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Ear Recognition Based on Deep Unsupervised 
Active Learning
Yacine Khaldi, Amir Benzaoui, Abdeldjalil Ouahabi, Sébastien Jacques, Member, IEEE, and 
Abdelmalik Taleb-Ahmed

Abstract —Cooperative machine learning has many appli-cations, such as data annotation, where an initial model trained 
with partially labeled data is used to predict labels for unseen data continuously. Predicted labels with a low confidence value 
are manually revised to allow the model to be retrained with the predicted and revised data. In this paper, we propose an 
alternative to this approach: an initial training process called Deep Unsupervised Active Learning. Using the proposed training 
scheme, a classification model can incrementally acquire new knowledge during the testing phase without manual guidance or 
correction of decision making. The training process consists of two stages: the first stage of supervised training using a 
classification model, and an unsupervised active learning stage during the test phase. The labels predicted during the test 

phase, with high confidence, are continuously used to extend the knowledge 
base of the model. To optimize the proposed method, the model must have a 
high initial recognition rate. To this end, we exploited the Visual Geometric 
Group (VGG16) pre-trained model applied to three datasets: Mathematical 
Image Analysis (AMI), University of Science and Technology Beijing (USTB2), 
and AnnotatedWeb Ears (AWE). This approachachieved impressive performance 
that shows a significant improvement in the recognition rate of the USTB2 
dataset by coloring its images using a Generative Adversarial Network (GAN). 
The obtained performances are interesting compared to the current methods: 
the recognition rates are 100.00%, 98.33%, and 51.25% for the USTB2, AMI, 
and AWE datasets, respectively.

Index Terms— Biometrics, ear recognition, active learning, GAN, USTB2 dataset, AMI dataset, AWE dataset.

I. INTRODUCTION

The human ear is considered a very recent modality in 
biometrics, and there is no commercial software based
on this modality. It is considered one of the most stable
human anatomical features. Compared to other modalities

Yacine Khaldi is with the LIMPAF Laboratory, Department of Com-
puter Science, University of Bouira, Bouira 10000, Algeria (e-mail: 
y.khaldi@univ-bouira.dz).

Amir Benzaoui is with the Department of Electrical Engineering,
University of Skikda, Skikda 21000, Algeria (e-mail: a.benzaoui@
univ-bouira.dz).

Abdeldjalil Ouahabi is with the LIMPAF Laboratory, Department of
Computer Science, University of Bouira, Bouira 10000, Algeria, and also
with the iBrain, INSERM, UMR 1253, Université de Tours, 37200 Tours,
France (e-mail: ouahabi@univ-tours.fr).

Sébastien Jacques is with the GREMAN UMR 7347, INSA Centre
Val-de-Loire, CNRS, University of Tours, 37200 Tours, France (e-mail:
sebastien.jacques@univ-tours.fr).

Abdelmalik Taleb-Ahmed is with the Université Polytechnique
Hauts-de-France, 59313 Valenciennes, France, and also with the
Centrale Lille, CNRS, UMR 8520-IEMN, Université de Lille, 59313
Valenciennes, France (e-mail: abdelmalik.taleb-ahmed@uphf.fr).

of the human body, especially the face, the ear does not
change significantly throughout human life, whereas the face
changes considerably with age. The characteristics of the face
can be modified according to the cosmetic products used,
the hairstyle, and the haircut. Besides, human faces change
according to emotions and different facial expressions, such
as sadness, joy, fear, or surprise.

Ear features are abundant, fixed, and unchanging with
emotions. Unlike face identification systems, glasses, beards,
or mustaches cannot obscure the ear images during the acqui-
sition process. Most ear recognition studies have been con-
ducted employing ear images taken in perfect conditions: ear
images have ideal illumination, ears are in the exact location
for each person, and ears are free of earrings, hair occlusions,
or something that may obscure the ear. Actual techniques
need to be developed to make ear identification practical;
ear identification must prove its worth in an unconstrained
context that reflects real-world circumstances. Furthermore,
this technology must be portable to accommodate a substantial
number of individuals and should be helpful for a wide range
of people.

The supervised classification process for ear images is
similar to that of the face or fingerprint recognition, or the
techniques used in healthcare [1] or medical image clas-
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sification (e.g., COVID-19 detection/ classification from
X-ray [2], [3] or CT [4] images). It is the process of predicting
labels for input images using extracted features based on a
predefined set of images/labels.

Traditionally, ear recognition has been performed using a
classical machine-learning pipeline, i.e., training the model
on a subset of labeled data, testing that model, and then
deploying it in the real world. This technique has worked very
well. Nevertheless, it is questionable whether it is possible to
allow the model to acquire new knowledge by using additional
images during the test phase. Such a property is desirable since
it would be inspired by human cognition.

Cooperative Machine Learning (CML) [5] has been widely
used to assist in decision-making, data annotation, etc. The
general idea is to train an initial model on partially labeled data
and use it to predict new labels for new data. Then, a human
agent or corrector revises the low confidence predicted data
and then retrains the model using the new predicted and
corrected labels. This methodology has been used in other
applications, such as accelerating the annotation of social
signals [6], dynamic decision-making [7], etc.

In addition to model prediction, CML always relies on
human intervention and correction, which means that we need
to associate an observing human agent with the model to
monitor and correct model behavior. From this point, we need
to ask an important question: What if our model is accurate
enough to be trusted to acquire new knowledge on its own
(with a small margin of error) during the testing phase, without
the help of a human agent.

This paper proposes to perform active unsupervised learning
during the test phase of a trained ear recognition model. The
role of the classification model is to predict the labels of
test images and to classify them. Simultaneously, the role
of the unsupervised active learning stage is to add some
test images with their predicted labels (if the predictive con-
fidence is larger than a predefined threshold) to the train-
ing dataset and perform additional training epochs. We call
the proposed training scheme “Deep Unsupervised Active
Learning” (DUAL).

We used three well-known ear datasets, namely the Math-
ematical Analysis of Images (AMI) dataset, the University
of Science and Technology Beijing (USTB2) dataset, and
the Annotated Web Ears (AWE) dataset to validate the
proposed training approach. The USTB2 dataset contains
grayscale images of ears. Therefore, we colorized all its
images using the conditional Deep Convolutional Generative
Adversarial Network (cDCGAN) [8], [9], with the resulting
dataset named Colorized USTB2, or simply C-USTB2. For
the classification model, we adopted VGG16 architecture.
Many previous works have proven its performance. We then
conducted extensive experiments to show the positive effect of
using the advanced training technique over the conventional
training/testing pipeline. In summary, this paper provides the
following three main contributions:

1) Implementation of an original technique called Deep
Unsupervised Active Learning (DUAL) in the field of
ear recognition;

2) Importance of coloring ear images in grayscale instead
of inputting them as is in biometric models;

3) Evaluation and discussion of the performance of the
proposed technique using constrained and unconstrained
ear datasets.

The rest of the paper is organized as follows. In Section 2, 
we briefly introduce previous works related to ear recogni-
tion. Then, Section 3 presents an overview of the related 
colorization technique. Section 4 presents our proposed train-
ing approach in detail. Finally, we conducted extensive 
experiments and comparisons, as explained in Section 5. 
Section 6 highlights the main findings of this work, as well as 
some research perspectives.

II. RELATED WORK

Most biometric recognition systems based on 2D ear images 
consist of extracting features and comparing the extracted 
vector with the enrolled models. Based on this, ear recognition 
approaches can be classified into four different categories: 
holistic, geometric, local, and Deep Neural Network (DNN) 
approaches.

Holistic methods generate a set of basis vectors repre-
senting a subspace that respects the original set of images. 
In the set of basis vectors, each image of the ear can be 
reconstructed in the subspace. A hybrid classification system 
was proposed in [10] that integrates the ear shape and its 
algebraic features. The authors defined five coarse classes 
based on shape features and then applied Principal Component 
Analysis (PCA) or Independent Component Analysis (ICA) to 
extract the ear shape features for classification. Their results 
indicate that combining the proposed method with ICA yields 
promising results compared to PCA. In [11], the authors 
used a modular neural network to improve ear recognition 
performance. A 2D wavelet analysis with global thresholding 
was applied for image compression. The proposed system 
contains nine modules; each module was trained to recognize 
a part (helix, concha, or lobule) using a subset of training 
data. Another technique for automatic ear recognition that uses 
Haar wavelets to extract ear features and Fast Normalized 
Cross-correlation (FNCC) classifier was presented in [12]. 
In summary, holistic methods are widely used in biomet-
ric recognition systems. Nevertheless, they are sensitive to 
background changes and misalignment. Therefore, a small 
misalignment can lead to serious classification errors.

Geometric methods exploit the wealth of information con-
tained in the geometric features of the ear, such as edge 
information and ear shape. In [13], the authors proposed a 
geometric approach where the feature vector was created by 
fusing the shape of the outer ear with the structural shape of 
the inner ear. In a recent study [14], the authors presented 
a geometric feature vector that considers the external helix’s 
edge based on the minimum ear altitude line. Also, they took 
three measure-based characteristics to improve ear representa-
tion further. In [15], the authors used a multi-level fusion of 
the ear score, considering only its middle part. They extracted 
the outer and inner ear features in two successive steps and 
then fused the resulting scores before matching. Geometric 
methods appear to be simple to implement and of excellent
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algorithmic complexity. However, their main drawback is their
dependence on ear contours, which can be affected by noise
or lightning.

Local methods are based on extracting features from
different regions of the image, especially local orienta-
tion information, to perform biometric identification [16].
In [17], the authors combined morphological operators and
Fourier descriptors to detect the ear zone automatically from
gray-scale images. Secondly, they explored new ear feature
extraction techniques using complex Gabor filters to extract
local phase and localized orientation information and a local
phase encoding by employing log-Gabor filters. In [18],
the grayscale mapping technique was used to improve the
contrast of ear images. The Scale-Invariant Feature Trans-
form (SIFT) was applied as a local feature extractor, while
Euclidean distance was adopted for classification. In work
published in [19], the authors presented the complete ver-
sion of the challenging AWE dataset. They conducted an
extensive experimental analysis by testing and comparing the
performance of eight local descriptors on the AWE dataset.
In another work [20], the authors adopted a tunable filter
bank based on a half-band polynomial of order 14 as a local
feature extractor. For the matching phase, L1, L2, Cosine
similarity, and Canberra distance were used to compute the
distance between feature vectors. In [21], the authors pre-
sented a comparative experimental analysis on ear recognition
by adopting several recent variants of the LBP descriptor.
Moreover, the authors proposed another version of the LBP
descriptor, called Averaged Local Binary Patterns (ALBP).
They showed that the LBP operator and its variants are suitable
only for ear recognition under controlled conditions, but they
suffer greatly in unconstrained cases.

Deep Neural Networks (DNNs) have recently gained
increased interest in pattern recognition and computer
vision [22]–[24]. Various DNN models and architectures have
been proposed in the literature; the most well-known are
AlexNet [25], VGGNet [26], Inception [27], VGG-face [28],
and SqueezeNet [29]. These models have achieved remarkable
performance in several unconstrained biometric applications,
including face recognition [30]. However, a significant body
of work on ear biometrics uses deep learning in the litera-
ture. In [31], a comparative study between handcrafted and
CNN-based models was conducted. The authors conducted
a series of comparative experiments using seven handcrafted
feature extractors versus four CNN-based models. Several
researchers have introduced sets of deep learning models.
In [32], a model set consisting of different configurations of
VGG architectures was proposed. Image features are extracted
using multiple VGG configurations and then averaged before
being fed to a fully connected layer to predict a label.
A six-layer deep CNN-based architecture for ear recognition
was proposed in [33]; the authors used a constrained ear
dataset to validate the performance of the proposed model.
In [34], Handcrafted and learned features have been fused
in the proposed two-stage framework, where a CNN-based
model has been employed for landmark detection, followed by
features extraction, learned and handcrafted, and finally score
normalization and fusion. In a recent study [9], a generative

Fig. 1. U-Net architecture of the generative model.

adversarial network was used to colorize grayscale ear images 
to improve ear recognition performance. In the study con-
ducted in [35], the authors tested the performance of a finely 
tuned VGG-face model for ear recognition. The VGG-face 
has the same architecture as VGG-16, except that it was 
pre-trained using face images. In [36], data limitation in ear 
recognition was addressed using methods based on few-shot 
learning. The authors used data augmentation to overcome the 
problem.

Table I summarizes the works discussed in this section by 
categories, datasets used, and experimental protocols. To date, 
ear recognition systems are limited to feature extraction and 
then testing. No additional learning is provided after the train-
ing phase [35]–[37]. Researchers have exploited local, holistic, 
geometric, deep, and hybrid features. For classification tasks, 
they used statistical and sparse representation classifiers [38], 
as well as neural networks [39].

Until now, ear recognition systems lie within the scope of 
training then testing. No further learning is expected after 
the training phase. This limitation prohibits the model from 
exploiting any possible information during the test phase. 
We propose a method to overcome this specific limitation 
by employing active learning to expand the initial model 
knowledge base.

III. COLORORIZATION USING CONDITIONAL

DEEP CONVOLUTIONAL GAN
Recently, Generative Adversarial Networks have been 

used to tackle different challenges in ear biometrics. In [39], 
the authors proposed synthesizing the region of interest out 
of the ear image using image-to-image translation instead 
of feeding ear images as they are to the classifier. They 
trained a Pix2Pix generative adversarial network to generate 
a synthetic segmentation of the ear free of occlusions, hair, 
and non-ear pixels. Furthermore, missing parts of the ear 
due to different occlusions can also be synthesized using 
the proposed technique. Following our previous research [9], 
we asserted that feeding color ear images to a deep classifier 
yields higher performance. We used conditional deep 
convolutional generative adversarial networks (cDCGAN) to 
colorize gray-scale ear images and enhance the recognition 
rate. Based on this idea, we designed a custom U-Net 
architecture for our generative model to synthesize colorized 
ear images, as illustrated in Fig. 1.

The discriminative model architecture is straighter than that 
of the generator, as shown in Fig. 2. It is composed of five 
convolutional layers. The first four layers use 4 × 4 filters to
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TABLE I
COMPREHENSIVE SUMMARY OF RELATED WORKS STUDIED

Fig. 2. Discriminative model architecture.

convolve with, sliding by two steps. Each layer is followed by
batch normalization and the Leaky-ReLu activation function.
The last convolutional layer has only one 4 × 4 filter, with a
stride of one and activated by the Sigmoid function, to output
a single scalar indicating whether an input color image is real
or false. This binary classification model predicts a probability
output in the range [0, 1]. In our case, it predicts the probability
that an image is real or fake. This probability, called P
in Fig. 2, is calculated by averaging the output patch of
size 16 × 16.

The discriminator takes as input an array of 256 ×
256 × 4, which is the concatenation of a gray-scale image and
a real or generated color image. It is trained to maximize the
probability of identifying generated color images out of real

images log D(y|x). At the same time, the generator is trained
simultaneously to minimize 1 − log D(G(0z |x)). The final
cost function V can be expressed mathematically as shown
in (1) [8].

minGmaxDV (G, D) = Ex
[
log D(y|x))

]

+ Ez
[
1 − log D(G(0z |x))

]
(1)

where x is the grayscale image, y is the ground truth,
G(0z|x) is the mapping function representing the generator
output color image of the input image x . Similarly, the dis-
criminator is represented by the mapping function D(y|x) that
produces a scalar between [0,1], indicating the probability of
the input being generated or not. Ex is the expected value
over all real color images, Ez is the expected value over all
generated color images.

Distance(x, θ) = 1

3nm

3∑

c=1

n∑

i=1

m∑

j=1

∥∥∥xc
i, j − yc

i, j

∥∥∥
2

2
(2)

As shown in (2), we aim to train the adversarial model
to minimize the average Euclidean Distance on a pixel level
between colorized images and ground truth images, where
x is the grayscale image, y is the ground truth, θ is the
corresponding image colorized by the generative model, c is
the channel index, i and j are the pixel indices of the image.
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Fig. 3. Proposed Deep Unsupervised Active Learning (DUAL) scheme.

IV. PROPOSED DEEP UNSUPERVISED ACTIVE

LEARNING WORKFOLW

The proposed DUAL training scheme consists of three 
consecutive training phases: a supervised training phase, a vali-
dation and hyper-parameter fine-tuning phase, and an unsuper-
vised active learning phase. In the first phase, we performed 
supervised training of the classification model, i.e., using a 
labeled training dataset. Then, we performed a validation 
experiment using a limited validation set to determine the 
best value of the hyper-parameter θ . Finally, we performed 
unsupervised active learning using the test images during the 
test phase. Therefore, the unsupervised active learning phase is 
independent of the initial training dataset, i.e., when deploying 
a biometric model, it should be trained using only the initial 
labeled dataset. Then, an unsupervised active learning phase 
is performed using real-time test images.

During the standard testing phase, the classification model 
cannot obtain additional learning from the test images 
(i.e., the recognition rate of the model will not improve), even 
if it is a high recognition rate model. Therefore, we propose 
an alternative testing technique where a model can gain 
additional knowledge during the classification of test images 
using unsupervised active learning. We refer to this testing 
phase as the unsupervised active learning test phase. Using the 
unsupervised active learning during the test phase, images that 
were classified with above-threshold confidence are included 
in the initial training dataset before performing additional 
training epochs. We go through test images one by one, 
as shown in Fig. 3.

The classification model we adopted is based on 
VGG16 architecture. Improving the classification model itself 
is not our concern in this work. Thus, we did not consider 
other CNN-based architectures such as VGG19, ResNet, etc. 
It is sufficient to use a classification model architecture with 
a high recognition rate to validate the proposed method. 
We added a fully connected layer and a softmax output layer 
on top of the convolutional layers of the VGG16 model, 
which is pre-trained on the ImageNet dataset [40]. Table II 
details the global structure of the classification model. We used 
categorical cross-entropy as a loss function to measure the 
performance of our model during the training phase. The 
cross-entropy can be calculated using (3), where M is

TABLE II
DETAILS OF THE PARAMETERS OF THE CLASSIFICATION

MODEL ARCHITECTURE

the number of classes (individuals) for each dataset, y is the
binary indicator vector if label c is the correct classification
for image o, and p is the vector of the predicted probability
that image o belongs to class c. Cross-entropy is the sim-
plest and most widely used cost function because it follows
directly from the definition of entropy. On the other hand,
we used Adam’s well-known optimizer [41] to update the
model weights based on the training data.

Cross Entropy(p, y) = −
M∑

c=1

yo,c log(po,c) (3)

V. EXPERIMENTAL ANALYSIS

To evaluate the performance of our framework, we per-
formed a series of experiments using a set of ear images from 
the USTB2, AMI, and AWE ear datasets. All datasets, along 
with the evaluation protocol, are presented in the following 
sections of this paper.

A. Experimental Data
The benchmarks AMI, USTB2, and AWE ear image datasets

were used in the experiments.
1) The AMI Ear Dataset: The Mathematical Analysis of

Images (AMI) ear dataset [42] was created by collecting
uncropped ear images from 100 subjects, seven images per
person, in an indoor environment. These images are in jpg
format with a resolution of 492 × 702 pixels. Each subject
has seven images, six from the right ear and one image from
the left ear. As shown in Fig. 4 (a), the AMI dataset already
contains colored images, and we did not need to preprocess
or crop the images.

2) The USTB2 Ear Dataset: The University of Science and
Technology in Beijing (USTB) [43] collected four ear images
under different lighting conditions for 77 subjects (students
and teachers). The entire dataset contains 308 uncropped
images. The first image is the frontal image of the ear
under standard illumination, the second and third images
are captured with +30 and −30 degree rotations, respec-
tively, and the fourth image is taken under low illumination
conditions. Fig. 4 (b) shows that the USTB2 dataset con-
tains grayscale images with different illumination conditions.
As a preprocessing step, we colorized these images using
cDCGAN, as explained in Section 3, to obtain what we called
Colored USTB2, or simply C-USTB2.

3) The AWE Ear Dataset: The Annotated Web Ears
(AWE) [19], an unconstrained ear dataset, is considered one
of the most challenging ear datasets. It contains 1000 cropped
images of the left and right ear with different head rotations,
genders, races, occlusions, and lighting conditions. The dataset
was collected from the Internet for 100 different public figures.
These images vary in size from 473 × 1022 to 15 × 29.
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Fig. 4. Sample ear images from (a) the AMI dataset, (b) the
USTB2 dataset, and (c) the AWE dataset.

Fig. 4 (c) shows representative images of different subjects
from this dataset.

B. Setup
Before proceeding with the validation of the proposed

learning approach and the different test phases, we colorized
the USTB2 images to improve the recognition rate (RR),
which is defined as the total number of correctly identified
probe images divided by the total number of probe images,
as shown in (4).

RR = Nbr of correctly identi f ied probe images

T otal Nbr o f probe images
(4)

We generated a new colorized dataset called
C-USTB2 using a cDCGAN model. Since we used a
VGG16-based model pre-trained on ImageNet with color
images, this colorization step increases the recognition rate,
unlike grayscale images. To train the cDCGAN colorization
model, we used the colored images from the AMI dataset,
we can use any other ear dataset with colored images, and the
labels do not matter because we are interested in the colors,
not the labels. The model implicitly generates a corresponding
grayscale image for each colored image and then generates a
colorized image. To measure its performance, we computed
the accuracy, and it is defined as the ratio of the number
of correctly colorized pixels to the total number of pixels.
A pixel is correctly colored if the difference between its Red,
Green, Blue (RGB) values and the original pixel values is
below a certain threshold. More precisely, the accuracy is
defined mathematically in (5) [44], where x is the colorized
image, y is the corresponding ground truth image, 1[0,�c] is
the indicator function, n and m are the image dimensions,
i and j are the pixel indices of the image, c is the color
channel, and �c is the channel threshold.

Accuracy(x, y) = 1

nm

n∑

i=1

m∑

j=1

3∏

c=1

1[0,�c]|xc
i, j − yc

i, j | (5)

We trained the model for a total of 62 epochs (over
1000 mini-batch iterations) to achieve a distance loss
of 2.41 for the generator and 1.38 for the discriminator, and a
training colorization accuracy of 79.73%, as shown in Fig. 5.
The resulting colorization accuracy is the highest we could
achieve using only the color images from the AMI dataset.
Although the result is very acceptable, we believe it can
be improved using a larger set of multi-color ear datasets.
Fig. 6 shows the images of C-USTB2. We can see that not
only did we obtain a colorized version of USTB2, but we

Fig. 5. Accuracy of the training colorization of the cDCGAN model.

Fig. 6. Coloring of USTB2 images with cDCGAN (C-USTB2), (a) original
images of USTB2, (b) colored images of C-USTB2.

Fig. 7. Augmentation of the training dataset.

Fig. 8. Cumulative matching characteristic curves for USTB2 and
C-USTB2 datasets.

also successfully equalized the brightness and intensity of the
images using cDCGAN.

As shown in Fig. 7, we increased the training set by
generating two additional images for each training image. One
image was rotated 20◦ to the left, and the other was rotated 20◦
to the right. We used 60% of the images for training and 40%
for testing in the case of AMI. For C-USTB2, we used three
images for training and one image for testing. The train/test
distribution of the AWE datasets is predefined by their owners,
600 images for training and 400 images for the test.
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Fig. 9. Number of images correctly identified with a given θ for (a) the AMI dataset, (b) the C-USTB2 dataset, and (c) the AWE dataset.

C. Experiment #1
To highlight the positive effect of coloring the USTB2

dataset on the recognition rate, we used the VGG-based
pre-trained classification model with the USTB2 and
C-USTB2 datasets with the same configuration. The recogni-
tion rate we obtained using the C-USTB2 dataset is 98.70%,
while it was 97.40% using the USTB2 grayscale dataset. Fig. 8
shows the Cumulative Matching Characteristic (CMC) curves
for both scenarios. As expected, coloring the USTB2 dataset
improved the recognition rate; this may be due to a VGG
model pre-trained on color images (ImageNet), so it is best to
also use color images in the following steps.

D. Experiment #2
In this experiment, we tested and evaluated the effectiveness

and impact of the DUAL scheme. The confidence threshold θ
is a hyper-parameter that is chosen to trigger the fine-tuning
process. The best value can be easily selected by performing
a single supervised learning test phase using a validation set
and monitoring the number of correctly classified images with
a confidence value higher than a defined θ . For that, we used
a quarter of the test set from each dataset as a validation
set. Visualizing the data gives a clearer perspective to decide.
Fig. 9 shows the relation between θ values and the number of
correctly identified test images with confidence greater than or
equal to θ . We used the best estimation to be located where
the vertical difference between the two curves is minimal,
considering that we want to maximize the number of images
with confidence greater than θ .

The estimation of the best value of the variable will differ
depending on several criteria, including the type of dataset
used, constrained or unconstrained, the type of classification
models itself, and its basic recognition rate. In our experiment,
we chose 0.89, 0.52, and 0.95 as threshold values for the AMI,
C-USTB2, and AWE datasets, respectively.

From Table III, it is clear that the proposed DUAL approach
has significantly improved the model recognition rate for all
datasets; DUAL has a higher recognition rate than supervised
learning. For the AMI dataset, the recognition rate increased
from 96.00% to 98.33%. For the C-USTB2 dataset, the recog-
nition rate increased to 100.00% using the DUAL scheme.
The same is true for the AWE dataset, where the recognition
rate increased by 2%. At this point, and unlike the traditional
supervised classification process, the proposed DUAL scheme

TABLE III
RESULTS OF THE SUPERVISED LEARNING AND THE DUAL

SCHEME FOR AMI, C-USTB2, AND AWE DATASETS

TABLE IV
SUPERVISED-LEARNING TEST STATISTICS

allowed the model to gain additional information beyond that
of the initial training phase. The accuracy varies between
experiments due to the datasets used, not the model itself.
In the general case, constrained datasets give higher accuracy,
unlike unconstrained datasets. The same goes for our study,
we obtained less accuracy using unconstrained datasets, but
this does not affect the study’s main objective.

Table IV shows the number of test images (i.e., which
the model attempts to learn during the test phase) correctly
classified with confidence greater than or equal to θ . Those test
images with their predicted labels improved the recognition
rate by using them to perform extra fine-tuning epochs. The
model re-trained itself using new data for the AMI dataset:
131 new images with correctly assigned labels. In the second
scenario using the C-USTB2 dataset, the model predicted
correct labels for 57 images with confidence greater than θ .
Hence, it re-trained itself with entirely correct information
during the test phase. For the AWE dataset, the DUAL scheme
using the selected threshold was able to actively train the
model with 19 new images, in which 17 images were correctly
identified. Nevertheless, although 10.52% of the new data
was misclassified, the recognition rate was augmented due to
the higher amount of correctly classified data used for active
learning.

Fig. 10 shows the cumulative match characteristic (CMC)
curves of the supervised learning and the DUAL learning
scheme.

We measured the number of correctly recognized images
during the DUAL test phase compared to the supervised
learning test phase. It is evident in Fig. 11 that the
model was improved using particular test images and the
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Fig. 10. Cumulative matching characteristic curves for (a) the AMI dataset, (b) the C-USTB2 dataset, and (c) the AWE dataset.

Fig. 11. Number of correctly predicted labels during the test phase for (a) the AMI database, (b) the C-USTB2 database, and (c) the AWE dataset.

TABLE V
A COMPARISON OF RANK-1 OF THE PROPOSED APPROACH WITH OTHER REPRESENTATIVE METHODS

corresponding correctly predicted labels by the DUAL scheme
to gain additional knowledge. This process positively affected
the recognition possibility of the rest of the test images. For
the AMI dataset, retraining the model around test image num-
ber 100 has improved the likelihood of correctly predicting
the rest of the images. Likewise, the DUAL scheme in the
C-USTB2 and AWE scenarios, as of test image number 42
and 230, respectively, improved the overall recognition rate
for the remainder of the test images.

E. Comparison of Rank-1 Recognition Rate
Table V compares the Rank-1 recognition rate between the

proposed training approach and the recent and well-known

approaches that used the AMI, USTB2, or AWE datasets.
From Table V, the DUAL scheme showed the best results
compared to the state-of-the-art methods by pushing the
model performance to its limits. Although all approaches have
advantages and disadvantages, in this work, we focused on the
important advantage of the proposed approach over the others,
namely the possibility of gaining new knowledge during the
testing phase instead of relying only on what was learned
during the learning phase. From our point of view, this is a
very important feature to be acquired by artificial intelligence
systems in general.

Although it should be kept in mind that the proposed DUAL
scheme requires more processing time and memory space,
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performing continuous active learning during the testing phase 
may be difficult, especially in real-time. Future research can 
find better and faster ways for the model to acquire information 
in new training images, as in active learning, in less time and 
without losing or negatively affecting the acquired knowledge. 
On the other hand, the presence of the initial training data 
is mandatory for the proposed technique. However, these 
difficulties could be overcome in the future through more 
research.

VI. CONCLUSION

This study aims to determine the feasibility of active learn-
ing in the field of ear recognition and biometrics in general. 
We have proposed a machine learning technique called Deep 
Unsupervised Active Learning (DUAL), by which a biometric 
model can acquire new knowledge continuously after the 
training phase. Based on this, a biometric model uses the 
test images that have been classified with a confidence value 
above a pre-defined threshold to perform additional learning 
epochs. We then validated this property by conducting in-depth 
experiments using the constrained AMI and C-USTB2 ear 
datasets and the unconstrained AWE dataset to measure the 
recognition rate under supervised and DUAL learning. The 
Rank 1 recognition rates are 100.00%, 98.33%, and 51.25%
for the C-USTB2, AMI, and the challenging AWE datasets. 
The proposed method combines the power of supervised and 
unsupervised learning. It takes the prior gained knowledge and 
expands it using unsupervised learning. This hybrid property 
makes our proposed model more efficient than supervised or 
unsupervised models.

These preliminary results lead to the following conclusions:
1) Test images contain a significant amount of information,

and they are left untapped by classification models;
2) Image classification models can be improved beyond the

training phase;
3) The proposed DUAL scheme can be used to train

the model during the test phase and enhance its
performance;

4) When the performance of a method is presented, it is
essential to identify the dataset used correctly [45];

5) The fact that the AWE dataset is “noisy” results in rela-
tively poor performance. Hence the need for image pre-
processing, such as denoising the background noise [39]
and texture data [47], [48] by first and second-generation
wavelets [49], [50] and multiresolution analysis [51].

Under conditions where no pre-treatment was performed,
we compared our training approach to new cutting-edge
models; the result is particularly instructive: the pro-
posed technique significantly improves model performance.
Although the results obtained are mainly satisfactory, potential
improvements can be made: image preprocessing by brightness
corrections, denoising, super-resolution and geometrical trans-
formation, fine-tuning parameters such as learning rate and the
number of convolutional layers and filters, and the use of a
variable threshold θ , etc.

We are convinced that these results will significantly
impact image classification, biometrics, and ear recognition
applications such as security, forensics, access control, and
medical applications.
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