d. sequence of random variables, for instance as a Markov chain. Another approach

could be to explicitly model several bidding agents, for instance playing according to the

so-called fictitious play principle. In such game, several bidding Agents have pieces of

Information to diffuse to Individuals, and each time when they declare their bid, they

follow the strategies according to the model studied in this paper by modelling the other

bidders’ maximal bid as a sequence of i.i.d. random variables distributed as the empirical

distribution of past maximal bids. Notice that this would require for Agents to constantly

recalibrate their model, as new auctions modify the empirical distribution of past maximal

bids.
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