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Machine Learning–based Sleep Staging in Patients
with Sleep Apnea Using a Single Mandibular
Movement Signal

To the Editor:

We all sleep, and sleep patterns and architecture influence our health
and wellbeing. At present, the gold standard method for recording
detailed sleep patterns to detect and monitor sleep disorders is
in-laboratory overnight polysomnography (PSG), requiring
specialized equipment and trained staff. This is no longer feasible in
view of the size of the population with suspected sleep disorders, and
especially in the coronavirus disease (COVID-19) era (1).

Mandibular movements reveal the changes in trigeminal motor
nucleus activity driven by brainstem centers involved in sleep and
wake transitions (2, 3). The activity of upper airway muscles anchored
on the mandibular jaw is the net result of the activation of brainstem
respiratory and sleep centers and their respective interactions. This
produces specific mandibular movement patterns reflecting the
interactions between sleep stages and respiratory control. We
previously demonstrated that sleep mandibular movements represent
a powerful tool for characterizing respiratory disturbances in
obstructive sleep apnea (OSA) (4–6).

Figure 1 gives examples of how the different sleep stages each
have typical mandibular movement signal patterns.

Recordings of mandibular movements throughout the night
provide hundreds of temporal–spatial signals for modeling and
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Figure 1. The mandibular movements (MM) signal processed by machine learning to provide sleep staging. Typical example of two of the six
channels (upper and lower trace) of the MM signal recorded by a single sensor during the four sleep stages in a single individual. Each trace
represents a 210-second (3.5-min) time span of MM recordings by the Sunrise system (inertial measurement with six channels) during
wakefulness (top), REM sleep, light sleep, and deep sleep (bottom). Thirty-second epochs were used for sleep stage classification. Sleep is
detected when MM occur at the breathing frequency. During light sleep (N2), the amplitude of MM reaches several tenths of a millimeter and
varies slightly. The movements during quiet respiration and light sleep are repeated at a frequency ranging between 0.15 and 0.60 Hz
depending on central drive output. Deepening of sleep (N3) increases the upper airway’s resistance, and this is reflected by an increase in the
amplitude of movement, which is also more stable than during N2. REM sleep is easily identified by irregular frequencies and changing
amplitudes in MM that are on average smaller than non-REM sleep amplitudes. Cartoon images adapted from Freepik.com.
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Figure 2. Stagewise receiver operating characteristics (ROC) curve analysis. This consisted of extracting prediction scores for each target
stage (wake, light sleep, deep sleep, and REM sleep) and for each patient, then estimating the false and true positive rates of a binary one-
versus-rest classification rule to establish the ROC curve. The 95% CIs of the area under the curve (AUC) and smoothing effect were obtained
from empirical data (without using any resampling). The diagonal dashed line serves as a reference and shows the performance if sleep staging
had been made randomly. The algorithm performed well in detecting REM sleep with a ROC–AUC of 0.96 (0.90–0.99) and non-REM deep sleep
with a ROC–AUC of 0.97 (0.91–0.99). Only light non-REM sleep was slightly less well detected with an ROC–AUC of 0.86 (0.77–0.94).
CI = confidence interval; DS=deep sleep; LS= light sleep; R= REM sleep; W=wake.
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identifying the different sleep stages. Our objective was to develop,
train, and then validate an artificial intelligence algorithm to stage
sleep using a single sensor detecting mandibular movements.

This prospective study included 1,026 adults with suspected
OSA referred for overnight in-laboratory PSG and simultaneous
recordings of mandibular movements using the Sunrise system (IRB
00004890; number B707201523388).

The PSG data (Somnoscreen Plus, Somnomedics) were
manually scored by two experienced sleep technicians (interobserver
agreement, 92.1%; 95% confidence interval [CI], 0.89–0.94;
P, 0.001) in accordance with criteria of the American Academy of
SleepMedicine (7).

The Sunrise system is composed of a coin-sized sensor attached
by the sleep technician to the chin of the patient (Figure 1). The
embedded inertial measurement device senses mandibular
movements and is externally controlled by a smartphone application
via Bluetooth, automatically transferring nightly data to a cloud-based
infrastructure (2).

Using the Extreme Gradient Boosting classifier as the core
algorithm, we developed and progressively trained a machine
learning sleep staging algorithm (8) using the overnight PSG and
mandibular movement recordings from 800 of the patients. The
algorithm automatically classified each 30-second epoch of
mandibular movement patterns as wake, light non-REM (NREM;
N11N2), deep NREM (N3), or REM sleep stage (Figure 1). N1
and N2 stages were combined in the automated scoring to reach
the best compromise between clinical relevance and best model
performances. The extracted features consisted of a combination of
raw signals along the three axes of the accelerometer/gyroscope,
processing modes (filters with different frequency bands, moving
average), and statistical functions. The statistics applied to the
above features were tendency toward centrality (mean, median),
extreme values (min, max), quartiles, and SD, as well as the
normal standardized version of all above features. The
programming language was Python.

Patients in the machine learning training set (n=800 [451
males]) were aged 48.4 years (16.7) with a body mass index [BMI] of
29.1
kg/m2 (10.2), and neck circumference of 40.0 cm (5.0), all median
(interquartile range [IQR]) respectively. PSG recordings showed
apnea–hypopnea, respiratory disturbance, andmicroarousal indexes
of 17.1 (27.5), 23.9 (28.5), and 24.2 (20.2), all median events/hour
(IQR); and PSG sleep parameters: total sleep time 372 minutes
(122.7), sleep efficiency 85.1% (13.7), and wake time 12.2% (16.5), all
median (IQR).

Patients in a separate validation set (n=226 [116 males]) had
similar characteristics: 46.5 years (17.5), a BMI of 32.3 kg/m2 (11.5),
and neck circumference of 40.0 cm (5.0), all median (IQR); similar
PSG indexes (20.3 [23.5], 27.0 [23.6], and 25.0 [20.3] for
apnea–hypopnea, respiratory disturbance, andmicroarousal, all
median [IQR] respectively), and sleep parameters: 397 min (95.7),
87.1% (11.8), and 11.5% (12.2), all median (IQR) for total sleep time,
sleep efficiency, and wake time, respectively.

In the validation set, quantitative agreement analysis between
machine learning and human scorings was estimated using a linear mixed
model by a two-way intraclass correlation coefficient (ICC) (A, 1) (95%
CI) for total sleep time, wake time, light NREM, deepNREM, and REM
sleep stages: 0.94 (0.93–0.96), 0.90 (0.88–0.92), 0.70 (0.63–0.76), 0.66

(0.58–0.73), and 0.65 (0.56–0.72), respectively. Themean (95% CI)
measurement bias for total sleep time and the four sleep stages (as above)
were213.0minutes (252.9 to119.0),13.8% (26.8 to116.8),214.9%
(231.1 to11.8),16.0% (26.0 to121.2), and18.4 (221.3 to12.4).

The algorithm classified sleep epochs with substantial
qualitative agreement with manual PSG scorers, which
improved as the size of the learning set was progressively
increased (k= 0.71 and accuracy = 78.3% using the full
machine learning data set of 800 patients). As shown in Figure
2, a sleep stagewise receiver operating characteristics curve
analysis confirmed the well-balanced performance for each
target sleep stage.

Wakefulness was clearly discriminated from sleep states with a
sensitivity of 88% (95% CI, 71–99%) and a specificity of 94%
(85–98%). Moreover, the algorithm performed well in detecting REM
sleep (sensitivity 83% [64–97%], specificity 89% [76–97%]) and deep
sleep (sensitivity 84% [59–100%], specificity 90% [79–98%]). Light
NREM sleep was slightly less well detected (sensitivity 60% [36–82%],
specificity 88% [79–96%]).

These findings indicate that machine learning analysis of
mandibular movements identifies sleep stages with good agreement
to that of individual manual scorers of PSG data.

A strength of this work is that it was conducted using a real-life
cohort consisting of both subjects for whom PSG detected no OSA
and patients with a broad spectrum of OSA, who were randomly
sampled into training and validation sets.

Clear advantages of our approach are that it relies on a
highly performant sleep staging algorithm processing signals
from a single mandibular movement, facilitating the complex
process of signal treatment and improving sleep staging
reproducibility.

Our study was designed to avoid the limitations occurring in
other studies. First, PSG sleep staging was performed by two
experienced technicians. Second, data from an independent set of
patients were used to validate the algorithm. The input data were
balanced using a random resampling (SMOTE) technique to
minimize the effect of data imbalance. A conventional algorithmic
framework implying manual feature extraction and a structured
data-driven algorithm was adopted for better control and
understanding of input data. Furthermore, the XGBoost algorithm
offers several advantages over classical methods, including high
efficiency in computation and resources, allowing for fast training
and execution speed.

In conclusion, the mandibular movement signal acquired
from a compact inertial measurement device is suitable for
automated sleep staging in adults presenting a broad spectrum of
OSA severity. The proposed algorithm performs well for clinical
applications and could present a major step forward toward
unobtrusive, reliable, and cost-effective home-based sleep
assessment and value-based care (9).�
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Elexacaftor/Tezacaftor/Ivacaftor Improved Clinical
Outcomes in a Patient with N1303K-CFTR Based on
In Vitro Experimental Evidence

To the Editor:

The new generation of CFTR (cystic fibrosis transmembrane
conductance regulator) protein modulator, the triple
combination consisting of elexacaftor/tezacaftor/ivacaftor (ETI),
has been recognized as highly effective therapy for patients 12
years or older with cystic fibrosis (CF) and at least one F508del-
CFTR allele. Recently, ETI has also shown clinically meaningful
benefits both in patients with CF with advanced lung disease
(baseline %FEV1, 40) (1–3) and in children 6 through 11 years
with CF and at least one F508del allele (4). Similar results from
different institutions have also been reported in conference
abstracts (5–7). However, it is unclear if ETI is therapeutically
beneficial to patients with CF with N1303K, another class II
CFTR mutant. Using the whole-cell patch-clamp recording and
biochemical approaches, we demonstrated that ETI increased
maturation and function of N1303K-CFTR. After in vitro
confirmation, we investigated if ETI would be beneficial to a
patient with CF with two non-F508del-CFTR mutations, N1303K
and E193X, and our findings are reported below.

Methods
Tomonitor CFTR function, HEK293 cells were transiently
transfected with indicated CFTR variants. Cotransfection of GFP-
expression plasmid was performed for positive selection. Cells were
treated with 2mMVX445/VX661 (elexacaftor/tezacaftor,
MedChemExpress) for about 24 hours after overnight transfection.
Whole-cell patch-clamp recordings were performed using an
Axopatch-200B amplifier connected to Axon DigiData 1550B
(Molecular Devices). Patch pipettes were prepared using a
micropipette puller (P-1000; Sutter Instrument). To simultaneously
obtain current traces at260 mV and I/V curves of CFTR, whole-cell
currents were consecutively recorded with a 1 s voltage ramp of6100
mV applied every 10 s: hold at Vm (membrane voltage) =260mV
and filtered at 1 kHz and sampled at 50 Hz. The pipette solution
containing VX770 (ivacaftor, 2mM, SelleckChem) was composed of
(in mM) 116N-methyl-D-glucamine chloride (NMDG-Cl2), 30
aspartic acid, 1 MgCl2, 5 ethyleneglycol-bis-(b-aminoethyl ether)-
N,N,N9,N9-tetraacetic acid, 2.9 CaCl2, 10N-2-hydroxyethylpiperazine-
N9-ethane sulfonic acid, and 3MgATP, pH 7.4. Bath solution was
composed of (in mM): 146 NMDG-Cl2, 1 CaCl2, 1 MgCl2, 10
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